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Abstract— This paper studies the security of cyber-physical
systems under attacks. Our goal is to design system parameters,
such as a set of initial conditions and input bounds so that
it is secure by design. To this end, we propose new sufficient
conditions to guarantee the safety of a system under adversarial
actuator attacks. Using these conditions, we propose a computa-
tionally efficient sampling-based method to verify whether a set
is a viability domain for a general class of nonlinear systems. In
particular, we devise a method of checking a modified barrier
function condition on a finite set of points to assess whether
a set can be rendered forward invariant. Then, we propose
an iterative algorithm to compute the set of initial conditions
and input constraint set to limit what an adversary can do
if it compromises the vulnerable inputs. Finally, we utilize a
Quadratic Program approach for online control synthesis.

I. INTRODUCTION

Security has become one of the most critical problems in

the field of Cyber-Physical Systems (CPS), as illustrated by

several incidents of attacks that happened in the past few

years [1], [2]. There are two types of security mechanisms

for protecting CPS [3] i) proactive, which considers design

choices deployed in the CPS before attacks, and ii) reactive,

which take effect after an attack is detected.

While reactive methods are less conservative than proac-

tive mechanisms, they heavily rely on fast and accurate attack

detection mechanisms. Although there is a plethora of work

on attack detection for CPS [4], [5], it is generally possible

to design a stealthy attack such that the system behavior

remains close to its expected behavior, thus evading attack-

detection solutions [6]. Intrusion detection systems also

produce a large number of false positives, which can lead to

a large operational overhead of security analysts dealing with

irrelevant alerts [7]. On the other hand, a proactive method

can be more effective in practice, particularly against stealthy

attacks. Attacks on a CPS can disrupt the natural operation

of the system. One of the most desirable system properties is

safety, i.e., the system does not go out of a safe zone. Safety

is an essential requirement, violation of which can result in

failure of the system, loss of money, or even loss of human

life, particularly when a system is under attack [8].

In most practical problems, safety can be realized as

guaranteeing forward-invariance of a safe set. Control barrier

function (CBF) based approach [9] to guarantee forward
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invariance of the safe region has become very popular

in the last few years since a safe control input can be

efficiently computed using a Quadratic Program (QP) with

CBF condition as the constraint. Most of the prior work

on safety using CBFs, e.g., [9], assumes that the viability

domain, i.e., the set of initial conditions from which forward

invariance of the safe set can be guaranteed, is known. In

practice, it is not an easy task to compute the viability domain

for a nonlinear control system. Optimization-based methods,

such as Sum-of-Squares (SOS) techniques, have been used in

the past to compute this domain (see [10]). However, SOS-

based approaches are only applicable to systems whose dy-

namics is given by polynomial functions, thus limiting their

applications. Another method popularly used in the literature

for computing the viability domain is Hamilton-Jacobi (HJ)

based reachability analysis, see, e.g., [11]. However, such an

analysis is computationally expensive, particularly for higher

dimensional systems. We propose a novel sampling-based

method to compute the viability domain for a general class

of nonlinear control systems to overcome these limitations.

In this work, we consider a general class of nonlinear

systems under actuator attacks and propose a method of com-

puting a set of initial conditions and an input constraint set

such that the system remains secure by design. In particular,

we consider actuator manipulation, where an attacker can

assign arbitrary values to the input signals for a subset of

the actuators in a given bound. We consider the property of

safety with respect to an unsafe set and propose sufficient

conditions using sampling of the boundary of a set to verify

whether the set is a viability domain under attacks. Using

these conditions, we propose a computationally tractable

algorithm to compute the set of initial conditions and the

input constraint set such that the system’s safety can be

guaranteed under attacks. In effect, our proposed method

results in a secure-by-design system that is resilient against

actuator attacks. Finally, we leverage these sets in a QP-

based approach with provable feasibility for real-time online

feedback synthesis. The contributions of the paper are sum-

marized below:

1) We present sampling-based sufficient conditions to as-

sess whether a given set can be rendered forward

invariant for a general class of nonlinear system. To

the best of the authors’ knowledge, this is the first

work utilizing sampled-data approach for computing a

viability domain;

2) We present a novel iterative algorithm to compute a

viability domain and an input constraint set to guarantee
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checking the inequality at more points. Thus, there is a trade-

off between the ease of satisfaction of (10) and the number

of points at which the inequality should be checked.

The above arguments can be generalized to the

n−dimensional case. Using the sampling approach in [20]

for a unit sphere in n−dimension, combined with Delaunay

Triangulation of the sampling points (see e.g., [21]), an

(n−1)−dimensional simplex can be obtained. If the compact

set S ⊂ R
n is diffeomorphic to a unit (n− 1)−sphere, then

sampling points on the boundary of S can be obtained using

the sampling points for the (n − 1)−unit sphere. Thus, we

study the case when the set S is an (n− 1)−unit sphere.

Let {xi}I , with each xi ∈ ∂Sc, denote the set of Np

sampling data points on the boundary of the sublevel set

Sc for a given c ∈ [0, cM ] with cM defined in (6) and

I := {1, 2, . . . , Np}. The sampling poins {xi}I constitute a

simplex SI with Nf > 0 faces, X1,X2, . . . ,XNf
. For a unit

sphere in R
n, the minimum number of points in the simplex

is (n+1), and the minimum possible value of the maximum

of the lengths of its edges is

√

2(n+1)
n

. The length, denoted

as da, of the corresponding arc-length on the boundary ∂Sc

is 2rc sin
−1

√

(n+1)
2n , where 0 ≤ rc ≤ 1 is the radius of the

sphere Sc. Thus, with da ≤ 2rc sin
−1

√

(n+1)
2n , there must be

at least (n+1) points in the simplex. For the sake of brevity,

define dM,n := 2rc sin
−1

√

(n+1)
2n . We make the following

assumption on the sampling points {xi}I .

Assumption 3. Given c ∈ [0, cM ], the sampling points {xi}I
and da ∈

[

0, dM
]

, for each x ∈ ∂Sc, there exists a face

Xj with vertices {xj1 , xj2 , . . . , xjn} ∈ {xi}I , where j ∈
{1, 2, . . . , Nf}, of the simplex SI generated by {xi}I , such

that xo + θ(x − xo) ∈ Xj for some 0 ≤ θ ≤ 1, and the

following holds:

max
l 6=m

l,m=1,2,...,n

dSc
(xjl , xjm) ≤ da, (11)

where dSc
(x, y) denotes the shortest arc-length between the

points x, y ∈ ∂Sc.

We have the following result when S is (n − 1)−unit

sphere.

Theorem 1. Suppose that the function H defined in (5)

satisfies Assumption 2. Given c ∈ [0, cM ], da ∈
[

0, dM,n

]

,

and the sampling points {xi}I , if Assumption 3 and (10)

hold, then, (7) holds.

Proof. With c ∈ [0, cM ], the set Sc is non-empty, and

with da ∈
[

0, dM
]

, there exist sufficient points Np to

have a simplex. Now, consider any point x̄ ∈ ∂Sc. Under

Assumption 3, for every x̄ ∈ ∂Sc, there exists a face Xj of

the simplex SI , such that the line joining the center of the

sphere Sc and the point x̄ lies on this face. Using Lipschitz

continuity of supuv
H(·, uv) under Assumption 2 and (10),

it holds that

sup
uv∈Ũv

H(x̄, uv) ≤ sup
uv∈Uv

H(x, uv) + lH |x̄− x|

≤ − lHda − lBδ + lH |x̄− x|,

for all x, x̄ ∈ ∂Sc. Using the inequality for x = xji ,

i ∈ {1, . . . , n} and the fact that |x̄ − xji | ≤ dSc
(x̄, xji) ≤

dSc
(xjk , xji) for any k 6= i, k ∈ {1, . . . , n} and (11), we

obtain that

sup
uv∈Ũv

H(x̄, uv) ≤− lHda − lBδ + lHda = −lBδ

for all x̄ ∈ ∂Sc, which completes the proof. �

Note that there are three set of parameters that can

facilitate satisfaction of (10) in the following manner:

• Set Ũv: smaller Ũv makes it easier to satisfy (10);

• Parameter c: larger value of c results in smaller values

of dM , thus, reducing the right-hand side of (10), and

making it easier to satisfy it; and

• Number of sampling points Np: larger Np results in

smaller value of dM,n.

Based on these observations, an iterative algorithm can be

formulated to check whether there exists a feasible c and a

non-empty set Ũv , such that (10) holds.

B. Iterative algorithm

We formulate our algorithm with the following steps:

1) For a given value of 0 ≤ c ≤ cM , Ũv and number of

sampling points Np, sample {xi}I from the set ∂Sc and

check if (10) holds for all the sampling points;

2) Shrink Ũv , increase c and repeat steps 1)-2) until the

condition (10) is satisfied for all the sampling points,

or there does not exist a c and a non-empty set Ũv;

3) Increase Np and repeat steps 1)-3) until (10) holds or

the maximum value (Nmax) of Np is reached.

Using these steps, we propose Algorithm 1 which returns a

feasible c and a set Ũv such that safety is guaranteed for

all x ∈ Sc and uv ∈ Ũv . In other words, this algorithm

can compute the set of initial conditions Sc, and the set of

tolerable attacked inputs via Ũv such that the system can

satisfy the safety property under attacks. The order in which

the parameters c, Ũv , and Np are tuned can be changed,

which can potentially change the output of the algorithm.

Remark 1. If it is unknown which components of the input

are vulnerable, then all possible combinations of uv and us

can be considered, and Algorithm 1 can be used to compute

c for each such combination. Then, the maximum of all such

values can be used to define the set Sc, guaranteeing the

system’s security against attack on any control inputs.

Remark 2. The computational complexity of Algorithm 1

is only a function of the number of sampling points Np

(which, in principle, is a user-defined parameter) and is

independent of the non-linearity of the function F , and linear

in the dimension n. Thus, unlike reachability based tools

in [22], [11] where the computational complexity grows



Algorithm 1: Iterative method for computing Ũv, c

Data: f, gv, gs,Uv,Us, B, da, ε1, ε2, δ,Nmax, Nc0

1 Initialize: Ũv = Uv, c = 0, Np = Nc0;

2 while Np < Nmax do

3 while c ≤ cM do

4 Sample {xi}I from {B(x) ≤ −c};

5 while Ũv 6= ∅ do

6 if {i ∈ I | H(xi, uv)>−lHda+lBδ} 6= ∅ then

7 Ũv = Ũv 	 ε1 ;

8 if Ũv = ∅ then

9 c = c+ ε2;

10 Ũv = Uv;

11 Np = 2 Np;

12 c = 0;

13 Return: Ūv, c;

exponentially with the system dimension n, or SOS based

tools [10] that are only applicable to a specific class of

systems with linear or polynomial dynamics, Algorithm 1 can

be used for general nonlinear system with high dimension.

So far, we presented sufficient conditions to establish the

safety of the system (1) under attacks (Proposition 1), a

sampling-based method to verify these conditions using a

finite number of sampling points (Theorem 1), and iterative

methods to compute the set of initial conditions and the input

constraint set to satisfy these conditions (Algorithm 1). Thus,

in brief, using the results in this section, we can compute the

viability domain Sc and control input constraint set Ũv ⊂ Uv ,

such that for all x ∈ Sc and uv ∈ Ũv , there exists a control

input us ∈ Us that can keep the system trajectories in the

set Sc at all times. In the next section, we present a method

of computing such a control input using a QP formulation.

V. QP BASED FEEDBACK DESIGN

In this section, we use the sufficient conditions from the

previous section to design a feedback law for the system (1)

that guarantees security with respect to the safety property

under Assumption 1. We assume that the control input con-

straint set is given as Ũ := Ũv × Us = {v ∈ R
m | uj,min ≤

vj ≤ uj,max}, i.e., as a box-constraint set where uj,min <

uj,max are the lower and upper bounds on the individual

control inputs vj for j = 1, 2, . . . ,m, respectively. We can

write U in a compact form as Ũ = {v | Auv ≤ bu} where

Au ∈ R
2m×m, bu ∈ R

2m. Furthermore, we assume that the

system model (1) is control affine, and is of the form:

ẋ = f(x) + gv(s)uv + gs(x)us + d(t, x), (12)

where f : R
n → R

n, gv : R
n → R

n×mv and gs :
R

n → R
n×(m−mv) are continuous functions. In this case,

the function H : Rn × R
mv → R reads

H(x, uv) = inf
us∈Us

LfB(x) + LgsB(x)us + LgvB(x)uv. (13)

In addition to the safety requirement in Problem 1, we

impose the requirement of convergence of the system tra-

jectories of (12) to the origin. To this end, given a twice

continuously differentiable, positive definite function V :
R

n → R+ as a candidate Lyapunov function, we use the

condition

LfV (x) + LgsV (x)us + LgvV (x)uv ≤ −ζV (x)− lV δ,

(14)

where ζ > 0, to guarantee convergence of the system

trajectories to the origin under d satisfying Assumption 1.

We assume that the set S is an (n− 1)-unit sphere, so that

we can use the results from the previous section to compute

a viability domain for it, and that 0 ∈ int(S), so that the

convergence requirement is feasible. The linear constraints

on the control input, and the system model being control

affine, helps us formulate a convex optimization problem that

can be efficiently solved for real-time control synthesis [9].

We propose the following Quadratic Program (QP) to solve

Problem 1. Define z = (vs, vv, η, ζ) ∈ R
m+2 and for a given

x ∈ R
n, consider the following QP:

min
z

1

2
|z|2 + qζ (15a)

s.t. Auvna ≤ bu, (15b)

LfB(x) + LgsB(x)vs ≤− η (B(x) + c)

− sup
uv∈Ũv

LgvB(x)uv − lBδ, (15c)

LfV (x) + LgsV (x)vs+LgvV (x)vv ≤ −ζ V (x)− lV δ, (15d)

where q > 0 is a constant, lB , lv are the Lipschitz constants

of the functions B and V , respectively, and c and Ũv are the

output of Algorithm 1. Here, η and ζ are slack variables used

for guaranteeing feasibility of the QP (see [23, Lemma 6]).

The first constraint (15b) is the input constraints, the second

constraint is the CBF condition from Lemma 2 for forward

invariance of the set Sc and the third constraint (15d) is CLF

constraint for convergence of the system trajectories to the

origin. Note that the secure input vs is used in both (15c) and

(15d), while the vulnerable input vv is only used in (15d).

Let the optimal solution of (15) at a given point x ∈ R
n

be denoted as z∗(x) = (v∗s (x), v
∗
v(x), η

∗(x), ζ∗(x)). In order

to guarantee continuity of the solution z∗ with respect to

x, we need to impose the strict complementary slackness

condition on (15) (see [23]). In brief, if the i−the constraint

of (15), with i ∈ {1, 2, 3}, is written as Gi(x, z) ≤ 0, and

the corresponding Lagrange multiplier is λi ∈ R+, then

strict complementary slackness requires that λ∗
iG(x, z∗) < 0,

where z∗, λ∗
i denote the optimal solution and the correspond-

ing optimal Lagrange multiplier, respectively. We are now

ready to state the following result.

Theorem 2. Given the functions F, d,B, V and the attack

model (2), suppose Assumptions 1-3 hold. Let c and Ũv

be the output of the Algorithm 1. Assume that the strict

complementary slackness holds for the QP (15) for all

x ∈ Sc. Then, the QP (15) is feasible for all x ∈ Sc, and

the control law defined as ks(x) = v∗s (x) is continuous on

int(Sc), and solves Problem 1 for all x(0) ∈ X0 := int(Sc).

Proof. Per Theorem 1, the set Sc is a viability domain

for the system (12) under Assumption 2. Thus, feasibility



of the QP (15) follows from [23, Lemma 6]. Note also

that with V being twice continuously differentiable and

under Assumption 2, the Lie derivatives of the functions V

and B along f, gs, and gv are continuous. Thus, per [23,

Theorem 1], the solution z∗ of the QP (15) is continuous

on int(Sc). Finally, since the set Sc is compact, it follows

from [23, Lemma 7] that the closed-loop trajectories are

uniquely defined for all t ≥ 0. Uniqueness of the closed-loop

trajectories, Assumption 1 and feasibility of the QP (15) for

all x ∈ Sc implies that all the conditions of Lemma 2 are

satisfied and it follows that the set Sc is forward invariant

for the system (12). �

Remark 3. In this work, only the control input us is used to

achieve safety since it is unknown when the vulnerable input

uv comes under an attack. This conservative assumption

can be relaxed by utilizing an attack-detection mechanism,

which can trigger a switching mechanism from a nominal

control design, assuming no attacks, to the proposed method

under an attack. We leave this detection-based switching

mechanism as part of our future work.

VI. NUMERICAL EXPERIMENTS

To showcase the effectiveness of the proposed method, we

present an academic example with the system given as

ẋ = f(x) +Ax+Bu+ d(t, x), (16)

where A ∈ R
3×3 and B ∈ R

3×2. The input constraint sets

are U1 = {u1 ∈ R | |u1| ≤ uM1} and U2 = {u2 ∈
R | |u2| ≤ uM2} for some uM1, uM2 > 0. The safe set

is S = {x ∈ R
3 | |x|2 − 1 ≤ 0} corresponding to the

function h(x) = |x|2− 1, i.e., the safe set is the unit sphere.

We use randomly generated matrices A and B such that the

pairs (A,B1) and (A,B2) are controllable, where B1 and

B2 are the first and the second columns of the matrix B,

respectively. The matrices (A,B) and the function f are

A=





0.61 0.37 2.69
−0.06−1.02−0.88
1.33−2.71 0.91



, B=





−0.24 0.04
0.32 −0.01
−1.12−0.07



, f(x)=0.01





x3

1
+ x2

2
x3

x3

2
+ x2

3
x1

x3

3
+ x2

1
x2



 .

We use MATLAB code from [24] to generate a uniform

sampling on the boundary of the unit sphere. Figure 4 shows

the maximum value of supuv∈Ũv
H(x̄, uv)+lHda+lBδ over

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

2

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

2000

Fig. 4. The value of maxi supuv∈Ũv
H(x̄, uv) + lHda + lBδ + lHda

and the number of sampling points for different values of da.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

5

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

10

20

Fig. 5. The vulnerable input uv and the function h under attacks 1 and 2.

Fig. 6. The closed-loop paths traced by the system under attacks 1 and 2.

the sampling points for different values of da. It is observed

that condition (10) is satisfied when da = 0.0406, and the

corresponding number of sampling points is Np = 3062.

Without loss of generality, we assume that u2 is vulnerable.

We use Algorithm 1 to compute the set Ũi and a value of c

such that (10) holds for all the sampling points. With uM1 =
20 and uM2 = 20 (defining the sets Us,Uv), Algorithm 1

gives c = 0 for the viability domain {x | h(x) ≤ c} and

ũM2 = 7.5 (defining the set Ũv) as the feasible bound on the

attack signal u2. The attack happens at a randomly chosen

τ = 0.436 and δ = 0.1 in Assumption 1.

First, we illustrate that the system violates safety when the

attack signal u2 does not satisfy the bounds computed by

Algorithm 1. Figure 5 shows the vulnerable input uv for the

initial two attack scenarios (Attack 1 and 2) where ūM2 =
20 and ūM2 = 15, i.e., the set Ũv is larger than the one

computed using the proposed algorithm. Figure 5 also plots

the evolution of the barrier function h with time for the two

cases. It can be observed that the function h corresponding to

this attack takes positive values, and thus, the safety property

for the system is violated. Figure 6 plots the corresponding

closed-loops paths for the two scenarios, and it can be seen

that the system leaves the safe set, thus violating safety.

In the rest of the attack scenarios (Attack 3-6), the

bound |uv| ≤ 7.5 is imposed as computed by the proposed

algorithm. Figure 7 plots the different types of attack signals

used in these scenarios, namely, saturated signals with uv =
7.5 and uv = −7.5, square wave and sinusoidal signal,

both with amplitude 7.5. The corresponding evolution of

the barrier function h illustrates that the system maintains

safety in all four scenarios. Figure 8 plots the closed-loops

paths for these attack scenarios, and it can be seen that the

system trajectories evolve in the safe set at all times, thus

maintaining safety. Through this case study, we illustrate that

if the system parameters are not chosen according to our

proposed method, then there might exist attacks that can lead



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-1

-0.5

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-10

0

10

Fig. 7. The vulnerable input uv and the function h under attacks 3-6.

Fig. 8. The closed-loop paths traced by the system under attacks 3-6.

to violation of safety. On the other hand, when the system

parameters are designed according to the proposed algorithm,

no attack can violate safety, confirming that the system is

secure by design.

VII. CONCLUSION AND FUTURE WORK

In this paper, we study the problem of computing a

viability domain and input constraint set so that the safety

of a system can be guaranteed under attacks on the system

inputs. In contrast to prior work on the computation of

viability domain whose applicability is limited to linear or

polynomial dynamics or whose computational complexity

grows exponentially with system dimension, our method is

computationally efficient and applies to a general class of

nonlinear systems. We showed that when the system parame-

ters are chosen using our sampling-based iterative algorithm,

the resulting system is resilient to arbitrary attacks, and thus,

is secure by design.

Our approach can be used to design bounds (that can either

be implemented physically or in a tamper-proof reference

monitor) that will prevent attackers from driving control

systems to unsafe states. It is efficient (sampling-based

viability computation) and general (applicable to non-linear

systems). By limiting the range of actuation and the initial

set, we are limiting the responsiveness of control action, and

in general, systems with our defense might converge slower

to the desired set point or trajectory. One way to mitigate

this is to use attack-detection mechanisms and switching

strategy so that more efficient controllers can be used when

the system is not under an attack.
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