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Abstract
Reinforcement learning with function approximation has recently achieved tremendous results in
applications with large state spaces. This empirical success has motivated a growing body of the-
oretical work proposing necessary and sufficient conditions under which efficient reinforcement
learning is possible. From this line of work, a remarkably simple minimal sufficient condition has
emerged for sample efficient reinforcement learning: MDPs with optimal value function V ∗ andQ∗

linear in some known low-dimensional features. In this setting, recent works have designed sam-
ple efficient algorithms which require a number of samples polynomial in the feature dimension
and independent of the size of state space. They however leave finding computationally efficient
algorithms as future work and this is considered a major open problem in the community.

In this work, we make progress on this open problem by presenting the first computational
lower bound for RL with linear function approximation: unless NP=RP, no randomized polyno-
mial time algorithm exists for deterministic transition MDPs with a constant number of actions and
linear optimal value functions. To prove this, we show a reduction from UNIQUE-SAT, where we
convert a CNF formula into an MDP with deterministic transitions, constant number of actions and
low dimensional linear optimal value functions. This result also exhibits the first computational-
statistical gap in reinforcement learning with linear function approximation, as the underlying sta-
tistical problem is information-theoretically solvable with a polynomial number of queries, but no
computationally efficient algorithm exists unless NP=RP. Finally, we also prove a quasi-polynomial
time lower bound under the Randomized Exponential Time Hypothesis.
Keywords: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computational Complexity
(cs.CC); Optimization and Control (math.OC); Machine Learning (stat.ML)

1. Introduction

Function approximation has a long history in reinforcement learning (Tsitsiklis and Van Roy, 1996;
Bertsekas, 2009; Munos and Szepesvári, 2008) and game playing (Shannon, 1950; Tesauro et al.,
1995). More recently, this merger of reinforcement learning’s algorithmic techniques with super-
vised learning’s generalization schemes has achieved tremendous results in various applications
with large state spaces, in areas such as game playing (Mnih et al., 2013; Silver et al., 2017; Berner
et al., 2019), robotics (Kober et al., 2013) and biology (Senior et al., 2020). Since, one would ex-
pect the statistical and computational demand for these algorithms to grow at least linearly with the
size of the state space (Jaksch et al., 2010), it is quite surprising that these algorithms generalize so
well in large state spaces. That said, the computational requirements for existing algorithms have
become exceedingly high. For example, AlphaZero was trained on 5000 tensor processing units
(TPUs) for 13 days (Silver et al., 2018) and OpenAI Five trained its DOTA2 bots using 128000
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CPUs (Berner et al., 2019) for 180 days (10 months in real time). This leads to a natural funda-
mental question: are such data and compute requirements fundamental or can we design efficient
algorithms for these applications? More generally: what minimal properties of environments leads
to efficient RL algorithms?

Over the last decade, this question has driven a growing body of theoretical work showing when
sample efficiency is possible in RL for particular model classes, such as State Aggregation (Li, 2009;
Dong et al., 2020), Linear MDPs (Yang and Wang, 2019; Jin et al., 2020), Linear Mixture MDPs
(Modi et al., 2020; Ayoub et al., 2020; Zhou et al., 2021), Reactive POMDPs (Krishnamurthy et al.,
2016), Block MDPs (Du et al., 2019), FLAMBE (Agarwal et al., 2020), Reactive PSRs (Littman
et al., 2001), Linear Bellman Complete (Munos, 2005; Zanette et al., 2020). More generally, there
are also a few lines of work which propose general frameworks, consisting of structural conditions
which permit sample efficient RL; these include the Bellman rank (Jiang et al., 2016), Witness rank
(Sun et al., 2019), Bilinear Classes (Du et al., 2021) and Bellman Eluder (Jin et al., 2021). The goal
in these latter works is to develop a unified theory of generalization in RL, analogous to the more
classical notions in statistical complexity (e.g. VC-theory and Rademacher complexity) relevant for
supervised learning.

A surprisingly minimal assumption which arose from these works is Linear Q∗&V ∗ (Du et al.,
2021) where both optimal value function V ∗ and optimal action-value functionQ∗ are linear in some
known low-dimensional features. Du et al. (2021) showed that in this setting, there exists sample
efficient RL algorithms which regardless of the number of actions require a number of samples
polynomial in the feature dimension and independent of the size of the state space. However, when
only either V ∗ or Q∗ are linear, a series of works (Weisz et al., 2020; Wang et al., 2021; Weisz
et al., 2021c; Foster et al., 2021) showed that a phase transition occurs as one increases the number
of actions: sample efficient algorithms exist for constant number of actions, and quickly transform
into information theoretic exponential lower bounds as the number of actions exceeds the dimension
of the features underlying Q∗ or V ∗.

Even though we have made considerable progress in understanding the minimal assumptions
from the statistical perspective, the computational aspect of this problem is largely unknown. All
the settings mentioned above (except under strong assumptions like linear transitions (Jin et al.,
2020) and deterministic rewards (Wen and Van Roy, 2013)) do not have computationally efficient
algorithms and previous works (Jiang et al., 2016; Du et al., 2021; Weisz et al., 2021a) leave de-
signing computationally efficient algorithms as an important open problem. On the other hand, in
spite of failed search for such computationally efficient algorithms over the last few years, there are
no computational lower bounds for any of these settings (although previous attempts (Dann et al.,
2018) have shown inefficiency of specific algorithms). A case of particular interest is RL under
linear function approximation with constant many actions, which includes linear Q∗ (Weisz et al.,
2021c), linear V ∗ (Weisz et al., 2021d), linear Q∗&V ∗ (Du et al., 2021) and linear Q∗&V ∗ (reach-
able states) (Weisz et al., 2021c). In all these settings, we have statistically efficient algorithms
when the number of actions are O(1), but all the algorithms Du et al. (2020, 2021); Weisz et al.
(2021c) take times either exponential in d or H . Designing polynomial time algorithms for any of
these settings is considered a major open problem in the community.
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1.1. Our Contributions

In this work, we present the first computational lower bounds for RL with linear function approx-
imation. Before stating our main results, we first need to state some key definitions that we use
throughout the paper.

Markov Decision Process (MDP). We first define the framework for reinforcement learning, a
Markov Decision Process (MDP). We define a deterministic MDP as a tuple M = (S,A, R, P ),
where S is the state space, A is the action space, R : S × A 7→ ∆([0, 1]) is the stochastic reward
function 1, and P : S × A 7→ S is the deterministic transition function. An MDP M defines a
discrete time sequential decision process where the agent starts from a starting state s0 ∈ S . Then,
at each time t, the agent at some current state St, takes action At, receiving reward Rt ∼ R(St, At)
and transitions to next state St+1. This goes on till the agent reaches the end state ⊥. Each such
trajectory/path from starting state s0 to end state ⊥ is of length at most horizon H . A deterministic,
stationary policy π : S 7→ A specifies a decision-making strategy in which the agent chooses
actions adaptively based on the current state, i.e. At = π(St). Given a policy π and a state-action
pair (s, a) ∈ S ×A, the Q-function and V -function under a policy π are defined as

V π(s) = E

[
τ−1∑
t=0

R(St, At) | S0 = s, π

]
, Qπ(s, a) = E

[
τ−1∑
t=0

R(St, At) | S0 = s,A0 = a, π

]
,

(1)
where S1, A1, . . . Sτ−1, Aτ−1 are obtained by executing policy π in the MDP M and τ is the first
time when policy π reaches the end state ⊥, that is Sτ = ⊥ where it always holds that τ ≤ H . We
use Q∗ and V ∗ to denote the optimal value functions

V ∗(s) = sup
π
V π(s) , Q∗(s, a) = sup

π
Qπ(s, a) , s ∈ S, a ∈ A

We say that the optimal value functions V ∗ and Q∗ can be written as a linear function of d-
dimensional features ψ : S ∪ (S × A) → Rd if for all state s and action a, V ∗(s) = 〈θ, ψ(s)〉
and Q∗(s, a) = 〈θ, ψ(s, a)〉 for some fixed θ ∈ Rd independent of s and a.

Computational Problems. We next introduce 3-SAT, a satisfiability problem for 3-CNF formu-
las. In a 3-SAT problem, we are given as input, a 3-CNF formula ϕ with v variables and O(v)
clauses and our goal is to decide if ϕ is satisfiable. Our computational lower bound is based on
a reduction from UNIQUE-3-SAT, a variant of 3-SAT. UNIQUE-3-SAT is the promise version of
3-SAT where the given formula is promised to have either 0 or 1 satisfying assignments.

The focus of this work is the computational RL problem, LINEAR-k-RL. In a LINEAR-k-
RL problem with feature dimension d, we are given access to a deterministic MDP M with k
actions and horizon H = O(d) such that the optimal value functions Q∗ and V ∗ can be written as
a linear function of d-dimensional features ψ. Our goal is to output a good policy, which we define
as any policy π that satisfies V π > V ∗ − 1/4. Note that here V π and V ∗ refers to the value of the
policy π and optimal policy respectively at the starting state and is always in [0, H] 2. Moreover,
the constant 1/4 can be replaced by any arbitrary constant < 1. From now on, we always assume
number of actions k is 2 or 3.

1. ∆([0, 1]) denotes the set of all distributions over interval [0, 1].
2. in our constructions, we satisfy the more stringent condition that V ∗ ∈ [0, 1].
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Complexity problem LINEAR-k-RL
Oracle: a deterministic MDP M with k actions, optimal value functions V ∗ and Q∗

linear in d dimensional features ψ and horizon H = O(d).
Goal: find policy π such that V π > V ∗ − 1/4.

We now describe how the algorithm interacts with the MDP. We assume that the algorithm has
access to the associated (i) reward function R, (ii) transition function P and (iii) features ψ. For
all these functions, the algorithm provides a state s and action a (if needed) and receives a random
sample from the distribution R(s, a) (for the reward function), the state P (s, a) (for the transition
function) or feature ψ(s) or ψ(s, a) (for the features). We assume that each call accrues constant
runtime and input/output for these functions are of size polynomial in feature dimension d.

We will often talk about randomized algorithm A solving a problem in time t with error proba-
bility p. By this we mean (i) A runs in time O(t); (ii) for satisfiability problems, it returns YES on
positive input instances with probability at least 1 − p and returns NO on negative input instances
with probability 1; and (iii) for RL problem, it returns a good policy with probability at least 1− p.

1.1.1. NO POLYNOMIAL TIME ALGORITHM FOR LINEAR-2-RL

With these considerations in mind, we present our main result that asserts that unless NP=RP,
no randomized polynomial time algorithm can find a good policy in deterministic MDPs with a
constant number of actions and linear optimal value functions.

Theorem 1 (LINEAR-2-RL ∈ RP =⇒ NP=RP) Unless NP=RP, no randomized algorithm can
solve LINEAR-2-RL with feature dimension d in time polynomial in d with error probability 1/10.

This resolves the open problem from Weisz et al. (2021c) and Du et al. (2021) by showing that
unless RP=NP, no polynomial time randomized algorithm exists for deterministic transition MDPs
with a constant number of actions and linear optimal value functions.

Our main technical contribution is a reduction from UNIQUE-3-SAT to LINEAR-3-RL such that
a polynomial time algorithm for LINEAR-3-RL implies a polynomial time algorithm for UNIQUE-
3-SAT. To achieve this, we use the input for UNIQUE-3-SAT: a 3-CNF formula ϕ with v variables,
to design an input for LINEAR-3-RL: an MDP Mϕ with 3 actions and optimal value functions V ∗

and Q∗ linear in d-dimensional features. On a high level, the MDP is constructed such that each
state represents an assignment to the UNIQUE-3-SAT variables and the goal is to “search” for the
solution to the UNIQUE-3-SAT instance. In particular, at each state, the 3 actions available to the
agent correspond to an unsatisfied clause which ensures at least one action available to the agent
decreases the distance to the solution. To incentivize finding the solution, a large reward is awarded
on reaching the solution and a very small expected reward on reaching the horizon (this reward is
small enough that any polynomial time RL algorithm only receives 0 reward with high probability on
reaching the horizon). This ensures that (i) finding a good policy also finds the satisfying assignment
of ϕ and (ii) the optimal value functions V ∗ and Q∗ are linear in some low dimensional features.
We present this construction in Section 2.

To get lower bounds for LINEAR-2-RL, we use the same construction as above with a small
modification. We replace the choice of 3 actions a1, a2 and a3 at every state with a depth-2 binary
tree, where the first action is a1 and the second action leads to a new state which has actions a2 and
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a3. This allows us to simulate the hard 3-action MDP using a 2-action MDP while increasing our
feature dimension d by at most a quadratic factor. We present this construction in Section 3.

These reductions allow us to simulate a polynomial time algorithm for UNIQUE-3-SAT on input
ϕ by running the polynomial time algorithm for LINEAR-2-RL on MDP Mϕ. More formally, our
reduction gives a polynomial relationship between the complexity of UNIQUE-3-SAT and LINEAR-
2-RL: a polynomial dq time algorithm for LINEAR-2-RL implies a polynomial vO(q2) time algo-
rithm for UNIQUE-3-SAT.

Proposition 2 Suppose q ≥ 1. If LINEAR-2-RL with feature dimension d can be solved in time
dq with error probability 1/10, then UNIQUE-3-SAT with v variables can be solved in time vO(q2)

with error probability 1/8.

This relates the complexity of UNIQUE-3-SAT to LINEAR-2-RL and LINEAR-3-RL. To relate
these problems to complexity class NP, we use a seminal result from Valiant and Vazirani (1985)
which showed that uniqueness of solution can not be used to solve search problems quickly. In
particular, they showed a randomized polynomial time reduction from 3-SAT to UNIQUE-3-SAT.

Theorem 3 (Valiant-Vazirani Theorem) Unless NP=RP, no polynomial time randomized algo-
rithm can solve UNIQUE-3-SAT with error probability 1/8.

Combining our reduction with Valiant-Vazirani Theorem proves our main result–Theorem 1.

1.1.2. QUASI-POLYNOMIAL LOWER BOUND FOR LINEAR-2-RL

We now present computational lower bound under a strengthening of NP 6= RP conjecture, Ran-
domized Exponential Time Hypothesis (rETH) (Dell et al., 2014), which asserts that probabilistic
algorithms can not decide if a given 3-SAT problem with v variables and O(v) clauses is satisfiable
in sub-exponential time.

Definition 4 (Randomized Exponential Time Hypothesis (rETH)) There is a constant c > 0
such that no randomized algorithm can decide 3-SAT with v variables in time 2cv with error prob-
ability 1/2.

Randomized Exponential Time Hypothesis along with many variants motivated by Exponential
Time Hypothesis (Impagliazzo and Paturi, 2001) have been influential in discovering hardness re-
sults for a variety of problems see, e.g. Cygan et al. (2015); Williams (2019). Under Randomized
Exponential Time Hypothesis, our main result is a quasi-polynomial computational lower bound for
learning good policies in deterministic MDPs with linear optimal value functions.

Theorem 5 (Quasi-polynomial lower bound for LINEAR-2-RL) Under rETH, no randomized
algorithm can solve LINEAR-2-RL with feature dimension d in time dO(log d/ log log d) with error
probability 1/10.

This improves over our super-polynomial lower bound albeit depending on a much stronger
hardness assumption. To prove this result, we use a different choice of parameters in our reduc-
tion and set the feature dimension d to be sub-exponential in the number of variables v to get the
following:
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Proposition 6 If LINEAR-2-RL with feature dimension d can be solved in time dO(log d/ log log d)

with error probability 1/10, then UNIQUE-3-SAT with v variables can be solved in time 2O(v/ log v)

with error probability 1/8.

Here its important to note that we can not use Valiant-Vazirani Theorem to relate UNIQUE-3-
SAT and 3-SAT, since it is consistent with Valiant-Vazirani Theorem that UNIQUE-3-SAT is solv-
able in 2

√
v time but 3-SAT takes 2v time. Therefore, we use a more refined lower bound for

UNIQUE-3-SAT from Calabro et al. (2008) which showed that if UNIQUE-3-SAT with v variables
can be solved in time 2αv for every α > 0, then so can k-SAT for all k ≥ 3.

Theorem 7 (Calabro et al. (2008)) Assuming rETH is true, there exists a constant c > 0 such
that no randomized algorithm can solve UNIQUE-3-SAT with v variables in time 2cv with error
probability 1/2.

In conjunction with our reduction, this gives a quasi-polynomial lower bound for LINEAR-2-
RL under rETH. We leave as an open problem if the techniques introduced in this work can be used
to prove an exponential lower bound for LINEAR-2-RL under rETH.

Our results give evidence that even though having linear optimal value functions is sufficient
for sample efficient reinforcement learning Du et al. (2021), it is not sufficient for computationally
efficient reinforcement learning. More assumptions are required for computationally efficient algo-
rithms, in addition to optimal value functions Q∗ and V ∗ being linear in low-dimensional features,
for example sub-optimality gap (Du et al., 2020). We hope that this work will open up new research
avenues for finding minimal sufficient conditions for computationally efficient reinforcement learn-
ing. We now discuss a few further notable implications of this work.

• Computational-Statistical Gap: There are many problems which exhibit computational-statistical
gaps i.e. regimes where the underlying statistical problem is information theoretically possi-
ble but no computationally efficient algorithm exists. Examples include community detec-
tion (Holland et al., 1983; McSherry, 2001; Abbe and Sandon, 2015), planted clique (Alon
et al., 1998; Barak et al., 2019) and sparse principal component analysis (Berthet and Rigol-
let, 2013a,b). To the best of our knowledge, our computational lower bound is the first
computational-statistical gap in reinforcement learning with function approximation. When
both optimal value functions Q∗ and V ∗ are linear, MDPs with any number of actions are
statistically easy to solve (Du et al., 2021) but our results show that no polynomial time algo-
rithm can solve these MDPs even with a constant number of actions, unless NP=RP.

• Natural Problem in NP \ P: There has been quite a lot of recent work in complexity theory
literature on proving quasi-polynomial lower bounds based on Exponential Time Hypothesis
(for e.g. dense constraint satisfaction problems (Aaronson et al., 2014), approximating best
nash equilibrium (Braverman et al., 2015) and approximating densest k-subgraph with perfect
completeness (Braverman et al., 2017)). This work adds RL with deterministic transition,
linear bounded optimal value functions V ∗, Q∗ and constant number of actions as another
natural problem in NP but not in P unless NP=RP.

Remainder of this paper. In Section 2 and Section 3, we present our lower bound constructions
for 3 action and 2 action MDPs respectively.
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2. Lower Bound for MDPs with 3 actions

In this section, we will prove the reduction, Theorem 8 and Theorem 9, restated versions of The-
orem 2 and Theorem 6 for LINEAR-3-RL. The overall idea is to first build a randomized algo-
rithm ASAT which can decide UNIQUE-3-SAT using a randomized algorithm ARL which solves
LINEAR-3-RL. The two reductions only differ in their settings of parameters.

In the first setting, which we use to prove that no polynomial time algorithm exists for LINEAR-
3-RL, we set the feature dimension d to be polynomial in the number of variables v. Under this
setting, we can build a polynomial time randomized algorithm for UNIQUE-3-SAT using a polyno-
mial time randomized algorithm for LINEAR-3-RL.

Proposition 8 Suppose q ≥ 1. If LINEAR-3-RL with feature dimension d can be solved in
time dq with error probability 1/10, then UNIQUE-3-SAT with v variables can be solved in time
O(v8q+16q2) with error probability 1/8.

In the second setting, which we use to prove a quasi-polynomial lower bound for LINEAR-3-
RL, we set the feature dimension d to be sub-exponential in the number of variables v. This allows
us to transform an exponential time lower bound for UNIQUE-3-SAT into a quasi-polynomial lower
bound for LINEAR-3-RL.

Proposition 9 If LINEAR-3-RL with feature dimension d can be solved in time dlog d/(32 log log d)

with error probability 1/10, then UNIQUE-3-SAT with v variables can be solved in time 2O(v/ log v)

with error probability 1/8.

Before we prove these results, we give a brief outline of our reduction from UNIQUE-3-SAT to
LINEAR-3-RL. On a high level, we construct an MDP where the goal is to ”search” for the solution
w∗ to a UNIQUE-3-SAT instance with v variables. In particular, at each time, the agent is given
an unsatisfied clause and asked to flip assignment for a variable present in the clause. Notice that
since the clause is unsatisfied, there must be at least one variable whose assignment differs from the
solution and therefore, the agent can “reach” the solution in at most d(w,w∗) steps. To incentivize
the agent, if the agents at time l finds the solution i.e. w = w∗ or reaches the end of the MDP i.e.
l = H , it receives reward according to the following degree-r polynomial

g(l, w) =

(
1− l + dist(w,w∗)

H + v

)r
.

We show how to build an MDPs from a UNIQUE-3-SAT instance in Section 2.1. Furthermore, we
show that the optimal value functions V ∗ and Q∗ for the constructed MDP are linear in d = O(vr)-
dimensional features. Since the expected reward at last layer of the MDP is O(v−r

2
) (which can

be replaced with 0 for any poly(d) time RL algorithm), the only non-zero reward is achieved by
solving the underlying UNIQUE-3-SAT instance, proving our reduction. We give a formal argument
in Section 2.2, where we show how to build a randomized algorithm for UNIQUE-3-SAT using a
randomized algorithm for LINEAR-3-RL. In Section 2.3, we discuss the two different settings of
parameters which will prove Theorem 8 and Theorem 9.
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x1 ∨ x2 ∨ x3

(−1,−1,−1,−1)
l = 0

x1 ∨ x2 ∨ x̄3

(−1,−1, 1,−1)
l = 1

x3

x2

x̄1 ∨ x2 ∨ x3

(1,−1,−1,−1)
l = 1

x̄1 ∨ x2 ∨ x̄3

(1,−1, 1,−1)
l = 2

x3

x1

x̄1 ∨ x3 ∨ x4

(1, 1,−1,−1)
l = 2

x1

x3

(1, 1,−1, 1)
l = 3

⊥
x4

x2

x1

Figure 1: Example construction of 3-action MDPMϕ from a 3-CNF formula (x1∨x2∨x3)∧(x̄1∨
x2∨x3)∧(x̄1∨x3∨x4)∧(x1∨x2∨ x̄3)∧(x̄1∨x2∨ x̄3)∧(x̄3∨ x̄3∨ x̄3)∧(x1∨x1∨x1).
The only satisfying assignment for this formula is (1, 1,−1, 1). The states are labelled by
the corresponding assignment and unsatisfied clause which decides the available actions.
The states in the optimal path are colored in red.

2.1. From 3-CNF formulas to 3-action MDPs

We will start by defining a mapping from an input of UNIQUE-3-SAT problem: 3-CNF formula
ϕ with v variables and O(v) clauses to an MDP Mϕ with 3 actions and H = O(d) horizon with
optimal value functions linear in d dimensions. Our informal goal is to design an MDP Mϕ such
that finding a good policy also implies finding the satisfying assignment for the formula ϕ. We
now formally describe the MDP Mϕ when the formula ϕ has a unique satisfying assignment w∗ ∈
{−1, 1}v and later show how the MDPMϕ differs when the formula ϕ has no solution. See Figure 1
for an example.

Transitions. In our setting, it will be useful to visualize an MDP as a tree, where nodes represent
states and edges represent actions. A policy is then a sequence of actions or equivalently a path
in the aforementioned tree. The MDP Mϕ is a ternary tree i.e. each state/node in the tree has
3 children. The transitions/dynamics are deterministic i.e. the first action goes to first child, the
second action goes to second child and so on.

Assignments. Each state is associated with an assignment to the v variables i.e. a binary vector
in {−1, 1}v and a natural number l denoting the depth of the state. Our goal here is to choose
assignments such that it is always possible to choose an action which decreases the hamming dis-
tance to the satisfying assignment. The root in the tree is associated with the all zeroes assignment
(−1,−1, . . . ,−1). For any state s with a non-satisfying assignment w = (w1, w2, . . . , wv) 6= w∗,
the assignment associated to the three children are as follows. Since w is not a satisfying assign-
ment, consider the first unsatisfied clause with variables xi1 , xi2 , xi3 . The first child is associated
with the assignment where the i1-th bit of w is flipped, the second child is associated with vec-
tor where i2-th bit is flipped and so on. More formally, the assignment associated to j-th child is
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(w′1, w
′
2, . . . , w

′
v) where w′k = ¬wk if k = ij and w′k = wk otherwise. The two exceptions to this

are (i) states with the satisfying assignment w∗ and (ii) states at the last level H . For such states, all
actions go to the end state ⊥.

Rewards. To ensure that finding good policies implies finding the satisfying assignment in our
MDP, we will only give rewards when a satisfying assignment is found or at the last layer. More
formally, the rewards everywhere are zero except on (i) states with the satisfying assignment w∗ and
(ii) states on the last level H . In both the cases above, say the state is at level l with assignment w,
then the associated reward distribution for any action is a Bernoulli distributionBer(g(l, w)) where

g(l, w) =

(
1− l + dist(w,w∗)

H + v

)r
and the Bernoulli distributionBer(p) is 1 with probability p and 0 with probability 1−p. Here r is a
parameter which we will specify in Section 2.3. When the formula ϕ has no satisfying assignment,
all rewards are 0. Note that in our simulation (Section 2.2), we don’t know/use w∗ and instead use
an approximate reward function that is easy to compute.

Linear Optimal Value Functions. We next show that in the MDP Mϕ, the optimal value func-
tions V ∗ and Q∗ can be written as a linear function of d = O(vr) dimensional features ψ, where
ψ(s) or ψ(s, a) depends only on w, the corresponding assignment, and l, the depth of the state.

Proposition 10 For any state s in level l with assignment w and action a,

(i) the optimal value function is V ∗(s) = g(l, w).

(ii) for large enough v, there exists features ψ(s), ψ(s, a) ∈ Rd with feature dimension d ≤ 2vr

depending only on state s and action a; and θ ∈ Rd depending only on w∗ such that V ∗ and
Q∗ can be written as a linear function of features ψ i.e. V ∗(s) = 〈θ, ψ(s)〉 and Q∗(s, a) =
〈θ, ψ(s, a)〉.

We present the proof in Appendix A. Even though ψ(s) does not depend on w∗, unlike the
constructions of Weisz et al. (2021b,c); Wang et al. (2021), ψ(s) does depend on the MDP Mϕ

making this construction statistically easy but computationally hard to solve.

2.2. From RL algorithms to 3-SAT algorithms

We now build a randomized algorithm ASAT for UNIQUE-3-SAT using a randomized algorithm
ARL for the RL problem. However, as mentioned before, since the runtime for ARL accrues only
constant runtime for each call to the MDP oracle, to efficiently build ASAT using ARL, we need
to be able to efficiently simulate the calls to MDP oracle, namely: calls to the reward function,
the transition function and the features. To do so, we build an “approximate” simulator M̄ϕ for the
MDP oracleMϕ. The simulator M̄ϕ is exactly MDPMϕ in terms of transition function and features
associated with the MDPMϕ, but differs in the reward function at the last layer which is always 0 for
the simulator M̄ϕ. This modification is crucial for an efficient reduction because unlike transitions
and features for any state which can be computed in time poly(d) on the MDP Mϕ, the rewards at
the last layer when dist(w,w∗) 6= 0 require access to w∗ which can not be done efficiently. With
the purposed modification, we can execute each call to simulator M̄ϕ in time poly(d).

9



KANE LIU LOVETT MAHAJAN

Algorithm. On input 3-CNF formula ϕ, ASAT runs the algorithm ARL replacing each call to
MDP oracle Mϕ with the corresponding call to simulator M̄ϕ. Recall that the output for the RL
algorithm in our setting is a sequence of actions. If the sequence of actions returned by ARL ends
on a state with assignment w, ASAT outputs YES if w is the satisfying assignment and returns NO
otherwise.

Correctness. We set the horizon H = vr. We will assume throughout that r ≥ 2 and that
the runtime of ARL is ≤ vr

2/4. Different settings of r satisfying these assumptions will prove
Theorem 8 and Theorem 9 for 3-action MDPs, which we will discuss in Section 2.3. To complete
our reduction, we will show the following:

(i) If algorithmARL outputs a policy π such that V π > V ∗−1/4, thenASAT on 3-CNF formula
ϕ outputs YES if ϕ is satisfiable and NO otherwise.

(ii) If ARL with access to MDP oracle Mϕ outputs a policy π such that V π > V ∗ − 1/4 with
error probability 1/10, then ARL with access to simulator M̄ϕ outputs a policy π such that
V π > V ∗ − 1/4 with error probability 1/8.

These together will show that ASAT solves UNIQUE-3-SAT with error probability ≤ 1/8. We
start by proving that if ARL succeeds on MDP M̄ϕ, then ASAT succeeds on 3-CNF formula ϕ.
This follows from the fact that any good policy in the MDP Mϕ must reach a state with satisfying
assignment w∗.

Proposition 11 Suppose r > 1 and horizon H = vr. If ARL outputs a policy π such that V π >
V ∗ − 1/4, then ASAT on 3-CNF formula ϕ outputs YES if ϕ is satisfiable and NO otherwise.

Proof Since algorithm ASAT always returns NO on an unsatisfiable formula, we restrict our atten-
tion to a satisfiable formula ϕ. In the MDP Mϕ, (i) rewards are “very small” everywhere except on
reaching the satisfying assignment i.e. the expected reward at the last layer in the MDPMϕ is upper
bounded by (for large enough v and r > 1)(

1− H

H + v

)r
=

(
v

H + v

)r
≤ v−r2+r < 1/4

and (ii) the optimal value V ∗ is large

V ∗ ≥
(

1− v

H + v

)r
=
(

1 +
v

vr

)−r
≥ 1− rv

vr
≥ 1

2

where the second last inequality follows from Bernoulli’s inequality and the last inequality holds
for large enough v and r > 1. Therefore, if the value of policy is large i.e. V π > V ∗ − 1/4, then
the policy π (and therefore the corresponding sequence of actions) has to end on a state with the
satisfying assignmentw∗. By construction ofASAT , this impliesASAT will succeed on the formula
ϕ.

Since we can not simulate the rewards on MDP oracle Mϕ efficiently, our reduction runs the
algorithm ARL on an approximate simulator M̄ϕ. However, it’s not clear why ARL would still
succeed when each call to MDP oracle is replaced by a call to the simulator M̄ϕ. The following
proposition shows that in fact ARL would succeed on the outputs of simulator M̄ϕ albeit with a
smaller constant probability.

10
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Proposition 12 Suppose r ≥ 2 and horizon H = vr. Suppose ARL with access to MDP oracle
Mϕ runs in time vr

2/4 and outputs a policy π such that V π > V ∗−1/4 with error probability 1/10.
Then ARL with access to simulator M̄ϕ, still running in time vr

2/4, outputs a policy π such that
V π > V ∗ − 1/4 with error probability 1/8.

Proof Let PrMϕ and PrM̄ϕ
denote the distribution on the observed rewards and output policies

induced by the algorithm ARL when running on access to MDP oracle Mϕ and simulator M̄ϕ

respectively. Let Ri denote the reward received on the last layer at the end of i-th trajectory. Let
T be the total number of trajectories sampled by algorithm ARL when running on access to MDP
oracleMϕ. By our assumption,ARL runs in time vr

2/4 and therefore T ≤ vr2/4. Since the expected
reward at the last layer in the MDP Mϕ is upper bounded by (for large enough v and r ≥ 2)(

1− H

H + v

)r
=

(
v

H + v

)r
≤ v−r2+r ≤ v−

r2

2

and and the algorithm only visits at most vr
2/4 states on last layer, we get by the union bound that

with high probability all the rewards at the last level are zero. More precisely (and assuming v is
large enough),

Pr
Mϕ

[Ri = 0 ∀i ∈ [T ]] ≥ 1− v−r2/4 ≥ 4

5

We say ARL succeeds with access to Mϕ (or M̄ϕ) if the output policy π after running for time at
most vr

2/4 satisfies V π > V ∗ − 1/4. Using the above reasoning and the assumption that ARL
succeeds with access to MDP oracle Mϕ with probability 9/10 implies

Pr
Mϕ

[ARL succeeds with access to Mϕ | Ri = 0 ∀i ∈ [T ]] ≥
9
10 −

1
5

4
5

=
7

8

Note that the marginal distributions PrMϕ and PrM̄ϕ
on output policy π given Ri = 0 ∀i ∈ [T ] are

exactly the same because MDP oracle M̄ϕ and simulator Mϕ only differ on last layer rewards. This
implies

Pr
M̄ϕ

[
ARL succeeds with access to M̄ϕ | Ri = 0 ∀i ∈ [T ]

]
= Pr

Mϕ

[ARL succeeds with access to Mϕ | Ri = 0 ∀i ∈ [T ]]

Since, PrM̄ϕ
[Ri = 0 ∀i ∈ [T ]] = 1, we conclude that

Pr
M̄ϕ

[
ARL succeeds with access to M̄ϕ

]
≥ 7

8

11
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2.3. Setting of Parameters

It follows from Theorems 10 to 12 that if LINEAR-3-RL with feature dimension d = 2vr can
be solved in time vr

2/4 with error probability 1/10, then UNIQUE-3-SAT with v variables can be
solved in time d · vr2/4 with error probability 1/8 (here the extra d factor is because each call to
the simulator M̄ϕ takes d time). As we increase r, we decrease the expected reward available to the
algorithm at the last layer on the order of v−O(r2), making the problem harder. However, increasing
r also increases the feature dimension on the order of vr. This non-polynomial gap in the feature
dimension and expected reward at the last layer will give our main reduction.

We use two different settings of r to prove our lower bounds: (i) r is constant wrt number
of variables v and (ii) r2 is almost linear in the number of variables v. In Appendix A, we show
how the first setting proves Theorem 8 and the second setting proves Theorem 9. We also prove a
more general version, Theorem 14, which shows that a quasi-polynomial algorithm for LINEAR-3-
RL implies a quasi-polynomial algorithm for UNIQUE-3-SAT.

3. Lower Bound for MDPs with 2 actions

In this section, we prove computational lower bound for LINEAR-2-RL. Similar to Section 2, our
proof is based on reduction from UNIQUE-3-SAT. We will modify the MDP Mϕ with three actions
into Mϕ by introducing some intermediate states. See Figure 3 for an example of this modification
for a single state.

Intermediate states. Recall that in Mϕ each state is associated with an assignment. Let the i-th
clause, which consists of three variables xi1 , xi2 , xi3 , be the first unsatisfied clause. Then, the three
actions available each correspond to flipping one of the variable in the clause. We will replace
them by two actions: while one action still flips the last variable xi3 , the other action leads to an
intermediate state s[i1,i2]. At the state s[i1,i2], two actions are available: one flips xi1 and the other
flips xi2 .

Depth of state. In the 3 action MDP Mϕ, the depth of a state is simply the length of the path that
ends at the state. Here, we define the depth to be the number of non-intermediate states included in
the path. That being said, the intermediate states will have the same depth as their parents.

Rewards. The rewards are the same as those in the 3 action MDP. Namely, rewards are only given
at last layer or when the assignment is w∗. In particular, for a state with assignment w and depth l,
the reward distribution is Ber(g(l, w)) where

g(l, w) =

(
1− l + dist(w,w∗)

H + v

)r
.

We now show that, even with this modification, the optimal value functions V ∗ and Q∗ can still
be written as a linear function of some low dimensional features.

Proposition 13 For any state s in level l with assignment w and action a,

(i) If s is a non-intermediate state, then the optimal value function is V ∗(s) = g(l, w).

12
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x1 ∨ x2 ∨ x3

(−1,−1,−1, · · · )
l = 1

(−1,−1, 1, · · · )
l = 2

x3

(−1,−1,−1, · · · )
l = 1

(−1, 1,−1, · · · )
l = 2

x2

(1,−1,−1, · · · )
l = 2

x1

[x1, x2]

Figure 2: Part of a 2-action MDP corresponding to the CNF clause (x1 ∨ x2 ∨ x3). The non-
intermediate states are colored red and the intermediate states are colored blue.

(ii) If s is an intermediate state that leads to actions which flip coordinates i1 and i2, then the
optimal value function is

V ∗(s[i1,i2]) =

(
1−

l + dist(w,w∗) + 2 · 1{wi1 = w∗i1} · 1{wi2 = w∗i2}
H + v

)r
.

(iii) for feature dimension d = 2v2r, there exists features ψ(s), ψ(s, a) ∈ Rd depending only on
state s and action a; and θ ∈ Rd depending only on w∗ such that V ∗ and Q∗ can be written
as a linear function of features ψ i.e. V ∗(s) = 〈θ, ψ(s)〉 and Q∗(s, a) = 〈θ, ψ(s, a)〉.

By Theorem 13, the feature dimension d of the 2 action MDP and the number of variables v in
the UNIQUE-3-SAT instance are related by d = 2v2r ≤ v3r. We present proof of Theorem 13 and
how setting of r proves Theorem 2 and Theorem 6 in Appendix B.
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Szepesvári. On query-efficient planning in mdps under linear realizability of the optimal state-
value function, 2021a.
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Appendix A. Proofs for Section 2

Proof [Proof of Theorem 10] To prove our first claim, we start by showing that there exists a policy
π that achieves this value for each state. Let π be the policy which for any state s with assignment
w 6= w∗ chooses the action which decreases the hamming distance dist(w,w∗) by 1. Note that
one such action always exists in our construction, since a satisfying assignment satisfies all clauses.
Therefore, from a state s at level l with assignment w, we can reach a state with assignment w1 such
that either (i) w1 is a satisfying assignment or (ii) w1 is at the last level. In both cases,

V π(s) =

(
1− l + dist(w,w1) + dist(w1, w

∗)

H + v

)r
= g(l, w)

Next, for any other policy π′ that ends on state s′ at level l′ with assignment w′ (i.e. either l′ = H
or w′ = w∗), we have

V π′(s) =

(
1− l′ + dist(w′, w∗)

H + v

)r
≤
(

1− l + dist(w,w′) + dist(w′, w∗)
H + v

)r
≤ g(l, w)

where the first inequality follows from l′− l ≥ dist(w,w′). This proves our first claim about V ∗ i.e.
V ∗(s) = g(l, w).

To prove our second claim, that V ∗ and Q∗ can be written as a linear function of features ψ, we
will show that V ∗(s) can be written as a polynomial of degree at most r in w and w∗. To see why
this is enough, we set θ to be all monomials in w∗ of degree at most r. That is, each coordinate of θ
corresponds to a multiset S ⊂ [v] of size |S| ≤ r, and its value is θS =

∏
i∈S w

∗
i . We set ψ(s) to be

the corresponding coefficients in the polynomial V ∗. Then, we can write V ∗(s) = 〈θ, ψ(s)〉. Since,
there are at most

∑r
i=0 v

i ≤ 2vr many coefficients we can set the feature dimension as d = 2vr.
Finally, we prove that V ∗(s) can be written as a polynomial of degree at most r in w and w∗.

Firstly hamming distance dist(w,w∗) is linear in both w and w∗ i.e.

dist(w,w∗) =
v − 〈w,w∗〉

2

Our claim follows from noting that g(l, w) is a polynomial of degree r in dist(w,w∗). Note that
linear V ∗ implies linear Q∗ in deterministic MDPs for ψ(s, a) = ψ(P (s, a)), since by definition, in
MDPs with deterministic transition, Q∗(s, a) = V ∗(P (s, a)).

Proof [Proof of Theorem 8] For any q ≥ 1, we set

r = 8q . (2)

Note that q ≥ 1 implies r ≥ 2. Therefore, to prove our proposition, we just need to show

dq ≤ vr2/4 (3)

d · vr2/4 ≤ v8q+16q2+1 (4)

under this setting of d and r. Here the first equation bounds the time complexity of LINEAR-3-RL in
terms of feature dimension d and the second equation bounds the time complexity of UNIQUE-3-
SAT in terms of the number of variables v. Equation (3) is true as

v
r2

4 = (vr)
r
4 ≥ d

r
8 = dq
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where the first inequality follows from d ≤ v2r for large enough v and the last equality follows from
Equation (2) above. Equation (4) holds since

d · vr2/4 = 2vr+r
2/4 = O(v8q+16q2),

where the first equality follows from d = 2vr and the last equality follows from Equation (2) for
large enough v.

Proof [Proof of Theorem 9] This follows exactly as proof of Theorem 8. We set

r =

⌈ √
v

log v

⌉
.

We proceed to show that (i) the time complexity of LINEAR-3-RL can be bounded by vr
2/4 (ii)

d·vr2/4, which is the time complexity of UNIQUE-3-SAT if (i) holds, can be bounded by 2O(v/ log v).
With this setting, the time complexity of LINEAR-3-RL simplifies to

d
log d

32 log log d ≤ v
2r log d

32 log log d ≤ v
4r2 log v

32 log(r log v) ≤ v
8r2 log v
32 log v = v

r2

4

where the first and second inequality follows from vr ≤ d ≤ v2r and third inequality follows from
our setting of r.

Similarly, the time complexity of UNIQUE-3-SAT simplifies to

d · vr2/4 = 2vr+
r2

4 ≤ vr2 ≤ v
4v

log2 v = 2
4v

log v

where the first equality follows from d = 2vr, first inequality follows for r ≥ 2 and large enough v
and the second inequality follows from our setting of r above.

The following is generalization of reduction from UNIQUE-3-SAT to LINEAR-3-RL in Theo-
rem 8.

Proposition 14 Suppose m ≥ 0 and q ≥ 1. If LINEAR-3-RL with feature dimension d can be
solved in time dq·(log d)m/(m+2)

with error probability 1/10, then UNIQUE-3-SAT with v variables
can be solved in time vO(16m+2qm+2)·(log v)m with error probability 1/8.

Proof For any m ≥ 0 and q ≥ 1, we set

r =
⌈√

(16q)m+2 logm v
⌉
. (5)

Note that m ≥ 0 and q ≥ 1 implies r ≥ 2. Therefore, to prove our claim, we just need to show the
following equations hold for our setting of d and r:

vr
2/4 ≥ dq·log

m
m+2 d (6)

d · vr2/4 = vO((16q)m+2) logm v (7)

Here the first equation bounds the time complexity of LINEAR-3-RL in terms of feature dimension
d and the second equation bounds the time complexity of UNIQUE-3-SAT in terms of the number
of variables v.
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Proof of Equation (6): To prove the first inequality, we lower bound r in terms of feature dimen-
sion d as

r ≥ 8q (log d)m/(m+2) . (8)

which can be proved by lower bounding rm+2 as follows

rm+2 = r2 · rm ≥ (16q)m+2 logm v · rm

= (16q)m+2 logm(vr) ≥ (16q)m+2 logm(
√
d) ≥ (8q)m+2 logm d

where the first inequality follows from our setting of r and the second inequality follows from
d ≤ 2vr ≤ v2r for r > 0 and large enough v. Substituting the lower bound in vr

2/4, we can write
the time complexity of LINEAR-3-RL in terms of feature dimension d as

v
r2

4 = (vr)
r
4 ≥ d

r
8 ≥ dq·log

m
m+2 d

where the first inequality follows again from d ≤ v2r and the second inequality follows from
Equation (8) above.

Proof of Equation (7): The second equation follows by substituting our setting of r (Equation (2))
in d · vr2/4,

d · vr2/4 = 2vr+r
2/4 = vO((16q)m+2) logm v

where the first equality follows from d = 2vr.

Appendix B. Proofs for Section 3

Proof [Proof of Theorem 13] The proof for the value function of non-intermediate state is identical
to that in the 3-action MDP. We proceed to argue the second claim. For an intermediate state, the
value function will be identical to its parent if the two actions available include a wrong bit that
ought to be flipped in the optimal assignment w∗. Otherwise, no matter what action the agent takes,
it will reach a non-intermediate state whose depth is l+ 1 and hamming distance is dist(w,w∗) + 1.
Compared to the value function of its parent, such intermediate state will have an extra 2 in the
numerator. We encode the situation with the indicator term 1{wi1 = w∗i1} · 1{wi2 = w∗i2}. This
then gives the value function for these intermediate states.

Lastly, like in the proof of Theorem 10, it suffices to argue the value function is a degree 2r
polynomial in w and w∗. This is by noticing that (i) dist(w,w∗) is linear in w and w∗; and (ii)
1{wi1 = w∗i1} · 1{wi2 = w∗i2} is quadratic in w and w∗ i.e.

1{wi1 = w∗i1} · 1{wi2 = w∗i2} =
1

4
·
(
1− wi1 · w∗i1

) (
1− wi2 · w∗i2

)
.

Thus, the value function is overall a polynomial of degree 2r in both w and w∗. This proves the last
claim.

Proof [Proof of Theorem 2] Fix q ≥ 1, we set r = 12q. Under this setting, we have

dq ≤ dr/12 ≤
(
v3r
)r/12

= vr
2/4 ,

20



COMPUTATIONAL-STATISTICAL GAPS IN REINFORCEMENT LEARNING

where the first inequality follows from the setting of r and the second inequality follows from
d ≤ v3r. The reduction then allows us to upper bound the complexity of UNIQUE-3-SAT by

d · vr2/4 ≤ vr2/4+3r = vO(q2) ,

where the first inequality again follows from d ≤ v3r.

Proof [Proof of Theorem 6] The proof follows similarly as proof of Theorem 9. The only difference
is that since d is now bounded by v3r instead of v2r, we need the runtime of LINEAR-2-RL in the
assumption to also have a different constant in the exponent i.e. dlog d/(72 log log d).
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