
Predicate Monitoring in Distributed
Cyber-physical Systems ?

Anik Momtaz1, Niraj Basnet2, Houssam Abbas2, and Borzoo Bonakdarpour1

1 Michigan State University, East Lansing MI 48824, USA
2 Oregon State University, Corvallis OR, 97331, USA

Abstract. This paper solves the problem of detecting violations of pred-
icates over distributed continuous-time and continuous-valued signals in
cyber-physical systems (CPS). We assume a partially synchronous set-
ting, where a clock synchronization algorithm guarantees a bound on
clock drifts among all signals. We introduce a novel retiming method that
allows reasoning about the correctness of predicates among continuous-
time signals that do not share a global view of time. The resulting prob-
lem is encoded as an SMT problem and we introduce techniques to solve
the SMT encoding e�ciently. Leveraging simple knowledge of physical
dynamics allows further runtime reductions. We fully implement our ap-
proach on two distributed CPS applications: monitoring of a network of
autonomous ground vehicles, and a network of aerial vehicles. The results
show that in some cases, it is even possible to monitor a distributed CPS
su�ciently fast for online deployment on fleets of autonomous vehicles.

1 Introduction

As the environment we live in develops, so does our dependency on safety-critical
cyber-physical systems (CPS), along with the need for verifying their correctness.
A particularly critical class of CPS includes software applications distributed

over networked nodes, which we will refer to as agents. Examples include fleets
of autonomous vehicles, network of sensors in infrastructures, health-monitoring
wearables, and networks of medical devices. While the literature of distributed
computing is decades old, and many important problems have been solved in
the context of discrete-event systems, we currently lack a solid understanding
of distributed CPS, as they are di↵erentiated by three characteristics. First,
their signals are analog ; these signals contain an uncountable infinity of events
which makes existing reasoning techniques from the discrete settings inapplica-
ble in most cases. The applications we target, such as those above, care about
continuous-time behavior: for instance, it is not enough to say that a voltage
does not spike at sample times. Thus, adjusting the signal sampling rate does
nothing to address the need for reasoning about the analog signals. Second, each
agent in these CPS has a local clock that drifts from other agents’ clocks; thus,

? This work is sponsored in part by the United States NSF FMitF-1917979 and CCF-
2118356 awards.

the notion of time, taken for granted in centralized systems, must be revised,
since it is unclear when exactly events are sequential and concurrent. In fact,
it is not clear how continuous events in di↵erent processes obey the happened

before relation [21], and how one can reason about the order of occurrence of
continuous events. Robust controllers do not address the issues of asynchrony in
time. Third, CPS signals obey physical laws and dynamics. Even a rough knowl-
edge of these dynamics might be leveraged to reason about distributed signals
and predict their behavior, thus increasing e�ciency. In this paper, we take the
first step towards rigorous, automated reasoning about distributed CPS whose
correctness and integrity is vital to guaranteeing the safety of the environment
they operate in. A popular and practical approach to reason about the health
of CPS is to monitor them with respect to their formal specification, and detect
violations. Currently, we lack techniques for monitoring CPS where analog sig-
nals are produced by distributed agents that do not share a global clock (see the
related work in Section 7). Lack of synchrony in particular creates significant
challenges, as the monitor has to reason about signal values at local times of
di↵erent agents, which may lead to inconsistent monitoring verdicts. This di�-
culty is compounded by the fact that agents typically communicate with each
other, which imposes additional constraints on event ordering.

Motivating Example. We illustrate the urgent need for monitoring distributed
CPS by a critical application in automated air tra�c control (AATC). The mar-
ket for unmanned aerial vehicles (UAVs) is witnessing explosive growth [18]. The
Federal Aviation Administration (FAA) in the United States is envisioning a fed-
erated framework, in which UAVs that collaborate in monitoring global air safety
properties are rewarded with faster free-flight paths to their destinations [15,14].
To enable this federated framework, analog signals like UAV position and velocity
must be monitored by the ATC tower software to see whether they violate global

instantaneous safety properties, or predicates. These predicates are Boolean ex-
pressions defined over the simultaneous states of the di↵erent CPS agents, like
mutual separation between agents, conditional speed limits, and minimal energy
storage. These predicates must be evaluated on the global state, which is the
state of all UAVs combined at the same moment in time. However, the absence
of a perfect shared clock among all UAVs may result in a situation where UAV1’s
clock indicates t = 5 and UAV2’s clock indicates t = 5.2, at the same physical
‘real’ moment. Equivalently, the same value on both clocks might mean di↵erent
physical moments. If the central ATC monitor uses these two states to evaluate
whether the predicate is violated, it might lead to false negatives (i.e., missing
violations) or false positives (i.e., declaring a violation when none exists).

The UAV example has two characteristics that are present in many other dis-
tributed CPS: first, while it is generally impossible to guarantee perfect continuous-
time synchrony, clock synchronization algorithms such as NTP [23] ensure that
the drift among local clocks remains within some bounds. Secondly, it is often
the case that the central monitor knows some bounds on the UAV dynamics,
like velocity limits. In this example, the ATC tower itself would know the UAVs’
speed limits. We leverage these two characteristics in developing our solution.

2

1.1 Our Solution and Contributions

In this paper, we propose a sound and complete solution to the problem of
predicate monitoring for distributed CPS. Our contributions are as follows:

1. a Satisfiability Modulo Theory (SMT) based algorithm for centralized moni-
toring of distributed analog signals for predicate violations, augmented with
a clock synchronization algorithm that guarantees bounded skew " between
all local clocks, using the classic happened-before relation [21];

2. a retiming technique that borrows the notion of retiming functions from
stochastic processes;

3. a lightweight mechanism for incorporating bounds on system dynamics to
reduce monitoring overhead;

4. an analysis of the sensitivity of monitoring overhead to the skew bound and
the amount of communication between agents, and

5. a technique for parallelizing the monitoring algorithm to improve scalability.

We have fully implemented our techniques and report results of experiments
on monitoring a network of autonomous ground vehicles (real-world experiment)
and aerial vehicles (in simulation). It should be mentioned that due to using a
central monitor, naturally the system is susceptible to a single point of failure.
This paper is concerned in developing the proposed theory, not account for fault
tolerance. We make the following observations. First, although our approach
is based on SMT solving, it can be employed for online monitoring when the
monitor is invoked with appropriate frequency (i.e., the monitoring overhead
does not surpass the normal operation time of the system). Second, incorporating
the knowledge of system dynamics is highly beneficial in reducing the overhead
of monitoring. In some cases it leads to a speedup by one order of magnitude.
Finally, monitoring overhead is independent of the clock skews when practical
clock synchronization protocols (e.g., NTP and PTP) are applied.

2 Model of Computation

We first set some notation. The set of reals is R, the set of non-negative reals is
R+, and the set of positive reals is R⇤

+. The integer set {1, . . . , N} is abbreviated
as [N]. Global time values (kept by an imaginary global clock) are denoted by
�, �0, �1, �2, etc, while the letters t, t0, t1, t2, s, s0, s1, s2, etc. denote local clock
values specific to given agents which will always be clear from the context.

2.1 Signal Model

In this section, we introduce our signal model, i.e., our model of the output signal
of an agent. Monitoring can be done regardless of the dynamics of the agents.
However, as we see later, a rough knowledge of the dynamics can be helpful.

3

Definition 1. An output signal (of some agent A) is a function x : [a, b] ! Rd
,

which is right-continuous, left-limited, and is not Zeno. Here, [a, b] is an interval

in R+, and will be referred to as the timeline of the signal.

Without loss of generality, we will henceforth assume that x is one-dimensional,
i.e., d = 1. Right-continuity means that at all t in its support, lims!t+ x(s) =
x(t). Left-limitedness means the function has a finite left-limit at every t in its
support: lims!t� x(s) < 1. Not being Zeno means that x has a finite number
of discontinuities in any bounded interval in its support. This ensures that the
signal cannot jump infinitely often in a finite amount of time. A discontinuity in
a signal x(·) can be due to a discrete event internal to agent A (like a variable
updated by software), or to a message sent to or received from another agent A0.

We assume a loosely coupled system with asynchronous message passing.
Specifically, the system consists of N reliable agents that do not fail, denoted
by {A1, A2, . . . , AN}, without any shared memory or global clock. The output
signal of agent An is denoted by xn, for 1  n  N . Agents can communicate
via FIFO lossless channels. The contents of a message are immaterial to our
purposes. We will need to refer to some global clock which acts as a ‘real’ time-
keeper. However, this global clock is a theoretical object used in definitions and
theorems, and is not available to the agents. We make two assumptions:

– (A1) Partial synchrony. The local clock (or time) of an agent An can be
represented as an increasing function cn : R+ ! R+, where cn(�) is the
value of the local clock at global time �. Then, for any two agents An and
Am, we have:

8� 2 R+.|cn(�) � cm(�)| < "

with " > 0 being the maximum clock skew. The value " is assumed fixed and
known by the monitor in the rest of this paper. In the sequel, we make it
explicit when we refer to ‘local’ or ‘global’ time.

– (A2) Deadlock-freedom. The agents being analyzed do not deadlock.

Assumption (A1) is met by using a clock synchronization algorithm, like NTP [23],
to ensure bounded clock skew among all agents.

In the discrete-time setting, an event is a value change in an agent’s variables.
We now update this definition for the continuous-time setting of this paper.
Specifically, in an agent An, an event is either a (i) a pair (t, xn(t)), where t is
the local time (i.e., returned by function cn); (ii) a message transmission, or (iii)
a message reception. There is no assumption on the messages that the agents
send to each other. Messages that are sent to the monitor are timestamped by
their respective local clocks. Since the agents evolve in continuous time and
their output signals are defined for all local times t, a message transmission
or reception always coincides with a signal value; i.e., if An receives a message
at local time t, its signal has value xn(t) at that time. Thus, without loss of
generality, every event will be represented as a (local time, value) pair (t, xn(t)),
often abbreviated as ent (n and t will be omitted when irrelevant).

4

A distributed signal is modeled as a set of events partially ordered by Lam-
port’s happened-before () relation [21], extended by our assumption (A1) on
bounded clock skew among all agents. Namely, let

E = {ent | n 2 [N] ^ In ✓ R+ ^ t 2 In}

denote a set of events, where t is local time in agent An, and set In is a bounded
nonempty interval. The following defines a continuous-time distributed signal
under partial synchrony.

Definition 2. A distributed signal on N agents is a tuple (E,), where E is

a set of events obeying the restriction: for every n 2 [N].The relation is a

relation between events such that:

(1) In every agent An, all events are totally ordered, that is,

8t, t0 2 In : (t < t0) ! (ent ent0).

(2) If e is a message send event in an agent and f is the corresponding receive

event by another agent, then we have e f .
(3) For any two events ent , emt0 2 E, if t + " < t0, then ent emt0 .
(4) If e f and f g, then e g.

1.5

1

2.3

3

2.94

3.1
C’

message

C

A1 A2

y t

s

x

Fig. 1: Two partially synchronous
continuous concurrent timelines
with " = 0.1, and corresponding
signals x and y. (Solid dot indi-
cates signal value at discontinuity).
C is a consistent cut but C0 is not.

Figure. 1 shows an example. The classical case
of complete asynchrony is recovered by set-
ting " = 1. The restriction on In is necessary
in the continuous-time setting and will be re-
visited in the next section.

Because the agents are only synchronized
to within an ", it is not possible to actu-
ally evaluate all signals at the same moment
in global time. The notion of consistent cut

and its frontier, defined next, capture possi-

ble global states: that is, states that could be
valid global states (see Fig. 1).

Definition 3 (Consistent Cut). Given a distributed signal (E,), a subset

of events C ✓ E is said to form a consistent cut if and only if when C contains

an event e, then it contains all events that happened-before e. Formally,

8e 2 E . (e 2 C) ^ (f e)) f 2 C.

From this definition and Definition 2.(3) it follows that if emt0 is in C, then C
also contains every event ent s.t. t + " < t0.

A consistent cut C can be represented by its frontier front(C) =
�
e1
t1 , . . . , e

N
tN

�
,

in which each entn is the last event of agent An appearing in C. Formally:

8n 2 [N] . entn 2 C and tn = max{t 2 In | 9ent 2 C}

5

Example 1. Figure 1 shows two timelines, generated by two agents executing
concurrently. Every moment in each timeline corresponds to an event ent , where
n 2 {1, 2}. An arrow between the timelines indicates a message transmission
and reception. Thus, we may see that the following hold: e1

1.5 e1
2.3, e2

1 e2
3.1,

and e1
1.5 e2

1. Assuming " = 0.1, it comes that all events below (thus, before)
the solid arc form a consistent cut C with frontier front(C) = (e1

3, e
2
2.94), On the

other hand, all events below the dashed arc do not form a consistent cut since
e1
2.3 e2

3.1 and e2
3.1 is in the set C 0, but e1

2.3 is not in C 0.

2.2 Signal Transmission to the Monitor

Communication between nodes necessarily involves sampling the analog signal,
transmitting the samples, and reconstructing the signal at the receiving node.
Our objective is to monitor the reconstructed analog signals. This is di↵erent
from monitoring a discrete-time signal consisting of the samples – the applica-
tions we target actually care about the value of the signal between samples, and
potential violations they reveal. Methods for signal transmission, including sam-
pling and reconstruction, are standard in Communication theory. Errors due to
sampling and reconstruction (say, because of bandwidth limitations) can be ac-
counted for by strictifying the STL formula using the methods of [16]. The choice
of reconstruction algorithm is application-dependent and follows from domain
knowledge. In this paper’s experiments, we assume that every output signal xn

is reconstructed as piece-wise linear between the samples. We emphasize that
other reconstructions, like cubic splines, can also be used with simple modifica-
tion to our algorithms at the cost of additional runtime, and that the choice of
reconstruction is orthogonal to our techniques and this paper’s objectives. Since
we assume the agents do not deadlock, this transmission happens in segments

of length T : at the kth transmission, agent An transmits xn|[(k�1)T,kT], the re-
striction of its output signal to the interval [(k � 1)T, kT] as measured by its
local clock. In the rest of this paper, we refer exclusively to the signal fragments
received by the monitor in a given transmission.

We now re-visit the restriction placed on In in Definition 2, namely, that it
is a non-empty bounded interval. Non-emptiness models that computation does
not deadlock. That In is an interval expresses that no events are missed, or
equivalently, that signal reconstruction is perfect at the monitor. The restriction
that it be bounded models the above monitoring setup: the monitor is only ever
dealing with bounded signal fragments xn|[(k�1)T,kT], so

In = [(k � 1)T, kT] (1)

for every agent at the kth transmission, measured in local time. By the bounded
skew assumption, we have:

Lemma 1. For any two agents An, Am, | min In � min Im|  " and | max In �
max Im|  ".

6

3 The Predicate Monitoring Problem

Many system requirements are often captured via predicates (e.g., invariants). A
predicate � is a global Boolean-valued function over the signal values of agents.
For instance, �(x1, x2) = (x1 > 0) ^ (ln(x2) < 3) is a predicate on two signals
that evaluates to true when x1 > 0 and ln(x2) < 3, otherwise false.

Because the agents are partially synchronized to within an ", it is not possible
to actually evaluate all signals at the same moment in global time. However, as
noted above, the frontier of a consistent cut gives us a possible global state.

Definition 4 (Distributed satisfaction). Given a distributed signal (E,)
over N agents, and a predicate � over the N agents, we say that (E,) satisfies
� i↵ for all consistent cuts C ✓ E with

front(C) =
⇣

(t1, x1(t1)), . . . , (tN , xN (tN))
⌘

we have �
�
x1(t1), x2(t2), . . . , xN (tN)

�
= true. We write this as (E,) |= �.

Thus, we formally define the problem as follows.

Problem Statement

Continuous-Time Monitoring of Distributed CPS. Given a dis-
tributed signal (E,) and a predicate � over N agents, determine
whether (E,) |= �.

When a distributed signal (E,) does not satisfy a predicate �, we say that
(E,) violates � and write (E,) 6|= �. In this paper, we want to detect whether
there exists a consistent cut C ✓ E, such that (E,) 6|= �.

The main challenge in monitoring distributed signals is that the monitor
has to reason about signals that are subject to time asynchrony. For instance,
consider two signals x1 and x2 and the case where x1(2) = 5, x2(3) = 1,
�(x1, x2) = (x1 > 4) ^ (x2 < 0), and ✏ = 2 so that time points 2 and 3 form a
consistent cut. In this case, since the above signal values are at local times within
the possible clock skew, one has to (conservatively) consider that the predicate
is violated. In the next section, we present our solution to the problem.

4 SMT-based Monitoring Algorithm

In a nutshell, our solution has the following features:

– Central monitor. We assume that there is a central monitor that solves,
at regular intervals, the monitoring problem described in Section 3.

– Signal retiming. As signals are measured using their local clocks, the mon-
itor should somehow align them to detect possible violations of the predicate.
To this end, we propose a retiming technique that establishes the happened-
before relation in the continuous-time setting, and stretches or compacts
signals to align them with each other within the " clock skew bound.

7

– SMT encoding. We transform the monitoring decision problem into an
SMT-solving problem, whose components (like input signals and the happened-
before relation) are modeled as SMT entities and constraints.

4.1 Retiming Functions

Our signal model is continuous-time, that is, the signals are maps from R+ to
R+. Therefore, to model the approximate re-synchronizing action of the monitor,
we use a retiming function.

Definition 5 (Retiming functions). A retiming function, or simply retiming,

is an increasing function ⇢ : R+ ! R+. An "-retiming is a retiming function

such that: 8t 2 R+ : |t � ⇢(t)| < ". Given a distributed signal (E,) over N
agents and any two distinct agents Ai, Aj, where i, j 2 [N], a retiming ⇢ from

Aj to Ai is said to respect if we have (eit ejt0)) (t < ⇢(t0)) for any two

events eit, e
j
t0 2 E.

y

t s

x

y � id

x

t

x t

y � ⇢1

x

t

y � ⇢2

(a) (b)

(d) (e)

(f)

(c)
sss

t t t

id ⇢1

⇢2

Fig. 2: Predicate violation between two
signals x and y measured using par-
tially synchronized clocks t and s.

Fig. 2 shows examples of retimings
and how they relate to predicate moni-
toring. To detect predicate violation, we
must first retime y to the t axis via a
retiming map ⇢. (c) shows three di↵er-
ent retimings, including the identity. (d)-
(e) show the retimed y. For the predicate
x > y, (e)-(f) show no violations, but (d)
does. The conservative monitoring answer
is that the predicate is violated. An "-
retiming ⇢ maps R+ to itself, but it is
easy to see that the restriction of ⇢ to a
bounded interval I is an increasing func-
tion from I to ⇢(I) that respects the con-
straint |t � ⇢(t)| < " for all t 2 I. Thus,
in what follows we restrict our attention
to the action of "-retimings on bounded
intervals.

We now state and prove the main technical result of this paper, which relates
the existence of consistent cuts in distributed signals to the existence of retimings
between the agents’ local clocks.

Proposition 1. Given a predicate � and distributed signals (E,) over N
agent, there exists a consistent cut C ✓ E that violates � if and only if there

exists a finite A1-local clock value t and N � 1 "-retimings ⇢n : In ! I1 that

respect , 2  n  N , such that:

�
⇣
x1(t), x2 � ⇢�1

2 (t), . . . , xN � ⇢�1
N (t)

⌘
= false (2)

and such that ⇢�1
m �⇢n : In ! In is an "-retiming for all n 6= m. Here, ‘�’ denotes

the function composition operator.

8

Proof. (() Suppose that such retimings exist. Define the local time values
t1 := t, tn = ⇢�1

n (t), 2  n  N , and the set C = {ent | t  tn}. By the
construction of C and the fact that the retimings respect , it holds that if
e 2 C and f e then f 2 C. For every n, m � 2, n 6= m, it holds that
tm = ⇢�1

m (⇢n(tn)) so |tn � tm|  ". Thus C is a consistent cut with frontier
(entn)Nn=1 that witnesses the violation of �.

()) Suppose now that there exists a consistent cut C with frontier:

front(C) =
⇣

(t1, x1(t1)), . . . , (tN , xN (tN))
⌘

that witnesses violation of �. We need the following facts.
Fact 1. For every two events entn and emtm in the frontier of a consistent cut, we
have |tn � tm|  ". Indeed, since entn 2 front(C), we have ems 2 C for all s s.t.
s + "  tn. Thus, tm � s for all such s and so tm � tn � ". By symmetry of the
argument, tn � tm � " holds as well.
Fact 2. Given intervals [a, b] and [c, d] s.t. |a � c|  " and |b � d|  ", the map
L : [a, b] ! [c, d] defined by L(t) = c + d�c

b�a (t � a) is a linear "-retiming. This is
immediate.

Suppose first that there are no message exchanges. For 2  n  N , we define
the retiming ⇢n : In ! I1 in two pieces. First, set ⇢n(tn) = t1. By preceding
lemma, |tn � t1|  ". Write I1 = [a, b] and In = [c, d] for notational simplicity
in this proof. Call a pair of intervals that satisfies the hypothesis of Fact 2 an
admissible pair. Then, the following pairs are clearly admissible by Lemma 1:
[a, t1] and [c, tn], and [t1, b] and [tn, d]. Thus, there exist two linear retimings
Ln : [a, t1] ! [c, tn] and L0

n : [t1, b] ! [tn, d], and we can define a piece-wise ⇢n:
⇢n(t) = Ln(t) on c  t  tn and ⇢n(t) = L0

n(t) on tn  t  d. It is easy to
establish that ⇢n is an "-retiming.

It remains to show that ⇢�1
n � ⇢m : Im = [f, g] ! [c, d] is also an "-retiming.

This too can be established in parts, first over [f, tm] then over [tm, g], using
the same arguments as above and exploiting the linearity of these retimings. For
instance, if we write ↵n for the slope of Ln, then over [f, tm]

⇢�1
n (⇢m(s)) = L�1

n (Lm(s)) = L�1
n (a + ↵m(s � c))

=
1

↵n
[a + ↵m(s � c)] + f � a/↵n = f +

g � f

d � c
(s � c)

which is a linear "-retiming by Fact 2.
If there are message exchanges, the above argument still applies but over

a more fine-grained division of the timelines In obtained by partitioning each
timeline at message transmission times. We sketch the proof: for the admissible
pair I1 = [a, b] and In = [c, d], suppose the first message is sent from An to A1 at
local time s < tn and is received at local time r < t1. Define t(s) := min(s+", r).
Then the pair [a, t(s)], [c, s] is admissible. Repeat this process for all messages.
We end up with a collection of admissible pairs that can be retimed to each
other, as above, without violating the relation. These are concatenated to
yield the desired retiming ⇢n.

9

Thus, finding a consistent cut that violates the predicate can be achieved by
finding such retimings. The proof of Prop. 1 further shows that the retimings
can always be chosen as piece-wise linear (rather than any increasing function),
which yields significant runtime savings in the SMT encoding in the next section.

Remark 1. An interesting consequence of Fact 2 in the proof is that it is enough
to use piece-wise linear retimings. This results in the following concrete problem.

Concrete Problem Statement

Given " > 0, a distributed signal (E,) over N agents, and a predicate �
over the N agents, find N �1 "-retiming functions ⇢2, . . . , ⇢N that satisfy
the hypotheses of Prop. 1 and s.t.

�
⇣
x1(t1), x2(t2), . . . , xN (tN)

⌘
= false (3)

4.2 SMT Formulation

We solve the monitoring problem by transforming it into an instance of satis-
fiability modulo theory (SMT). Specifically, we ask whether there exists N � 1
retimings, such that (3) holds; equivalently, whether there exists a consistent cut
that witnesses satisfaction of ¬�.

Without loss of generality, we start with our encoding of two agents, A1 and
A2 (shown in Fig. 1). A1 outputs signal x supported over the bounded timeline
I1, which is discretized to D1 ⇢ I1 and sent to the monitor. Similarly, A2 outputs
signal y supported over the bounded timeline I2, which is discretized to D2 ⇢ I2

and sent to the monitor. D1 and D2 are finite. Let �k > 0 be the sampling period

of agent Ak, so two consecutive elements of Dk di↵er by �k, k 2 {1, 2}.

Consider further that A2 transmits a message at local time t1 and it is re-
ceived by A1 at local time t2, and that A1 sends a message at local time t3 which
is received by A2 at local time t4. The distributed signal violates the predicate
i↵ the following SMT problem returns SAT.

SMT entities. In our encoding, the entities are the retimings ⇢n included as
uninterpreted functions (the solver will interpret), signals x and y, intervals I1

and I2, real numbers t, s, s0, t1, t2, t3, and t4. All these entities have been de-
fined in the previous sections. The following quantities are all constants in the
encoding, since they are known to the monitor: the sampling time sets Dk and
sampling periods �k, the sampled values {x(ti) | ti 2 D1} and {y(si) | si 2 D2},
and the message transmission and reception local times.

SMT constraints. The encoding is a conjunction of the following constraints:

10

– (Predicate violation) The first constraint ‘finds’ local times t and s at which
predicate � is violated (upto "-synchrony):

9 t 2 I1. 9s 2 I2. (4a)
⇣
9t� 2 D1. t�  t  t� + �1

⌘
^ (4b)

⇣
9s� 2 D2 . s�  s  s� + �2

⌘
^ (4c)

⇣
⇢(s) = t

⌘
^ (4d)

⇣
¬�(x(t�), y(s�))

⌘
(4e)

Eq. (4b) finds the time sample t� such that x(t) = x(t�): this is the result of
our assumption that signals are piece-wise constant. Eq.(4c) does the same
for y. Eq. (4d) specifies that s is retimed to t: this is what guarantees that
(x(t), y(s)) is a possible global state as per Proposition 1. Eq. (4e) checks
violation of the predicate at (x(t), y(s)) = (x(t�), y(s�)).

– (Valid retiming) Eq. (5) ensures that ⇢ is a valid "-retiming from I2 to I1:

8s 2 I2. 9t 2 I1. (⇢(s) = t) ^ (|t � s| < ") (5)

and Eq. (6) ensures that the retiming function is increasing:

8s 2 I2. 8s0 2 I2.
⇣
s < s0) ⇢(s) < ⇢(s0)

⌘
(6)

– (Happened-before) Eq. (7) enforces the happened-before relation for message
transmissions: ⇣

⇢(t1) < t2
⌘

^
⇣
t3 < ⇢(t4)

⌘
(7)

– (Inverse retiming) When there are more than 2 agents, we must also encode
the constraint that for all n 6= m, ⇢�1

m � ⇢n is an "-retiming. Thus, for all
n 6= m, letting fm be the uninterpreted function that represents the inverse
of the uninterpreted ⇢m, we add

8t 2 In · fm(⇢n(t)) = t (8)

in addition to the analogs of Eqs. (6) and (5) for fm � ⇢n.

Other signal models. If output signals were piece-wise linear, say, Eq. (4e)
would be modified accordingly:

�

✓
x(t�) +

x(t� + �1) � x(t�)

�1
(t � t�), (9)

y(s�) +
y(s� + �2) � y(s�)

�2
(s � s�)

◆
= false

11

x

y

x(t�) = 1 x(t� + �1) = 53

y(s�) = 2 y(s� + �2) = 43

Fig. 3: Piece-wise Linear
Interpolation

Our choice of signal models is limited by the SMT
solver: it must be able to handle the corresponding
interpolation equations, like the piece-wise linear in-
terpolation in Eq. (9). As an example, in Fig. 3, let x
and y be two signals, where the violating predicate �
to be monitored is x(t) = y(s). Let ⇢ be a retiming of
y on x, such that ⇢(s�) = t� and ⇢(s� + �2) = t� + �1.
It can be observed that although the discretized signal
samples do not violate �, due to the signals being piece-wise linear, it is easy
to identify a violation at time t and s on signals x and y respectively, where
x(t) = 3, y(s) = 3 and ⇢(s) = t.

It is worth mentioning that restricting the SMT search to piece-wise linear
retimings results in a significant decrease in run time, compared to the approach
where the SMT is tasked with determining an interpolation. For example, for
two UAVs with " = 1ms over 5s-long signals, at segment count 5, the search
for a general retiming requires 3.42s, whereas searching for a piece-wise linear
retiming requires only 1.01s. Since, by Remark 1, there is no loss of generality in
this restriction, from this point, all the reported experiments are obtained using
the piece-wise linear retiming approach.

Remark 2. (i) ⇢�1
m �⇢n respects automatically so it is not necessary to encode

that explicitly. (ii) Because we can restrict the SMT search to piece-wise linear
retimings (see remark following proof of Prop. 1), constraint (8) can be simplified,
namely, the expression for the inverse can be hard-coded. We don’t show this to
maintain clarity of exposition.

5 Exploiting the Knowledge of System Dynamics

y
t

s

x
rate bound

y  0.5

x � 3

rate bound

⌧1

⌧2

Fig. 4: Leveraging dynamics.

Physical processes in a CPS follow the laws of
physics. A runtime monitor can leverage this
knowledge of the CPS dynamics to make moni-
toring more e�cient.

We explain our idea by the following exam-
ple (see Fig. 4). From knowing the rate bound
|ẋ|  1 (shown by a dashed line), the monitor
concludes that the earliest x can satisfy the atom
x  3 is ⌧1. Similarly for y. Given that ⌧1 > ⌧2,
the monitor discards, roughly speaking, the frag-
ment [0, ⌧2] from each signal and monitors the re-
maining pieces. Note that x(0) = 1 and y(0) = 2.
Consider the predicate: � = ¬(a _ b), where a := x � 3 and b := y  0.5. Let a
and b be atoms of predicate �. There are 3 Boolean assignments to atoms a and
b that falsify the predicate. Let us fix one such assignment, a = b = true. If the
monitor knows a uniform bound on the rate of change ẋ of x, say 8t.|ẋ(t)|  1,
then it can infer that a = true cannot hold before ⌧1 = 2 (local time). Similarly,
if the monitor knows that |ẏ|  3, then b = true cannot hold before ⌧2 = 0.5

12

(local time). Taking into account the "-synchrony, the monitor can limit itself to
monitoring x|[2,T] (the restriction of x to [2, T]) and y|[2�",T+"].

Algorithm 1: Dynamics-aware
monitoring.

Data: Distributed signal (E,), ",
predicate �, bounds
|ẋn|  bn, n 2 [N]

Result: (E,) |= �
1 Set tn = min In, n 2 [N]
2 while not done do
3 Get next violating assignment � to

the atoms of �
4 if there are no more violating

assignments then
5 done
6 else
7 for every atom a in � do
8 if �(a) = true then
9 ⌧n = min{⌧ | x(tn+⌧) �

va}, n 2 [N]

10 else
11 ⌧n = min{⌧ | x(tn+⌧) <

va}, n 2 [N]

12 end
13 Set ⌧ = maxn ⌧n and

m = argmaxn⌧n
14 SMT-monitor the distributed

signal E� made of the
restrictions xn|[tn+⌧�",max In],
n 6= m and xm|[tm+⌧,max Im]

15 If SAT, done.
16 end

17 end

Now, if this yields UNSAT
in the SMT instance, we select
the next Boolean assignment (in
terms of atoms a and b) that fal-
sifies predicate � (e.g., a = false
and b = true), derive the use-
ful portion of signals x and y,
and repeat the same procedure
until the answer to the SMT in-
stance is a�rmative or all falsify-
ing Boolean assignments are ex-
hausted. Of course, this requires
exploring all such assignments to
atoms of the predicate, but since
we expect the number of atoms
in realistic predicates to be rel-
atively small, the exhaustive na-
ture of falsifying Boolean assign-
ments will not be a bottleneck.
We generalize this idea to N
agents and arbitrary predicates in
Algorithm 1. We assume without
loss of generality that every atom
a that appears in � is of the form
xn � va for some n and va 2 R.
A Boolean assignment is a map
� from atoms to {false, true}, and
a violating assignment is one that
makes the predicate false. Thus,
given a violating assignment �, for
every atom a, a = �(a) i↵ xn � va
(if �(a) = true) or xn < va (if �(a) = false). Obvious modification to Algorithm 1
allows the monitor to take advantage of knowing di↵erent rate bounds at di↵er-
ent points along the signals.

6 Case Studies and Evaluation

In this section, we evaluate our technique using two case studies on networks of
autonomous ground and aerial vehicles.

6.1 Case Studies

Network of Ground Autonomous Vehicles We collected data from two
1/10th-scale autonomous cars competing in a race around a closed track. Each

13

car carries a LiDAR for perceiving the world, and uses Wi-Fi antennas to com-
municate with the central monitor. Each car is running a model predictive con-
troller to track its racing line and RRT to adjust its path. The trajectory data
is sampled at 25Hz . In this application, the useful signal length to monitor is
1 � 2s, as this is the control horizon (i.e., the controller repeatedly plans the
next 1 � 2s). Thus, in Eq. (1), T = 1 � 2s. A reasonable range for " is inter-
val [1, 5]ms, guaranteed by ROS clock synchronization based on NTP. Unless
otherwise indicated, we monitor the predicate d(x1, x2) > � ^ d(x1, x2)  �.

Network of UAVs We use Fly-by-Logic [27], a path planner software for UAVs,
to simulate the operation of two UAVs performing various reach-avoid missions.
In a reach-avoid mission, each UAV must reach a goal within a deadline, and must
avoid static obstacles as well as other UAVs. The path planner uses a temporal
logic robustness optimizer to find the most robust trajectory. The trajectories
are sampled at 20Hz . In this application, the useful signal length to monitor is
around 2s, as this is the UAV’s ‘reaction time’ (depending on current speed).
Thus, in Eq. (1), T u 2s. A reasonable range for " is again 1 � 5ms, guaranteed
by ROS. Unless otherwise indicated, we monitor the predicate d(x1, x2) � �.

Note that the SMT solver’s e↵ort is mostly spent on finding retiming, instead
of predicate complexity. Thus, we pick simpler predicates for our experiments.

6.2 Experimental Setup

In our experiments, we choose the following parameters: (1) signal duration, (2)
maximum clock skew ", and (3) distribution of communication among agents.
We measure the monitor run time. All experiments are replicated to exhibit %95
confidence interval to provide statistical significance. The experimental platform
is a CentOS server with 112 Intel(R) Xeon(R) Platinum 8180 CPUs @ 3.80GHz
CPU and 754G of RAM. Our implementation invokes the SMT-solver Z3 [10]
to solve the problem described in Section 4. Color versions of all figures are
available in the digital version of the paper.

6.3 Analysis of Results

Impact of signal segmentation Given a signal-to-be-monitored, we have a choice
of either passing the entire signal to the monitor, or chopping it into segments and
monitoring each segment separately (while accounting for "-synchrony). Moni-
toring a signal in one shot is computationally more expensive than monitoring
a number of shorter segments. Figure 5 shows the results of this claim. Note
that all curves are plotted in log2 scale to provide more clarity. As can be seen,
for any signal duration, chopping the signal and invoking the monitor for the
shorter segments reduces the run time significantly. For example, in the case of
the UAV network (Fig. 5b), for a signal duration of 2s, it takes 4.5s to monitor
the signal in one shot, but only 0.55s if the monitor is invoked 20 times over
the signal duration. We observe the same behavior in Fig. 5a. This is due to the
SMT-solver having to deal with much smaller search spaces in each invocation.

14

0 10 20

�4

�2

0

2

Number of segments

R
u
n
ti
m
e
(s
)
in

lo
g 2

sc
al
e

S.D. = 0.5s
S.D. = 0.6s
S.D. = 0.7s
S.D. = 0.8s
S.D. = 0.9s
S.D. = 1.0s
S.D. = 1.5s
S.D. = 2.0s

(a) Network of cars.

0 10 20

�4

�2

0

2

Number of segments

R
u
n
ti
m
e
(s
)
in

lo
g 2

sc
al
e

S.D. = 0.5s
S.D. = 0.6s
S.D. = 0.7s
S.D. = 0.8s
S.D. = 0.9s
S.D. = 1.0s
S.D. = 1.5s
S.D. = 2.0s

(b) Network of UAVs.

Fig. 5: Impact of signal segmentation on run time with varying signal duration (S.D.)
and fixed " = 0.001s.

0 2 4 6

0.2

0.4

0.6

0.8

Signal duration (s)

R
u
n
ti
m
e
(s
)

" = 0.001s

Fig. 6: Best run time (network of cars)
for di↵erent signal duration.

Figure 6 shows the best achievable
run time for di↵erent signal durations by
searching over the segment count of range
[1, 25]. For example, segment count of 4 is
obtained for 1s signal to get minimum run
time of 0.17s, while segment count of 18 is
obtained for 5s signal to get minimum run
time of 0.72s. The best run time shown
is achieved by distributing the monitor-
ing tasks across all the available cores (4)
on the monitoring device. Notice that our
predicate detection algorithm can be par-
allelized trivially, assigning one or a pool
of segments to a di↵erent core.

An important consequence of segmentation is that it enables us to monitor
signals in real time, as for 3 or more segments, the run time of the monitor is
less than the signal duration. For this reason, in all remaining experiments, the
signal-to-monitor is chopped into 20 segments and each segment is monitored
separately. Cumulative run times (of monitoring all 20 segments) are reported.

Impact of clock skew We now study the impact of di↵erent choices of " on
monitoring run time. We choose realistic values for " with millisecond resolution.
Figure 7 shows the monitoring run time for a 2s signal chopped into 1 � 20
segments. Both Figs. 7a and 7b show that high resolution clock synchronization
results in very stable execution time for the monitor. This is a positive result,
showing that for practical clock synchronization algorithms, the actual value of
" does not have an impact on the monitoring overhead.

Impact of number of agents Now we observe the impact of the number of UAVs
on the monitor. Fig. 8a shows the e↵ect on run time for increasing the number of
agents from 2 to 10 with " = 1ms over 5s-long signals. As each segment of a signal

15

2 4

0

2

4

Clock skew " (ms)

R
u
n
ti
m
e
(s
)
in

lo
g 2

sc
al
e

Seg = 1
Seg = 2
Seg = 3
Seg = 4
Seg = 5
Seg = 7
Seg = 9
Seg = 20

(a) Network of cars.

2 4

·10�3

0

2

4

Clock skew " (ms)

R
u
n
ti
m
e
(s
)
in

lo
g 2

sc
al
e

Seg = 1
Seg = 2
Seg = 3
Seg = 4
Seg = 5
Seg = 7
Seg = 9
Seg = 20

(b) Network of UAVs.

Fig. 7: Impact of clock skew on run time. Signal duration = 2s.

0 10 20 30

0

20

40

60

Number of segments

R
u
n
ti
m
e
(s
)

Agents = 2 (bottom) to 10 (top)

(a) Signal Duration = 5s and " = 0.001s

2 4 6 8 10

0

20

40

60

Number of agents

R
u
n
ti
m
e
(s
)

S.D. = 5s

(b) Signal Duration = 5s and " = 0.001s

Fig. 8: Impact of agents on run time.

can be monitored independently, we improve our run time by distributing the
monitoring tasks across all available cores on the monitoring device. Observe that
initially the run time drastically improves as more segments are used. However,
eventually the improvement becomes negligible, due to run time being dominated
by non-SMT tasks, such as creating job queues, allocating jobs to cores, and so
on. We refer to this run time as the best run time. Fig. 8b shows the best run
times for di↵erent number of agents with " = 1ms over 5s-long signals.

Impact of communication We examine whether the number of messages ex-
changed between agents has a significant impact on monitor run time. Two
opposing mechanisms exist: on the one hand, messages impose an order between
the send and receive moments and so reduce concurrency. In the discrete-time
setting this normally reduces the asynchronous monitoring complexity. On the
other hand, messages result in extra constraints in the SMT encoding via Eq. 7,
which could increase SMT run time.

Fig. 9 shows the results. In (a) we use " = 1ms and a 1s-long signal. Run
time varies with no clear trend, suggesting that neither of the above two oppos-
ing mechanisms dominates. In (b), we use " = 2s for a 2s-long signal: i.e., all

16

0 50 100

1.3

1.4

1.5

1.6

Number of messages

R
u
n
ti
m
e
(s
)

" = 0.001s

(a) Signal Duration = 1s and " = 1s.

0 50 100

200

300

400

Number of messages

R
u
n
ti
m
e
(s
)

" = 2s

(b) Signal Duration = 2s and " = 2s.

Fig. 9: Impact of communication (between two agents) on run time.

0 1 2 3

1.5

2

Time (s)

V
el
o
ci
ty

(m
/s
)

Velocity-car1
Velocity-car2

(a) Velocity profile of two cars.

1 2 3

0

1

2

3

Signal duration (s)

R
u
n
ti
m
e
(s
)

SMT-normal
SMT-dynamics

(b) Run time vs. signal duration.

Fig. 10: Impact of Algorithm 1 on monitoring run time. " = 0.001s.

events are concurrent. One can see the order introduced by messages are slightly
increasing the runtime, instead of decreasing it. No conclusion can be drawn,
and future work should study this more closely.

Impact of knowledge of dynamics bounds Here the predicate of interest is � =
(v1 > 1.6) _ (v2 > 1.3), where vi is the velocity of the ith car. The acceleration
limit from system dynamics is 1m/s2. The monitor samples the received signals
(Fig. 10b) at 0.25s intervals and applies the acceleration bounds as explained in
Section 5 to discard irrelevant pieces of the signal. As shown in Fig. 10, applying
Algorithm 1 clearly reduces the monitor run time. In general, of course, the
exact run time reduction varies. For instance, while the speedup is ⇥10 for 3s-
long signals 3s, it is ⇥15 for 2s-long signals.

7 Related Work

Runtime Monitoring of CPS Accurate time-keeping for CPS was investigated
in the Roseline project [1]. Assuming perfect synchrony, [4] introduces a tool for
o✏ine monitoring of robust MTL semantics, and [12] performs online monitoring

17

of STL [13]. The work [11] requires the full dynamical model of the system for
predictive monitoring. Our work is closer to [19], which assumes worst-case a
priori bounds on signal values (but without factoring dynamics). The works [29]
and [2] study of how the satisfaction of a temporal property is a↵ected by timing
inaccuracies. Minimally intrusive CPS monitoring was studied in [22].

Decentralized Monitoring Lattice-theoretic centralized and decentralized online
predicate detection in distributed systems has been studied in [7,24]. Extensions
of this work to include temporal operators appear in [26,25]. In [30], the authors
design a method for monitoring safety properties in distributed systems using the
past-time linear temporal logic. This approach, however, su↵ers from producing
false negatives. Runtime monitoring of LTL formulas for synchronous distributed
systems has been studied in [9,8,5]. Finally, fault-tolerant monitoring has been
investigated in [6] for asynchronous and in [20] for synchronous networks.

Partially Synchronous Monitoring The feasibility of monitoring partially syn-
chronous distributed systems to detect latent bugs was first studied in [31]. This
approach was generalized to the full LTL in [17]. The authors achieve this in a
discrete-time/value setting by detecting the presence of latent bugs using SMT
solvers. In [28], the authors propose a tool for identifying data races in distributed
system traces. This approach is able to handle non-deterministic discrete event
orderings. However, these approaches cannot not fully capture the continuous-
time and continuous-valued behavior of CPS.

8 Conclusion

In this paper, we demonstrated a technique for online predicate detection for
distributed signals that do not share a global clock. Our approach is based on
causality analysis between real-valued signals, and integrates a realistic assump-
tion on maximum clock skew among the local clocks, and rough knowledge of
system dynamics, to make the problem tractable. We made several important
observations by experimenting over a real network of autonomous vehicles and
a simulated network of UAVs. Our approach can be e↵ectively implemented to
monitor a distributed CPS in an online fashion.

As for future work, there are many interesting research avenues. Our ap-
proach finds the first global states that violate a predicate. A crucial step in
debugging distributed CPS is to find all such states. Thus, it is important to
investigate data structures that can e�ciently represent a set of global states of
distributed continuous signals that violate a predicate. In the discrete setting,
computation slices [24] are an example of such a data structure. One way to
achieve this is by using the long-known notion of regions in timed automata [3].
Another future problem is to monitor distributed signals with respect to Signal
Temporal Logic (STL) specifications.

18

References

1. https://sites.google.com/site/roselineproject/.
2. Houssam Abbas, Hand Mittelmann, and Georgios Fainekos. Formal property veri-

fication in a conformance testing framework. In ACM-IEEE International Confer-
ence on Formal Methods and Models for System Design (MEMOCODE), October
2014.

3. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

4. Yashwanth Singh Rahul Annapureddy, Che Liu, Georgios E. Fainekos, and Sriram
Sankaranarayanan. S-taliro: A tool for temporal logic falsification for hybrid sys-
tems. In Tools and algorithms for the construction and analysis of systems, volume
6605 of LNCS, pages 254–257. Springer, 2011.

5. A. Bauer and Y. Falcone. Decentralised LTL monitoring. Formal Methods in
System Design, 48(1-2):46–93, 2016.

6. B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. A. Rosenblueth, and C. Travers.
Decentralized asynchronous crash-resilient runtime verification. In Proceedings
of the 27th International Conference on Concurrency Theory (CONCUR), pages
16:1–16:15, 2016.

7. H. Chauhan, V. K. Garg, A. Natarajan, and N. Mittal. A distributed abstrac-
tion algorithm for online predicate detection. In Proceedings of the 32nd IEEE
Symposium on Reliable Distributed Systems (SRDS), pages 101–110, 2013.

8. C. Colombo and Y. Falcone. Organising LTL monitors over distributed systems
with a global clock. Formal Methods in System Design, 49(1-2):109–158, 2016.

9. L. M. Danielsson and C. Sánchez. Decentralized stream runtime verification. In
Proceedings of the 19th International Conference on Runtime Verification (RV),
pages 185–201, 2019.

10. L. M. de Moura and N. Bjørner. Z3: An e�cient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages 337–
340, 2008.

11. A. Dokhanchi, B. Hoxha, and G. Fainekos. Online monitoring for temporal logic
robustness. In Proc. of Runtime Verification, 2014.

12. A. Donzé, T. Ferrère, and O. Maler. E�cient robust monitoring for STL. In
Proceedings of the 25th International Conference on Computer Aided Verification
(CAV), pages 264–279, 2013.

13. A. Donzé and O. Maler. Robust satisfaction of temporal logic over real-valued
signals. In Proceedings of the 8th International Conference on Formal Modeling
and Analysis of Timed Systems (FORMATS), pages 92–106, 2010.

14. Drone Life. FAA UTM project: Decentralized uas tra�c manage-
ment demonstration, september 2019. https://dronelife.com/2019/09/09/

decentralized-uas-traffic-management-demonstration.
15. FAA. DOT UAS initiatives, April 2019. https://www.faa.gov/uas/programs_

partnerships/DOT_initiatives.
16. G. E. Fainekos and G. J. Pappas. Robust sampling for MITL specifications. In

Proceedings of 5th International Conference on the Formal Modeling and Analysis
of Timed Systems (FORMATS), pages 147–162, 2007.

17. R. Ganguly, A. Momtaz, and B. Bonakdarpour. Distributed runtime verification
under partial asynchrony. In Proceedings of the 24nd International Conference on
Principles of Distributed Systems (OPODIS), pages 20:1–20:17, 2020.

19

https://sites.google.com/site/roselineproject/
https://dronelife.com/2019/09/09/decentralized-uas-traffic-management-demonstration
https://dronelife.com/2019/09/09/decentralized-uas-traffic-management-demonstration
https://www.faa.gov/uas/programs_partnerships/DOT_initiatives
https://www.faa.gov/uas/programs_partnerships/DOT_initiatives

18. Meghan Hendry-Brogan. Global unmanned aerial vehicle (uav) market report.
Technical report, May 2019.

19. V. Deshmukh J, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A. Seshia. Ro-
bust online monitoring of signal temporal logic. Formal Methods System Design,
51(1):5–30, 2017.

20. S. Kazemloo and B. Bonakdarpour. Crash-resilient decentralized synchronous run-
time verification. In Proceedings of the 37th Symposium on Reliable Distributed
Systems (SRDS), pages 207–212, 2018.

21. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

22. R. Medhat, B. Bonakdarpour, D. Kumar, and S. Fischmeister. Runtime mon-
itoring of cyber-physical systems under timing and memory constraints. ACM
Transactions of Embedded Computing Systems, 14(4):79:1–79:29, 2015.

23. D. Mills. Network time protocol version 4: Protocol and algorithms specification.
RFC 5905, RFC Editor, June 2010.

24. N. Mittal and V. K. Garg. Techniques and applications of computation slicing.
Distributed Computing, 17(3):251–277, 2005.

25. M. Mostafa and B. Bonakdarpour. Decentralized runtime verification of LTL spec-
ifications in distributed systems. In Proceedings of the 29th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 494–503, 2015.

26. V. A. Ogale and V. K. Garg. Detecting temporal logic predicates on distributed
computations. In Proceedings of the 21st International Symposium on Distributed
Computing (DISC), pages 420–434, 2007.

27. Yash Vardhan Pant, Houssam Abbas, and Rahul Mangharam. Smooth operator:
Control using the smooth robustness of temporal logic. In IEEE Conference on
Control Technology and Applications,, 2017.

28. Pereira, João Carlos, Nuno Machado, and Jorge Sousa Pinto. Testing for race
conditions in distributed systems via smt solving. In International Conference on
Tests and Proofs, Bergen, Norway, June 22-26, 2020, Proceedings, pages 122–140,
2020.

29. Jan-David Quesel. Similarity, Logic, and Games: Bridging Modeling Layers of
Hybrid Systems. PhD thesis, Carl Von Ossietzky Universitat Oldenburg, July
2013.

30. K. Sen, A. Vardhan, G. Agha, and G.Rosu. E�cient decentralized monitoring of
safety in distributed systems. In ICSE, 2004.

31. Vidhya Tekken Valapil, Sorrachai Yingchareonthawornchai, Sandeep S. Kulkarni,
Eric Torng, and Murat Demirbas. Monitoring partially synchronous distributed
systems using SMT solvers. In Runtime Verification - 17th International Con-
ference, RV 2017, Seattle, WA, USA, September 13-16, 2017, Proceedings, pages
277–293, 2017.

20

	Predicate Monitoring in Distributed Cyber-physical Systems
	Introduction
	Model of Computation
	The Predicate Monitoring Problem
	SMT-based Monitoring Algorithm
	Exploiting the Knowledge of System Dynamics
	Case Studies and Evaluation
	Related Work
	Conclusion

