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Abstract

Despite considerable advances in deep reinforce-

ment learning, it has been shown to be highly

vulnerable to adversarial perturbations to state ob-

servations. Recent efforts that have attempted to

improve adversarial robustness of reinforcement

learning can nevertheless tolerate only very small

perturbations, and remain fragile as perturbation

size increases. We propose Bootstrapped Oppor-

tunistic Adversarial Curriculum Learning (BCL),

a novel flexible adversarial curriculum learning

framework for robust reinforcement learning. Our

framework combines two ideas: conservatively

bootstrapping each curriculum phase with high-

est quality solutions obtained from multiple runs

of the previous phase, and opportunistically skip-

ping forward in the curriculum. In our experi-

ments we show that the proposed BCL frame-

work enables dramatic improvements in robust-

ness of learned policies to adversarial perturba-

tions. The greatest improvement is for Pong,

where our framework yields robustness to per-

turbations of up to 25/255; in contrast, the best

existing approach can only tolerate adversarial

noise up to 5/255. Our code is available at:

https://github.com/jlwu002/BCL.

1. Introduction

Advances in reinforcement learning coupled with state of

the art deep neural network-based representations have led

to breakthroughs in a broad range of applications, including

the AlphaZero general game-playing approach (Silver et al.,

2018), autonomous driving (Kiran et al., 2021), navigation

of stratospheric baloons (Bellemare et al., 2020), medical
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imaging (Zhou et al., 2021), and many others. However, a

series of recent efforts demonstrated that policies learned

by deep reinforcement learning (DRL) can be extremely

fragile to small adversarial perturbations to input state ob-

servations (Lin et al., 2017; Sun et al., 2020; Wu et al., 2021;

Zhang et al., 2021). Indeed, this echoes a broader pattern

of fragility of neural network architectures to adversarial

perturbation attacks (Athalye et al., 2018; Eykholt et al.,

2018; Carlini & Wagner, 2017; Goodfellow et al., 2015;

Szegedy et al., 2014; Vorobeychik & Kantarcioglu, 2018).

In turn, a series of efforts have emerged aiming to improve

robustness of deep neural networks for supervised learn-

ing (Cai et al., 2018; Cohen et al., 2019; Raghunathan et al.,

2018; Goodfellow et al., 2015; Madry et al., 2018; Vorob-

eychik & Kantarcioglu, 2018), as well as deep reinforce-

ment learning (Oikarinen et al., 2021; Zhang et al., 2020;

2021). However, while variations of adversarial training

have proved relatively successful at attaining robustness of

deep neural networks in supervised settings, success has

been more modest in reinforcement learning, where the best

approaches can tolerate only very small-magnitude pertur-

bations (e.g., up to 5/255 in Pong, which was achieved in

Oikarinen et al. (2021) through RADIAL-A3C training).

We propose a novel curriculum learning framework, Boot-

strapped Opportunistic Adversarial Curriculum Learning

(BCL) to boost robustness of DRL. Our approach is inspired

by recent successful curriculum learning approaches in ad-

versarial supervised learning (Balaji et al., 2019; Cai et al.,

2018; Sitawarin et al., 2021), but also differs substantively

from these. In particular, both Balaji et al. (2019) and Cai

et al. (2018) propose to construct a simple curriculum of

increasing input difficulty; this is what we call naive curricu-

lum learning below, and we show that it is not particularly

effective in achieving robustness in DRL. Sitawarin et al.

(2021) propose an adaptive curriculum by customizing dif-

ficulty to specific inputs as a function of attack success on

each input. This idea, however, is not meaningful in DRL,

where inputs are states and success is measured in terms of

overall reward of a policy, rather than accuracy of predic-

tions on individual inputs. Our approach is also inspired by

recent success of curriculum learning approaches in rein-

forcement learning (Narvekar et al., 2017; 2020); however,
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ours is the first curriculum learning framework for adversar-

ial reinforcement learning.

In the proposed BCL framework, we leverage two key ideas.

First, we bootstrap each phase of the curriculum by ensuring

that the result of the previous phase is successful, which

we do by choosing the best result over multiple adversarial

training runs. Second, we introduce adaptivity by oppor-

tunistically skipping forward in the curriculum if we find

that the model learned in the current phase is already robust

to the adversarial perturbations with higher magnitude.

We evaluate the efficacy of the proposed BCL framework

in boosting robustness of DQN-style approaches with mini-

mal reduction in nominal (non-adversarial) reward through

extensive experiments on the Pong, Freeway, BankHeist,

and RoadRunner OpenAI domains. In all cases, we show

that BCL yields considerable improvements in robustness

compared to the state of the art. In Pong, BCL-trained

policies achieve near-flawless performance under adversar-

ial perturbations of up to ε = 25/255; in comparison, the

state-of-the-art RADIAL-DQN performs poorly even with

ε = 5/255 (the reward under 30-step PGD attack is -17.7).

In BankHeist, BCL training achieves an order-of-magnitude

higher robustness for ε = 15/255 than state of the art (SA-

DQN), and for RoadRunner, it is several orders of magnitude

better (RADIAL-DQN is state of the art).

In summary, we make the following contributions:

1. A novel flexible adversarial curriculum learning frame-

work for reinforcement learning (BCL), in which boot-

strapping each phase from multiple executions of pre-

vious phase plays a key role,

2. A novel opportunistic adaptive generation variant that

opportunistically skips forward in the curriculum,

3. An approach that composes interval bound propagation

and FGSM-based adversarial input generation as a part

of adaptive curriculum generation, and

4. An extensive experimental evaluation using OpenAI

Gym Atari games (main paper) and Procgen (Appendix

A) that demonstrates significant improvement in robust-

ness due to the proposed BCL framework.

2. Related Work

Robustness to adversarial perturbations has been a subject

of considerable attention in machine learning broadly, al-

though much of the focus, and the most significant progress,

has been specifically in supervised learning (Athalye et al.,

2018; Eykholt et al., 2018; Carlini & Wagner, 2017; Good-

fellow et al., 2015; Szegedy et al., 2014; Vorobeychik &

Kantarcioglu, 2018). In particular, in the supervised learn-

ing settings, adversarial training has emerged as a major

paradigm for enhancing robustness (Cai et al., 2018; Cohen

et al., 2019; Raghunathan et al., 2018; Goodfellow et al.,

2015; Madry et al., 2018; Tong et al., 2019; Vorobeychik &

Kantarcioglu, 2018; Wu et al., 2020).

Studies of adversarial state perturbations to policies learned

using deep reinforcement learning are somewhat more re-

cent (Behzadan & Munir, 2017; Kos & Song, 2017; Pat-

tanaik et al., 2018; Wu et al., 2021), as are approaches

for increasing robustness (Akkaya et al., 2019; Fortunato

et al., 2017; Oikarinen et al., 2021; Pattanaik et al., 2018;

Tobin et al., 2017; Zhang et al., 2020; 2021). Adversarial

training techniques, using either lower or upper bounds on

adversarial loss have been explored, but the efficacy of con-

ventional adversarial training has been somewhat limited,

with success restricted to weak FGSM attacks, or relatively

small-size perturbations (Behzadan & Munir, 2017; Kos &

Song, 2017; Pattanaik et al., 2018). A number of heuristic

techniques, such as adding noise at training, have also been

proposed (Akkaya et al., 2019; Fortunato et al., 2017; Tobin

et al., 2017), but these are generally not as effective against

strong attacks as those based on adversarial training. An or-

thogonal idea that attempts to introduce robustness directly

at decision time is CARRL (Everett et al., 2021). How-

ever, their reliance on linear bounds makes it only suitable

for low-dimensional settings (Weng et al., 2018). Among

the most recent and most effective of approaches based on

forms of adversarial training are RADIAL (Oikarinen et al.,

2021) and SA-DQN (Zhang et al., 2020), and we compare

to these directly. Finally, CROP is a recent approach for

certifying robustness of deep reinforcement learning meth-

ods (Wu et al., 2022). However, CROP is not in itself a

method for improving DRL robustness, either empirical or

certified.

Our approach builds on prior work on the use of curricu-

lum learning in adversarial settings (Balaji et al., 2019; Cai

et al., 2018; Sitawarin et al., 2021), as well as curriculum

learning in supervised (Bengio et al., 2009) and reinforce-

ment (Narvekar et al., 2017; 2020) learning. However, as

elaborated in the introduction, ours is the first adversarial

curriculum learning framework in the reinforcement learn-

ing context with a particular attention to how to design

a curriculum; prior approaches for adversarial curriculum

learning either do not consider a curriculum design ques-

tion, or are not applicable in reinforcement learning where

efficacy depends on the process dynamics and cannot be

evaluated independently for each input.

3. Preliminaries

In this section we introduce the basics of deep reinforcement

learning (DRL), focusing primarily on Deep Q-learning that

we leverage in the proposed BCL framework.
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3.1. Deep Reinforcement Learning

Reinforcement learning models the world as a Markov De-

cision Process (MDP). An MDP is a tuple (S,A, P,R, γ),
where S is the state space, A is the action space, P (s′|s, a)
the (in our setting, unknown) transition function that deter-

mines the distribution of the next state s′ given current state

s and action a, and R(s, a) the expected reward function

obtained from taking action a in state s. Finally, γ ∈ [0, 1)
is the temporal discount factor. Solving MDPs amounts

to computing either the Q function, Q(s, a), which is the

maximum discounted sum of rewards that can be achieved

starting in state s and taking an action a, or the value func-

tion V (s) = maxa Q(s, a). A solution to an MDP is a

policy π(s) ∈ argmaxa Q(s, a).

In deep reinforcement learning (DRL), a key step is to ap-

proximate the value function, Q function, and/or policy us-

ing a deep neural network. Algorithms differ both in which

of these they approximate, and the particular ways these

are learned from experience. We focus on Deep Q-Network

(DQN), a class of approaches that learn a parametric repre-

sentation of the Q function.

Specifically, DQN approximates the Q function using a

deep neural network Q(s, a; θ) with parameters θ. A basic

DQN learning algorithm learns Q(s, a; θ) by using the loss

function

L(θ) = E(s,a,s′,r)

[

(

r + γmax
a′

Q (s′, a′; θ)−Q(s, a; θ)
)2

]

.

We make use of several improvements on DQN: Double

DQN (Van Hasselt et al., 2016) and Dueling DQN (Wang

et al., 2016). Double DQN uses two Q-networks with Qtarget

for evaluation and Qactor for training, with the loss function

L (θactor) = E(s,a,s′,r)

[(

r + γmax
a′

Qtarget(s
′, a′; θtarget)

−Qactor(s, a; θactor))
2
]

. (1)

Dueling DQN is based on Double DQN and uses two esti-

mators, one for state value function estimation (i.e., VQ(s)),
and one for the state-dependent action advantage function

estimation AQ(s,a), with Q(s, a) = VQ(s) +AQ(s,a).

3.2. Adversarial Deep RL

Adversarial Policy Perturbations In adversarial pertur-

bation attacks on DRL, an adversary adds a perturbation

δ to each observed state s constrained to be ‖δ‖p≤ ε (for

exogenously specified lp norm and ε) so as to minimize

expected discounted reward of the executed policy π(s).
We take p = ∞ here, as is common. If the policy is

based on maximizing the learned Q function, as in DQN

and its variants, the attack aims to perturb this function,

indirectly affecting the policy, while if DRL is based on

policy learning (e.g., actor-critic), with the policy itself

represented by a neural network π(s; θ), the policy is at-

tacked directly. Specifically, a common attack on DQN aims

maximize L(Softmax(Q(s + δ; θ)), π(s)) with respect to

δ, where L is the cross-entropy loss, Q(s) is the vector

of Q values over all actions in state s. A PGD (projected

gradient descent) attack (Madry et al., 2018) is then im-

plemented with this loss function, which updates δ itera-

tively: δk+1 ← δk + α · sign(∇δL(Q(x + δk; θ), π(s)))
over a fixed number of iterations, projecting to a nearest

feasible state and clipping to ensure that ‖δ‖∞≤ ε. In pol-

icy learning methods, a common loss function is instead

L(π(s + δ; θ), π(s)), with PGD attacks implemented just

as above. An important special class of PGD is FGSM (fast

gradient sign method) (Goodfellow et al., 2015), in which

PGD is executed for only a single iteraration and α = ε.

Adversarial Training Deep RL is robust to adversarial

policy perturbations with magnitude up to ε if attacks do not

significantly reduce the discounted sum of rewards. Com-

mon approaches aimed at robust learning in general use

some form of adversarial training, where after initially train-

ing the model in the regular manner, additional training

phases either add adversarial perturbations to inputs that are

used in further gradient updates (Madry et al., 2018), or take

gradients of an upper bound on adversarial loss (Wong et al.,

2018). A state-of-the-art form of adversarial training uses

PGD attacks to generate adversarial perturbations (Madry

et al., 2018). A recent alternative which is much more com-

putationally efficient and equally efficacious uses FGSM

with random initializations instead (Wong et al., 2020);

henceforth, we term this variant RI-FGSM.

In robust DQN, a recent RADIAL-DQN approach (Oikari-

nen et al., 2021) on which we build defines the loss function

as

LRADIAL = κLstandard + (1− κ)Ladv, (2)

where Lstandard is defined in Equation (1), and

Ladv (θactor, ε) = E(s,a,s′,r)

[

∑

y

Ly(s, a)

]

,

withLy(s, a) =
(

r + γmaxa′ Qtarget (s
′, a′)− Q̃ε

actor(s, y)
)2

when y = a and Ly(s, a) =
(

Qactor(s, y)− Q̃ε
actor(s, y)

)2

otherwise. This is referred to as approach # 1 in Oikarinen

et al. (2021), which yields a strict upper bound on the

loss function under adversarial perturbation, that is,

Lstandard(s + δ; ε) ≤ Ladv(s; ε) with ||δ||p≤ ε; approach

# 2 is an alternative that aims to minimize the weighted

overlapped IBP Q-values. Since approach # 2 empirically

outperforms approach # 1 for RADIAL-DQN, we use

approach # 2 in our experiments below for RADIAL
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curriculum training. RADIAL-DQN (both approaches) uses

Q̃ε
actor(s, y) which is an upper or lower bound on Qactor(s, y)

derived using interval bound propagation (IBP) for a given

attack budget ε. As IBP yields relatively loose bounds,

ε must of necessity be small for these to be meaningful,

limiting the ability to achieve robustness beyond relatively

low values of ε.

4. Bootstrapped Opportunistic Adversarial

Curriculum Learning

Curriculum learning is an old concept in iterative learning in

which easier examples are provided before more challeng-

ing examples (Bengio et al., 2009). A natural alternative

is to start with small values of ε and gradually increase

these during adversarial training. However, as we show

in the experiments, this latter idea works extremely poorly

for DRL. We propose a novel Bootstrapped Opportunistic

Adversarial Curriculum Learning (BCL) framework for iter-

ative adversarial training. The key idea is to bootstrap each

training step to ensure that subsequent iterations begin with

a partially robust baseline, and to also enable the algorithm

to “skip forward” if robustness against several successive

values of ε has already been achieved. Our BCL framework

allows one to explicitly trade off between being conserva-

tive (paying more attention to the former) and opportunistic

(greater focus on the latter).

4.1. The BCL Algorithm

At the high level, the proposed BCL algorithmic frame-

work begins by creating a baseline curriculum, that is,

an increasing sequence of L attack budgets {εi}, with

ε1 < ε2 < · · · < εL, where εL = ε is our target robustness

level. It also begins with a sufficiently small ε0 > 0 so that

it is either already achievable (e.g., by standard DRL, prior

art such as RADIAL, etc) or not difficult to achieve; we

assume that BCL is initially bootstrapped with a model fθ0
that is indeed able to achieve this relatively low bar. It then

proceeds through a series of phases, where a phase is associ-

ated with attempting to achieve robustness against εi in the

curriculum for some i (which is not necessarily identical to

the phase number, as we discuss below). In each phase, we

run adversarial training (AT) up to K times, where each AT

run is bootstrapped by the best model obtained thus far, fθ.

Each model thereby learned is then independently evaluated,

and if the best model obtained thus far in the current phase

exhibits sufficiently good performance (a criterion for this

can depend on εi, and represented by a function V (ε) in

Algorithm 1), we can stop and move to the next phase as

long as we performed at least a minimum number Kmin AT

runs. The best model in the current phase then becomes

the best model achieved thus far, updating fθ. Algorithm 1

describes this procedure more precisely.

Algorithm 1 BCL algorithm.

Input: ε, K, Kmin, V (ε), fθ0 .

fθ ← fθ0 // Initialization

{εi}
L
i=1 ← Curriculum(ε) // Create curriculum

(i, εbest)← ChooseNext(fθ, {εi}, 0, V (ε))
while εbest < ε do

for k = 1, . . . ,K do

fθk ← Train(fθ, εi)
Vk ← Eval(fθk , εi)
if k ≥ Kmin and Vk ≥ V (εi) then

break

end if

end for

// Find the best model among training results

k∗ ← argmaxk∈[K] Vk

fθ ← fθk∗

(i, εbest)← ChooseNext(fθ, {εi}, i, V (ε))
end while

return fθ

The next central feature of BCL is the ability to skip forward

in the curriculum, omitting the next budget level εi+1, and

potentially others after it, as shown in the ChooseNext step

(Algorithm 2). The most we can skip forward is to the

smallest εj to which the current model is not robust (this

is the purpose of EvalRobust function in Algorithm 2).

This skipping feature is most useful because it significantly

reduces the time that BCL needs to run, but as we show

in the experiments, there are times where it also yields

better robustness than obtained by following the baseline

curriculum.

Algorithm 2 ChooseNext

Input: fθ, {εi}
L
i=1, j, V (ε).

// Find smallest i such that fθ is not robust for εi
i← EvalRobust(fθ, {j + 1, . . . , L}, V (ε))
// Select index l to train with next

l← Select({j + 1, . . . , i})
return (l, εl−1)

Algorithm 1 takes as input a fixed target ε that we wish

to induce robustness to, but in practice it is often the case

that we wish to be more opportunistic, and simply observe

what is possible in trading off robustness and baseline (non-

adversarial) efficacy. For example, we can set ε to be very

high, but stop BCL well in advance of reaching it if we

observe significant performance degradation.

For the RADIAL curriculum training, unlike training with

adversarial examples (Section 4.2), it does not have a target

ε to be robust against. We choose to always follow the base-

line curriculum for the ε. We find that RADIAL training



Robust Deep Reinforcement Learning through Bootstrapped Opportunistic Curriculum

does not increase the nominal reward in trend, and many

times the significant decrease in nominal reward is accom-

panied by the decease in robustness as the model begin to

collapse. Thus, we aim at maintaining the nominal reward

at a high level. We set the a threshold for each model, and

re-train the model for maximum K times if the nominal

reward is below the threshold. We stop the training if nomi-

nal reward is below the threshold level for M consecutive

curriculum phases.

Next, we illustrate the BCL framework with several special

cases, noting first that both conventional adversarial training

and naive curriculum learning can also be viewed as variants

of BCL.

Adversarial Training (AT): Standard adversarial training

can be viewed as a special case of BCL if K = 1 and the

baseline curriculum is simply the singleton ε.

Naive Curriculum Learning (NCL): Setting K = 1 and

always following the baseline curriculum (i.e., the next

index returned by the ChooseNext function is always i+ 1)

recovers a naive implementation of curriculum learning.

Conservatively Bootstrapped Curriculum Learning

(BCL-C): If we set Kmin = K and always follow the

baseline curriculum, BCL never opportunistically skips for-

ward, and setting K sufficiently high ensures that each step

is bootstrapped with an effective model trained using all

smaller values of ε.

Maximum Opportunistic Skipping (BCL-MOS): If we

always choose to skip to the smallest ε against which the

current model fθ is not (yet) robust, we obtain the most

opportunistic version of the algorithm.

4.2. Generating Adversarial Perturbations

The key question left open in BCL is precisely how we train

a model in a particular phase to be robust against a given

adversarial budget ε. There are two major ways to do this:

using bounds on the impact of adversarial perturbations,

such as those produced by IBP, as done by RADIAL (Oikari-

nen et al., 2021), and using adversarial perturbations (Zhang

et al., 2020; 2021). In addition to using IBP, RADIAL

introduces a crucial insight in robustness training in dis-

tinguishing updates for actions that have been chosen (for

which the immediate reward has been observed) from those

that have not been, as discussed in Section 3.2. We leverage

this idea, but replace IBP with adversarial examples. Next,

we present a novel approach for generating adversarial ex-

amples for adversarial training in each phase of BCL that

specifically leverages DDQN.

Recall that in RADIAL-DQN (approach # 1), Q̃ε
actor(s, a)

uses IBP bounds on the Q function that can be achieved

through adversarial perturbations. Alternatively, we can

define it as Q̃ε
actor(s, a) = Qactor(s + δ∗, a), where δ∗

(approximately) solves the following optimization problem:

min
||δ||∞≤ε

∑

a∈A

π(s+ δ, a)Qtarget(s, a), (3)

where ε is the bound on l∞-norm of the perturbation (as is

common in prior literature on robust reinforcement learn-

ing), with π(s+ δ, a) = 1 iff a is the best action to be taken

after observing s+ δ, i.e., a ∈ argmaxa′ Qactor(s+ δ, a′),
and π(s+ δ, a) = 0 otherwise. In other words, Equation (3)

aims to identify δ that minimizes the expected discounted

sum of rewards as approximated by Qtarget(s, a). Note that

here it is crucial to separate the Qactor, which determines the

policy, and Qtarget, which serves as an “objective” evaluation

of state-action values. This is in contrast with typical adver-

sarial perturbation attacks on DRL described in Section 3.2,

where the adversary merely aims to prevent a target (opti-

mal) action from being chosen, but may well incentivize

DRL to choose a near-optimal action instead.

In order to approximately solve the problem in Equation (3),

we first replace a policy π by its differentiable approxima-

tion π̃, where

π̃(s, a) =
eQactor(s,a)

∑

a′ eQactor(s,a′)
.

Equivalently, π̃(s + δ) = Softmax(Qactor(s + δ)), where

we use Q(s) to denote a vector with values for each action

a. We then solve the following proxy optimization problem

to approximate δ∗:

min
||δ||∞≤ε

Softmax(Qactor(s+ δ))�Qtarget(s), (4)

with � denoting the dot-product.

Commonly, the problem in Equation (4) is solved using

PGD (Madry et al., 2018). However, this becomes a ma-

jor bottleneck in training, particularly when we use a large

number of PGD iterations. We make two improvements to

significantly reduce the time associated with computing δ.

First, we use FGSM + Random Initialization (RI-FGSM)

(see Section 3.2), proposed by Wong et al. (2020) for super-

vised adversarial training, for which it was shown highly

effective. Ours is the first application of this idea in robust

DRL. Second, we dynamically calculate the perturbation

δ and push the entire tuple (s, a, s′, r, δ) (i.e., including δ)

into the replay buffer. This enables us to re-utilize the previ-

ously calculated perturbations to further improve training

efficiency. Consequently, we chose a relatively small replay

buffer size to ensure the perturbations δ stored in the buffer

are frequently updated as the DRL model evolves.

With RADIAL-DQN (approach # 2), which minimize the

weighted overlapping IBP Q-values, as well as the ap-

proach above for generating specific adversarial perturba-

tions, which yields a lower bound on adversarial loss, we
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have two specific ways that we can use to compute gradient

updates in the Train step of BCL for a given perturbation

magnitude ε. We refer to the former simply as RADIAL,

and to the latter as AT (for adversarial training). Both can

be “plugged in” to any variant of BCL. Additionally, we can

compose these approaches, giving rise to a novel variant:

RADIAL + AT Bootstrapped Curriculum Learning

(BCL-RADIAL+AT): First, run BCL-RADIAL until it

reaches a point in the curriculum at which its performance

degrades significantly; then, switch to BCL-X-AT (where X

is either C or MOS) for the remainder of the curriculum.

5. Experiments

5.1. Experiment Setup

We evaluate the proposed approach using four Atari-2600

games from the OpenAI Gym (Bellemare et al., 2013): Pong,

Freeway, BankHeist, and RoadRunner. Those environments

have discrete action space. The walltime for all experiments

are documented in the Appendix E. We use Rnominal to de-

note a model’s nominal reward (i.e., average discounted

sum of per-step rewards without adversarial perturbations),

and Rε
adv to represent a model’s reward under adversarial

attacks with l∞ perturbation bounded by ε. For each model

we calculate a score using Rnominal +
1
3

∑

ε R
ε
adv for all ε

listed in Table 2 to measure the model’s robustness level,

and this score is used to choose the median and best final

result (out of three independent runs); we present the me-

dian here, and the results of all runs, as well as the best

are provided in the Appendix D. We experiment all the

BCL variations in Section 4.1. We compare BCL-based

approaches to six benchmarks: 1) standard Dueling DQN

training (DQN (Vanilla)), 2) SA-DQN using convex relax-

ation (SA-DQN (Convex)) (Zhang et al., 2020), 3) RADIAL-

DQN (Oikarinen et al., 2021), 4) standard adversarial train-

ing (AT-DQN) (Madry et al., 2018), 5) naive curriculum

learning with adversarial examples (NCL-AT-DQN) (Cai

et al., 2018; Sitawarin et al., 2021) and 6) naive curriculum

learning with RADIAL method (NCL-RADIAL-DQN). For

DQN (Vanilla) we use the results from Zhang et al. (2020),

and for AT-DQN, NCL-AT-DQN as well as NCL-RADIAL-

DQN we perform our own training as three restricted vari-

ants of the BCL algorithm. The AT method is the one we

purposed in Section 4.2. The adversarial examples for all

games are generated using RI-FGSM.

DQN Hyperparameters Our implementation is based on

RADIAL-DQN (Oikarinen et al., 2021). For most hyperpa-

rameters we keep them the same as in RADIAL-DQN, with

a few exceptions such as replay initial and replay buffer

size, which are modified according to our model setting

to improve training efficiency. We use buffer size 50,000

across all environments compared to 200,000 used by RA-

DIAL. For replay initial we use 256 compared to 50,000 in

RADIAL. We use RI-FGSM (Algorithm 3 in Wong et al.

(2020), see Section 3.2) with hyperparameter α = 0.375
for approximating δ during training. The detailed DQN

specific hyperparameters for AT runs are in Table 1. The

one exception is BCL-RADIAL+AT-DQN for RoadRunner

environment: for the AT training we use 1.25 × 10−7 as

the learning rate, as we find with learning rate 0.000125 the

nominal reward would decrease significantly after training.

For NCL/BCL-RADIAL-DQN, all hyperparameters are the

same as in RADIAL-DQN.

To ensure a fair comparison, we let all methods to have the

same computational constraints and evaluation metrics: for

all environments we train for 4.5 million frames (same as

RADIAL-DQN) for each run, evaluate over 20 test episodes

and report the averaged reward.

Table 1. DQN specific hyperparameters (AT runs)

PARAMETER VALUE

DISCOUNT FACTOR (γ) 0.99
BUFFER SIZE 50000
REPLAY INITIAL 256
BATCH SIZE 128
OPTIMIZER ADAM

OPTIMIZER LEARNING RATE 0.000125

Adversarial Attacks for DQN As we observe significant

issues with obfuscated gradients with NCL/BCL-RADIAL-

DQN, we apply four types of adversarial attacks for DQN

models: 1) 30-step untargeted PGD attack with step size

0.1 (this is stronger than the 10-step PGD used in Oikari-

nen et al. (2021)); 2) RI-FGSM (α = 0.375); 3) RI-FGSM

(Multi): sample N = 1000 random starts for RI-FGSM,

and takes the first sample where the resulting adversarial

example alters the action; 4) RI-FGSM (Multi-T): sample

N = 1000 random starts for RI-FGSM, and takes the sam-

ple which results the agent taking the action corresponding

to the lowest Q value among those N samples. We report the

lowest reward obtained after running those four attacks. We

observe that with obfuscated gradients, RI-FGSM (Multi-T)

results in the strongest attack in many cases, while 30-step

PGD is typically stronger otherwise (see the Appendix D

for details).

Hyperparameters for AT-DQN and NCL-AT-DQN For

AT-DQN, we experiment with a series of varying values

of ε, and present the most effective results, with the com-

prehensive results deferred to Appendix D. We generate

adversarial perturbations as in Section 4.2, and use DQN

(Vanilla) as fθ0 ,1 setting K = L = 1. For each environment

1For the RoadRunner environment we used the implementation
of vanilla DQN from RADIAL-DQN (version 1) as fθ0 , which
yields better results.



Robust Deep Reinforcement Learning through Bootstrapped Opportunistic Curriculum

we only need one run which is 4.5 million frames.

For naive curriculum learning (NCL-AT-DQN), we use

DQN (Vanilla) as fθ0 , as for AT-DQN. We set K = 1 and

ε0 = 0, with curriculum increment of 1/255 (i.e., using the

baseline curriculum) until target ε is reached. The choice

of ε of each environment is the same as the ones in BCL

experiments. However, because NCL-AT-DQN significantly

underperforms BCL and (unlike BCL) when the target ε is

reached the final NCL-AT-DQN model performs extremely

poorly, we instead report the best result along the curriculum

path to provide the strongest benchmark.

Hyperparameters for NCL/BCL-RADIAL-DQN In

NCL/BCL-RADIAL-DQN experiments, we bootstrap from

RADIAL-DQN. We set ε0 = 1/255, with ε always follows

the baseline curriculum. The increments of the baseline

curriculum is 1/255. We set K = 1 for NCL-RADIAL-

DQN and K = 3 for BCL-RADIAL-DQN. We perform

maximum K runs for each curriculum phase; if none of the

K run results has a nominal reward above the threshold, we

choose the one with the highest nominal reward and move

to the next curriculum phase. We stop the training if nom-

inal reward is below the threshold for M = 2 consecutive

curriculum phases. The thresholds are shown in Table 10 in

Appendix C. We report the best result along the curriculum

path for NCL/BCL-RADIAL-DQN.

Hyperparamters for BCL-RADIAL+AT-DQN For BCL-

RADIAL+AT-DQN, we choose the median run among three

BCL-RADIAL-DQN runs and perform BCL-C-AT-DQN

starting with this run. As we are only able to perform

BCL-C-AT-DQN further for BankHeist and RoadRunner,

we choose K = 3 for BankHeist, and K = 1 for Road-

Runner. The baseline curriculum for BankHeist starts from

ε0 = 13/255 and for RoadRunner ε0 = 12/255, with cur-

riculum increment of 1/255, and target ε = 15/255.

Other BCL Hyperparameters In BCL, we also eval-

uate two concrete novel instantiations of the proposed

BCL framework: conservatively bootstrapped curriculum

learning (BCL-C-AT-DQN), and maximum opportunistic

skipping (BCL-MOS-AT-DQN). We bootstrapped all in-

stances by using RADIAL-DQN as fθ0 .2 Further, the base-

line curriculum is created starting with ε0 = 3/255, since

RADIAL-DQN (which we use as fθ0) is already robust up

to 3/255. The baseline curriculum is then created by us-

ing increments of 1/255 until reaching the target ε. The

BCL hyperparameters (K, Kmin and ε) are listed in Table

11 in the Appendix C. The thresholds V (ε) for BCL-MOS-

AT-DQN are listed in Table 12 in the Appendix C, where

2For the RoadRunner environment we used the version 1 im-
plementation of RADIAL-DQN (Oikarinen et al., 2021) as fθ0 ,
which yields better bootstrapping performance. Nevertheless, we
always use the best-performing version of RADIAL-DQN (version
2) as the benchmark in Table 2.

V nominal(ε) is the threshold for nominal reward, and V adv(ε)
is the threshold for rewards under adversarial attacks. As

described in Section 4, if the model in phase i is trained

against εi and Rnominal ≥ V nominal(ε), we perform evalu-

ation with adversarial attacks, find the maximum j > i
such that R

εj
adv ≥ V adv(ε), and skip forward in the baseline

curriculum, training with εj+1 in the next phase. In our im-

plementation of BCL, we further smoothed the curriculum

by gradually increasing the upper bound ε on adversarial

perturbations from εi to εi+1 in phase i+ 1 during the 4.5

million training frames. The function evaluating the quality

of intermediate results in Algorithm 1, Eval(fθk , εi), returns

the efficacy score Vk = Rnominal +
1
2 (R

εi
adv +R

εi−1

adv ), which

allows us to choose the best model among all the intermedi-

ate results. Note that it is crucial to include Rnominal as a part

of the criterion for model selection, as a model with a high

nominal reward tends to show considerably better stability

in subsequent curriculum training.

We used a time-varying κ in Equation 2 for BCL. Specifi-

cally, we let κ decrease from 1 to 0.5 through the 4.5 mil-

lion training frames for all experiments except when we use

RADIAL-DQN as fθ0 in Pong, Freeway and BankHeist;

or when we use RADIAL-DQN (version 2) as fθ0 in

RoadRunner (i.e., NCL/BCL-RADIAL-DQN and BCL-

RADIAL+AT-DQN). In these cases, κ is set to 0.8 through-

out training. The choice of κ = 0.8 ensured consistency

with the κ used in RADIAL-DQN (Oikarinen et al., 2021),

which makes the bootstrapping process more stable.

5.2. Results

Our main results are presented in Table 2, with extensive

additional results and analysis provided in the Appendix.

We can readily observe that the novel instantiations of BCL

outperform all benchmarks in terms of robustness in Pong,

Freeway and BankHeist. The improvement for higher levels

of ε is often dramatic.

For Pong, we observe that both BCL-C-AT-DQN and BCL-

MOS-AT-DQN significantly outperform all the benchmark

models as well as BCL-RADIAL-DQN for ε ≥ 20/255,

and achieves a near flawless reward. This demonstates the

value of our BCL framework as well as the AT curriculum

learning approach.

In the Freeway setting, both BCL-MOS-AT-DQN and BCL-

RADIAL-DQN achieve high robustness for ε up to 20/255.

In terms of benchmark models, while SA-DQN is competi-

tive at ε = 20/255, it is far worse at lower levels of ε; for

example, when ε = 10/255, BCL-MOS-AT-DQN achieves

an average reward that is more than 50% higher than either

SA-DQN or RADIAL-DQN, with DQN (Vanilla) achieving

0 reward at such levels of adversarial perturbations.

Note that we were unable to perform BCL-RADIAL+AT-
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Table 2. Average episode rewards ± standard error of the mean (SEM) over 20 episodes. The gray rows are the most robust models

(selected based on score Rnominal +
1

3

∑

ε
Rε

adv). Boldface marks the best results for each value of ε, including ε = 0 (nominal); we marked

multiple row entries as boldface for a given ε if they are statistically indistinguishable (i.e., have overlapping confidence intervals).

PONG

METHOD/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK

ε 0 10/255 20/255 25/255

DQN (VANILLA) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
SA-DQN (CONVEX) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RADIAL-DQN 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

AT-DQN 21.0± 0.0 18.0± 2.2 −0.8± 4.4 −19.4± 0.1
NCL-AT-DQN 21.0± 0.0 20.4± 0.2 −21.0± 0.0 −21.0± 0.0
NCL-RADIAL-DQN 21.0± 0.0 −20.6± 0.1 −21.0± 0.0 −21.0± 0.0

BCL-C-AT-DQN 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0
BCL-MOS-AT-DQN 21.0± 0.0 21.0± 0.0 20.9± 0.0 20.9± 0.0
BCL-RADIAL-DQN 21.0± 0.0 21.0± 0.0 −20.9± 0.1 −21.0± 0.0

FREEWAY

METHOD/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK

ε 0 10/255 15/255 20/255

DQN (VANILLA) 33.9± 0.1 0.0± 0.0 0.0± 0.0 0.0± 0.0
SA-DQN (CONVEX) 30.0± 0.0 19.3± 0.4 19.3± 0.3 20.0± 0.3
RADIAL-DQN 33.2± 0.2 17.1± 0.3 13.4± 0.2 7.9± 0.3

AT-DQN 32.4± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0
NCL-AT-DQN 32.8± 0.2 22.0± 0.5 9.6± 0.4 0.0± 0.0
NCL-RADIAL-DQN 33.5± 0.2 9.7± 0.5 11.6± 0.5 18.0± 0.4

BCL-C-AT-DQN 34.0± 0.0 28.8± 0.4 21.6± 0.5 17.4± 0.2
BCL-MOS-AT-DQN 34.0± 0.0 31.1± 0.3 25.9± 0.4 20.8± 0.3
BCL-RADIAL-DQN 33.1± 0.1 33.4± 0.1 25.9± 0.6 21.2± 0.5

BANKHEIST

METHOD/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK

ε 0 5/255 10/255 15/255

DQN (VANILLA) 1325.5± 5.7 0.0± 0.0 0.0± 0.0 0.0± 0.0
SA-DQN (CONVEX) 1237.5± 1.7 1126.0± 32.0 63.0± 3.5 16.0± 1.6
RADIAL-DQN 1349.5± 1.7 581.5± 16.7 0.0± 0.0 0.0± 0.0

AT-DQN 1271.0± 15.5 129.0± 10.2 5.5± 1.1 0.0± 0.0
NCL-AT-DQN 1311.0± 4.0 245.0± 23.7 1.0± 0.7 0.0± 0.0
NCL-RADIAL-DQN 1272.0± 10.7 1168.0± 3.4 59.5± 7.6 9.0± 1.9

BCL-C-AT-DQN 1285.5± 5.2 1143.5± 30.0 988.5± 12.3 250.5± 14.6
BCL-MOS-AT-DQN 1307.5± 9.5 1095.5± 6.2 664.0± 60.6 586.5± 105.6
BCL-RADIAL-DQN 1225.5± 4.9 1225.5± 4.9 1223.5± 4.1 228.5± 13.9
BCL-RADIAL+AT-DQN 1215.0± 8.4 1093.0± 5.3 1010.5± 8.0 961.5± 9.2

ROADRUNNER

METHOD/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK

ε 0 5/255 10/255 15/255

DQN (VANILLA) 43390± 973 0± 0 0± 0 0± 0
SA-DQN (CONVEX) 45870± 1380 985± 207 0± 0 0± 0
RADIAL-DQN 44595± 1165 7195± 929 495± 116 0± 0

AT-DQN 39890± 2092 20160± 1973 0± 0 0± 0
NCL-AT-DQN 47925± 1123 37745± 2014 10± 10 0± 0
NCL-RADIAL-DQN 41045± 1289 37865± 1082 37865± 1082 6350± 590

BCL-C-AT-DQN 45815± 1422 31305± 3590 11405± 1385 6335± 716
BCL-MOS-AT-DQN 44275± 1997 40060± 1828 15785± 1124 1195± 180
BCL-RADIAL-DQN 41045± 1289 37865± 1082 37865± 1082 6350± 590
BCL-RADIAL+AT-DQN 42490± 1309 42490± 1309 37665± 1563 25325± 1057
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DQN training for Pong and Freeway. For Pong, this appears

to be caused by obfuscated gradients, as we find that the

model produced by BCL-RADIAL-DQN have gradients that

are nearly zero almost everywhere. For Freeway, since the

BCL-RADIAL-DQN result is comparable to BCL-MOS-AT-

DQN, BCL-RADIAL-DQN might have already reached the

robustness boundary of the AT curriculum training method.

For BankHeist and RoadRunner, BCL-RADIAL+AT-DQN

models yield the most significant results. The results demon-

strate that performing BCL-C-AT-DQN training on top of

BCL-RADIAL-DQN could further improve the model ro-

bustness. This again demonstrates the value of our BCL

framework as well as our AT curriculum learning method.

Note that for RoadRunner, we find the curriculum training

for BCL-RADIAL-DQN is relatively stable, and two of the

BCL-RADIAL-DQN results are achieved by only perform-

ing one run for each curriculum phase. Consequently, we

include those two runs as the NCL-RADIAL-DQN results.

The AT-DQN and NCL-AT/RADIAL-DQN benchmarks

demonstrate the considerable value of the proposed

BCL framework, which generalizes both methods. In partic-

ular, both AT-DQN and NCL-AT-DQN are not competitive

for moderate or high values of ε, neither with our proposed

methods, nor (in most cases) with the other state of the art

robust benchmarks. The NCL-RADIAL-DQN benchmark

is more competitive in a few cases (e.g., RoadRunner), but

is still significantly outperformed by the best BCL variant.

Note that AT-DQN only performs one training phase with

a single fixed ε, and we evaluated versions of AT-DQN for

many different values of ε values. The results in Table 2 for

AT-DQN correspond to the best-performing result among

these. In general, as shown in Appendix D, the performance

of both AT-DQN and NCL-AT/RADIAL-DQN is relatively

unstable. With AT-DQN in particular, smaller values of ε
used in training generally yield poor robustness to stronger

attacks, while higher values of ε lead to greater instability

and only slightly higher robustness. In some games, such as

Pong, AT-DQN outperforms several other benchmarks (e.g.,

both SA-DQN and RADIAL-DQN), but it is ineffective in

others, such as Freeway. Similarly, NCL-AT-DQN is also

unreliable, working relatively well in some settings (e.g.,

Freeway), but much worse in others, such as BankHeist.

Our final analysis compares the two proposed methods,

BCL-C-AT-DQN and BCL-MOS-AT-DQN. The key advan-

tage of BCL-MOS-AT-DQN over BCL-C-AT-DQN is that

it potentially significantly reduces training time (in terms

of the number of training phases). And, indeed, it does,

as shown in Table 3: total curriculum training time for all

the experiments is reduced by over 50%, and in the Pong

environment, the reduction is over 70%.

Note that we set the thresholds V (ε) quite conservatively,

and such thresholds only allow us to skip 1-2 phases each

time as observed in the experiments. We can further reduce

training time by lowering it, albeit by sacrificing efficacy.

Additionally, we chose an identical threshold for the rewards

across all εi, which typically means that for higher values of

ε skipping becomes infrequent as attainable reward drops;

making the threshold itself adaptive may further reduce

training time.

Surprisingly, however, in addition to the reduction in train-

ing time, BCL-MOS-AT-DQN also typically outperforms

BCL-C-AT-DQN even in efficacy, both in terms of nomi-

nal reward and robustness. This could be a consequence

of opportunistic skipping serving as a form of regulariza-

tion during training, avoiding overfitting to particular lower-

magnitude perturbations.

Table 3. Averaged number of phases of curriculum learning: com-

paring BCL-C-AT-DQN and BCL-MOS-AT-DQN.

METHOD/ENV. PONG FW BH RR

BCL-C-AT-DQN 66 51 60 36
BCL-MOS-AT-DQN 19.3 24.0 41.7 20.3

6. Conclusion

We purposed a flexible Bootstrapped Opportunistic Adver-

sarial Curriculum Learning (BCL) framework. The frame-

work allows multiple training runs for each curriculum

phase to significantly increase the model stability, as well

as opportunistic skipping forward in the curriculum based

on custom target reward criteria to improve training effi-

ciency. We experimentally study four concrete instantiations

of the BCL framework, varying (a) whether or not we op-

portunistically skip forward in the curriculum (BCL-C-AT

vs. BCL-MOS-AT), and (b) instantiation of the adversarial

loss function (BCL-RADIAL vs. BCL-C-AT vs. hybrid

BCL-RADIAL+AT). In our experiments, BCL-MOS-AT

reduced the training time for all environments by over 50%

compared to BCL-C-AT, demonstrating the value of oppor-

tunistic skipping. On the other hand, we find that there is

no consistent advantage of one adversarial loss function

over the other: in some settings, such as Pong, generat-

ing actual adversarial examples leads to far better results,

while in others, such as RoadRunner, a combination of both

loss functions yields the best performance. Nevertheless, in

all cases the best variant of the proposed BCL framework

significantly outperforms baselines.
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A. Bootstrapped Opportunistic Adversarial Curriculum Learning (BCL) for PPO

In this section, we extend the application of BCL framework to PPO-style approaches. We evaluate our approaches on two

Procgen (Cobbe et al., 2020) environments: FruitBot and Jumper. For FruitBot, both AT-PPO and BCL-MOS-AT-PPO show

higher nominal rewards and significant improvements in terms of robustness for up to 20/255, while the current existing

vanilla PPO and RADIAL-PPO has small or even negative rewards for ε ≥ 10/255. For Jumper, BCL-MOS-AT-PPO

achieves significant improvements in terms of robustness for up to 40/255, with rewards under adversarial attacks for

ε ≥ 10/255 more than doubled compare to vanilla PPO (the current most robust model). The experiments on Procgen

also demonstrate that our models exhibit good generalization, as the evaluation rewards are high under both training and

evaluation distributions.

PPO PPO (Schulman et al., 2017) is a policy gradient method for reinforcement learning, with the objective function as

L(θ) = E(st,at,rt)

[

−min

(

π (at|st; θ)

π (at|st; θold)
At, clip

(

π (at|st; θ)

π (at|st; θold)
, 1− η, 1 + η

)

At

)]

. (5)

Here π is the policy, At is the advantage function at time t and η is the hyperparameter. PPO modifies the surrogate objective

by clipping the policy ratio to constrain the difference between old and new policy, which stabilizes the training and speeds

up convergence. We use Equation (5) as the Lstandard in Equation (2).

RADIAL-PPO RADIAL-PPO (Oikarinen et al., 2021) defines the adversarial loss function as

Ladv(θ, ε) = E(st,at,rt)

[

−min

(

πε (at|st, ε; θ)

π (at|st; θold)
At, clip

(

πε (at|st, ε; θ)

π (at|st; θold)
, 1− η, 1 + η

)

At

)]

,

with πε the lower bound of the policy network if At ≥ 0, and upper bound otherwise.

The goal for Ladv in RADIAL-PPO is to form a strict upper bound of the loss function under adversarial perturbations, that

is, Lstandard(s+ δ; ε) ≤ Ladv(s; ε) with ||δ||p≤ ε. Robustness is achieved through constraining the strict upper bound of the

loss function. This is referred to as approach # 1 in Oikarinen et al. (2021), and was used for RADIAL-PPO training.

Generating Adversarial Perturbations In our model, we replace the upper and lower bounds πε(a|st) in RADIAL-PPO

with π̃ε
1(a+ δ∗|st) and π̃ε

2(a+ δ∗|st). For RI-FGSM, δ∗ (approximately) solves the following optimization problem:

min
||δ||∞≤ε

Softmax(Logits(s+ δ))� Logits(s+ δ), (6)

where Logits(s) is the output vector of the PPO-style neural network and is used to calculate the categorical distribution

π(s). Note that Logits(s) has the same size as the action space. For PGD attacks, it is to (approximately) maximize

L(Softmax(Logits(s+ δ∗; θ)), π(s)) with respect to δ∗, where L is the cross-entropy loss and δ∗ is updated iteratively

over a fixed number of iterations (same as in the PGD attack for DQN models).

Since π is a categorical distribution over possible (discrete) actions, we calculate π̃ε
1(a+ δ∗|st) by having the a-th logit as

the one under adversarial perturbation, and the rest are vanilla logits; π̃ε
2(a+ δ∗|st) is calculated by having the a-th logit

as the vanilla logit, and the rest are logits under adversarial perturbation. The adversarial loss function is defined as the

maximum loss under those two policies:

Ladv(θ, ε) = E(st,at,rt)

[

− min
i∈{1,2}

min

(

π̃ε
i (at|st, ε; θ)

π (at|st; θold)
At, clip

(

π̃ε
i (at|st, ε; θ)

π (at|st; θold)
, 1− η, 1 + η

)

At,

)]

. (7)

Note that instead of forming a strict upper bound of the adversarial loss function as in RADIAL-PPO, Ladv in Equation (7)

provides a lower bound of the adversarial loss function with heuristic adversarial examples.

Experiment Setup We evaluate the purposed approach using two Procgen environments (Cobbe et al., 2020) with discrete

action space: FruitBot and Jumper. Note that we did not experiment on the CoinRun environment as in Oikarinen et al. (2021).

We find that for CoinRun environment there is an optimal action: we could achieve a reward comparable to RADIAL-PPO

regardless of the magnitude of ε. For each model, we calculate an efficacy score
∑

dist∈{Train, Eval}

(

Rdist
nominal +

1
3

∑

ε R
dist,ε
PGD

)
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for all ε listed in Table 7, where Rdist
nominal is the nominal reward and Rdist,ε

PGD is the reward under 30-step PGD attack with

adversarial perturbation size ||δ||∞≤ ε under Train/Eval distribution. Similar to DQN experiments, we conduct three

independent runs for each experiment based on the efficacy score and present the median result in the main table (Table 7).

For AT-PPO, we conduct experiments for all the three ε listed in Table 7, select the median run for each AT-PPO-ε, and

present the best result as the strongest benchmark.

We find that the adversarial training with PPO-style approaches is relatively stable, and that K = 1 suffices. Thus, we

use PPO (Vanilla), RADIAL-PPO (Oikarinen et al., 2021) as well as AT-PPO as benchmarks. For PPO (Vanilla) and

RADIAL-PPO we use the results from Oikarinen et al. (2021), and we perform our own AT-PPO training with the method

purposed above as a restricted version of BCL. We did not perform curriculum learning with RADIAL as it does not work for

Jumper. For FruitBot, we use RI-FGSM to generate adversarial examples. For Jumper, as we find RI-FGSM is not effective,

we instead use 10-step PGD to generate adversarial examples. We skipped BCL-C-AT-PPO experiments due to extensive

computational costs; however, as we will show in the results section, the opportunistic skipping forward mechanism under

the BCL framework makes the training possible for Jumper even with 10-step PGD.

To ensure a fair comparison, we let all methods to have the same computational constraints and evaluation metrics: for all

environments we train for 25 million steps on the easy setting for each run. For evaluation, we use 30-step PGD attack with

step size 0.1 for all models, which is stronger than the 10-step PGD attack used in Oikarinen et al. (2021). We evaluate all

models over 1000 episodes using deterministic policy and report the averaged reward under both training distribution (easy

setting) and evaluation distribution (full distribution), which is the same as in Oikarinen et al. (2021).

Hyperparameters The PPO specific hyperparameters as well as κ for AT-PPO and BCL-MOS-AT-PPO are the same

as in RADIAL-PPO. In FruitBot we use RI-FGSM to generate adversarial examples, with hyperparameter α = 95.5,

which is approximately 0.375 × 255 (note that α = 0.375 is used in DQN experiments for RI-FGSM). This is due to in

RADIAL-PPO code when the gradients are calculated the state space has a range of 0 ∼ 255, instead of being normalized

to 0 ∼ 1 as in RADIAL-DQN. The thresholds for BCL-MOS-AT-PPO are shown in Table 4, where V PGD(Train)(ε) is the

threshold for the averaged reward under 30-step PGD attack under training distribution.

Table 4. Thresholds V (ε) for BCL-MOS-AT-PPO

CRITERIA/ENV. FRUITBOT JUMPER

V PGD(TRAIN)(ε) 25.0 6.0

We find that although RADIAL-PPO increases the robustness for lower ε compared to vanilla PPO (e.g., ε = 5/255 under

10-step PGD attack as shown in Oikarinen et al. (2021)), it decreases the robustness for higher ε, accompanied by a lower

nominal reward. Thus we perform two sets of BCL-MOS-AT-PPO experiments: 1) BCL-MOS(V)-AT-PPO, where we

bootstrap from PPO (Vanilla); and 2) BCL-MOS(R)-AT-PPO, where we bootstrap from RADIAL-PPO.

Our baseline curriculum for PPO has an increment of 1/255, with ε0 for each experiment shown in Table 5. For FruitBot

we set target ε = 20/255, and for Jumper we set target ε = 40/255. For all experiments we set K = 1. We stop the

curriculum training when the model is robust against the target ε, meaning the reward under training distribution is above

the threshold in Table 4. Note that for FruitBot, we also stop the training when RI-FGSM attack is ineffective towards the

target ε, meaning that although 30-step PGD indicates the model is not robust against εi, however, RI-FGSM returns a near

perfect reward (close to nominal reward) when the magnitude of adversarial perturbation for the attack is ε. In this case,

since RI-FGSM is not generating any meaningful adversarial examples, continue training will in fact decrease the model

robustness.

Table 5. BCL-MOS-AT-PPO specific hyperparameters (ε0).

CRITERIA/ENV. FRUITBOT JUMPER

BCL-MOS(V)-AT-PPO 0/255 1/255
BCL-MOS(R)-AT-PPO 6/255 9/255
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Walltime Each adversarial training run takes 10 hours for FruitBot (with RI-FGSM), and 34 hours for Jumper (with

10-step PGD) on a single GeForce RTX 2080Ti GPU. The number of runs conducted for each experiment is shown in Table

6.

Table 6. Number of runs conducted for each experiment.

FRUITBOT

RUN1 RUN2 RUN3

AT-PPO-ε 1 1 1
BCL-MOS(V)-AT-PPO 3 2 2
BCL-MOS(R)-AT-PPO 2 2 2

JUMPER

RUN1 RUN2 RUN3

AT-PPO-ε 1 1 1
BCL-MOS(V)-AT-PPO 4 4 4
BCL-MOS(R)-AT-PPO 4 4 4

Results Our main results are shown in Table 7, with detailed results deferred to Table 8 and Table 9. The results show that

the models trained with our BCL-MOS-AT-PPO approach exhibit significant improvements in terms of nominal reward,

robustness as well as generalization compared to state of the art PPO (Vanilla) and RADIAL-PPO.

For FruitBot, both AT-PPO and BCL-MOS-AT-PPO achieve significant improvements in terms of robustness for ε up to

20/255, while PPO (Vanilla) and RADIAL-PPO has small or even negative rewards for ε ≥ 10/255. Furthermore, our

AT models achieve higher nominal rewards under both training and evaluation distributions. The success of AT-PPO and

BCL-MOS-AT-PPO demonstrate the value of our approach for training with adversarial examples.

For Jumper, BCL-MOS(V)-AT-PPO achieves the most robust model, with rewards under both training and evaluation

distributions significantly outperform all benchmark models for ε ≥ 10/255; it also has a higher nominal reward under

evaluation distribution, and comparable high nominal reward under training distribution. Furthermore, we find that BCL-

MOS(V)-AT-PPO outperforms BCL-MOS(R)-AT-PPO both in terms of nominal rewards and robustness for ε ≥ 20/255.

This is mainly because RADIAL-PPO has a lower nominal reward and is less robust compared to vanilla PPO for ε ≥ 20/255.

We also find that with BCL-MOS-AT-PPO training, the resulting models can be easily robust against a higher ε when

trained against a lower one. The final models for BCL-MOS-AT-PPO in the Jumper environment are only trained for 4

curriculum phases to achieve robustness against ε = 40/255. This demonstrates the value of the opportunistic skipping

forward mechanism in our BCL framework.

B. Additional Experimental Results for PPO models

Below we show the detailed experimental results for all three independent runs for each experiment. We separate the results

by environments for better visualization and comparison. For PPO (Vanilla) and RADIAL-PPO we use the released models

from Oikarinen et al. (2021). For AT-PPO, we perform our own training as a restricted case of the BCL algorithm.

For AT-PPO, we include all 9 runs for each environment, naming them as AT-PPO-ε, where ε is the single value of the base

curriculum taken as an input by the model. The choices of ε are the ones we use for evaluation. For each AT-PPO-ε we

conduct three independent runs, and use the median of those three runs as the representative result. The result reported in

Table 7 for each environment is the best median result among those three ε.
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Table 7. Average episode rewards ± standard error of the mean (SEM) over 1000 episodes on both training and evaluation set. The

gray rows are the most robust models, selected based on efficacy score
∑

dist

(

Rdist
nominal +

1

3

∑

ε
R

dist,ε
PGD

)

. Boldface marks the best results

for each value of ε; we marked multiple row entries as boldface for a given ε if they are statistically indistinguishable (i.e., have overlapping

confidence intervals).

FRUITBOT

MODEL DIST. NOMINAL 30-STEP PGD ATTACK

ε = 0 ε = 10/255 ε= 15/255 ε= 20/255

PPO (VANILLA) TRAIN 30.20± 0.23 2.40± 0.21 0.73± 0.16 −0.72± 0.14
EVAL 26.09± 0.33 1.70± 0.20 0.11± 0.14 −0.50± 0.13

RADIAL-PPO TRAIN 28.03± 0.24 −0.90± 0.13 −1.28± 0.10 −1.64± 0.10
EVAL 26.08± 0.29 −1.24± 0.13 −1.53± 0.11 −1.81± 0.11

AT-PPO TRAIN 31.14± 0.19 28.69± 0.29 26.35± 0.32 24.41± 0.35
EVAL 28.26± 0.29 26.47± 0.34 24.56± 0.36 20.44± 0.40

BCL-MOS(V)-AT-PPO TRAIN 32.11± 0.17 29.98± 0.24 27.40± 0.31 24.23± 0.36
EVAL 28.81± 0.28 27.61± 0.31 25.52± 0.35 21.63± 0.39

BCL-MOS(R)-AT-PPO TRAIN 31.40± 0.20 30.80± 0.21 28.22± 0.30 20.18± 0.40
EVAL 26.95± 0.34 26.28± 0.35 24.17± 0.37 17.87± 0.41

JUMPER

MODEL DIST. NOMINAL 30-STEP PGD ATTACK

ε = 0 ε = 10/255 ε= 20/255 ε= 40/255

PPO (VANILLA) TRAIN 8.69± 0.11 3.42± 0.15 3.61± 0.15 2.94± 0.14
EVAL 4.22± 0.16 2.81± 0.14 2.62± 0.14 2.50± 0.14

RADIAL-PPO TRAIN 6.59± 0.15 5.43± 0.16 2.45± 0.14 1.44± 0.11
EVAL 3.85± 0.15 3.03± 0.14 2.04± 0.13 1.44± 0.11

AT-PPO TRAIN 7.57± 0.14 4.98± 0.16 4.35± 0.16 3.52± 0.15
EVAL 4.55± 0.16 3.81± 0.15 3.35± 0.15 2.51± 0.14

BCL-MOS(V)-AT-PPO TRAIN 8.67± 0.11 8.15± 0.12 8.40± 0.12 7.84± 0.13
EVAL 4.57± 0.16 4.64± 0.16 4.65± 0.16 4.41± 0.16

BCL-MOS(R)-AT-PPO TRAIN 8.09± 0.12 8.29± 0.12 8.40± 0.12 6.93± 0.15
EVAL 4.39± 0.16 4.29± 0.16 4.09± 0.16 3.85± 0.15
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Table 8. FruitBot environment. Average episode rewards ± standard error of the mean (SEM) over 1000 episodes on both training and

evaluation set. The gray rows are the median of three runs, selected based on efficacy score
∑

dist

(

Rdist
nominal +

1

3

∑

ε
R

dist,ε
PGD

)

.

FRUITBOT

MODEL DIST. NOMINAL 30-STEP PGD ATTACK

ε = 0 ε = 10/255 ε= 15/255 ε= 20/255

PPO (VANILLA) TRAIN 30.20± 0.23 2.40± 0.21 0.73± 0.16 −0.72± 0.14
EVAL 26.09± 0.33 1.70± 0.20 0.11± 0.14 −0.50± 0.13

RADIAL-PPO TRAIN 28.03± 0.24 −0.90± 0.13 −1.28± 0.10 −1.64± 0.10
EVAL 26.08± 0.29 −1.24± 0.13 −1.53± 0.11 −1.81± 0.11

AT-PPO-10/255 (RUN1) TRAIN 24.69± 0.46 23.46± 0.46 22.38± 0.45 17.73± 0.47
EVAL 24.38± 0.43 23.69± 0.42 21.66± 0.45 17.26± 0.46

AT-PPO-10/255 (RUN2) TRAIN 30.27± 0.23 28.73± 0.29 27.03± 0.31 22.97± 0.36
EVAL 28.15± 0.28 27.30± 0.30 25.17± 0.34 20.42± 0.40

AT-PPO-10/255 (RUN3) TRAIN 31.20± 0.19 31.08± 0.17 29.13± 0.23 23.83± 0.36
EVAL 28.93± 0.27 27.72± 0.30 25.99± 0.33 21.91± 0.39

AT-PPO-15/255 (RUN1) TRAIN 29.62± 0.27 28.92± 0.29 26.82± 0.32 22.47± 0.38
EVAL 26.48± 0.34 25.71± 0.35 24.10± 0.37 22.00± 0.38

AT-PPO-15/255 (RUN2) TRAIN 31.48± 0.18 29.49± 0.26 28.82± 0.27 24.72± 0.35
EVAL 28.48± 0.28 27.30± 0.30 25.97± 0.32 22.82± 0.37

AT-PPO-15/255 (RUN3) TRAIN 31.04± 0.23 28.75± 0.29 26.76± 0.34 20.92± 0.42
EVAL 28.07± 0.31 26.41± 0.34 24.09± 0.38 20.33± 0.41

AT-PPO-20/255 (RUN1) TRAIN 30.65± 0.23 27.83± 0.32 26.16± 0.34 21.04± 0.39
EVAL 27.44± 0.32 25.64± 0.35 22.67± 0.39 20.57± 0.40

AT-PPO-20/255 (RUN2) TRAIN 31.14± 0.19 28.69± 0.29 26.35± 0.32 24.41± 0.35
EVAL 28.26± 0.29 26.47± 0.34 24.56± 0.36 20.44± 0.40

AT-PPO-20/255 (RUN3) TRAIN 28.62± 0.31 29.83± 0.24 28.12± 0.27 25.96± 0.32
EVAL 27.90± 0.30 27.20± 0.31 25.62± 0.34 23.55± 0.35

BCL-MOS(V)-AT-PPO (RUN1) TRAIN 31.32± 0.21 30.34± 0.23 28.64± 0.30 26.24± 0.35
EVAL 28.94± 0.27 27.57± 0.30 26.34± 0.32 23.55± 0.36

BCL-MOS(V)-AT-PPO (RUN2) TRAIN 31.37± 0.22 29.79± 0.26 26.64± 0.33 24.38± 0.35
EVAL 28.06± 0.31 26.51± 0.33 24.41± 0.36 22.12± 0.39

BCL-MOS(V)-AT-PPO (RUN3) TRAIN 32.11± 0.17 29.98± 0.24 27.40± 0.31 24.23± 0.36
EVAL 28.81± 0.28 27.61± 0.31 25.52± 0.35 21.63± 0.39

BCL-MOS(R)-AT-PPO (RUN1) TRAIN 31.13± 0.22 28.91± 0.26 26.56± 0.32 22.37± 0.37
EVAL 26.62± 0.34 24.67± 0.37 21.76± 0.39 19.54± 0.41

BCL-MOS(R)-AT-PPO (RUN2) TRAIN 30.85± 0.21 29.77± 0.25 26.93± 0.34 23.03± 0.37
EVAL 27.30± 0.32 25.98± 0.34 24.54± 0.35 21.14± 0.39

BCL-MOS(R)-AT-PPO (RUN3) TRAIN 31.40± 0.20 30.80± 0.21 28.22± 0.30 20.18± 0.40
EVAL 26.95± 0.34 26.28± 0.35 24.17± 0.37 17.87± 0.41
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Table 9. Jumper environment. Average episode rewards ± standard error of the mean (SEM) over 1000 episodes on both training and

evaluation set. The gray rows are the median of three runs, selected based on efficacy score
∑

dist

(

Rdist
nominal +

1

3

∑

ε
R

dist,ε
PGD

)

.

JUMPER

MODEL DIST. NOMINAL 30-STEP PGD ATTACK

ε = 0 ε = 10/255 ε= 20/255 ε= 40/255

PPO (VANILLA) TRAIN 8.69± 0.11 3.42± 0.15 3.61± 0.15 2.94± 0.14
EVAL 4.22± 0.16 2.81± 0.14 2.62± 0.14 2.50± 0.14

RADIAL-PPO TRAIN 6.59± 0.15 5.43± 0.16 2.45± 0.14 1.44± 0.11
EVAL 3.85± 0.15 3.03± 0.14 2.04± 0.13 1.44± 0.11

AT-PPO-10/255 (RUN1) TRAIN 6.58± 0.15 6.96± 0.15 5.54± 0.16 0.97± 0.09
EVAL 4.39± 0.16 4.24± 0.16 3.30± 0.15 0.43± 0.06

AT-PPO-10/255 (RUN2) TRAIN 7.41± 0.14 6.70± 0.15 5.04± 0.16 1.31± 0.11
EVAL 4.50± 0.16 4.05± 0.16 3.35± 0.15 0.68± 0.08

AT-PPO-10/255 (RUN3) TRAIN 7.47± 0.14 6.94± 0.15 5.29± 0.16 1.02± 0.10
EVAL 4.64± 0.16 4.31± 0.16 3.27± 0.15 0.58± 0.07

AT-PPO-20/255 (RUN1) TRAIN 6.90± 0.15 6.35± 0.15 5.23± 0.16 2.41± 0.14
EVAL 4.47± 0.16 4.31± 0.16 3.92± 0.15 1.46± 0.11

AT-PPO-20/255 (RUN2) TRAIN 5.96± 0.16 5.98± 0.16 5.05± 0.16 1.83± 0.12
EVAL 4.56± 0.16 4.29± 0.16 3.85± 0.15 1.78± 0.12

AT-PPO-20/255 (RUN3) TRAIN 6.56± 0.15 6.14± 0.15 5.06± 0.16 1.85± 0.12
EVAL 4.42± 0.16 4.34± 0.16 4.00± 0.15 1.27± 0.11

AT-PPO-40/255 (RUN1) TRAIN 7.57± 0.14 4.98± 0.16 4.35± 0.16 3.52± 0.15
EVAL 4.55± 0.16 3.81± 0.15 3.35± 0.15 2.51± 0.14

AT-PPO-40/255 (RUN2) TRAIN 7.43± 0.14 4.74± 0.16 4.20± 0.16 3.98± 0.15
EVAL 4.54± 0.16 3.88± 0.15 3.24± 0.15 3.39± 0.15

AT-PPO-40/255 (RUN3) TRAIN 6.72± 0.15 4.66± 0.16 4.36± 0.16 4.01± 0.16
EVAL 4.71± 0.16 3.90± 0.15 3.19± 0.15 2.76± 0.14

BCL-MOS(V)-AT-PPO (RUN1) TRAIN 8.67± 0.11 8.15± 0.12 8.40± 0.12 7.84± 0.13
EVAL 4.57± 0.16 4.64± 0.16 4.65± 0.16 4.41± 0.16

BCL-MOS(V)-AT-PPO (RUN2) TRAIN 9.09± 0.09 8.85± 0.10 8.50± 0.11 7.64± 0.13
EVAL 4.77± 0.16 4.77± 0.16 4.78± 0.16 4.43± 0.16

BCL-MOS(V)-AT-PPO (RUN3) TRAIN 8.75± 0.10 8.73± 0.11 8.64± 0.11 5.97± 0.16
EVAL 4.64± 0.16 4.63± 0.16 4.49± 0.16 4.14± 0.16

BCL-MOS(R)-AT-PPO (RUN1) TRAIN 8.09± 0.12 8.29± 0.12 8.40± 0.12 6.93± 0.15
EVAL 4.39± 0.16 4.29± 0.16 4.09± 0.16 3.85± 0.15

BCL-MOS(R)-AT-PPO (RUN2) TRAIN 8.27± 0.12 7.27± 0.14 6.99± 0.15 6.11± 0.15
EVAL 4.53± 0.16 4.33± 0.16 4.25± 0.16 3.91± 0.15

BCL-MOS(R)-AT-PPO (RUN3) TRAIN 8.16± 0.12 8.1± 0.12 8.35± 0.12 7.36± 0.14
EVAL 4.58± 0.16 4.3± 0.16 4.29± 0.16 4.15± 0.16
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C. Hyperparameters for DQN models

Table 10. Thresholds V (ε) for NCL/BCL-RADIAL-DQN

CRITERIA/ENV. PONG FW BH RR

V NOMINAL(ε) 20 32 1200 35000

Table 11. BCL-AT specific hyperparameters

METHOD/ENV. PONG FREEWAY

K KMIN ε K KMIN ε

BCL-C-AT-DQN 3 3 30

255
3 3 20

255

BCL-MOS-AT-DQN 3 1 30

255
3 1 20

255

METHOD/ENV. BANKHEIST ROADRUNNER

K KMIN ε K KMIN ε

BCL-C-AT-DQN 5 5 15

255
3 3 15

255

BCL-MOS-AT-DQN 5 1 15

255
3 1 15

255

BCL-RADIAL+AT-DQN 3 3 15

255
1 1 15

255

Table 12. Thresholds V (ε) for BCL-MOS-AT-DQN

CRITERIA/ENV. PONG FW BH RR

V NOMINAL(ε) 20 30 1200 40000

V ADV(ε) 20 25 1000 12000

D. Additional Experimental Results for DQN models

Below we show the detailed experimental results for all three independent runs for each experiment. We separate the results

by environments for better visualization and comparison. That is, we have four tables, each for Pong (Table 13), Freeway

(Table 17), BankHeist (Table 21) and RoadRunner (Table 25). The discount factor used for evaluation is 1, with maximum

episode length 10000, which is the same as in Oikarinen et al. (2021). For benchmark models DQN (Vanilla) and SA-DQN

(Convex) we use the released models from Zhang et al. (2020), and for RADIAL-DQN we use the released models from

Oikarinen et al. (2021). For benchmark models AT-DQN and NCL-AT-DQN, we perform our own training as two restricted

cases of the BCL algorithm.

For AT-DQN we include all 9 runs for each environment, naming them as AT-DQN-ε, where ε is the single value of the base

curriculum taken as an input by the model. The choices of ε are the ones we use for evaluation. For each AT-DQN-ε we

conduct three independent runs, and use the median of those three runs as the representative result. The result reported in

Table 2 for each environment is the best median result among those three ε.

For NCL-AT-DQN and NCL-RADIAL-DQN we present the best result along the curriculum path for each run. For better

comparison between different approaches, we set the target robustness level ε in curriculum for NCL-AT-DQN the same as

in BCL experiments, that is, ε = 25/255 for Pong, ε = 20/255 for Freeway, ε = 15/255 for BankHeist and ε = 15/255 for

RoadRunner.
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Table 13. Pong environment. Average episode rewards ± standard error of the mean (SEM) over 20 episodes. The gray rows are

the median of three runs (selected based on efficacy score Rnominal +
1

3

∑

ε
Rε

adv). We report the lowest rewards among 30-step PGD,

RI-FGSM, RI-FGSM (Multi) and RI-FGSM (Multi-T) attacks.

PONG

MODEL/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK

ε 0 10/255 20/255 25/255

DQN (VANILLA) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
SA-DQN (CONVEX) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RADIAL-DQN 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

AT-DQN-10/255 (RUN1) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
AT-DQN-10/255 (RUN2) 21.0± 0.0 −16.7± 2.7 −21.0± 0.0 −20.9± 0.1
AT-DQN-10/255 (RUN3) 20.8± 0.1 −17.7± 1.3 −21.0± 0.0 −21.0± 0.0

AT-DQN-20/255 (RUN1) 21.0± 0.0 7.1± 3.0 −17.9± 2.1 −21.0± 0.0
AT-DQN-20/255 (RUN2) 20.8± 0.1 18.3± 0.4 −20.9± 0.1 −21.0± 0.0
AT-DQN-20/255 (RUN3) 21.0± 0.0 −13.6± 2.6 −20.5± 0.1 −21.0± 0.0

AT-DQN-25/255 (RUN1) 20.8± 0.1 9.9± 3.7 −20.8± 0.1 −21.0± 0.0
AT-DQN-25/255 (RUN2) 20.1± 0.3 −16.9± 2.5 −20.5± 0.2 −21.0± 0.0
AT-DQN-25/255 (RUN3) 21.0± 0.0 18.0± 2.2 −0.8± 4.4 −19.4± 0.1

NCL-AT-DQN (RUN1) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
NCL-AT-DQN (RUN2) 21.0± 0.0 20.4± 0.2 −21.0± 0.0 −21.0± 0.0
NCL-AT-DQN (RUN3) 21.0± 0.0 21.0± 0.0 −21.0± 0.0 −21.0± 0.0

NCL-RADIAL-DQN (RUN1) 21.0± 0.0 21.0± 0.0 −21.0± 0.0 −21.0± 0.0
NCL-RADIAL-DQN (RUN2) 21.0± 0.0 −20.6± 0.1 −21.0± 0.0 −21.0± 0.0
NCL-RADIAL-DQN (RUN3) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

BCL-C-AT-DQN (RUN1) 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0
BCL-C-AT-DQN (RUN2) 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0
BCL-C-AT-DQN (RUN3) 21.0± 0.0 20.8± 0.1 20.5± 0.2 20.1± 0.3

BCL-MOS-AT-DQN (RUN1) 21.0± 0.0 21.0± 0.0 20.7± 0.2 20.8± 0.1
BCL-MOS-AT-DQN (RUN2) 21.0± 0.0 21.0± 0.0 21.0± 0.0 20.9± 0.1
BCL-MOS-AT-DQN (RUN3) 21.0± 0.0 21.0± 0.0 20.9± 0.0 20.9± 0.0

BCL-RADIAL-DQN (RUN1) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
BCL-RADIAL-DQN (RUN2) 21.0± 0.0 21.0± 0.0 −20.9± 0.1 −21.0± 0.0
BCL-RADIAL-DQN (RUN3) 21.0± 0.0 21.0± 0.0 21.0± 0.0 −16.6± 1.0
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Table 14. Detailed experiment results for Pong environment. The lowest reward under attacks are marked gray .

PONG

MODEL ATTACK ε = 10/255 ε= 20/255 ε =25/255

DQN (VANILLA) 30-STEP PGD −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
SA-DQN (CONVEX) 30-STEP PGD −21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RADIAL-DQN 30-STEP PGD −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

AT-DQN-10/255 (RUN1) 30-STEP PGD −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

AT-DQN-10/255 (RUN2) 30-STEP PGD −16.7± 2.7 −21.0± 0.0 −20.8± 0.1
RI-FGSM 20.1± 0.0 −20.8± 0.1 −20.8± 0.1
RI-FGSM (MULTI) 19.1± 0.4 −20.6± 0.1 −20.8± 0.1
RI-FGSM (MULTI-T) 18.1± 0.8 −21.0± 0.0 −20.9± 0.1

AT-DQN-10/255 (RUN3) 30-STEP PGD −17.7± 1.3 −21.0± 0.0 −20.9± 0.1
RI-FGSM 20.7± 0.1 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI) 15.0± 2.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI-T) 12.7± 2.8 −21.0± 0.0 −21.0± 0.0

AT-DQN-20/255 (RUN1) 30-STEP PGD 7.1± 3.0 −17.9± 2.1 −21.0± 0.0
RI-FGSM 20.5± 0.2 20.4± 0.2 −20.6± 0.2
RI-FGSM (MULTI) 12.9± 1.8 2.8± 2.7 −20.9± 0.0
RI-FGSM (MULTI-T) 13.0± 1.7 −8.4± 2.2 −21.0± 0.0

AT-DQN-20/255 (RUN2) 30-STEP PGD 18.3± 0.4 −20.9± 0.1 −21.0± 0.0
RI-FGSM 19.9± 0.5 20.6± 0.1 −21.0± 0.0
RI-FGSM (MULTI) 20.3± 0.2 16.4± 0.9 −21.0± 0.0
RI-FGSM (MULTI-T) 20.8± 0.1 6.7± 3.4 −21.0± 0.0

AT-DQN-20/255 (RUN3) 30-STEP PGD −13.6± 2.6 −20.5± 0.1 −20.6± 0.1
RI-FGSM 6.0± 3.7 17.8± 1.9 −21.0± 0.0
RI-FGSM (MULTI) 1.3± 3.8 1.5± 2.7 −21.0± 0.0
RI-FGSM (MULTI-T) 11.1± 2.8 −7.0± 3.1 −21.0± 0.0

AT-DQN-25/255 (RUN1) 30-STEP PGD 20.8± 0.1 −20.8± 0.1 −21.0± 0.0
RI-FGSM 20.4± 0.3 19.8± 0.5 19.6± 0.5
RI-FGSM (MULTI) 18.3± 0.9 −9.3± 3.0 −18.1± 0.6
RI-FGSM (MULTI-T) 9.9± 3.7 −14.8± 1.9 −18.9± 0.4

AT-DQN-25/255 (RUN2) 30-STEP PGD −16.9± 2.5 −20.5± 0.2 −21.0± 0.0
RI-FGSM 18.1± 0.8 17.6± 0.9 19.0± 0.4
RI-FGSM (MULTI) 8.2± 3.8 0.5± 3.5 −4.3± 3.2
RI-FGSM (MULTI-T) 5.8± 4.0 −3.8± 3.6 −15.8± 1.5

AT-DQN-25/255 (RUN3) 30-STEP PGD 20.9± 0.1 −0.8± 4.4 −19.4± 0.1
RI-FGSM 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI) 18.0± 2.2 19.6± 0.8 0.1± 3.4
RI-FGSM (MULTI-T) 18.0± 2.2 15.7± 2.0 −8.4± 2.0
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Table 15. Detailed experiment results for Pong environment. The lowest reward under attacks are marked gray .

PONG

MODEL ATTACK ε = 10/255 ε= 20/255 ε =25/255

NCL-AT-DQN (RUN1) 30-STEP PGD −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

NCL-AT-DQN (RUN2) 30-STEP PGD 21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM 20.9± 0.0 −20.1± 0.2 −20.9± 0.0
RI-FGSM (MULTI) 20.4± 0.2 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI-T) 20.9± 0.1 −21.0± 0.0 −21.0± 0.0

NCL-AT-DQN (RUN3) 30-STEP PGD 21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM 21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI-T) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0

BCL-C-AT-DQN (RUN1) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI) 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI-T) 21.0± 0.0 21.0± 0.0 21.0± 0.0

BCL-C-AT-DQN (RUN2) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI) 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI-T) 21.0± 0.0 21.0± 0.0 21.0± 0.0

BCL-C-AT-DQN (RUN3) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 21.0± 0.0 20.9± 0.1
RI-FGSM (MULTI) 20.8± 0.1 20.5± 0.2 20.6± 0.1
RI-FGSM (MULTI-T) 20.8± 0.1 20.6± 0.2 20.1± 0.3

BCL-MOS-AT-DQN (RUN1) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI) 21.0± 0.0 20.8± 0.1 20.8± 0.1
RI-FGSM (MULTI-T) 21.0± 0.0 20.7± 0.2 20.8± 0.1

BCL-MOS-AT-DQN (RUN2) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI) 21.0± 0.0 21.0± 0.0 20.9± 0.1
RI-FGSM (MULTI-T) 21.0± 0.0 21.0± 0.0 20.9± 0.1

BCL-MOS-AT-DQN (RUN3) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM (MULTI) 21.0± 0.0 21.0± 0.0 20.9± 0.0
RI-FGSM (MULTI-T) 21.0± 0.0 20.9± 0.0 20.9± 0.0
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Table 16. Detailed experiment results for Pong environment. The lowest reward under attacks are marked gray .

PONG

MODEL ATTACK ε = 10/255 ε= 20/255 ε =25/255

NCL-RADIAL-DQN (RUN1) 30-STEP PGD 21.0± 0.0 12.9± 2.0 12.8± 2.0
RI-FGSM 21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI-T) 21.0± 0.0 −21.0± 0.0 −21.0± 0.0

NCL-RADIAL-DQN (RUN2) 30-STEP PGD −20.6± 0.1 −21.0± 0.0 −21.0± 0.0
RI-FGSM −6.7± 1.1 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI) −17.8± 1.0 −21.0± 0.0 −21.0± 0.0
RI-FGSM (MULTI-T) −16.1± 1.2 −21.0± 0.0 −21.0± 0.0

NCL-RADIAL-DQN (RUN3) 30-STEP PGD −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

BCL-RADIAL-DQN (RUN1) 30-STEP PGD −21.0± 0.0 −21.0± 0.0 −21.0± 0.0

BCL-RADIAL-DQN (RUN2) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 12.3± 1.2 −20.7± 0.1
RI-FGSM (MULTI) 21.0± 0.0 −20.9± 0.1 −21.0± 0.0
RI-FGSM (MULTI-T) 21.0± 0.0 −20.7± 0.2 −21.0± 0.0

BCL-RADIAL-DQN (RUN3) 30-STEP PGD 21.0± 0.0 21.0± 0.0 21.0± 0.0
RI-FGSM 21.0± 0.0 21.0± 0.0 20.6± 0.2
RI-FGSM (MULTI) 21.0± 0.0 21.0± 0.0 −16.6± 1.0
RI-FGSM (MULTI-T) 21.0± 0.0 21.0± 0.0 −6.5± 2.0
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Table 17. Freeway environment. Average episode rewards ± standard error of the mean (SEM) over 20 episodes. The gray rows are

the median of three runs (selected based on efficacy score Rnominal +
1

3

∑

ε
Rε

adv). We report the lowest rewards among 30-step PGD,

RI-FGSM, RI-FGSM (Multi) and RI-FGSM (Multi-T) attacks.

FREEWAY

MODEL/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK

ε 0 10/255 15/255 20/255

DQN (VANILLA) 33.9± 0.1 0.0± 0.0 0.0± 0.0 0.0± 0.0
SA-DQN (CONVEX) 30.0± 0.0 19.3± 0.4 19.3± 0.3 20.0± 0.3
RADIAL-DQN 33.2± 0.2 17.1± 0.3 13.4± 0.2 7.9± 0.3

AT-DQN-10/255 (RUN1) 32.4± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-10/255 (RUN2) 33.3± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-10/255 (RUN3) 32.3± 0.2 0.1± 0.1 0.0± 0.0 0.0± 0.0

AT-DQN-15/255 (RUN1) 32.9± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-15/255 (RUN2) 30.9± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-15/255 (RUN3) 32.0± 0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0

AT-DQN-20/255 (RUN1) 29.1± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-20/255 (RUN2) 31.4± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-20/255 (RUN3) 32.2± 0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0

NCL-AT-DQN (RUN1) 32.8± 0.2 22.0± 0.5 9.6± 0.4 0.0± 0.0
NCL-AT-DQN (RUN2) 32.7± 0.2 26.2± 0.2 17.9± 0.3 3.9± 0.2
NCL-AT-DQN (RUN3) 32.6± 0.3 0.0± 0.0 0.0± 0.0 0.0± 0.0

NCL-RADIAL-DQN (RUN1) 33.8± 0.1 11.9± 0.5 0.2± 0.1 13.0± 0.5
NCL-RADIAL-DQN (RUN2) 33.5± 0.1 33.1± 0.1 22.5± 0.5 21.6± 0.4
NCL-RADIAL-DQN (RUN3) 33.5± 0.2 9.7± 0.5 11.6± 0.5 18.0± 0.4

BCL-C-AT-DQN (RUN1) 34.0± 0.0 31.2± 0.4 25.9± 0.3 17.3± 0.5
BCL-C-AT-DQN (RUN2) 34.0± 0.0 28.8± 0.4 21.6± 0.5 17.4± 0.2
BCL-C-AT-DQN (RUN3) 34.0± 0.0 26.7± 0.3 22.6± 0.2 16.1± 0.3

BCL-MOS-AT-DQN (RUN1) 33.7± 0.1 30.0± 0.4 26.6± 0.3 21.5± 0.4
BCL-MOS-AT-DQN (RUN2) 34.0± 0.0 31.1± 0.3 25.9± 0.4 20.8± 0.3
BCL-MOS-AT-DQN (RUN3) 33.8± 0.1 29.1± 0.5 23.7± 0.5 17.6± 0.4

BCL-RADIAL-DQN (RUN1) 32.2± 0.2 32.2± 0.3 21.2± 0.4 21.1± 0.4
BCL-RADIAL-DQN (RUN2) 33.1± 0.1 33.4± 0.1 25.9± 0.6 21.2± 0.5
BCL-RADIAL-DQN (RUN3) 32.7± 0.2 32.7± 0.2 29.8± 0.5 20.7± 0.3
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Table 18. Detailed experiment results for Freeway environment. The lowest reward under attacks are marked gray .

FREEWAY

MODEL ATTACK ε = 10/255 ε= 15/255 ε =20/255

DQN (VANILLA) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0

SA-DQN (CONVEX) 30-STEP PGD 19.3± 0.4 19.3± 0.3 20.0± 0.3
RI-FGSM 21.2± 0.4 21.5± 0.4 21.9± 0.3
RI-FGSM (MULTI) 21.4± 0.3 21.3± 0.3 20.7± 0.5
RI-FGSM (MULTI-T) 21.4± 0.3 21.1± 0.3 21.4± 0.3

RADIAL-DQN 30-STEP PGD 19.9± 0.3 13.4± 0.2 7.9± 0.3
RI-FGSM 21.9± 0.3 21.8± 0.3 21.8± 0.3
RI-FGSM (MULTI) 17.4± 0.4 21.7± 0.3 21.9± 0.3
RI-FGSM (MULTI-T) 17.1± 0.3 21.7± 0.3 21.6± 0.2

AT-DQN-10/255 (RUN1) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0

AT-DQN-10/255 (RUN2) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0

AT-DQN-10/255 (RUN3) 30-STEP PGD 0.1± 0.1 0.0± 0.0 0.0± 0.0
RI-FGSM 28.9± 0.3 23.4± 0.4 3.0± 0.2
RI-FGSM (MULTI) 24.4± 0.4 1.9± 0.2 0.0± 0.0
RI-FGSM (MULTI-T) 23.9± 0.3 2.1± 0.2 0.0± 0.0

AT-DQN-15/255 (RUN1) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-15/255 (RUN2) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-15/255 (RUN3) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0

AT-DQN-20/255 (RUN1) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-20/255 (RUN2) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0
AT-DQN-20/255 (RUN3) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0
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Table 19. Detailed experiment results for Freeway environment. The lowest reward under attacks are marked gray .

FREEWAY

MODEL ATTACK ε = 10/255 ε= 15/255 ε =20/255

NCL-AT-DQN (RUN1) 30-STEP PGD 22.8± 0.4 17.0± 0.4 0.0± 0.0
RI-FGSM 29.7± 0.3 29.9± 0.4 22.3± 0.3
RI-FGSM (MULTI) 23.6± 0.5 11.3± 0.4 0.0± 0.0
RI-FGSM (MULTI-T) 22.0± 0.5 9.6± 0.4 0.0± 0.0

NCL-AT-DQN (RUN2) 30-STEP PGD 26.2± 0.2 17.9± 0.3 3.9± 0.2
RI-FGSM 30.2± 0.3 30.4± 0.4 30.4± 0.4
RI-FGSM (MULTI) 26.6± 0.4 25.6± 0.5 12.3± 0.3
RI-FGSM (MULTI-T) 27.5± 0.5 25.9± 0.3 11.9± 0.4

NCL-AT-DQN (RUN3) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0

BCL-C-AT-DQN (RUN1) 30-STEP PGD 31.6± 0.4 25.9± 0.3 17.3± 0.5
RI-FGSM 33.0± 0.2 32.8± 0.3 33.2± 0.2
RI-FGSM (MULTI) 31.2± 0.4 29.6± 0.4 23.9± 0.4
RI-FGSM (MULTI-T) 31.5± 0.4 29.7± 0.4 24.7± 0.5

BCL-C-AT-DQN (RUN2) 30-STEP PGD 29.2± 0.5 21.6± 0.5 17.4± 0.2
RI-FGSM 32.0± 0.3 32.4± 0.3 33.0± 0.2
RI-FGSM (MULTI) 29.2± 0.4 28.0± 0.4 25.4± 0.4
RI-FGSM (MULTI-T) 28.8± 0.4 28.0± 0.5 24.8± 0.5

BCL-C-AT-DQN (RUN3) 30-STEP PGD 26.7± 0.3 22.6± 0.2 16.1± 0.3
RI-FGSM 31.2± 0.4 31.5± 0.3 32.3± 0.3
RI-FGSM (MULTI) 27.9± 0.4 25.9± 0.6 24.6± 0.3
RI-FGSM (MULTI-T) 28.4± 0.3 25.9± 0.3 22.8± 0.4

BCL-MOS-AT-DQN (RUN1) 30-STEP PGD 30.0± 0.4 26.6± 0.3 21.5± 0.4
RI-FGSM 33.0± 0.2 33.0± 0.2 32.8± 0.3
RI-FGSM (MULTI) 31.2± 0.3 30.7± 0.4 26.2± 0.3
RI-FGSM (MULTI-T) 31.4± 0.3 30.0± 0.4 25.4± 0.4

BCL-MOS-AT-DQN (RUN2) 30-STEP PGD 31.2± 0.4 25.9± 0.4 20.8± 0.3
RI-FGSM 32.8± 0.3 32.7± 0.3 32.5± 0.3
RI-FGSM (MULTI) 31.1± 0.3 29.1± 0.6 28.4± 0.3
RI-FGSM (MULTI-T) 31.3± 0.4 28.3± 0.4 27.8± 0.3

BCL-MOS-AT-DQN (RUN3) 30-STEP PGD 29.2± 0.4 23.7± 0.5 17.6± 0.4
RI-FGSM 32.1± 0.3 32.3± 0.2 32.6± 0.2
RI-FGSM (MULTI) 29.1± 0.4 27.0± 0.4 26.9± 0.5
RI-FGSM (MULTI-T) 29.1± 0.5 27.1± 0.4 25.3± 0.4
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Table 20. Detailed experiment results for Freeway environment. The lowest reward under attacks are marked gray .

FREEWAY

MODEL ATTACK ε = 10/255 ε= 15/255 ε =20/255

NCL-RADIAL-DQN (RUN1) 30-STEP PGD 25.4± 0.4 15.8± 0.3 13.0± 0.5
RI-FGSM 25.8± 0.5 20.6± 0.4 21.8± 0.3
RI-FGSM (MULTI) 11.9± 0.5 0.2± 0.1 21.5± 0.4
RI-FGSM (MULTI-T) 12.1± 0.5 0.3± 0.1 21.3± 0.4

NCL-RADIAL-DQN (RUN2) 30-STEP PGD 33.1± 0.1 23.3± 0.5 22.5± 0.3
RI-FGSM 33.5± 0.1 22.5± 0.5 21.6± 0.4
RI-FGSM (MULTI) 33.1± 0.1 23.4± 0.5 23.4± 0.4
RI-FGSM (MULTI-T) 33.1± 0.1 23.7± 0.5 22.4± 0.4

NCL-RADIAL-DQN (RUN3) 30-STEP PGD 22.0± 0.2 17.8± 0.4 18.0± 0.4
RI-FGSM 24.6± 0.3 21.7± 0.4 21.8± 0.3
RI-FGSM (MULTI) 9.7± 0.5 11.6± 0.5 21.4± 0.2
RI-FGSM (MULTI-T) 10.0± 0.4 11.8± 0.5 21.3± 0.3

BCL-RADIAL-DQN (RUN1) 30-STEP PGD 32.5± 0.3 22.9± 0.4 22.6± 0.4
RI-FGSM 32.8± 0.3 22.6± 0.3 21.7± 0.3
RI-FGSM (MULTI) 32.2± 0.3 21.2± 0.4 21.1± 0.4
RI-FGSM (MULTI-T) 32.2± 0.3 21.3± 0.3 21.2± 0.3

BCL-RADIAL-DQN (RUN2) 30-STEP PGD 33.4± 0.1 30.0± 0.2 24.1± 0.5
RI-FGSM 33.4± 0.1 29.7± 0.3 21.7± 0.3
RI-FGSM (MULTI) 33.4± 0.1 26.5± 0.5 21.2± 0.5
RI-FGSM (MULTI-T) 33.4± 0.1 25.9± 0.6 21.6± 0.3

BCL-RADIAL-DQN (RUN3) 30-STEP PGD 32.7± 0.2 32.0± 0.2 22.2± 0.5
RI-FGSM 32.7± 0.2 32.2± 0.3 20.7± 0.3
RI-FGSM (MULTI) 32.8± 0.2 30.8± 0.4 21.3± 0.2
RI-FGSM (MULTI-T) 32.9± 0.2 29.8± 0.5 21.9± 0.3
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Table 21. BankHeist environment. Average episode rewards ± standard error of the mean (SEM) over 20 episodes. The gray rows are

the median of three runs (selected based on efficacy score Rnominal +
1

3

∑

ε
Rε

adv). We report the lowest rewards among 30-step PGD,

RI-FGSM, RI-FGSM (Multi) and RI-FGSM (Multi-T) attacks.

BANKHEIST

MODEL/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK

ε 0 5/255 10/255 15/255

DQN (VANILLA) 1325.5± 5.7 0.0± 0.0 0.0± 0.0 0.0± 0.0
SA-DQN (CONVEX) 1237.5± 1.7 1126.0± 32.0 63.0± 3.5 16.0± 1.6
RADIAL-DQN 1349.5± 1.7 581.5± 16.7 0.0± 0.0 0.0± 0.0

AT-DQN-5/255 (RUN1) 1200.0± 12.1 95.5± 5.9 0.0± 0.0 0.0± 0.0
AT-DQN-5/255 (RUN2) 1217.0± 10.1 407.5± 30.6 4.5± 1.1 1.0± 0.7
AT-DQN-5/255 (RUN3) 778.5± 30.4 129.0± 9.0 0.0± 0.0 0.0± 0.0

AT-DQN-10/255 (RUN1) 1312.5± 5.0 132.0± 4.1 15.0± 2.3 0.0± 0.0
AT-DQN-10/255 (RUN2) 1271.0± 15.5 129.0± 10.2 5.5± 1.1 0.0± 0.0
AT-DQN-10/255 (RUN3) 1244.5± 39.3 49.5± 8.0 8.5± 1.1 0.0± 0.0

AT-DQN-15/255 (RUN1) 1235.0± 12.6 27.5± 19.0 1.0± 0.7 1.0± 0.7
AT-DQN-15/255 (RUN2) 1295.5± 9.6 12.5± 2.1 0.0± 0.0 0.0± 0.0
AT-DQN-15/255 (RUN3) 1243.5± 18.1 30.5± 1.8 2.5± 1.0 0.0± 0.0

NCL-AT-DQN (RUN1) 1311.0± 4.0 245.0± 23.7 1.0± 0.7 0.0± 0.0
NCL-AT-DQN (RUN2) 1153.0± 38.1 3.0± 1.0 0.0± 0.0 0.0± 0.0
NCL-AT-DQN (RUN3) 1262.0± 11.4 740.0± 9.7 0.0± 0.0 0.0± 0.0

NCL-RADIAL-DQN (RUN1) 1285.5± 5.2 1265.0± 5.6 1243.0± 7.5 45.5± 2.1
NCL-RADIAL-DQN (RUN2) 1272.0± 10.7 1168.0± 3.4 59.5± 7.6 9.0± 1.9
NCL-RADIAL-DQN (RUN3) 1344.5± 5.4 1342.0± 5.4 198.5± 14.1 10.5± 1.8

BCL-C-AT-DQN (RUN1) 1295.0± 8.9 807.5± 82.5 693.0± 80.1 248.5± 23.7
BCL-C-AT-DQN (RUN2) 1330.5± 3.0 1022.0± 63.2 956.0± 17.9 720.0± 12.8
BCL-C-AT-DQN (RUN3) 1285.5± 5.2 1143.5± 30.0 988.5± 12.3 250.5± 14.6

BCL-MOS-AT-DQN (RUN1) 1307.5± 9.5 1095.5± 6.2 664.0± 60.6 586.5± 105.6
BCL-MOS-AT-DQN (RUN2) 1338.5± 3.0 1165.5± 9.2 922.5± 69.5 470.5± 35.6
BCL-MOS-AT-DQN (RUN3) 1281.5± 5.8 1184.0± 8.6 1003.5± 15.3 113.0± 4.0

BCL-RADIAL-DQN (RUN1) 1225.5± 4.9 1225.5± 4.9 1223.5± 4.1 228.5± 13.9
BCL-RADIAL+AT-DQN (RUN1) 1215.0± 8.4 1093.0± 5.3 1010.5± 8.0 961.5± 9.2

BCL-RADIAL-DQN (RUN2) 1261.0± 9.6 1251.5± 6.0 1200.5± 11.8 127.0± 10.7
BCL-RADIAL-DQN (RUN3) 1296.5± 8.3 1242.5± 11.9 1161.0± 13.9 8.5± 1.6
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Table 22. Detailed experiment results for BankHeist environment. The lowest reward under attacks are marked gray .

BANKHEIST

MODEL ATTACK ε = 5/255 ε= 10/255 ε =15/255

DQN (VANILLA) 30-STEP PGD 0.0± 0.0 0.0± 0.0 0.0± 0.0

SA-DQN (CONVEX) 30-STEP PGD 1155.5± 6.4 114.0± 3.8 24.5± 3.1
RI-FGSM 1153.5± 29.5 556.0± 25.1 137.5± 8.3
RI-FGSM (MULTI) 1126.0± 32.0 63.0± 3.5 20.0± 1.4
RI-FGSM (MULTI-T) 1128.0± 31.3 75.5± 4.4 16.0± 1.6

RADIAL-DQN 30-STEP PGD 761.0± 24.5 0.0± 0.0 0.0± 0.0
RI-FGSM 832.0± 33.5 348.0± 13.9 139.0± 8.8
RI-FGSM (MULTI) 597.0± 20.5 33.0± 2.6 12.0± 1.7
RI-FGSM (MULTI-T) 581.5± 16.7 40.5± 2.2 22.0± 2.6

AT-DQN-5/255 (RUN1) 30-STEP PGD 95.5± 5.9 0.0± 0.0 0.0± 0.0
RI-FGSM 677.0± 63.5 497.0± 61.8 104.0± 11.9
RI-FGSM (MULTI) 637.5± 66.4 344.5± 48.5 43.5± 4.7
RI-FGSM (MULTI-T) 812.5± 38.8 204.5± 26.8 61.0± 4.7

AT-DQN-5/255 (RUN2) 30-STEP PGD 407.5± 30.6 4.5± 1.1 1.0± 0.7
RI-FGSM 941.5± 15.6 204.0± 17.0 43.0± 3.1
RI-FGSM (MULTI) 890.0± 17.9 97.0± 10.3 20.0± 2.4
RI-FGSM (MULTI-T) 876.5± 22.2 135.0± 16.0 32.0± 3.0

AT-DQN-5/255 (RUN3) 30-STEP PGD 129.0± 9.0 0.0± 0.0 0.0± 0.0
RI-FGSM 643.0± 65.6 445.0± 47.2 48.5± 4.9
RI-FGSM (MULTI) 642.0± 65.0 189.0± 21.9 19.0± 2.1
RI-FGSM (MULTI-T) 668.5± 67.0 212.5± 14.2 46.0± 4.7

AT-DQN-10/255 (RUN1) 30-STEP PGD 132.0± 4.1 15.0± 2.3 0.0± 0.0
RI-FGSM 1002.5± 16.9 802.5± 49.1 525.5± 54.3
RI-FGSM (MULTI) 881.5± 16.4 471.0± 47.3 181.0± 22.0
RI-FGSM (MULTI-T) 904.5± 18.8 511.0± 41.9 226.5± 20.6

AT-DQN-10/255 (RUN2) 30-STEP PGD 129.0± 10.2 5.5± 1.1 0.0± 0.0
RI-FGSM 746.0± 63.1 713.5± 58.3 544.5± 48.1
RI-FGSM (MULTI) 282.0± 30.6 535.5± 43.7 448.5± 36.9
RI-FGSM (MULTI-T) 277.0± 30.7 569.5± 49.9 401.5± 31.7

AT-DQN-10/255 (RUN3) 30-STEP PGD 49.5± 8.0 8.5± 1.1 0.0± 0.0
RI-FGSM 831.5± 50.9 757.0± 33.3 449.5± 36.2
RI-FGSM (MULTI) 758.5± 58.0 713.5± 45.3 460.0± 35.3
RI-FGSM (MULTI-T) 879.5± 27.4 812.5± 32.9 456.0± 37.4

AT-DQN-15/255 (RUN1) 30-STEP PGD 27.5± 19.0 1.0± 0.7 1.0± 0.7
RI-FGSM 946.5± 15.1 836.0± 15.7 771.0± 16.7
RI-FGSM (MULTI) 851.0± 17.0 720.0± 26.8 658.0± 26.2
RI-FGSM (MULTI-T) 838.5± 14.8 654.0± 24.2 645.5± 37.9

AT-DQN-15/255 (RUN2) 30-STEP PGD 12.5± 2.1 0.0± 0.0 0.0± 0.0
RI-FGSM 228.5± 12.5 371.5± 39.9 422.5± 36.8
RI-FGSM (MULTI) 208.0± 9.0 260.0± 28.7 285.0± 29.6
RI-FGSM (MULTI-T) 214.5± 18.7 297.0± 27.1 343.0± 29.2

AT-DQN-15/255 (RUN3) 30-STEP PGD 30.5± 1.8 2.5± 1.0 0.0± 0.0
RI-FGSM 628.5± 61.3 660.0± 45.6 674.0± 10.7
RI-FGSM (MULTI) 301.5± 13.1 521.0± 55.1 553.5± 19.3
RI-FGSM (MULTI-T) 332.5± 15.9 469.0± 58.0 647.5± 14.2
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Table 23. Detailed experiment results for BankHeist environment. The lowest reward under attacks are marked gray .

BANKHEIST

MODEL ATTACK ε = 5/255 ε= 10/255 ε =15/255

NCL-AT-DQN (RUN1) 30-STEP PGD 245.0± 23.7 1.0± 0.7 0.0± 0.0
RI-FGSM 1080.0± 16.6 34.0± 7.8 22.5± 2.0
RI-FGSM (MULTI) 1003.5± 22.7 38.5± 4.7 15.5± 3.0
RI-FGSM (MULTI-T) 1025.5± 25.5 28.5± 6.9 28.0± 3.4

NCL-AT-DQN (RUN2) 30-STEP PGD 3.0± 1.0 0.0± 0.0 0.0± 0.0
RI-FGSM 215.0± 42.4 29.0± 3.4 7.0± 1.7
RI-FGSM (MULTI) 120.5± 14.0 16.5± 2.3 6.5± 1.1
RI-FGSM (MULTI-T) 133.0± 23.7 21.0± 3.4 4.0± 1.5

NCL-AT-DQN (RUN3) 30-STEP PGD 740.0± 9.7 0.0± 0.0 0.0± 0.0
RI-FGSM 1074.0± 32.4 57.5± 5.1 7.0± 1.4
RI-FGSM (MULTI) 1061.0± 18.7 38.0± 3.7 7.5± 1.4
RI-FGSM (MULTI-T) 858.5± 69.9 59.5± 4.7 12.0± 1.7

BCL-C-AT-DQN (RUN1) 30-STEP PGD 807.5± 82.5 693.0± 80.1 248.5± 23.7
RI-FGSM 1281.0± 10.7 1261.0± 15.5 1175.0± 17.6
RI-FGSM (MULTI) 1282.0± 11.1 1252.0± 15.5 1184.5± 17.3
RI-FGSM (MULTI-T) 1243.0± 7.4 1252.5± 14.3 1159.5± 21.3

BCL-C-AT-DQN (RUN2) 30-STEP PGD 1048.0± 8.0 956.0± 17.9 720.0± 12.8
RI-FGSM 1041.0± 63.1 1155.0± 10.1 1201.5± 22.5
RI-FGSM (MULTI) 1022.0± 63.2 1155.5± 11.8 1202.0± 14.6
RI-FGSM (MULTI-T) 1050.5± 58.7 1163.5± 8.9 1186.0± 17.6

BCL-C-AT-DQN (RUN3) 30-STEP PGD 1143.5± 30.0 988.5± 12.3 250.5± 14.6
RI-FGSM 1223.0± 10.4 1202.0± 15.3 1188.5± 19.7
RI-FGSM (MULTI) 1159.0± 19.1 1175.0± 16.4 1147.0± 25.4
RI-FGSM (MULTI-T) 1206.5± 7.7 1220.0± 8.5 1178.5± 26.1

BCL-MOS-AT-DQN (RUN1) 30-STEP PGD 1095.5± 6.2 664.0± 60.6 586.5± 105.6
RI-FGSM 1230.0± 11.2 1214.0± 7.5 1255.5± 9.4
RI-FGSM (MULTI) 1213.5± 9.6 1187.5± 8.0 1238.5± 10.9
RI-FGSM (MULTI-T) 1198.5± 9.4 1158.0± 23.3 1233.0± 11.4

BCL-MOS-AT-DQN (RUN2) 30-STEP PGD 1165.5± 9.2 922.5± 69.5 470.5± 35.6
RI-FGSM 1281.0± 4.8 1241.0± 7.5 1234.0± 17.0
RI-FGSM (MULTI) 1238.0± 5.8 1225.5± 7.4 1235.5± 13.5
RI-FGSM (MULTI-T) 1182.0± 7.5 1195.0± 12.7 1260.0± 9.1

BCL-MOS-AT-DQN (RUN3) 30-STEP PGD 1214.0± 7.7 1003.5± 15.3 113.0± 4.0
RI-FGSM 1258.5± 12.0 1270.0± 9.2 1142.0± 18.7
RI-FGSM (MULTI) 1261.0± 7.7 1258.0± 16.7 1154.0± 22.8
RI-FGSM (MULTI-T) 1184.0± 8.6 1243.0± 10.4 1111.5± 22.4
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Table 24. Detailed experiment results for BankHeist environment. The lowest reward under attacks are marked gray .

BANKHEIST

MODEL ATTACK ε = 5/255 ε= 10/255 ε =15/255

NCL-RADIAL-DQN (RUN1) 30-STEP PGD 1272.0± 2.9 1264.0± 4.1 45.5± 2.1
RI-FGSM 1266.0± 7.0 1253.5± 7.1 968.0± 16.6
RI-FGSM (MULTI) 1265.0± 5.6 1243.0± 7.5 810.5± 14.4
RI-FGSM (MULTI-T) 1265.0± 5.6 1243.0± 7.5 822.0± 18.0

NCL-RADIAL-DQN (RUN2) 30-STEP PGD 1242.5± 3.5 89.5± 9.1 9.0± 1.9
RI-FGSM 1226.5± 2.9 69.0± 10.8 11.5± 1.1
RI-FGSM (MULTI) 1171.0± 4.9 60.5± 6.9 12.5± 1.0
RI-FGSM (MULTI-T) 1168.0± 3.4 59.5± 7.6 10.5± 1.1

NCL-RADIAL-DQN (RUN3) 30-STEP PGD 1342.5± 5.0 323.5± 18.3 18.0± 1.3
RI-FGSM 1342.0± 5.4 324.5± 16.8 18.5± 6.0
RI-FGSM (MULTI) 1347.0± 3.2 214.0± 10.5 10.5± 1.8
RI-FGSM (MULTI-T) 1347.0± 3.2 198.5± 14.1 33.0± 5.5

BCL-RADIAL-DQN (RUN1) 30-STEP PGD 1225.5± 4.9 1225.5± 4.9 931.0± 45.0
RI-FGSM 1225.5± 4.9 1225.5± 4.9 1043.5± 18.1
RI-FGSM (MULTI) 1225.5± 4.9 1223.5± 4.1 228.5± 13.9
RI-FGSM (MULTI-T) 1225.5± 4.9 1224.5± 4.4 248.0± 16.0

BCL-RADIAL+AT-DQN (RUN1) 30-STEP PGD 1113.5± 3.8 1010.5± 8.0 961.5± 9.2
RI-FGSM 1119.0± 7.7 1154.5± 9.8 1190.5± 8.5
RI-FGSM (MULTI) 1099.5± 6.2 1070.5± 8.5 1166.0± 14.8
RI-FGSM (MULTI-T) 1093.0± 5.3 1094.0± 9.1 1169.0± 15.6

BCL-RADIAL-DQN (RUN2) 30-STEP PGD 1270.0± 2.0 1253.0± 2.0 888.5± 20.5
RI-FGSM 1264.5± 5.6 1252.5± 3.9 576.5± 55.4
RI-FGSM (MULTI) 1251.5± 6.0 1226.0± 4.9 127.0± 10.7
RI-FGSM (MULTI-T) 1258.0± 4.2 1200.5± 11.8 137.0± 13.5

BCL-RADIAL-DQN (RUN3) 30-STEP PGD 1271.0± 7.2 1261.5± 9.1 190.5± 14.4
RI-FGSM 1273.5± 10.7 1267.0± 9.1 381.0± 23.2
RI-FGSM (MULTI) 1242.5± 11.9 1161.0± 13.9 8.5± 1.6
RI-FGSM (MULTI-T) 1242.5± 11.9 1161.0± 13.9 17.0± 2.7
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Table 25. RoadRunner environment. Average episode rewards ± standard error of the mean (SEM) over 20 episodes. The gray rows are

the median of three runs (selected based on efficacy score Rnominal +
1

3

∑

ε
Rε

adv). We report the lowest rewards among 30-step PGD,

RI-FGSM, RI-FGSM (Multi) and RI-FGSM (Multi-T) attacks.

ROADRUNNER

MODEL/METRIC NOMINAL 30-STEP PGD/RI-FGSM ATTACK

ε 0 5/255 10/255 15/255

DQN (VANILLA) 43390± 973 0± 0 0± 0 0± 0
SA-DQN (CONVEX) 45870± 1380 985± 207 0± 0 0± 0
RADIAL-DQN 44595± 1165 7195± 929 495± 116 0± 0

AT-DQN-5/255 (RUN1) 44065± 1896 13150± 2116 0± 0 0± 0
AT-DQN-5/255 (RUN2) 39890± 2092 20160± 1973 0± 0 0± 0
AT-DQN-5/255 (RUN3) 43945± 1681 375± 200 0± 0 0± 0

AT-DQN-10/255 (RUN1) 42330± 936 22430± 1948 1000± 188 50± 17
AT-DQN-10/255 (RUN2) 37770± 2074 15585± 1647 2360± 352 0± 0
AT-DQN-10/255 (RUN3) 37040± 1269 22225± 1699 2305± 795 0± 0

AT-DQN-15/255 (RUN1) 36580± 1634 15860± 2118 3650± 615 1115± 249
AT-DQN-15/255 (RUN2) 30000± 1314 15640± 845 4690± 469 1555± 307
AT-DQN-15/255 (RUN3) 42085± 2050 5465± 825 20± 9 0± 0

NCL-AT-DQN (RUN1) 43500± 2999 40235± 2261 1100± 234 0± 0
NCL-AT-DQN (RUN2) 49290± 1576 39045± 2382 15± 8 5± 5
NCL-AT-DQN (RUN3) 47925± 1123 37745± 2014 10± 10 0± 0

NCL-RADIAL-DQN (RUN1) 41045± 1289 37865± 1082 37865± 1082 6350± 590
NCL-RADIAL-DQN (RUN2) 45320± 1292 45320± 1292 45320± 1292 4505± 661
NCL-RADIAL-DQN (RUN3) 41230± 1920 40885± 1921 17050± 1092 6100± 428

BCL-C-AT-DQN (RUN1) 44010± 1347 33535± 2369 13205± 1510 4845± 399
BCL-C-AT-DQN (RUN2) 45815± 1422 31305± 3590 11405± 1385 6335± 716
BCL-C-AT-DQN (RUN3) 46575± 966 35535± 1296 19110± 2704 6445± 929

BCL-MOS-AT-DQN (RUN1) 53225± 983 36330± 3105 15670± 1646 300± 78
BCL-MOS-AT-DQN (RUN2) 44275± 1997 40060± 1828 15785± 1124 1195± 180
BCL-MOS-AT-DQN (RUN3) 41620± 1594 30635± 2021 18735± 2363 2905± 505

BCL-RADIAL-DQN (RUN1) 41045± 1289 37865± 1082 37865± 1082 6350± 590
BCL-RADIAL+AT-DQN (RUN1) 42490± 1309 42490± 1309 37665± 1563 25325± 1057

BCL-RADIAL-DQN (RUN2) 45320± 1292 45320± 1292 45320± 1292 4505± 661
BCL-RADIAL-DQN (RUN3) 38725± 933 38025± 1004 37995± 1000 5750± 595
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Table 26. Detailed experiment results for RoadRunner environment. The lowest reward under attacks are marked gray .

ROADRUNNER

MODEL ATTACK ε = 5/255 ε= 10/255 ε =15/255

DQN (VANILLA) 30-STEP PGD 0± 0 0± 0 0± 0

SA-DQN (CONVEX) 30-STEP PGD 985± 207 0± 0 0± 0
RI-FGSM 9740± 677 5615± 645 3575± 490
RI-FGSM (MULTI) 6170± 759 1045± 307 105± 56
RI-FGSM (MULTI-T) 6870± 833 1220± 318 55± 25

RADIAL-DQN 30-STEP PGD 7195± 929 495± 116 0± 0
RI-FGSM 24425± 939 7855± 637 4605± 582
RI-FGSM (MULTI) 21115± 744 9300± 656 2330± 255
RI-FGSM (MULTI-T) 22345± 700 9225± 589 1940± 180

AT-DQN-5/255 (RUN1) 30-STEP PGD 13150± 2116 0± 0 0± 0
RI-FGSM 33110± 2316 16520± 679 4140± 325
RI-FGSM (MULTI) 31240± 1991 10510± 997 3215± 296
RI-FGSM (MULTI-T) 32285± 2134 8795± 1020 820± 273

AT-DQN-5/255 (RUN2) 30-STEP PGD 20160± 1973 0± 0 0± 0
RI-FGSM 33670± 2138 11685± 1295 1725± 221
RI-FGSM (MULTI) 30245± 2492 10750± 1145 1495± 268
RI-FGSM (MULTI-T) 35895± 1553 6500± 908 115± 68

AT-DQN-5/255 (RUN3) 30-STEP PGD 375± 200 0± 0 0± 0
RI-FGSM 29520± 2090 8535± 539 1590± 156
RI-FGSM (MULTI) 25665± 2032 7535± 524 1555± 132
RI-FGSM (MULTI-T) 27275± 2299 6795± 549 235± 95

AT-DQN-10/255 (RUN1) 30-STEP PGD 22430± 1948 1000± 188 50± 17
RI-FGSM 34570± 2092 27860± 1841 9400± 830
RI-FGSM (MULTI) 30510± 1934 25580± 2072 7405± 601
RI-FGSM (MULTI-T) 35115± 1444 25810± 1453 7590± 552

AT-DQN-10/255 (RUN2) 30-STEP PGD 15585± 1647 2360± 352 0± 0
RI-FGSM 26575± 2622 21550± 2148 15635± 1072
RI-FGSM (MULTI) 22940± 2325 19430± 1913 9815± 807
RI-FGSM (MULTI-T) 25825± 1603 19820± 2120 13120± 837

AT-DQN-10/255 (RUN3) 30-STEP PGD 22225± 1699 2305± 795 0± 0
RI-FGSM 29605± 1927 29755± 2168 5610± 398
RI-FGSM (MULTI) 33095± 1701 25010± 2207 4295± 342
RI-FGSM (MULTI-T) 32140± 2227 27540± 2184 4535± 545

AT-DQN-15/255 (RUN1) 30-STEP PGD 15860± 2118 3650± 615 1115± 249
RI-FGSM 31560± 1799 22910± 1709 21275± 1329
RI-FGSM (MULTI) 27450± 2328 23775± 1497 18740± 1355
RI-FGSM (MULTI-T) 24630± 1795 19015± 2005 19375± 1242

AT-DQN-15/255 (RUN2) 30-STEP PGD 15640± 845 4690± 469 1555± 307
RI-FGSM 22430± 1273 21180± 1289 21350± 1069
RI-FGSM (MULTI) 23655± 1662 21615± 1204 20415± 1283
RI-FGSM (MULTI-T) 24195± 1248 23970± 1389 19695± 1540

AT-DQN-15/255 (RUN3) 30-STEP PGD 5465± 825 20± 9 0± 0
RI-FGSM 23305± 2632 23110± 2399 24815± 1342
RI-FGSM (MULTI) 24205± 2379 20985± 2002 18800± 2135
RI-FGSM (MULTI-T) 23790± 2375 18800± 1906 20255± 2058
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Table 27. Detailed experiment results for RoadRunner environment. The lowest reward under attacks are marked gray .

ROADRUNNER

MODEL ATTACK ε = 5/255 ε= 10/255 ε =15/255

NCL-AT-DQN (RUN1) 30-STEP PGD 40235± 2261 1100± 234 0± 0
RI-FGSM 45595± 1781 13750± 1118 5235± 319
RI-FGSM (MULTI) 45645± 1113 10925± 1098 4030± 328
RI-FGSM (MULTI-T) 44035± 1818 5860± 812 985± 228

NCL-AT-DQN (RUN2) 30-STEP PGD 39045± 2382 15± 8 5± 5
RI-FGSM 41365± 1850 14235± 1387 4480± 408
RI-FGSM (MULTI) 41900± 1944 12885± 1023 3475± 335
RI-FGSM (MULTI-T) 41160± 1669 11555± 1141 1775± 325

NCL-AT-DQN (RUN3) 30-STEP PGD 37745± 2014 10± 10 0± 0
RI-FGSM 41145± 1886 23715± 1367 5345± 473
RI-FGSM (MULTI) 43665± 1671 22000± 1434 4710± 382
RI-FGSM (MULTI-T) 38025± 3114 12940± 2058 3475± 416

BCL-C-AT-DQN (RUN1) 30-STEP PGD 33535± 2369 13205± 1510 4845± 399
RI-FGSM 45905± 1408 39650± 2101 40815± 2399
RI-FGSM (MULTI) 43330± 1997 41075± 2426 42560± 1505
RI-FGSM (MULTI-T) 45915± 1440 40320± 2408 42965± 1958

BCL-C-AT-DQN (RUN2) 30-STEP PGD 31305± 3590 11405± 1385 6335± 716
RI-FGSM 39125± 2295 35325± 2971 40395± 1375
RI-FGSM (MULTI) 43580± 2661 38775± 1794 35080± 2420
RI-FGSM (MULTI-T) 44490± 1806 36695± 3274 33810± 3044

BCL-C-AT-DQN (RUN3) 30-STEP PGD 35535± 1296 19110± 2704 6445± 929
RI-FGSM 41405± 2278 42030± 1810 38930± 1571
RI-FGSM (MULTI) 43230± 2042 41785± 2535 36575± 1618
RI-FGSM (MULTI-T) 42640± 1142 40145± 1861 36160± 2858

BCL-MOS-AT-DQN (RUN1) 30-STEP PGD 36330± 3105 15670± 1646 300± 78
RI-FGSM 44285± 3146 42440± 2481 9730± 539
RI-FGSM (MULTI) 41195± 3076 44160± 1354 4435± 352
RI-FGSM (MULTI-T) 39615± 3609 40940± 1490 4535± 357

BCL-MOS-AT-DQN (RUN2) 30-STEP PGD 40060± 1828 15785± 1124 1195± 180
RI-FGSM 39815± 2273 40440± 2066 12465± 596
RI-FGSM (MULTI) 41645± 1604 37375± 1993 9815± 550
RI-FGSM (MULTI-T) 41390± 1556 39800± 1958 9475± 950

BCL-MOS-AT-DQN (RUN3) 30-STEP PGD 30635± 2021 18735± 2363 2905± 505
RI-FGSM 37610± 1186 36775± 1477 13930± 846
RI-FGSM (MULTI) 38470± 1856 38025± 1279 12465± 850
RI-FGSM (MULTI-T) 37130± 1460 32180± 1762 14620± 798
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Table 28. Detailed experiment results for RoadRunner environment. The lowest reward under attacks are marked gray .

ROADRUNNER

MODEL ATTACK ε = 5/255 ε= 10/255 ε =15/255

NCL-RADIAL-DQN (RUN3)* 30-STEP PGD 41230± 1920 41230± 1920 41270± 1926
RI-FGSM 40885± 1921 37275± 2212 9935± 783
RI-FGSM (MULTI) 40885± 1921 18845± 966 6325± 446
RI-FGSM (MULTI-T) 40885± 1921 17050± 1092 6100± 428

BCL-RADIAL-DQN (RUN1) 30-STEP PGD 41045± 1289 41045± 1289 41045± 1289
RI-FGSM 41045± 1289 37865± 1082 12120± 639
RI-FGSM (MULTI) 37865± 1082 38245± 1134 7970± 740
RI-FGSM (MULTI-T) 37865± 1082 38245± 1134 6350± 590

BCL-RADIAL+AT-DQN (RUN1) 30-STEP PGD 42490± 1309 42490± 1309 42490± 1309
RI-FGSM 42490± 1309 42570± 1310 44115± 1726
RI-FGSM (MULTI) 42490± 1309 38650± 1836 27500± 851
RI-FGSM (MULTI-T) 42490± 1309 37665± 1563 25325± 1057

BCL-RADIAL-DQN (RUN2) 30-STEP PGD 45320± 1292 45320± 1292 45320± 1292
RI-FGSM 45320± 1292 45320± 1292 11945± 795
RI-FGSM (MULTI) 45320± 1292 45320± 1292 4845± 450
RI-FGSM (MULTI-T) 45320± 1292 45320± 1292 4505± 661

BCL-RADIAL-DQN (RUN3) 30-STEP PGD 38725± 932 38725± 932 38880± 1008
RI-FGSM 38725± 932 38035± 1004 8420± 652
RI-FGSM (MULTI) 38025± 1004 38685± 959 7240± 663
RI-FGSM (MULTI-T) 38025± 1004 37995± 1000 5750± 595

* NCL-RADIAL-DQN (Run1) & (Run2) are the same as BCL-RADIAL-DQN (Run1) & (Run2).
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E. Walltime for DQN models

The training time for each run takes around 12 hours on a single GeForce RTX 2080Ti GPU. Below in Table 29 we present

the number of runs conducted for each experiment.

Table 29. Number of runs conducted for each experiment.

PONG

RUN1 RUN2 RUN3

AT-DQN-ε 1 1 1
NCL-AT-DQN 25 25 25
NCL-RADIAL-DQN 10 4 4
BCL-C-AT-DQN 66 66 66
BCL-MOS-AT-DQN 20 18 20
BCL-RADIAL-DQN 8 21 29

FREEWAY

RUN1 RUN2 RUN3

AT-DQN-ε 1 1 1
NCL-AT-DQN 20 20 20
NCL-RADIAL-DQN 6 12 7
BCL-C-AT-DQN 51 51 51
BCL-MOS-AT-DQN 25 26 21
BCL-RADIAL-DQN 20 18 23

BANKHEIST

RUN1 RUN2 RUN3

AT-DQN-ε 1 1 1
NCL-AT-DQN 15 15 15
NCL-RADIAL-DQN 10 9 9
BCL-C-AT-DQN 60 60 60
BCL-MOS-AT-DQN 38 43 44
BCL-RADIAL-DQN 18 15 13
BCL-RADIAL+AT-DQN 24 N/A N/A

ROADRUNNER

RUN1 RUN2 RUN3

AT-DQN-ε 1 1 1
NCL-AT-DQN 15 15 15
NCL-RADIAL-DQN 13 13 8
BCL-C-AT-DQN 36 36 36
BCL-MOS-AT-DQN 22 21 18
BCL-RADIAL-DQN 17 17 17
BCL-RADIAL+AT-DQN 20 N/A N/A


