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Abstract

Network games are a natural modeling framework
for strategic interactions of agents whose actions
have local impact on others. Recently, a multi-scale
network game model has been proposed to capture
local effects at multiple network scales, such as
among both individuals and groups. We propose a
framework to learn the utility functions of binary
multi-scale games from agents’ behavioral data.
Departing from much prior work in this area, we
model agent behavior as following logit-response
dynamics, rather than acting according to a Nash
equilibrium. This defines a generative time-series
model of joint behavior of both agents and groups,
which enables us to naturally cast the learning prob-
lem as maximum likelihood estimation (MLE). We
show that in the important special case of multi-
scale linear-quadratic games, this MLE problem
is convex. Extensive experiments using both syn-
thetic and real data demonstrate that our proposed
modeling and learning approach is effective in both
game parameter estimation as well as prediction of
future behavior, even when we learn the game from
only a single behavior time series. Furthermore, we
show how to use our framework to develop a statis-
tical test for the existence of multi-scale structure
in the game, and use it to demonstrate that real
time-series data indeed exhibits such structure.

2 INTRODUCTION

A broad class of scenarios involving strategic interaction
among a large collection of agents can be modeled by net-
work (graphical) games, including investment in a public
good [Bramoullé¢ and Kranton| 2007} |Grossklags et al.|
2008], information diffusion [Galeotti et al.| [2010], peer
effects in social networks [Ballester et al.|[2006], and adop-

tion of innovation [Jackson}|2010]]. A prominent feature of
network games is local effects, where an agent’s utility de-
pends only on the actions of its network neighbors [Kearns
et al.| | 2001]. Many real networks, however, additionally
exhibit group or community structure [Girvan and Newman,
2002], and|Jin et al.|[2021]] recently proposed a multi-scale
network game model that embeds such structure into the
network game representation. However, a multi-scale game
representation is often not given a priori, and instead what
is available is time-series data of actual behavior, such as
trade interactions among nations, or homicides arising from
organized crime activities. Our goal is to develop a scalable
framework for learning parametric models of multi-scale
network games from such time-series data.

The general problem of learning utility functions in games
from observed behavior has been extensively studied [Cha+
jewska et al.||2001}|Vorobeychik et al.;| 2007} Waugh et al.|
2011}|Honorio and Ortiz,|2015; |Garg and Jaakkola}|2016j
Leng et al.||2020]. A common assumption in this line of
work is that agents are fully rational in that they act ac-
cording to a Nash equilibrium. However, much experimen-
tal evidence suggests that this assumption is commonly
violated |Andreoni and Miller} 1993} |Camerer, [2003]. In
addition, time-series behavior data often exhibits intertem-
poral dependence, such as the self-exciting nature of crime
data [Mohler et al.}|2011], a feature that is lost if behavior
is modeled by a Nash equilibrium of a single-shot game.

We propose to use logit-response dynamics (LRD)—a clas-
sic framework to capture boundedly rational behavior in
games [Blumel| 1993} |Alés-Ferrer and Netzer||2010]—as
a solution concept in learning utility functions from time-
series data representing behavior in repeated strategic in-
teractions. In LRD, each action by a player is played with
a probability proportional to its utility, with actions of the
other players fixed to what was played in the previous time
step. LRD has two advantages over Nash equilibrium. First,
it explicitly captures intertemporal dependence in behavior,
since agents are responding to previously observed choices
by others; in contrast, Nash equilibrium behavior in a one-

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).



shot game exhibits no temporal dependence. Second, LRD
solution concept is more psychologically plausible than
Nash equilibrium behavior [Haile et al.}|2008} Fudenberg
et al.||[1998||Stahl II and Wilsonl|1994]. While Duong et al.
[2010] also explicitly modeled intertemporal dependence in
behavior, their approach was limited to consensus games,
and required knowledge of utilities associated with player
actions. Finally, ours is the first approach to consider multi-
scale structure of strategic interactions on networks.

Armed with the game-theoretic generative model of time-
series behavior data, we formulate the game learning prob-
lem as maximum likelihood estimation (MLE). In general,
this problem can be (approximately) solved using gradi-
ent ascent; however, neither optimality nor consistency of
estimation is guaranteed in our setting, where data is not gen-
erated i.i.d. To address this, we instantiate our framework in
the context of parametric multi-scale linear-quadratic utility
models. We prove that in this special case, the MLE problem
is convex and can thus be solved efficiently. Our final tech-
nical contribution is a likelihood ratio test that enables us
to statistically determine whether behavioral data generated
by a multi-scale game model actually reflects multi-scale
structure, where the null hypothesis is that only single-scale
interactions significantly impact behavior.

We use extensive experiments on both synthetic and real
datasets to demonstrate that the proposed approach effec-
tively learns game parameters from time-series data. Further-
more, we show that our approach outperforms state-of-the-
art baselines in predicting future agent behavior. Finally, we
show that the game models we learn on real data offer inter-
esting insights about behavior in the associated settings. For
example, in the case of gang violence data, we show that the
model we learn exhibits temporal self-excitation of homi-
cides at multiple scales (that is, stemming from both individ-
ual gang member interaction, as well as interactions among
gangs), generalizing insights from prior literature [Mohlen
et al.||[2011]. The code to replicate the experiments is avail-
able at: https://github.com/marsplus/bMSGN,

In summary, our contributions are:

1. A novel framework for learning strategic agents’ util-
ity functions from behavioral data by modeling agent
behavior using logit-response dynamics.

2. Support for learning multi-scale structure in agent
utilities (i.e., strategic dependences among groups of
agents). In addition to learning the utility functions, we
propose a statistical test for the significance of multi-
scale structure in utilities.

3. Experimental evaluation using real datasets demon-
strating that the proposed approach outperforms prior
art in predictive efficacy, and obtains useful insights
about the associated domains.

Related Work Preference (or utility) elicitation, or infer-
ring preferences of agents through active interaction, is a

classic problem in decision theory [Fischhoff and Manski,
2000} |Blum et al.l 2004]. The passive counterpart of pref-
erence elicitation is preference or utility learning from ob-
served time-series data of behavior [Chajewska et al.|[2001]
Nielsen and Jensen,|2004]). Of direct relevance to our work is
the literature on learning utility functions of players in game-
theoretic models of their behavior. In this there are two ma-
jor strands: learning utilities from observations of behavior
time-series |Honorio and Ortiz| 2015} Garg and Jaakkola,
2016} Leng et al.;|2020; |Ling et al.} 2018 'Waugh et al.;
2011]], and learning utilities from observed payoffs [Duong
et al.| 2009} | Vorobeychik et al., 2007} |Gao and Pfeffer,
2010]. The principal difference between our framework and
the former set of approaches stems from our use of LRD
model of behavior, which considerably simplifies the learn-
ing problem and naturally allows us to capture temporal in-
terdependence.|Gao and Pfeffer|[2010] use a closely related
Quantal Response (QR) model of bounded rational behav-
ior to learn game representations from data. However, this
approach ignored temporal dependence, which is central to
our framework. In addition, their approach assumed access
to payoffs associated with player actions, whereas we make
no such assumption. Our approach draws some inspiration
from the framework for learning from collective behavior
by|Kearns and Wortman|[2008]. However, the key general
result in|[Kearns and Wortman||2008] requires learning with
reset (i.e., a large collection of independently generated se-
quences of behavior), whereas we learn from only a single
observed behavior sequence. |Duong et al.|[2010], like us,
explicitly modeled intertemporal dependence in behavior.
However, their approach was limited to consensus games,
and required knowledge of player utilities.

3 MODEL

3.1 BINARY MULTI-SCALE GAME ON
NETWORKS

A binary multi-scale game is defined on a network, which
we represent by the adjacency matrix A. The network can
be directed or undirected, weighted or unweighted. We only
assume that there are no self-loops in the network. For ex-
pository purposes, A is unweighted and undirected in the
present paper. The agents in the game are situated on the
vertices of A, denoted by V = {vy,...,v,}, and are parti-
tioned into K groups, i.e., V = Uszl Gj,and G, NG; = 1]
forany i # j. Weuse theset 7 ={G,; | j =1,...,K}
to represent the K groups. Intuitively, we can use each
group G; to represent a neighborhood when the underlying
network is an urban network, or an interest group if the
underlying network is a social network. The group mem-
bership of agent ¢ is encoded by a mapping «(7) from the
agent’s index to its group index, i.e., a(i) = j for i € G;.
Throughout, we assume that the network structure A, the
mapping «(%), and the group structure J are known.



We use z; € &; to represent agent ¢’s action, where
S; = {0,1}. We use public goods investment as a running
example, where z; = 1 (resp. x; = 0) means that agent ¢
invests (resp. does not invest) in the public good. Conse-
quently, we will refer to the choice x; = 1 as an agent’s
decision to invest, while z; = 0 means that ¢ decides not
to invest. The marginal cost of making an investment is
captured by a constant ¢; € R, e.g., monetary cost, time,
and/or effort exerted. The action profile of all agents is rep-
resented by « € {0, 1}", where the i-th entry is ;. We use
the set A/(7) to represent agent ¢’s neighbors. The action
profile restricted to agent i’s neighbors is T zr(;).

To capture multi-scale (group) structure of the game, we
define a vector y € R, which represents some aggregate
statistic at the group level. Typically, y; will be the total
investment by group j, i.e., y; = Ziegj z;. We emphasize,
however, that the definition of y is quite general, e.g., y; can
also be the median investment from group j, or any other
reasonable group-level statistic. The key idea behind the
multi-scale representation is that while agents have concrete
knowledge about the behavior of those they regularly inter-
act with (network neighbors), they only have higher-level
knowledge about other groups, as captured by the associated
statistics for those groups. A concrete example is vaccina-
tion: an agent usually has more specific knowledge about
the vaccination status of her close friends, which is encoded
by @ (;), but only aggregate vaccination information at
the level of counties or states, which is captured by y. The
utility function of agent ¢ is defined as follows:

wi(@i, ®—;) = gi (zi, Tarsy) + hi(wi, y) — cizg, (1)

where y is implicitly a function of the full action profile x.
The function g; models local effects between an agent and its
direct neighbors, capturing the externality that agent ¢ experi-
ences from its neighbors’ (and its own) investment. The func-
tion h; generalizes local effects from the individual level
to the group level, encoding the multi-scale structure in the
game. The term c;x; captures the cost of investment. Putting
everything together, we define a binary multi-scale game on
networks as a tuple b-MSGN(A, J, {S;}, {u;}1;), where
A is the underlying network, 7 is the group structure, S;
are pure strategy sets of players, and u; are player utilities
defined in Equation (T).

3.2 LOGIT-RESPONSE DYNAMICS

When modeling agents’ strategic behavior, a common as-
sumption is that agents are rational, i.e., they always choose
the action with the highest utility. This is formally modeled
by the best-response rule: z; € argmax,, u;(x}, z_;). In
the conventional Nash equilibrium solutionlconcept that has
been common in prior literature on learning games from
data [Honorio and Ortiz}[2015}|Leng et al.;[2020], all play-
ers are assumed to simultaneously choose a best response

to each other. In reality, however, an agent may not make
completely rational decisions, due to 1) limited resources or
computational power needed to precisely solve the argmax
problem and 2) inability to perfectly assess small differ-
ences in its utility. Furthermore, a Nash equilibrium of a
static game cannot capture intertemporal dependencies that
may be present in time-series behavior data, and multiplicity
of equilibria creates a further practical challenge in learning
general-sum games from data. A common alternative to the
Nash equilibrium solution concept is a quantal response
equilibrium (QRE) [McKelvey and Palfrey} |1995], which
was recently used in a framework for learning two-player
zero-sum games from data [Ling et al.|[2018]. However, mul-
tiplicity of equilibria (both Nash and QRE) in general-sum
games has limited further progress.

Our key conceptual contribution is to combine bounded
rationality in action choices with bounded rationality in
dynamic agent behavior. While such a combination seems
entirely natural, we are the first to explore it in the context
of learning games from time-series data. Our experiments
below vindicate this approach, which resolves both the issue
of multiplicity of equilibria and dynamic interdependen-
cies in behavior. Specifically, we adopt a classic model of
boundedly-rational dynamic behavior: logit-response dy-
namics (LRD) [Blume}|1993}|Alés-Ferrer and Netzer,|2010].
LRD presumes a repeated one-shot game in which agents
select actions with probabilities proportional to their utilities
(as in QRE) in every step, taking choices made by others as
given from the previous step (unlike QRE). In our context,
the probability of agent ¢ choosing to invest (z; = 1) in the
next time step is
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The scalar v quantifies the noise level in the agent’s decision-
making. As v goes to infinity, the logit-response converges
to the best-response rule. For any 0 < v < oo, the agent
chooses a non-best response with positive probability, and
the actions yielding larger utility are chosen with higher
probability. Throughout the paper, we assume that v is
known. We define the probability p(z!™! = 1|x?, y?) as
the investment probability at time step t + 1. When the
context is clear we use p(xﬁ“) to represent the investment
probability, omitting the dependence on ! and y°.

In LRD, we assume that at each time step each agent up-
dates its action independently according to the logit response
function (2). Consequently, given ' and y* the agents’ in-
vestment decision at time step ¢ 4 1 are conditionally in-
dependent, i.e., :cf“ and :c;H are independent for ¢ # j.
Additionally, this assumption implies convergence of agents’
behavior to a stationary distribution. Specifically, let M be



the discrete Markov chain induced from the logit-response
dynamics, with state space S = {0, 1}". The transition
probability p(z'*!|z) equals [[[_, p(zt! = 1|2, y?),
which by definition is always positive, including the transi-
tion probability from a state to itself. Consequently, the state
transition graph of M is strongly connected and aperiodic
This in turn implies that the stationary distribution 7 of the
Markov chain exists and is unique [[Chung and Graham,

1997} |Wildstrom}|2005].

4 THE LEARNING FRAMEWORK

Since in practice we typically only have a single trail
of past behavior to learn from, we consider the problem
of learning a game model parameters from a single be-
havior sequence collected over [ time steps, i.e., D; =
{(=*,yY),...,(x', y")}, where ! is the action profile of
all agents at time step ¢ and y' is the group-level statistics
that capture aggregate behavior by each group in the multi-
scale game. We assume that the utility functions of players
u; have parametric representations, with associated param-
eter vectors denoted by 6; € F; := [—1,1]™, where m is
the dimension of 8;; these are concatenations of the param-
eters of g; and h; (and the cost ¢;), the two main constituent
functions in player utilities. We use © = {6;,...,0,}
to represent all learnable parameters of the game, where
O ¢ II = Fix,...,xF,. The utility function in (I} is
a high-level description; we will instantiate g; and h; to
specific parametric functions below. We present a general
likelihood-based approach for learning multi-scale games
from such data, and subsequently study an important special
case which admits efficient learning.

4.1 THE GENERAL CASE

The binary multi-scale game together with the logit-
response dynamics define a generative time-series model of
joint behavior of both agents and groups. We assume that
y is a deterministic function of the individual-level action
profile !, which simplifies the derivation of the data likeli-
hood, as the joint probability of z‘*! and y**! reduces to
the marginal probability of x!*!. The generative model is
a discrete Markov chain over action profiles. Omitting the
dependence of the investment probability on ! and y?, the
data likelihood £(D;; ©) is formulated as follows:

-1
L(Di;0) = p(a') [[ p(@"t[a’,y") =

t=1
-1 n Lt 1_gtt?
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t=11i=1
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!The state transition graph of a discrete Markov chain is aperi-
odic if the transition probability from a state to itself is positive.

where the last equality utilizes the assumption that xf“

and :U;-H are independent given x! and ¢, and the fact that
p(xz!) = 1. We learn the parameters © by resorting to the
maximum likelihood estimation (MLE). In general, we can
leverage gradient-based methods and automatic differentia-
tion tools to maximize the likelihood, as long as the utility

functions are differentiable.

With a slight abuse of notation, we use b—MSGN(O) to rep-
resent the generative model (consisting of the game together
with the logit-response dynamics solution concept), with the
utility functions parameterized by ©. We now instantiate the
utility function to a specific parametric form. In particular,
we consider games with linear-quadratic utility functions,
augmented with the h; to account for the multi-scale struc-
ture. The resulting MLE problem is convex, and can thus
be (near-)optimally solved using interior point methods. We
also develop a statistical test for the existence of multi-scale
structure in this game based on the classic likelihood ratio
test.

4.2 LEARNING MULTI-SCALE
LINEAR-QUADRATIC GAMES

Linear-quadratic games have been used in much prior lit-
erature on network game modeling both in economics and
machine learning |Ballester et al.}|2006} |Bramoullé and
Kranton,|2007}|Galeotti et al.;,[2020}|Leng et al.||2020], with
Leng et al.|[2020] specifically considering the problem of
learning network structure in such models from Nash equi-
librium behavior by the agents. The standard utility function
in linear-quadratic network games is defined as

wi(xi, ;) = biw; + Biz; Z A jxj—cixi, @)
jev

where b; > 0 is the marginal benefit of investing, ¢; > 0 is
the cost to invest, and 3; € R captures peer effects from the
neighbors’ investment. When 3; > 0 (resp. 8; < 0), higher
investment from the neighbors encourages agent ¢ to make
more (resp., less) investment.

To model the multi-scale structure in the game, we consider
the following group-level aggregate function h;:

2 g€\ (Guiiy} Yo

-1 ) ©

hi(zi,y) = nix; (ya(i) -

where the second term in the parentheses is the average of
the statistics from other groups. The difference models the
relative magnitude of the statistics between agent ¢’s group
and other groups. When n; > 0 (resp., 7; < 0), higher
relative investment by agent ¢’s group compared to other
groups encourages (resp., discourages) ¢’s own investment.

We augment the linear-quadratic payoff with the function



h;, leading to the multi-scale linear-quadratic utility:

ci)xi + Bix; Z Az + hi(zi,y).

jev

(6)

The set 8; = {b;, i, M, ¢; } consists of the parameters we

aim to learn from data. Note that as the action space in our

setting is binary, the term b;z; — c; (;)? becomes (b; —¢;)x;.

As aresult, accurately estimating the two parameters may

not be feasible, as they can be shifted the same amount

without changing the differenceTherefore, we treat b; — ¢;
as a single marginal benefit that we estimate from data.

uz(lza T

i) = (bi —

As we now show, the key property of this multi-scale linear
quadratic game model is that the resulting MLE problem
is convex. The proof is a standard argument of showing
convexity by leveraging second order derivatives.

Proposition 4.1. Consider a b—-MSGN(A, T, {u;}1,). If
{u; }1"_, are instantiated as the multi-scale linear-quadratic
utilities, the resulting MLE optimization problem is convex.

Proof. Recall that © € Il = Fix,..., xF,, thatis, a
Cartesian product of a set of convex sets. Thus, the feasible
region II of the MLE is convex. In what follows, we show
that the log-likelihoof function log £(D;; ©) is concave w.r.t.
o.

Note that log £(D;; ©) = i;i log p(xt*1|x?); it is suf-
ficient to show that log p(z!*!|x?) is concave w.r.t. © for
any 1 <t <[ — 1. We expand log p(x‘*!|z?) as follows:

n

Z{xtﬂlogp B )

(1= ai" ) log[1 = p(alt! = 1)]].

log p(z'!|z")

The logarithm of the investment probability is as follows:

1
t+1 _
Ing( 1) log |:1 + 67'ui(1mtxyt7oi):| '

It is direct that u;(1]z?, y?, ;) is a linear function of 8;. In
addition, log p(z!™! = 1) is concave w.r.t. u;(1|x?, y?, 6;),
as the second derlvatlve is negative over the domain, i.e.,

evui(llz' y",0;) -2
T (1 + evui(ll=t,y’.6:))2 <0

9% logp(zi™ =1)
9*u z(1|wt, t,0;)

The composition of a linear function with a concave function
leads to a concave function (Chapter 3.2.2 of [Boyd and Van{
denberghe/ [2004]); thus, log p(x*! = 1) is concave w.r..

>This problem is not specific to our model: in prior litera-
ture, the cost constant c¢; is usually set to % in order to avoid the
invariance of b; — ¢; to the shifting.

6;. We can similarly show that log [1 — p(z*! = 1)] is con-
vex w.r.t. ;, which implies that (1 — z/** logp( =)
is concave w.r.t. 8;. A linear comblnatlon of concave func-
tions is concave, so log p(z!*!|x?) is concave w.r.t. ©. O

A Statistical Test for Multi-Scale Structure We now fur-
ther leverage the proposed framework to develop a statistical
test to check whether the game exhibits multi-scale structure.
This test is based on the classic likelihood ratio test | Wasser-
man| 2013]. Specifically, let © = {f), é, 3, 1} be the MLE
estimator. The feasible region of © is F = {© | b > 0,¢é >
0,8 € [-1,1],9 € [~1,1]}. The null hypothesis set is
Fo = {6 € F | 1 = 0}, encoding the hypothesis that
group-level statistics have no impact on agents’ utilities.
The test statistic is as follows:

maxecr ;C('Dl; @)
A =21 .
8 (maxeefo L(Dy;©)

(N

Intuitively, A is large if there is some estimator O in the feasi-
ble region F for which the data D; is much more likely than
for any estimator in the null hypothesis set . The p-value
equals p(x2 > ), where x2 follows a chi-square distribu-
tion with n degrees of freedom [Wasserman||{2013]. In the
Experiments section, we present experiments on synthetic
data to show that the test is indeed effective at identify-
ing multi-scale structure in games. We then use it on real
data to demonstrate that such data also exhibits statistically
significant multi-scale behavior dependence.

S5 EXPERIMENTS

We focus our experimental study on learning a multi-scale
linear-quadratic game b—MSGN(©*). In all cases, we learn
the game from a sequence D;, and experiment on both syn-
thetic and real-world data. We use synthetic data to demon-
strate the effectiveness of our approach at recovering the
groundtruth parameters of the linear-quadratic games, and
additionally show that the statistical test successfully identi-
fies multi-scale game structure.

In addition, we evaluate the efficacy of the proposed ap-
proach to predict future time-series behavior. For both syn-
thetic and real data, we first compare predictive efficacy of
the proposed game learning approach with three conven-
tional generative baseline approaches commonly applied
in similar settings with the primary purpose of time-series
prediction: a discrete Markov chain, a homogeneous Pois-
son process, and the Hawkes process [Mohler et al.,|2011].
Specifically, our experiments use a discrete-time Hawkes
process with exponential decay function; the intensity func-
tion at time step ¢ is: A(£) = Ao+ a Y, ., z,e P71 g
and « are estimated through MLE; S is selected by cross-
validation; z;, is the sum of x', i.e., Z 4 :c . We show
that the proposed approach outperforms these basehnes in
terms of prediction accuracy.



Additionally, we compare our approach with a method for
learning Linear Influence Games (LIGs) |Honorio and Ortiz,
2015], a state-of-the-art game-theoretic baseline for learn-
ing utility functions from time-series behavior in network
games. LIG is a generative model that assumes that behav-
ior in each step in a time-series is generated according to a
mixture of two distributions: a uniform distribution over the
set of all pure-strategy Nash equilibria, and a uniform distri-
bution over the set of all non-equilibrium strategy proﬁles
The learnable parameters of an LIG include the parame-
ters of the players’ utility functions as well as a parameter
deciding which distribution an action profile comes from.
The parameters are learned by maximizing the proportion
of equilibria observed in the training data.

5.1 SYNTHETIC DATA

We generate a synthetic sequence D; by simulating
b-MSGN(©*) for I — 1 iterations, with starting action pro-
file initialized as zeros. In each time step, every agent
makes a decision according to the Bernoulli distribu-
tion with success rate equal to the investment proba-
bility (i.e., Equation ). The ground-truth parameters
= {b*,c*, B*,n*} are specified as follows: b} ~
N(0.3,0.012), ¢ ~ N(1.3,0.1%), B ~ N(—1,0.01%)
and n7 ~ N(0.1,0.01%). The parameter 7 is set to 5.
We consider three classes of synthetic networks: Barabdsi-
Albert (BA) |Barabdsi and Albert}|1999], Watts-Strogatz
(WS) [Watts and Strogatz|[1998], and Block Two-level
Erd6s-Rényi (BTER) [Seshadhri et al.}|2012] networks. For
each class, we randomly generate 20 networks with 100
nodes each. For each randomly generated network, we run
the community detection algorithm proposed by |Clauset
et al.|[2004] and use the resulting communities as groups.

Figureshows the effectiveness of learning the game pa-
rameters from synthetic data. As the length [ increases, the
Root Mean Squared Error (RMSE) between the estimated
parameters and the true parameters consistently decreases,
converging to near-zero; this indicates that the MLE estima-
tor approximates the ground-truth ©* reasonably well.

Next, we show that the statistical test successfully deter-
mines the existence of the multi-scale structure in the game.
We simulate two sets of data, one is called “with groups”
and the other “without group”. The “with groups” data is
simulated as usual, such that the agents’ utilities are in-
fluenced by the multi-scale structure. The “without group”
data is simulated with 7" set to zero, which implies that the
multi-scale structure does not have a direct impact on the
agents’ utilities. The p-values for the two sets of data are
shown in Figure The red horizontal lines represent where

3Note that the LIG approach assumes that the set of all pure-
strategy Nash equilibria can be efficiently sampled. Another ad-
vantage of the proposed approach over LIG is that we do not need
this assumption.
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Figure 1: The RMSE between the estimated parameters
and the true parameters across various lengths [. Left: BA
(averaged degree=5.82, averaged clustering coeff.=0.1067);
Middle: WS (averaged degree=9.1064, averaged clustering
coeff.=0.3542); Right: BTER (averaged degree=9.3200, av-
eraged clustering coeff.=0.1299).

p(x% > A\) = 0.05: we reject the null hypothesis when the
p-value is below the red line. The blue lines represent the
p-values for the “with groups” data. We can see that as [
(the number of observations) increases the p-values con-
sistently decrease. In particular, for BA and SW networks
when [ > 750 we correctly reject the null hypothesis. The
dashed orange lines represent the p-values for the “with-
out group” data. Note that the orange lines are consistently
above 0.05 by a large margin, which means that we never in-
correctly reject the null hypothesis (i.e., never falsely claim
the existence of multi-scale structure).
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Figure 2: Experimental results for the statistical test. The

blue solid lines (resp. orange dashed lines) represent the

p-values evaluated on the data with (resp. without) the multi-

scale structure. Left: BA; Middle: WS; Right: BTER.

5.2 REAL-WORLD DATA

Gang-Related Homicides. We learn the game on gang-
related homicides data from Los Angeles |Valasik et al.}
2017|. The data includes 1425 incidents from 1978 to 2012.
Each incident consists of several attributes, including date,
address, coordinates (X and Y correspond to latitude and
longitude, respectively), and demographic information of
the victim and the suspect. Each incident includes a label
indicating whether the homicide is gang-related, and if so,
includes an attribute of the suspect’s gang affiliation. All sen-
sitive attributes in the experimental results are anonymized
with numerical values. The data is preprocessed as follows.
First, we keep only the incidents that are gang-related, and
discard the incidents with missing attributes. Second, to



correct errors in incident coordinates, we compute the ge-
ometric center of the incidents’ coordinates, and then fit a
standard Gaussian distribution on their distances to the cen-
ter, and finally discard any incidents that are three standard
deviation away from the center. After preprocessing, the
data contains 606 incidents committed by suspects from 54
gangs. A gang’s location is approximated by the geomet-
ric center of its associated incidents. We treat the 54 gangs
as the agents in the game; they are partitioned into three
groups according to their neighborhood information. The
network A is weighted, undirected, and complete, with the
gangs as nodes. The weight on an edge is the inverse of the
driving time between the two endpoints (gangs) obtained by
querying the Google Maps APL

Next, we construct a sequence D; of action profiles from
the processed data by discretizing time and grouping in-
cidents that occur in each time interval, where T is the
hyperparameter corresponding to the length of the in-
terval in days (i.e., how finely the data is discretized).
We experiment with different values of 7, ie., T =
30, 60, 90, 120, 150, 180, 240, 365. We set T; = 1 if there
is at least one incident associated with the j-th gang at time
step ¢, and set T§ = 0 otherwise. The aggregate statistic
yt=>" icG x?, measures the overall level of violence in
group G;.

We first apply the statistical test on data aggregated with
different values of T'. The p-values are less than 0.05 across
the values of 7', except for 7' = 30 and 120. The overall
observation is that the data consistently exhibits statistically
significant multi-scale behavior dependence, an effect that
is relatively robust to time discretization; the only instances
where its influence is not statistically significant is for 7" =
30 and 120.
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Figure 3: Comparison of our approach with the game-
theoretic baseline LIG and three conventional generative
approaches in terms of predictive log-likelihood on test data.

To compare the proposed approach, in which we learn the
linear-quadratic game on this data, with several baselines in
terms of predictive log-likelihood on test data, we split D;
into training data and test data with ratio 9 : 1. The results
are shown in Figure We observe that our approach is
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Figure 4: A visualization of the predicted total crimes on
test data with 7" = 30 (i.e., each time step represents 30
days). We omit Poisson and LIG as their predictions are
far from the ground-truth. The shaded area represents two
standard deviations of the prediction from b—MSGN.

considerably better than LIG, particularly for smaller values
of T'. In addition, our approach is competitive in predictive
accuracy with all but the Markov chain baseline (which is
considerably worse), including the Hawkes process, which
is the state-of-the-art approach for modeling crime data of
this kind [Mohler et al.}|2011].

A visualization of the predicted total crimes on test data is
shown in Figure the shaded area represents two standard
deviations of the prediction from b—MSGN. The predictions
from Poisson and LIG are omitted as they are far from the
groundtruth; both are almost horizontal lines without cap-
turing any trends exhibited in real data. We can observe that
b-MSGN is capturing the overall trend with high confidence,
i.e., the ground-truth lies within two standard deviations of
the prediction.
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Figure 5: The estimates of b; — ¢;, 5; and 7);. Top: the homi-
cides data aggregated with 7' = 60. Bottom: the bilateral
trading data.

The key advantage of the proposed approach comes from
its interpretability as capturing strategic interactions, and in
linear-quadratic games in particular, the parameters we learn
have a natural interpretation, which we now consider. Specif-
ically, to analyze the game parameters we have learned, we
set 7' = 60 as an illustration (the results are quite robust
to this), so that the resulting sequence D; has [ = 213 time
steps. As we do not have access to the ground-truth utility
functions, the analysis serves to provide insights about the
gangs’ behavior. The learned parameters are shown in the
top row of Figure First, the estimated b; — ¢; are shown
on the left of the figure; the median is —0.77. Note that the
estimates are negative, that is, perceived costs of homicides
by gang members exceed benefits. Overall, gang-related



homicides are relatively rare; indeed on average, only 4.7%
gangs that committed homicides in each time step; when
increasing 7" to 365, there are on average 19.7% gangs that
committed homicides in each time step and the median of
b; — ¢; becomes —0.56.

The estimates of 3; are shown in the middle of the figure.
The mean is 0.18, which indicates that gang members on
average tend to commit more homicides as the number of
homicides from other members of their gang increases. This
may be explained by the self-excitation phenomenon ob-
served by |Mohler et al.|[2011] that an incident involving
rival gangs can lead to retaliatory acts of homicide. Finally,
the estimated 7; are shown on the right of the figure. Most
estimates are positive (except a few outliers), which sug-
gests an intuitive observation that a greater overall level of
violence in a gang’s neighborhood tends to lead to greater
incidence of violence by the gang.

To see how the discretization affects the estimates, we plot
the estimated parameters across the values of 7" as in Fig-
The estimates of b; — ¢; increase as 1" gets larger. The
estimates of 3; and 7; are also affected by the values of 7.
This suggests that the interpretation of the estimate has to
consider the specific value of 7. Indeed, the discretization
changes the generative process of the data that is used to
train the model. A future research question is to decide the
optimal discretization in terms of a quantitative measure.
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Figure 6: From left to right, the estimations of b; — ¢;, 3;
and n; across different values of T'; the feasible region of
each estimated parameter is restricted to [—1, 1].

Bilateral Trading Data. The second dataset we consider
is the bilateral trading data from the United Nations Com-
trade Database (https://comtrade.un.org/). The
data consists of statistics for international bilateral trading
(e.g., imports and exports), including over 170 reporting
economies and records from 1962 to 2018. We focus on
annual exports data in terms of their value in US-dollars and
extract a subset consisting of 127 reporting economies with
complete statistics since 1962; the reporting economies are
partitioned into six groups according to the continents they
are located on: Asia, Africa, Europe, South America, Aus-
tralia and North America. We treat the reporting economies
as agents in the game. The graph underlying the game is di-
rected and weighted, where an edge from ¢ to 5 means that %
has exported goods/service to j, and the weight on the edge
is the normalized total value of exports since 1962. As the

graph is directed, we define the neighborhood of economy %
as its exporting destinations. The sequence D; of action pro-
files consists of 57 time steps, each corresponding to a year.
For every economy, we track a moving average of the value
of exports over k time steps. Let e/ be the value of exports
of economy 1 at time step ¢. For ¢t > £, if the value is greater
than the movmg average, i.e., et > (el 1, ... el TRk,
we set z! = 1; otherwise z! = 0. For t=1,...,k the ac-
tions z! are always set to zero. Intuitively, z! = 1 encodes
that economy ¢ has a higher value of exports compared with
the average value of the previous three years, which signals
economic growth [Michaely,{1977]. The group-level statis-
tic is again yf = >, «%. We experiment with five values
of k, ranging from 1 to 5.

We first run the statistical test on D;. The resulting p-values
are nearly zero across all the values of k, providing strong
evidence to reject the null hypothesis (i.e., n = 0). There-
fore, a b—MSGN with 17 # 0 better explains the data in terms
of likelihood, which supports introducing the multi-scale
structure into the game.

Next, we compare the game with the baselines on test
data (the last 15% of the entire sequence) in terms of pre-
dicted log-likelihoods. The results for £ = 5 are as fol-
lows: 1) Markov Chain: —55.2620, 2) Poisson: —74.1376,
3) Hawkes: —63.9631, 4) LIG: —51.2281, and 5) b-MSGN:
—40.1436; the results for other values of k are similar.

Finally, the estimated parameters are shown in Figure
(second row). The estimated b; — ¢; are mostly negative,
indicating that for most economies it is difficult to maintain
a steady growth in exports. Most estimated values of 3; are
positive, suggesting that an economy will have a growth in
exports when its exporting destinations also have increasing
exports. Finally, most estimated values of 7; are positive,
which suggests that the relative growth of a group’s exports
(compared with other groups) is a good predictor of the
participating economies’ growth.

To study the sensitivity of the estimated parameters to k,
we plot the estimated parameters across the values of k
in Figure The conclusion is similar to what we had for
Figure@ the estimated parameters are affected by k£ and the
interpretation of the estimate has to consider the specific
value of k.
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Figure 7: From left to right, the estimations of b; — ¢;, 5;
and 7); across different values of k; the feasible region of
each estimated parameter is restricted to [—1, 1].



6 CONCLUSION

We propose a game-theoretic generative model of time-
series behavior data by combining single-shot multi-scale
network games with logit-response dynamics. We do not
assume that the agents are fully rational, but rather that
they make decisions according to logit-response dynam-
ics. We then present a general learning framework based
on maximum likelihood estimation (MLE) for inferring pa-
rameters of such games. In the special case of multi-scale
linear-quadratic games we prove that the MLE is a convex
optimization problem and thus admits efficient solution al-
gorithms. We further develop a statistical test to determine
whether the game exhibits multi-scale structure. We use
extensive experiments on both synthetic and real datasets to
show the efficacy of the proposed approach.

Our work considers aggregated statistics ¢ as determin-
istic w.r.t. the individual-level action profile *. However,
it would be more realistic to model y* as a probabilistic
function of ¢ due to the noise from the aggregation process.
The probabilistic modeling complicates the derivation of the
data likelihood since we need to have a joint distribution
of ! and y*. Another future direction is to consider more
general multi-scale structures than the simple difference as
studied in Section Finally, the group structures 7 and
the group memberships «(i) may not available in practice;
one way to generalize the current model is to jointly learn
J and «(i) from data.
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