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Abstract

Network games are a natural modeling framework

for strategic interactions of agents whose actions

have local impact on others. Recently, a multi-scale

network game model has been proposed to capture

local effects at multiple network scales, such as

among both individuals and groups. We propose a

framework to learn the utility functions of binary

multi-scale games from agents’ behavioral data.

Departing from much prior work in this area, we

model agent behavior as following logit-response

dynamics, rather than acting according to a Nash

equilibrium. This defines a generative time-series

model of joint behavior of both agents and groups,

which enables us to naturally cast the learning prob-

lem as maximum likelihood estimation (MLE). We

show that in the important special case of multi-

scale linear-quadratic games, this MLE problem

is convex. Extensive experiments using both syn-

thetic and real data demonstrate that our proposed

modeling and learning approach is effective in both

game parameter estimation as well as prediction of

future behavior, even when we learn the game from

only a single behavior time series. Furthermore, we

show how to use our framework to develop a statis-

tical test for the existence of multi-scale structure

in the game, and use it to demonstrate that real

time-series data indeed exhibits such structure.

2 INTRODUCTION

A broad class of scenarios involving strategic interaction

among a large collection of agents can be modeled by net-

work (graphical) games, including investment in a public

good [Bramoullé and Kranton, 2007; Grossklags et al.,

2008], information diffusion [Galeotti et al., 2010], peer

effects in social networks [Ballester et al., 2006], and adop-

tion of innovation [Jackson, 2010]. A prominent feature of

network games is local effects, where an agent’s utility de-

pends only on the actions of its network neighbors [Kearns

et al., 2001]. Many real networks, however, additionally

exhibit group or community structure [Girvan and Newman,

2002], and Jin et al. [2021] recently proposed a multi-scale

network game model that embeds such structure into the

network game representation. However, a multi-scale game

representation is often not given a priori, and instead what

is available is time-series data of actual behavior, such as

trade interactions among nations, or homicides arising from

organized crime activities. Our goal is to develop a scalable

framework for learning parametric models of multi-scale

network games from such time-series data.

The general problem of learning utility functions in games

from observed behavior has been extensively studied [Cha-

jewska et al., 2001; Vorobeychik et al., 2007; Waugh et al.,

2011; Honorio and Ortiz, 2015; Garg and Jaakkola, 2016;

Leng et al., 2020]. A common assumption in this line of

work is that agents are fully rational in that they act ac-

cording to a Nash equilibrium. However, much experimen-

tal evidence suggests that this assumption is commonly

violated [Andreoni and Miller, 1993; Camerer, 2003]. In

addition, time-series behavior data often exhibits intertem-

poral dependence, such as the self-exciting nature of crime

data [Mohler et al., 2011], a feature that is lost if behavior

is modeled by a Nash equilibrium of a single-shot game.

We propose to use logit-response dynamics (LRD)—a clas-

sic framework to capture boundedly rational behavior in

games [Blume, 1993; Alós-Ferrer and Netzer, 2010]—as

a solution concept in learning utility functions from time-

series data representing behavior in repeated strategic in-

teractions. In LRD, each action by a player is played with

a probability proportional to its utility, with actions of the

other players fixed to what was played in the previous time

step. LRD has two advantages over Nash equilibrium. First,

it explicitly captures intertemporal dependence in behavior,

since agents are responding to previously observed choices

by others; in contrast, Nash equilibrium behavior in a one-
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shot game exhibits no temporal dependence. Second, LRD

solution concept is more psychologically plausible than

Nash equilibrium behavior [Haile et al., 2008; Fudenberg

et al., 1998; Stahl II and Wilson, 1994]. While Duong et al.

[2010] also explicitly modeled intertemporal dependence in

behavior, their approach was limited to consensus games,

and required knowledge of utilities associated with player

actions. Finally, ours is the first approach to consider multi-

scale structure of strategic interactions on networks.

Armed with the game-theoretic generative model of time-

series behavior data, we formulate the game learning prob-

lem as maximum likelihood estimation (MLE). In general,

this problem can be (approximately) solved using gradi-

ent ascent; however, neither optimality nor consistency of

estimation is guaranteed in our setting, where data is not gen-

erated i.i.d. To address this, we instantiate our framework in

the context of parametric multi-scale linear-quadratic utility

models. We prove that in this special case, the MLE problem

is convex and can thus be solved efficiently. Our final tech-

nical contribution is a likelihood ratio test that enables us

to statistically determine whether behavioral data generated

by a multi-scale game model actually reflects multi-scale

structure, where the null hypothesis is that only single-scale

interactions significantly impact behavior.

We use extensive experiments on both synthetic and real

datasets to demonstrate that the proposed approach effec-

tively learns game parameters from time-series data. Further-

more, we show that our approach outperforms state-of-the-

art baselines in predicting future agent behavior. Finally, we

show that the game models we learn on real data offer inter-

esting insights about behavior in the associated settings. For

example, in the case of gang violence data, we show that the

model we learn exhibits temporal self-excitation of homi-

cides at multiple scales (that is, stemming from both individ-

ual gang member interaction, as well as interactions among

gangs), generalizing insights from prior literature [Mohler

et al., 2011]. The code to replicate the experiments is avail-

able at: https://github.com/marsplus/bMSGN.

In summary, our contributions are:

1. A novel framework for learning strategic agents’ util-

ity functions from behavioral data by modeling agent

behavior using logit-response dynamics.

2. Support for learning multi-scale structure in agent

utilities (i.e., strategic dependences among groups of

agents). In addition to learning the utility functions, we

propose a statistical test for the significance of multi-

scale structure in utilities.

3. Experimental evaluation using real datasets demon-

strating that the proposed approach outperforms prior

art in predictive efficacy, and obtains useful insights

about the associated domains.

Related Work Preference (or utility) elicitation, or infer-

ring preferences of agents through active interaction, is a

classic problem in decision theory [Fischhoff and Manski,

2000; Blum et al., 2004]. The passive counterpart of pref-

erence elicitation is preference or utility learning from ob-

served time-series data of behavior [Chajewska et al., 2001;

Nielsen and Jensen, 2004]. Of direct relevance to our work is

the literature on learning utility functions of players in game-

theoretic models of their behavior. In this there are two ma-

jor strands: learning utilities from observations of behavior

time-series [Honorio and Ortiz, 2015; Garg and Jaakkola,

2016; Leng et al., 2020; Ling et al., 2018; Waugh et al.,

2011], and learning utilities from observed payoffs [Duong

et al., 2009; Vorobeychik et al., 2007; Gao and Pfeffer,

2010]. The principal difference between our framework and

the former set of approaches stems from our use of LRD

model of behavior, which considerably simplifies the learn-

ing problem and naturally allows us to capture temporal in-

terdependence. Gao and Pfeffer [2010] use a closely related

Quantal Response (QR) model of bounded rational behav-

ior to learn game representations from data. However, this

approach ignored temporal dependence, which is central to

our framework. In addition, their approach assumed access

to payoffs associated with player actions, whereas we make

no such assumption. Our approach draws some inspiration

from the framework for learning from collective behavior

by Kearns and Wortman [2008]. However, the key general

result in Kearns and Wortman [2008] requires learning with

reset (i.e., a large collection of independently generated se-

quences of behavior), whereas we learn from only a single

observed behavior sequence. Duong et al. [2010], like us,

explicitly modeled intertemporal dependence in behavior.

However, their approach was limited to consensus games,

and required knowledge of player utilities.

3 MODEL

3.1 BINARY MULTI-SCALE GAME ON

NETWORKS

A binary multi-scale game is defined on a network, which

we represent by the adjacency matrix A. The network can

be directed or undirected, weighted or unweighted. We only

assume that there are no self-loops in the network. For ex-

pository purposes, A is unweighted and undirected in the

present paper. The agents in the game are situated on the

vertices of A, denoted by V = {v1, . . . , vn}, and are parti-

tioned into K groups, i.e., V =
SK

j=1 Gj , and Gi \ Gj = ;
for any i 6= j. We use the set J = {Gj | j = 1, . . . ,K}
to represent the K groups. Intuitively, we can use each

group Gj to represent a neighborhood when the underlying

network is an urban network, or an interest group if the

underlying network is a social network. The group mem-

bership of agent i is encoded by a mapping ↵(i) from the

agent’s index to its group index, i.e., ↵(i) = j for i 2 Gj .

Throughout, we assume that the network structure A, the

mapping ↵(i), and the group structure J are known.



We use xi 2 Si to represent agent i’s action, where

Si = {0, 1}. We use public goods investment as a running

example, where xi = 1 (resp. xi = 0) means that agent i

invests (resp. does not invest) in the public good. Conse-

quently, we will refer to the choice xi = 1 as an agent’s

decision to invest, while xi = 0 means that i decides not

to invest. The marginal cost of making an investment is

captured by a constant ci 2 R+, e.g., monetary cost, time,

and/or effort exerted. The action profile of all agents is rep-

resented by x 2 {0, 1}n, where the i-th entry is xi. We use

the set N (i) to represent agent i’s neighbors. The action

profile restricted to agent i’s neighbors is xN (i).

To capture multi-scale (group) structure of the game, we

define a vector y 2 R
K , which represents some aggregate

statistic at the group level. Typically, yj will be the total

investment by group j, i.e., yj =
P

i2Gj
xi. We emphasize,

however, that the definition of y is quite general, e.g., yj can

also be the median investment from group j, or any other

reasonable group-level statistic. The key idea behind the

multi-scale representation is that while agents have concrete

knowledge about the behavior of those they regularly inter-

act with (network neighbors), they only have higher-level

knowledge about other groups, as captured by the associated

statistics for those groups. A concrete example is vaccina-

tion: an agent usually has more specific knowledge about

the vaccination status of her close friends, which is encoded

by xN (i), but only aggregate vaccination information at

the level of counties or states, which is captured by y. The

utility function of agent i is defined as follows:

ui(xi,x�i) = gi
�

xi,xN (i)

�

+ hi(xi,y)� cixi, (1)

where y is implicitly a function of the full action profile x.

The function gi models local effects between an agent and its

direct neighbors, capturing the externality that agent i experi-

ences from its neighbors’ (and its own) investment. The func-

tion hi generalizes local effects from the individual level

to the group level, encoding the multi-scale structure in the

game. The term cixi captures the cost of investment. Putting

everything together, we define a binary multi-scale game on

networks as a tuple b-MSGN(A,J , {Si}, {ui}
n
i=1), where

A is the underlying network, J is the group structure, Si

are pure strategy sets of players, and ui are player utilities

defined in Equation (1).

3.2 LOGIT-RESPONSE DYNAMICS

When modeling agents’ strategic behavior, a common as-

sumption is that agents are rational, i.e., they always choose

the action with the highest utility. This is formally modeled

by the best-response rule: xi 2 argmaxx0

i
ui(x

0

i,x�i). In

the conventional Nash equilibrium solution concept that has

been common in prior literature on learning games from

data [Honorio and Ortiz, 2015; Leng et al., 2020], all play-

ers are assumed to simultaneously choose a best response

to each other. In reality, however, an agent may not make

completely rational decisions, due to 1) limited resources or

computational power needed to precisely solve the argmax

problem and 2) inability to perfectly assess small differ-

ences in its utility. Furthermore, a Nash equilibrium of a

static game cannot capture intertemporal dependencies that

may be present in time-series behavior data, and multiplicity

of equilibria creates a further practical challenge in learning

general-sum games from data. A common alternative to the

Nash equilibrium solution concept is a quantal response

equilibrium (QRE) [McKelvey and Palfrey, 1995], which

was recently used in a framework for learning two-player

zero-sum games from data [Ling et al., 2018]. However, mul-

tiplicity of equilibria (both Nash and QRE) in general-sum

games has limited further progress.

Our key conceptual contribution is to combine bounded

rationality in action choices with bounded rationality in

dynamic agent behavior. While such a combination seems

entirely natural, we are the first to explore it in the context

of learning games from time-series data. Our experiments

below vindicate this approach, which resolves both the issue

of multiplicity of equilibria and dynamic interdependen-

cies in behavior. Specifically, we adopt a classic model of

boundedly-rational dynamic behavior: logit-response dy-

namics (LRD) [Blume, 1993; Alós-Ferrer and Netzer, 2010].

LRD presumes a repeated one-shot game in which agents

select actions with probabilities proportional to their utilities

(as in QRE) in every step, taking choices made by others as

given from the previous step (unlike QRE). In our context,

the probability of agent i choosing to invest (xi = 1) in the

next time step is

p(xt+1
i = 1 |xt,yt) =

eγ·ui(1,x
t
�i,y

t)

eγ·ui(1,xt
�i

,yt) + eγ·ui(0,xt
�i

,yt)

=
1

1 + eγ(ui(0,xt
�i

,yt)�ui(1,xt
�i

,yt))
.

(2)

The scalar � quantifies the noise level in the agent’s decision-

making. As � goes to infinity, the logit-response converges

to the best-response rule. For any 0 < � < 1, the agent

chooses a non-best response with positive probability, and

the actions yielding larger utility are chosen with higher

probability. Throughout the paper, we assume that � is

known. We define the probability p(xt+1
i = 1 |xt,yt) as

the investment probability at time step t + 1. When the

context is clear we use p(xt+1
i ) to represent the investment

probability, omitting the dependence on xt and yt.

In LRD, we assume that at each time step each agent up-

dates its action independently according to the logit response

function (2). Consequently, given xt and yt the agents’ in-

vestment decision at time step t + 1 are conditionally in-

dependent, i.e., xt+1
i and xt+1

j are independent for i 6= j.

Additionally, this assumption implies convergence of agents’

behavior to a stationary distribution. Specifically, let M be



the discrete Markov chain induced from the logit-response

dynamics, with state space S = {0, 1}n. The transition

probability p(xt+1|xt) equals
Qn

i=1 p(x
t+1
i = 1 |xt,yt),

which by definition is always positive, including the transi-

tion probability from a state to itself. Consequently, the state

transition graph of M is strongly connected and aperiodic.1

This in turn implies that the stationary distribution ⇡ of the

Markov chain exists and is unique [Chung and Graham,

1997; Wildstrom, 2005].

4 THE LEARNING FRAMEWORK

Since in practice we typically only have a single trail

of past behavior to learn from, we consider the problem

of learning a game model parameters from a single be-

havior sequence collected over l time steps, i.e., Dl =
{(x1,y1), . . . , (xl,yl)}, where xt is the action profile of

all agents at time step t and yt is the group-level statistics

that capture aggregate behavior by each group in the multi-

scale game. We assume that the utility functions of players

ui have parametric representations, with associated param-

eter vectors denoted by θi 2 Fi := [�1, 1]m, where m is

the dimension of θi; these are concatenations of the param-

eters of gi and hi (and the cost ci), the two main constituent

functions in player utilities. We use Θ = {θ1, . . . ,θn}
to represent all learnable parameters of the game, where

Θ 2 Π = F1⇥, . . . ,⇥Fn. The utility function in (1) is

a high-level description; we will instantiate gi and hi to

specific parametric functions below. We present a general

likelihood-based approach for learning multi-scale games

from such data, and subsequently study an important special

case which admits efficient learning.

4.1 THE GENERAL CASE

The binary multi-scale game together with the logit-

response dynamics define a generative time-series model of

joint behavior of both agents and groups. We assume that

yt is a deterministic function of the individual-level action

profile xt, which simplifies the derivation of the data likeli-

hood, as the joint probability of xt+1 and yt+1 reduces to

the marginal probability of xt+1. The generative model is

a discrete Markov chain over action profiles. Omitting the

dependence of the investment probability on xt and yt, the

data likelihood L(Dl; Θ) is formulated as follows:

L(Dl;Θ) = p(x1)

l�1
Y

t=1

p(xt+1|xt,yt) =

l�1
Y

t=1

n
Y

i=1

⇥

p(xt+1
i = 1)

⇤x
t+1
i

⇥

1� p(xt+1
i = 1)

⇤1�x
t+1
i ,

(3)

1The state transition graph of a discrete Markov chain is aperi-

odic if the transition probability from a state to itself is positive.

where the last equality utilizes the assumption that xt+1
i

and xt+1
j are independent given xt and yt, and the fact that

p(x1) = 1. We learn the parameters Θ by resorting to the

maximum likelihood estimation (MLE). In general, we can

leverage gradient-based methods and automatic differentia-

tion tools to maximize the likelihood, as long as the utility

functions are differentiable.

With a slight abuse of notation, we use b-MSGN(Θ) to rep-

resent the generative model (consisting of the game together

with the logit-response dynamics solution concept), with the

utility functions parameterized by Θ. We now instantiate the

utility function to a specific parametric form. In particular,

we consider games with linear-quadratic utility functions,

augmented with the hi to account for the multi-scale struc-

ture. The resulting MLE problem is convex, and can thus

be (near-)optimally solved using interior point methods. We

also develop a statistical test for the existence of multi-scale

structure in this game based on the classic likelihood ratio

test.

4.2 LEARNING MULTI-SCALE

LINEAR-QUADRATIC GAMES

Linear-quadratic games have been used in much prior lit-

erature on network game modeling both in economics and

machine learning [Ballester et al., 2006; Bramoullé and

Kranton, 2007; Galeotti et al., 2020; Leng et al., 2020], with

Leng et al. [2020] specifically considering the problem of

learning network structure in such models from Nash equi-

librium behavior by the agents. The standard utility function

in linear-quadratic network games is defined as

ui(xi,x�i) = bixi + �ixi

X

j2V

Ai,jxj � cix
2
i , (4)

where bi � 0 is the marginal benefit of investing, ci � 0 is

the cost to invest, and �i 2 R captures peer effects from the

neighbors’ investment. When �i > 0 (resp. �i < 0), higher

investment from the neighbors encourages agent i to make

more (resp., less) investment.

To model the multi-scale structure in the game, we consider

the following group-level aggregate function hi:

hi(xi,y) = ⌘ixi

⇣

yα(i) �

P

g2J\{G
α(i)}

yg

|J |� 1

⌘

, (5)

where the second term in the parentheses is the average of

the statistics from other groups. The difference models the

relative magnitude of the statistics between agent i’s group

and other groups. When ⌘i > 0 (resp., ⌘i < 0), higher

relative investment by agent i’s group compared to other

groups encourages (resp., discourages) i’s own investment.

We augment the linear-quadratic payoff with the function



hi, leading to the multi-scale linear-quadratic utility:

ui(xi,x�i) = (bi � ci)xi + �ixi

X

j2V

Ai,jxj + hi(xi,y).

(6)

The set θi = {bi,�i, ⌘i, ci} consists of the parameters we

aim to learn from data. Note that as the action space in our

setting is binary, the term bixi�ci(xi)
2 becomes (bi�ci)xi.

As a result, accurately estimating the two parameters may

not be feasible, as they can be shifted the same amount

without changing the difference.2 Therefore, we treat bi� ci
as a single marginal benefit that we estimate from data.

As we now show, the key property of this multi-scale linear

quadratic game model is that the resulting MLE problem

is convex. The proof is a standard argument of showing

convexity by leveraging second order derivatives.

Proposition 4.1. Consider a b-MSGN(A,J , {ui}
n
i=1). If

{ui}
n
i=1 are instantiated as the multi-scale linear-quadratic

utilities, the resulting MLE optimization problem is convex.

Proof. Recall that Θ 2 Π = F1⇥, . . . ,⇥Fn, that is, a

Cartesian product of a set of convex sets. Thus, the feasible

region Π of the MLE is convex. In what follows, we show

that the log-likelihoof function logL(Dl;Θ) is concave w.r.t.

Θ.

Note that logL(Dl;Θ) =
Pl�1

t=1 log p(x
t+1|xt); it is suf-

ficient to show that log p(xt+1|xt) is concave w.r.t. Θ for

any 1  t  l � 1. We expand log p(xt+1|xt) as follows:

log p(xt+1|xt) =

n
X

i=1

h

xt+1
i log p(xt+1

i = 1)+

(1� xt+1
i ) log [1� p(xt+1

i = 1)]
i

,

The logarithm of the investment probability is as follows:

log p(xt+1
i = 1) = log



1

1 + e�γ·ui(1|xt,yt,θi)

�

.

It is direct that ui(1|x
t,yt,θi) is a linear function of θi. In

addition, log p(xt+1
i = 1) is concave w.r.t. ui(1|x

t,yt,θi),
as the second derivative is negative over the domain, i.e.,

@2 log p(xt+1
i = 1)

@2ui(1|xt,yt,θi)
= �

eγ·ui(1|x
t,yt,θi) · �2

(1 + eγ·ui(1|xt,yt,θi))2
< 0.

The composition of a linear function with a concave function

leads to a concave function (Chapter 3.2.2 of [Boyd and Van-

denberghe, 2004]); thus, log p(xt+1
i = 1) is concave w.r.t.

2This problem is not specific to our model: in prior litera-

ture, the cost constant ci is usually set to 1

2
in order to avoid the

invariance of bi − ci to the shifting.

θi. We can similarly show that log [1� p(xt+1
i = 1)] is con-

vex w.r.t. θi, which implies that (1� xt+1
i ) log p(xt+1

i = 1)
is concave w.r.t. θi. A linear combination of concave func-

tions is concave, so log p(xt+1|xt) is concave w.r.t. Θ.

A Statistical Test for Multi-Scale Structure We now fur-

ther leverage the proposed framework to develop a statistical

test to check whether the game exhibits multi-scale structure.

This test is based on the classic likelihood ratio test [Wasser-

man, 2013]. Specifically, let Θ̂ = {b̂, ĉ, β̂, η̂} be the MLE

estimator. The feasible region of Θ̂ is F = {Θ̂ | b̂ � 0, ĉ �

0, β̂ 2 [�1,1], η̂ 2 [�1,1]}. The null hypothesis set is

F0 = {Θ̂ 2 F | η̂ = 0}, encoding the hypothesis that

group-level statistics have no impact on agents’ utilities.

The test statistic is as follows:

� = 2 log

✓

maxΘ2F L(Dl;Θ)

maxΘ2F0 L(Dl;Θ)

◆

. (7)

Intuitively, � is large if there is some estimator Θ̂ in the feasi-

ble region F for which the data Dl is much more likely than

for any estimator in the null hypothesis set F0. The p-value

equals p(�2
n > �), where �2

n follows a chi-square distribu-

tion with n degrees of freedom [Wasserman, 2013]. In the

Experiments section, we present experiments on synthetic

data to show that the test is indeed effective at identify-

ing multi-scale structure in games. We then use it on real

data to demonstrate that such data also exhibits statistically

significant multi-scale behavior dependence.

5 EXPERIMENTS

We focus our experimental study on learning a multi-scale

linear-quadratic game b-MSGN(Θ⇤). In all cases, we learn

the game from a sequence Dl, and experiment on both syn-

thetic and real-world data. We use synthetic data to demon-

strate the effectiveness of our approach at recovering the

groundtruth parameters of the linear-quadratic games, and

additionally show that the statistical test successfully identi-

fies multi-scale game structure.

In addition, we evaluate the efficacy of the proposed ap-

proach to predict future time-series behavior. For both syn-

thetic and real data, we first compare predictive efficacy of

the proposed game learning approach with three conven-

tional generative baseline approaches commonly applied

in similar settings with the primary purpose of time-series

prediction: a discrete Markov chain, a homogeneous Pois-

son process, and the Hawkes process [Mohler et al., 2011].

Specifically, our experiments use a discrete-time Hawkes

process with exponential decay function; the intensity func-

tion at time step t is: �(t) = �0+↵
P

ti<t ztie
�β(t�ti); �0

and ↵ are estimated through MLE; � is selected by cross-

validation; zti is the sum of xti , i.e.,
Pn

j=1 x
ti
j . We show

that the proposed approach outperforms these baselines in

terms of prediction accuracy.









6 CONCLUSION

We propose a game-theoretic generative model of time-

series behavior data by combining single-shot multi-scale

network games with logit-response dynamics. We do not

assume that the agents are fully rational, but rather that

they make decisions according to logit-response dynam-

ics. We then present a general learning framework based

on maximum likelihood estimation (MLE) for inferring pa-

rameters of such games. In the special case of multi-scale

linear-quadratic games we prove that the MLE is a convex

optimization problem and thus admits efficient solution al-

gorithms. We further develop a statistical test to determine

whether the game exhibits multi-scale structure. We use

extensive experiments on both synthetic and real datasets to

show the efficacy of the proposed approach.

Our work considers aggregated statistics yt as determin-

istic w.r.t. the individual-level action profile xt. However,

it would be more realistic to model yt as a probabilistic

function of xt due to the noise from the aggregation process.

The probabilistic modeling complicates the derivation of the

data likelihood since we need to have a joint distribution

of xt and yt. Another future direction is to consider more

general multi-scale structures than the simple difference as

studied in Section 4.2. Finally, the group structures J and

the group memberships ↵(i) may not available in practice;

one way to generalize the current model is to jointly learn

J and ↵(i) from data.
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