
Distributed Runtime Verification of Metric
Temporal Properties for Cross-Chain Protocols

Ritam Ganguly⇤, Yingjie Xue†, Aaron Jonckheere⇤, Parker Ljung†, Benjamin Schornstein†,
Borzoo Bonakdarpour⇤, and Maurice Herlihy†

⇤Michigan State University {gangulyr, jonckh16, borzoo}@msu.edu
†Brown University {yingjie xue, parker ljung, benjamin schornstein}@brown.edu, mph@cs.brown.edu

Abstract—Transactions involving multiple blockchains are im-
plemented by cross-chain protocols. These protocols are based
on smart contracts, programs that run on blockchains, executed
by a network of computers. Verifying the runtime correctness
of smart contracts is a problem of compelling practical interest
since, smart contracts can automatically transfer ownership of
cryptocurrencies, electronic securities, and other valuable assets
among untrusting parties. Such verification is challenging since
smart contract execution is time sensitive, and the clocks on
different blockchains may not be perfectly synchronized. This
paper describes a method for runtime monitoring of blockchain
executions. First, we propose a generalized runtime verification
technique for verifying partially synchronous distributed com-
putations for the metric temporal logic (MTL) by exploiting
bounded-skew clock synchronization. Second, we introduce a
progression-based formula rewriting scheme for monitoring MTL
specifications which employs SMT solving techniques and report
experimental results.

Index Terms—Metric Temporal Logic, Partial Synchrony, Dis-
tributed Systems, Runtime Verification, Blockchain, Cross-Chain
Protocols

I. INTRODUCTION

Blockchain technology [1], [2] is a blockbuster in todays
era. It has drawn extensive attention from both industry and
academia. With blockchain technology, people can trade in
a peer-to-peer manner without mutually trusting each other,
removing the necessity of a trusted centralized party. The
concept of decentralization appears extremely appealing, and
the transparency, anonymity, and persistent storage provided
by blockchain make it more attractive. This revolutionary tech-
nology has triggered many applications in industry namely,
cryptocurrency [3], non-fungible tokens [4], internet of things
[5] and health services [6] among others.

Besides the huge success of cryptocurrencies known as
blockchain 1.0, especially Bitcoin [2], blockchain 2.0, known
as smart contracts [7], is also promising in many scenarios.
A smart contract is a program running on the blockchain.
Its execution is triggered automatically and is enforced by
conditions preset in the code. In this way, the transfer of assets
can be automated by the rules in the smart contracts, and
no human intervention can stop it. A typical smart contract
implemented in Ethereum [8], uses Solidity [8], which is a
Turing-complete language. However, automating the transac-
tions by smart contracts also has its downsides. If the smart

This work is sponsored by the United States National Science Foundation
(NSF) FMitF Award 2102106.

Alice BobApricot Blockchain Banana Blockchain

Escrow & apricot coins
ℎ, #! Escrow y banana coins

ℎ, #"
Send s: * + = ℎ to redeem

Deposit premium $# + $$

Deposit premium $$

Send s: * + = ℎ to redeem

Fig. 1: Hedged Two-party Swap

contract has bugs and does not do what is expected, then lack
of human intervention may lead to massive financial losses.
For example, as pointed out by [9], the Parity Multisig Wallet
smart contract [10] version 1.5 included a vulnerability which
led to the loss of 30 million US dollars. Thus, developing
effective techniques to verify the correctness of smart con-
tracts is both urgent and important to protect against possible
losses. Furthermore, when a protocol is made up of multiple
smart contracts across different blockchains, the correctness
of protocols also need to be verified.

In this paper, we advocate for a runtime verification (RV)
approach, to monitor the behavior of a system of blockchains
with respect to a set of temporal logic formulas. Applying RV
to deal with multiple blockchains can be reduced to distributed
RV, where a centralized or decentralized monitor observes
the behavior of a distributed system in which processes do
not share a global clock. Although RV deals with finite
executions, the lack of a common global clock prohibits it
from having a total unique ordering of events in a distributed
setting. Put it another way, the monitor can only form a
partial order of event which may result in different verification
verdicts. Enumerating all possible partial ordering of events
at run time incurs in an exponential blow up, making the
approach not scalable. To add to this already complex task,
most specifications for verifying blockchain smart contracts,
come with a time bound. This means, not only the partial
ordering of the events are at play when verifying, but also the
actual physical time of occurrence of the events dictates the
verification verdict.

In this paper, we propose an effective, sound and complete
solution to distributed RV for timed specifications expressed in
the metric temporal logic (MTL) [11]. To present a high-level

1

Apr

Ban

SetUp

1

Deposit(pb)

3

SetUp

1

Deposit(pa + pb)

4

Apr

Ban

Escrow(h, tA)

5

Redeem(bob)

7

Escrow(h, tB)

6

Redeem(alice)

7seg1 seg2

Fig. 2: Progression Example

view of MTL, consider the two-party swap protocol [12] shown
in Fig 1. Alice and Bob, each in possession of Apricot and
Banana blockchain assets respectively, wants to swap their as-
sets between each other without being a victim of a sore loser
attack [12]1. There is a number of requirements that should be
followed by the conforming parties to discourage any attack
on themselves. We use metric temporal logic (MTL) [11] to
express such requirements. One such requirement is, where
Bob should not be able to redeem his asset before Alice
redeems hers within eight time units can be represented by
the MTL formula:

'spec = ¬Apr.Redeem(bob)U [0,8)Ban.Redeem(alice).

We consider a fault proof central monitor which has the
complete view of the system but has no access to a global
clock. In order to limit the blow-up of states posed by the
absence of a global clock, we make a practical assumption
about the presence of a bounded clock skew ✏ between the
local clocks of every pair of processes, guaranteed by a clock
synchronization algorithm (e.g. NTP [13]). This setting is
known to be partially synchronous when we do not assume
the presence of a global clock and limit the impact of
asynchrony within clock drifts. Such an assumption limits the
window of partial orders of events only within ✏ time units
and significantly reduces the combinatorial blow-up caused
by nondeterminism due to concurrency. Existing distributed
RV techniques either assume a global clock when working
with time sensitive specifications [14], [15] or use untimed
specifications when assuming partial synchrony [16], [17].

We introduce an SMT2-based progression-based formula
rewriting technique over distributed computations which takes
into consideration the events observed thus far to rewrite the
specifications for future extensions. Our monitoring algorithm
accounts for all possible orderings of events without explicitly
generating them when evaluating MTL formulas. For example,
in Fig. 2, we see the events and the time of occurrence in
the two blockchains, Apricot(Apr) and Banana(Ban) divided
into two segments, seg1 and seg2 for computational purposes.
Considering maximum clock skew ✏ = 2 and the specification
'spec, at the end of the first segment, we have two possible

1A sore loser attack is a type of attack in cross-blockchain commerce. It
occurs when one party decides to halt participation partway through, leaving
other parties’ assets locked up for a long duration.

2Satisfiability modulo theories (SMT) is the problem of determining
whether a formula involving Boolean expressions comprising of more complex
formulas involving real numbers, integers, and/or various data structures is
satisfiable.

rewritten formulas for the next segment:

'spec1 = ¬Apr.Redeem(bob) U [0,4)Ban.Redeem(alice)

'spec2 = ¬Apr.Redeem(bob) U [0,3)Ban.Redeem(alice)

This is possible due to the different ordering and different time
of occurrence of the events Deposit(pb) and Deposit(pa+
pb). In other words, the possible time of occurrence of the
event Deposit(pb) (resp. Deposit(pa + pb)) is either 2, 3
or 4 (resp. 3, 4, or 5) due to the maximum clock skew of 2.
Likewise, at the end of seg2, we have 'spec1 evaluate to true
where as 'spec2 evaluate to false. This is because, even if we
consider the scenario when Ban.Redeem(alice) occurs
before Apr.Redeem(bob), a possible time of occurrence
of Ban.Redeem(alice) is 8 (resp. 6) which makes 'spec2
(resp. 'spec1) evaluate to false (resp. true).

We have fully implemented our technique3 and report
the results of rigorous experiments on monitoring synthetic
data, using benchmarks in the tool UPPAAL [18], as well as
monitoring correctness, liveness and conformance conditions
for smart contracts on blockchains. We put our monitoring
algorithm to test, studying the effect of different parameters
on the runtime and report on each of them.

Organization: Section II presents the background con-
cepts. Formal statement of our RV problem is discussed in
Section III. The formula progression rules and the SMT-based
solution are described in Sections IV and V, respectively,
while experimental results are analyzed in Section VI. Related
work is discussed in Section VII before we make concluding
remarks in Section VIII. More details about our case studies
can be found in the Appendix, Section IX.

II. PRELIMINARIES

In this section, we present an overview of the distributed
computation and the metric temporal logic (MTL).

A. Distributed Computation
A distributed system (e.g., a system of multiple blockchains)

can be modeled as a loosely coupled asynchronous system,
consisting of n reliable processes (that do not fail), denoted
by P = {P1, P2, · · · , Pn}. As a system, the processes do not
share any memory or have a common global clock. Channels
are assumed to be FIFO and lossless. In our model, we
represent each local state change and a message activity (send
or receive) by an event. Message passing does not change
the state of the process and we disregard the content of the
message as it is of no use for our monitoring technique. Here,
we refer to a global clock which will acts as the “real” time
keeper. It is to be noted that the presence of this global clock
is just for theoretical reasons and it is not available to any of
the individual processes.

We make an assumption about a partially synchronous
system. For each process Pi, where i 2 [1, n], the local clock
can be represented as a monotonically increasing function
ci : Z�0 ! Z�0, where ci(G) is the value of the local

3https://github.com/TART-MSU/rv-mtl-blockc

2

https://github.com/TART-MSU/rv-mtl-blockc

clock at global time G. Since we are dealing with discrete-
time systems, for simplicity and without loss of generality,
we represent time with non-negative integers Z�0. For any
two processes Pi and Pj , where i 6= j, we assume:

8G 2 Z�0. | ci(G)� cj(G) |< ✏,

where ✏ > 0 is the maximum clock skew. The value of ✏
is constant and is known to the monitor. This assumption is
met by the presence of a clock synchronization algorithm, like
NTP [13], to ensure bounded clock skew among all processes.
We denote an event on process Pi by ei� , where � = ci(G).
That is the local time of occurrence of the event at some global
time G.

Definition 1. A distributed computation consisting of n pro-
cesses is represented by the pair (E ,), where E is a set of
events partially ordered by Lamport’s happened-before ()
relation [19], subject to the partial synchrony assumption:

• In every Pi, 1  i  n, all events are totally ordered:

8�,�0 2 Z�0 : (� < �0) ! (ei� ei�0);

• If e is a message sending event in a process and f is
the corresponding message receiving event in another
process, then we have e f ;

• For any two processes Pi and Pj and two corresponding
events ei�, e

j
�0 2 E , if � + ✏ < �0 then, ei� ej�0 , where

✏ is the maximum clock skew, and
• If e f and f g, then e g.

Definition 2. Given a distributed computation (E ,), a
subset of events C ✓ E is said to form a consistent cut if
and only if when C contains an event e, then it should also
contain all such events that happened before e. Formally,

8e 2 E .(e 2 C) ^ (f e) ! f 2 C.

The frontier of a consistent cut C, denoted by front(C) is
the set of all events that happened last in each process in the
cut. That is, front(C) is a set of eilast for each i 2 [1, |P|] and
eilast 2 C. We denote eilast as the last event in Pi such that
8ei� 2 C.(ei� 6= eilast) ! (ei� eilast).

B. Metric Temporal Logic (MTL) [20], [21]
Let I be a set of nonempty intervals over Z�0. We define

an interval, I, to be

[start , end) , {a 2 Z�0 | start  a < end}

where start 2 Z�0, end 2 Z�0 [{1} and start < end . We
define AP as the set of all atomic propositions, and ⌃ = 2AP

as the set of all possible states. A trace is represented by a
pair which consists of a sequence of states, denoted by ↵ =
s0s1 · · · , where si 2 ⌃ for every i > 0 and a sequence of non-
negative numbers, denoted by ⌧̄ = ⌧0⌧1 · · · , where ⌧i 2 Z�0

for all i > 0. We represent the set of all infinite traces by a
pair of infinite sets, (⌃!,Z!

�0). The trace sksk+1 · · · (resp.
⌧k⌧k+1) is represented by ↵k (resp. ⌧k). For an infinite trace
↵ = s0s1 · · · and ⌧̄ = ⌧0⌧1 · · · , ⌧̄ is an increasing sequence,
meaning ⌧i+1 � ⌧i, for all i � 0.

P1

P2

a
1

¬a
4

a
2

b
5

Fig. 3: Differrent time interleaving of events.

Syntax: The syntax of metric temporal logic (MTL) for
infinite traces are defined by the following grammar:

' ::= p | ¬' | '1 _ '2 | '1 U I'2

where p 2 AP and U I is the ‘until’ temporal operator with
time bound I. We also have true = p_¬p, false = ¬true,
'1 ! '2 = ¬'1 _ '2, '1 ^ '2 = ¬(¬'1 _ ¬'2), I ' =
trueU I' (“eventually”) and I ' = ¬(I ¬') (“always”).
The set of all MTL formulas is denoted by �MTL.

Semantics: The semantics of metric temporal logic (MTL)
is defined over ↵ = s0s1 · · · and ⌧̄ = ⌧0⌧1 · · · as follows:

(↵, ⌧̄ , i) |= p iff p 2 si
(↵, ⌧̄ , i) |= ¬' iff (↵, ⌧̄ , i) 6|= '
(↵, ⌧̄ , i) |= '1 _ '2 iff (↵, ⌧̄ , i) |= '1 _ (↵, ⌧̄ , i) |= '2

(↵, ⌧̄ , i) |= '1 U I'2 iff 9j � i.⌧j � ⌧i 2 I ^ (↵, ⌧̄ , j) |=
'2 ^ 8k 2 [i, j), (↵, ⌧̄ , k) |= '1

Also, (↵, ⌧̄) |= ' holds if and only if (↵, ⌧̄ , 0) |= '.
In the context of RV, we introduce the notion of finite MTL.

The truth values are represented by the set B2 = {>,?},
where > (resp. ?) represents a formula that is satisfied (resp.
violated) given a finite trace. We represent the set of all finite
traces by a pair of finite sets, (⌃⇤,Z⇤

�0). For a finite trace,
↵ = s0s1 · · · sn and ⌧̄ = ⌧0⌧1 · · · ⌧n the only semantic that
needs to be redefined is that of U (‘until’) and is as follows:

[(↵, ⌧̄ , i) |=F '1 U I'2] =

8
>>><

>>>:

> if 9j � i.⌧j � ⌧i 2 I
([↵j |=F '2] = >) ^ 8k 2
[i, j) : ([↵k |=F '1] = >)

? otherwise.

In order to further illustrate the difference between MTL
and finite MTL, consider formula ' = I p and a trace ↵ =
s0s1 · · · sn and ⌧̄ = ⌧0⌧1 · · · ⌧n. We have [(↵, ⌧̄) |=F '] = > if
for some j 2 [0, n], we have ⌧j�⌧0 2 I and p 2 si, otherwise
?. Now, consider formula ' = I p. We have [(↵, ⌧̄) |=F

'] = ?, if for some j 2 [0, n], we have ⌧j � ⌧0 2 I and
p 62 si, otherwise >.

III. FORMAL PROBLEM STATEMENT

In a partially synchronous system, there are different possi-
ble ordering of events and each unique ordering of events [22]
might evaluate to different RV verdicts. Let (E ,) be a
distributed computation. A sequence of consistent cuts is of the
form C0C1C2 · · · , where for all i � 0, we have (1) Ci ⇢ Ci+1

and (2) |Ci| + 1 = |Ci+1|, and (3) C0 = ;. The set of
all sequences of consistent cuts is denoted by C. We note
that in our view, the time interval I in the syntax of MTL
represents the physical (global) time G. Thus, when deriv-
ing all the possible traces given the distributed computation

3

(E ,), we account for all different orders in which the events
could possibly occur with respect to G. This involves replacing
the local time of occurrence of an event, ei� with the set of
events {ei�0 | �0 2 [max{0,� � ✏+ 1},� + ✏)}. This is to ac-
count for the maximum clock drift that is possible on the local
clock of a process when compared to the global clock. For ex-
ample, given the computation in Fig. 3, a maximum clock skew
✏ = 2 and a MTL formula, ' = aU [0,6)b, one has to consider
all possible traces including (a, 1)(a, 2)(b, 4)(¬a, 5) |= ' and
(a, 1)(a, 2)(¬a, 4)(b, 5) 6|= '.

Given a sequence of consistent cuts, it is evident that for
all j > 0, |Cj � Cj�1| = 1 and event Cj � Cj�1 is the last
event that was added onto the cut Cj . To translate monitoring
of a distributed system into monitoring a trace, We define a
sequence of natural numbers as ⇡̄ = ⇡0⇡1 · · · , where ⇡0 = 0
and for each j � 1, we have ⇡j = �, such that front(Cj) �
front(Cj�1) = {ei�}. To maintain time monotonicity, we only
consider sequences where for all i � 0, ⇡i+1 � ⇡i.

The set of all traces that can be formed from (E ,) is
defined as:

Tr(E ,) =
n
front(C0)front(C1) · · · | C0C1 · · · 2 C

o

In the sequel, we assume that every sequence ↵ of frontiers in
Tr(E ,) is associated with a sequence ⇡̄. Thus, to comply
with the semantics of MTL, we refer to the elements of
Tr(E ,) by pairs (↵, ⇡̄). Thus, we evaluate an MTL formula
' with respect to a computation (E ,) as follows:

[(E ,) |=F '] =
n
(↵, ⇡̄, 0) |=F ' | (↵, ⇡̄) 2 Tr(E ,)

o

This boils down to having a set of verdicts, since a distributed
computation may involve several traces and each trace might
evaluate to a different verdict.

Overall idea of our solution: To solve the above problem
(evaluating all possible verdicts), we propose a monitoring
approach based on formula-rewriting (Section IV) and SMT
solving (Section V). Our approach involves iteratively (1)
chopping a distributed computation into a sequence of smaller
segments to reduce the problem size and (2) progress the MTL
formula for each segment for the next segment, which results
in a new MTL formula by invoking an SMT solver. Since each
computation/segment corresponds to a set of possible traces
due to partial synchrony, each invocation of the SMT solver
may result in a different verdict.

IV. FORMULA PROGRESSION FOR MTL
We start describing our solution by explaining the formula

progression technique.

Definition 3. A progression function is of the form Pr : ⌃⇤ ⇥
Z⇤
�0 ⇥ �MTL ! �MTL and is defined for all finite traces

(↵, ⌧̄) 2 (⌃⇤,Z⇤
�0), infinite traces (↵0, ⌧̄ 0) 2 (⌃!,Z!

�0) and
MTL formulas ' 2 �MTL, such that (↵.↵0, ⌧̄ .⌧̄ 0) |= ' if and
only if (↵0, ⌧̄ 0) |= Pr(↵, ⌧̄ ,').

Compared to the classic formula rewriting technique in [23],
here the function Pr takes a finite trace as input, while the

algorithm in [23] rewrites the formula after every observed
state. When monitoring a partially synchronous distributed
system, multiple verdicts are possible as a result of no unique
ordering of events, as a result the classical state-by-state
formula rewriting technique is of little use. The motivation
of our approach comes from the fact that for computation
reasons, we chop the computation into smaller segments and
the verification of each segment is done through an SMT
query. A state-by-state approach would incur in a huge number
of SMT queries being generated.

Let I = [start , end) denote an interval. By I � ⌧ ,
we mean the interval I 0 = [start 0, end 0), where start 0 =
max{0, start � ⌧} and end 0 = max{0, end � ⌧}. Also, for
two time instances ⌧i and ⌧0, we let InInt(i) return true or
false depending upon whether ⌧i � ⌧0 2 I.

Progressing atomic propositions. For an MTL formula of the
form ' = p, where p 2 AP, the result depends on whether
or not p 2 ↵(0). This marks as our base case for the other
temporal and logical operators:

Pr(↵, ⌧̄ ,') =

(
true if p 2 ↵(0)

false if p 62 ↵(0)

Progressing negation. For an MTL formula of the form ' =
¬�, we have:

Pr(↵, ⌧̄ ,') = ¬Pr(↵, ⌧̄ ,�).

Progressing disjunction. Let ' = '1 _ '2. Apart from the
trivial cases, the result of progression of '1 _ '2 is based on
progression of '1 and/or progression of '2:

Pr(↵, ⌧̄ ,') =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

true if Pr(↵, ⌧̄ ,'1) = true _
Pr(↵, ⌧̄ ,'2) = true

false if Pr(↵, ⌧̄ ,'1) = false ^
Pr(↵, ⌧̄ ,'2) = false

'0
2 if Pr(↵, ⌧̄ ,'1) = false ^

Pr(↵, ⌧̄ ,'2) = '0
2

'0
1 if Pr(↵, ⌧̄ ,'2) = false ^

Pr(↵, ⌧̄ ,'1) = '0
1

'0
1 _ '0

2 if Pr(↵, ⌧̄ ,'1) = '0
1 ^

Pr(↵, ⌧̄ ,'2) = '0
2

Always and eventually operators. As shown in Algorithms 1
and 2, the progression for ‘always’, (I ') and ‘eventually’,
(I ') depends on the value of InInt(i) and the progression
of the inner formula '. In Algorithms 1 and 2, we divide the
algorithm into three cases: (1) line 4, corresponds to if I is
within the sequence ⌧̄ ; (2) line 6, corresponds to where I starts
in the current trace but its end is beyond the boundary of the
sequence ⌧̄ , and (3) line 9, corresponds to if the entire interval
I is beyond the boundary of sequence ⌧̄ . In Algorithm 1, we
are only concerned about the progression of ' on the suffix
(↵i, ⌧̄ i) if InInt(i) = true. In case, InInt(i) = false the
consequent drops and the entire condition equates to true.
In other words, equating over all i 2 [0, |↵|], we are only

4

Algorithm 1 Always

1: function Pr(↵, ⌧̄ , I ')
2: if Istart  ⌧|↵| � ⌧0 then
3: if Iend  ⌧|↵| � ⌧0 then
4: return

V
i2[0,|↵|]

�
InInt(i) ! Pr(↵i, ⌧̄ i,')

�

5: else
6: return

V
i2[0,|↵|]

�
InInt(i) ! Pr(↵i, ⌧̄ i,')

�
^ [I�(⌧|↵|�⌧0)) '

7: end if
8: else
9: return [I�(⌧|↵|�⌧0)) '

10: end if
11: end function

Algorithm 2 Eventually

1: function Pr(↵, ⌧̄ , I ')
2: if Istart  ⌧|↵| � ⌧0 then
3: if Iend  ⌧|↵| � ⌧0 then
4: return

W
i2[0,|↵|]

�
InInt(i) ^ Pr(↵i, ⌧̄ i,')

�

5: else
6: return

W
i2[0,|↵|]

�
InInt(i) ^ Pr(↵i, ⌧̄ i,�)

�
_ [I�(⌧|↵|�⌧0)) '

7: end if
8: else
9: return [I�(⌧|↵|�⌧0)) '

10: end if
11: end function

Algorithm 3 Until
1: function Pr(↵, ⌧̄ ,'1 U I'2)
2: if Istart  ⌧|↵| � ⌧0 then
3: if Iend  ⌧|↵| � ⌧0 then
4: return

⇣V
i2[0,|↵|]

�
(⌧i < Istart + ⌧0) ! Pr(↵i, ⌧̄ i,'1)

�⌘
^
⇣W

j2[0,|↵|]
�
InInt(j) ^ Pr(↵, ⌧̄ , [0,⌧j�⌧0) '1) ^ Pr(↵j , ⌧̄ j ,'2)

�⌘

5: else
6: return

⇣V
i2[0,|↵|]

�
(⌧i < Istart + ⌧0) ! Pr(↵i, ⌧̄ i,'1)

�⌘
^

⇣W
j2[0,|↵|]

�
InInt(j) ^ Pr(↵, ⌧̄ , [0,⌧j�⌧0) '1) ^ Pr(↵j , ⌧̄ j ,'2)

�
_

'1 U (I�(⌧|↵|�⌧0)'2

⌘

7: end if
8: else
9: return

�V
i2[0,|↵|] Pr(↵

i, ⌧̄ i,'1)
�
^ '1 U (I�(⌧|↵|�⌧0)'2

10: end if
11: end function

(;, 1)
0

(;, 2)
1

(;, 3)
2

({r}, 3)
0

(;, 4)
1

(;, 5)
2

(;, 6)
0

({q}, 7)
1

({p}, 7)
2

(↵, ⌧̄) (↵0, ⌧̄ 0) (↵00, ⌧̄ 00)

Fig. 4: A trace example divided into three segments

left with conjunction of Pr(↵i, ⌧̄ i,') where InInt(i) = true.
In addition to this, we add the initial formula with updated
interval for the next trace. Similarly, in Algorithm 2, equating
over all i 2 [0, |↵|], if InInt(i) = false the corresponding
Pr(↵i, ⌧̄ i,') is disregarded and the final formula is a disjunc-
tion of Pr(↵i, ⌧̄ i,') with InInt(i) = true.

Progressing the until operator. Let the formula be of the form
'1 U I'2. According to the semantics of until, '1 should be
evaluated to true in all states leading up to some i 2 I, where
'2 evaluates to true. We start by progressing '1 (resp. '2) as

[0,⌧i�⌧0) '1 (resp. [⌧i,⌧i+1) '2) for some i 2 I. Since, we
are only verifying the sub-formula, [⌧i,⌧i+1) '2, on the trace
sequence (↵, ⌧̄), it is equivalent to verifying the sub-formula

[0,1) '2 ⌘ '2 over the trace sequence (↵i, ⌧̄ i). Similar to
Algorithms 1 and 2, in Algorithm 3 we need to consider three
cases. In lines 4, 6 and 9, following the semantics of until
operator, we make sure for all i 2 [0, |↵|], if ⌧i < Istart +
⌧0, '1 is satisfied in the suffix (↵i, ⌧̄ i). In addition to this
there should be some j 2 [0, |↵|] for which if InInt(j) =
true, then the trace satisfies the sub-formula [0,⌧j�⌧0) '1

and [⌧j ,⌧j+1) '2). In lines 6 and 9, we also accommodate
for future traces satisfying the formula '1 U I'2 with updated
intervals.

Example: In Fig. 4, the time line shows propositions and
their time of occurrence, for formula [0,6) r ! (¬pU [2,9)q).
The entire computation has been divided into 3 segments,
(↵, ⌧̄), (↵0, ⌧̄ 0), and (↵00, ⌧̄ 00) and each state has been repre-
sented by (s, ⌧):

• We start with segment (↵, ⌧̄). First we evaluate [0,6) r,
which requires evaluating Pr(↵i, ⌧̄ i, r) for i 2 {0, 1, 2},
all of which returns the verdict false and there by
rewriting the sub-formula as [0,4) r. Next, to evaluate
the sub-formula ¬pU [2,9)q, we need to evaluate (1)
Pr(↵i, ⌧̄ i,¬p) for i 2 {0, 1} since ⌧i � ⌧0 < 2 and
both evaluates to true, (2) Pr(↵, ⌧̄ , [0,2) ¬p) which also
evaluates to true and (3) Pr(↵2, ⌧̄2, q) which evaluates
as false. Thereby, the rewritten formula after observing
(↵, ⌧̄) is [0,3) r ! (¬pU [0,6)q).

• Similarly, we evaluate the formula now with respect to
(↵0, ⌧̄ 0), which makes the sub-formula [0,3) r evaluate
to true at ⌧ = 3 and the sub-formula ¬pU [0,6)q (there
is no such i 2 {0, 1, 2} where ⌧i � ⌧0 < 0 and for all
j 2 {0, 1, 2}, Pr(↵0j , ⌧̄ 0j , q) = false) is rewritten as
¬pU [0,4)q.

• In (↵00, ⌧̄ 00), for j = 1, Pr(↵00, ⌧̄ 00, [0,2) ¬p) = true and
Pr(↵00j , ⌧̄ 00j , q) = true, and thereby rewriting the entire
formula as true.

V. SMT-BASED SOLUTION

A. SMT Entities
SMT entities represent the variables used to represent the

distributed computation. After we have the verdicts for each
of the individual sub-formulas, we use the progression laws

5

discussed in Section IV to construct the formula for the future
computations.

Distributed Computation We represent a distributed compu-
tation (E ,) by a function f : E ! {0, 1, . . . , |E| � 1}. To
represent the happen-before relation, we define a E⇥E matrix
called hbSet where hbSet[ei�][e

j
�0] = 1 represents ei� ej�0

for ei�, e
j
�0 2 E . Also, if |�� �0| � ✏ then hbSet[ei�][e

j
�0] = 1,

else hbSet[ei�][e
j
�0] = 0. This is done in the pre-processing

phase of the algorithm and in the rest of the paper, we represent
events by the set E and a happen-before relation by for
simplicity.

In order to represent the possible time of occurrence of an
event, we define a function � : E ! Z�0, where

8ei� 2 E .9�0 2 [max{0,� � ✏+ 1},� + ✏� 1].�(ei�) = �0

To connect events, E , and propositions, AP, on which the
MTL formula ' is constructed, we define a boolean function
µ : AP ⇥ E ! {true, false}. For formulas involving non-
boolean variables (e.g., x1+x2  7), we can update the func-
tion µ accordingly. We represent a sequence of consistent cuts
that start from {} and end in E , we introduce an uninterpreted
function ⇢ : Z�0 ! 2E to reach a verdict, given it satisfies
all the constrains explained in V-B. Lastly, to represent the
sequence of time associated with the sequence of consistent
cuts, we introduce a function ⌧ : Z�0 ! Z�0.

B. SMT Constraints

Once we have the necessary SMT entities, we move onto
including the constraints for both generating a sequence of
consecutive cuts and also representing the MTL formula as a
SMT constraint.

Consistent cut constraints over ⇢: In order to make sure the
sequence of cuts represented by the uninterpreted function ⇢,
is a sequence of consistent cuts, i.e., they follow the happen-
before relations between events in the distributed system:

8i 2 [0, |E|].8e, e0 2 E .
⇣
(e0 e)^

�
e 2 ⇢(i)

�⌘
!

�
e0 2 ⇢(i)

�

Next, we make sure that in the sequence of consistent cuts,
the number of events present in a consistent cut is one more
than the number of events that were present in the consistent
cut before it:

8i 2 [0, |E|). | ⇢(i+ 1) |=| ⇢(i) | +1

Next, we make sure than in the sequence of consistent cuts,
each consistent cut includes all the events that were present in
the consistent cut before it, i.e, it is a subset of the consistent
cut prior in the sequence.

8i 2 [0, |E|].⇢(i) ⇢ ⇢(i+ 1)

The sequence of consistent cuts starts from {} and ends at E .

⇢(0) = ;; ⇢(|E|) = E

The sequence of time reflects the time of occurrence of the
event that has just been added to the sequence of consistent
cut:

8i � 1.⌧(i) = �(ei�), such that ⇢(i)� ⇢(i� 1) = {ei�}

And finally, we make sure the monotonicity of time is main-
tained in the sequence of time

8i 2 [0, |E|).⌧(i+ 1) � ⌧(i)

Constraints for MTL formulas over ⇢: These constraints will
make sure that ⇢ will not only represent a valid sequence
of consistent cuts but also makes sure that the sequence
of consistent cuts satisfy the MTL formula. As is evident,
a distributed computation can often yield two contradicting
evaluation. Thus, we need to check for both satisfaction
and violation for all the sub-formulas in the MTL formula
provided. Note that monitoring any MTL formula using our
progression rules will result in monitoring sub-formulas which
are atomic propositions, eventually and globally temporal
operators. Below we mention the SMT constrain for each
of the different sub-formula. Violation (resp. satisfaction) for
atomic proposition and eventually (resp. globally) constrain
will be the negation of the one mentioned.

' = p
_

e2front(⇢(0))

µ[p, e] = true, for p 2 AP

(satisfaction, i.e., >)
' = I ' 9i 2 [0, |E|].⌧(i)� ⌧(0) 2 I ^ ⇢(i) 6|= '

(violation, i.e., ?)
' = I ' 9i 2 [0, |E|].⌧(i)� ⌧(0) 2 I ^ ⇢(i) |= '

(satisfaction, i.e., >)

A satisfiable SMT instance denotes that the uninterpreted
function was not only able to generate a valid sequence of
consistent cuts but also that the sequence satisfies the MTL
formula given the computation. This result is then fed to the
progression cases to generate the final verdict.

C. Segmentation and Parallelization of Distributed Computa-
tion

We know that predicate detection, let alone runtime verifi-
cation, is NP-complete [24] in the size of the system (number
of processes). This complexity grows to higher classes when
working with nested temporal operators. To make the problem
computationally viable, we aim to chop the computation,
(E ,) into g segments, (seg1,), (seg2,), · · · , (segg,).
This involves creating small SMT-instances for each of the
segments which improves the runtime of the overall problem.
In a computation of length l, if we were to chop it into g
segments, each segment would of the length l

g + ✏ and the set
of events included in it can be given by:

segj =
n
ei� | � 2


max

�
0,

(j � 1)⇥ l

g
� ✏

�
,
j ⇥ l

g

�
^

i 2 [1, | P |]
o

6

Note that monitoring of a segment should include the events
that happened within ✏ time of the segment actually starting
since it might include events that are concurrent with some
other events in the system not accounted for in the previous
segment.

VI. CASE STUDY AND EVALUATION

In this section, we analyze our SMT-based solution. We
note that we are not concerned about data collections, data
transfer, etc, as given a distributed setting, the runtime of the
actual SMT encoding will be the most dominating aspect of the
monitoring process. We evaluate our proposed solution using
traces collected from benchmarks of the tool UPPAAL [18]4

models (Section VI-A) and a case study involving smart
contracts over multiple blockchains (Section VI-B).

A. UPPAAL Benchmarks
1) Setup: We base our synthetic experiments on 3 different

UPPAAL benchmark models described in [25]. The Train Gate
models a railway control system which controls access to a
bridge. The bridge is controlled by a gate/operator and can be
accessed by one train at a time. We monitor two properties:

'1 = (
^

i2P
¬Train[i].Cross) U Train[1].Cross

'2 =
^

i2P

�
Train[i].Appr !

(Gate.Occ U Train[i].Cross)
�

where P is the set of trains.
Fischer’s Protocol is a mutual exclusion protocol for n

processes. We verify first, that no two process (P) enter the
critical section (cs) at the same time and second, all request
(req) should be followed by the processes that are able to
access the critical section within some time.

'3 = (
X

i2P
P[i].cs  1)

'4 = (
^

i2P
P[i].req ! I P[i].cs)

The Gossiping People is a model consisting of n people
who wish to share their secret with each other. We monitor
first, that each Person gets to know about everyone else’s
secret within some time bound and second, each Person

has secrets to share infinitely often.

'5 = I(
^

i,j2P
(i 6= j) ! Person[i].secret[j])

'6 =
^

i2P
(I Person[i].secrets)

Each experiment involves two steps: (1) distributed com-
putation/trace generation and (2) trace verification. For each
UPPAAL model, we consider each pair of consecutive events

4UPPAAL is a model checker for a network of timed automata. The tool-
set is accompanied by a set of benchmarks for real-time systems. Here, we
assume that the components of the network are partially synchronized.

are 0.1s apart, i.e., there are 10 events per second per process.
For our verification step, our monitoring algorithm executes
on the generated computation and verifies it against an MTL
specification. We consider the following parameters (1) pri-
mary which includes time synchronization constant (✏), (2)
MTL formula under monitoring, (3) number of segments (g),
(3) computation length (l), (4) number of processes in the
system (P), and (5) event rate. We study the runtime of our
monitoring algorithm against each of these parameters. We
use a machine with 2x Intel Xeon Platinum 8180 (2.5 Ghz)
processor, 768 GB of RAM, 112 vcores with gcc version 9.3.1.

2) Analysis: We study each of the parameters individually
and analyze how it effects the runtime of our monitoring
approach. All results correspond to ✏ = 15ms, |P| = 2,
g = 15, l = 2sec, an event rate of 10events/sec and '4 as
the MTL specification unless mentioned otherwise. We vary the
number of processes in the system from 2 to 4, since in most
cross-chain transactions the number of blockchains involved
is small.

Impact of different formula. Fig. 5a shows that runtime
of the monitor depends on two factors: the number of sub-
formulas and the depth of nested temporal operators. Com-
paring '3 and '6, both of which consists of the same number
of predicates but since '6 has recursive temporal operators,
it takes more time to verify and the runtime is comparable to
'1, which consists of two sub-formulas. This is because veri-
fication of the inner temporal formula often requires observing
states in the next segment in order to come to the final verdict.
This accounts for more runtime for the monitor.

Impact of epsilon. Increasing the value of time synchroniza-
tion constant (✏), increases the possible number of concurrent
events that needs to be considered. This increases the com-
plexity of verifying the computation and there-by increasing
the runtime of the algorithm. In addition to this, higher values
of ✏ also correspond to more number of possible traces that
are possible and should be taken into consideration. We ob-
serve that the runtime increases exponentially with increasing
the value of time synchronization constant in Fig. 5b. An
interesting observation is that, with longer segment length, the
runtime increases at a higher rate than with shorter segment
length. This is because with longer segment length and higher
✏, it equates to a larger number of possible traces that the
monitoring algorithm needs to take into consideration. This
increases the overall runtime of the verification algorithm by
a considerable amount and at a higher pace.

Impact of segment frequency. Increasing the segment fre-
quency makes the length of each segment lower and thus
verifying each segment involves a lower number of events.
We observe the effect of segment frequency on the runtime
of our verification algorithm in Fig. 5c. With increasing the
segment frequency, the runtime decreases unless it reaches
a certain value (here it is ⇡ 0.6) after which the benefit of
working with a lower number of events is overcast by the time
required to setup each SMT instances. Working with higher

7

1 2 3 4 5 7 10

1

5

10

50

100

500

Number of Processes |P|

R
un

tim
e

(s
)

'1'2'3'4'5'6

(a) Different Formula

0.5 1 1.5 2 2.5 3 3.5
1

5

10

50

100

500

Time Synchronization Constant ✏(s)

R
un

tim
e

(s
)

g = 40
g = 25
g = 20
g = 15
g = 12
g = 10
g = 8
g = 7

(b) Epsilon

0.25 0.5 0.75 1 1.25 1.5 1.75 2

1

5

10

50

100

500

Segment Frequency (sec�1)

R
un

tim
e

(s
)

|P| = 1;'6
|P| = 1;'4
|P| = 2;'6
|P| = 2;'4
|P| = 3;'6
|P| = 3;'4
|P| = 4;'6
|P| = 4;'4

(c) Segment Frequency

10 20 30 40 50

1

5

10

50

100

500

Computation length (l)

R
un

tim
e

(s
)

|P| = 1;'6
|P| = 1;'4
|P| = 2;'6
|P| = 2;'4
|P| = 3;'6
|P| = 3;'4
|P| = 4;'6
|P| = 4;'4

(d) Computation Length

1 2 3 4

1

5

10

50

100

500

No. of solutions (/segment)

R
un

tim
e

(s
)

|P| = 1;'6
|P| = 1;'4
|P| = 2;'6
|P| = 2;'4
|P| = 3;'6
|P| = 3;'4
|P| = 4;'6
|P| = 4;'4

(e) Number of Process

5 7 9 11 13 15

5

10

50

100

500

Event Rate (event/sec)

R
un

tim
e

(s
)

|P| = 1;'6
|P| = 1;'4
|P| = 2;'6
|P| = 2;'4
|P| = 3;'6
|P| = 3;'4
|P| = 4;'6
|P| = 4;'4

(f) Event Rate

Fig. 5: Impact of different parameters on synthetic data

number of segments equates to solving more number of SMT
problem for the same computation length. Setting up the SMT
problem requires a considerable amount of time which is seen
by the slight increase in runtime for higher values of segment
frequency.

Impact of computation length. As it can be inferred from the
previous results, the runtime of our verification algorithm is
majorly dictated by the number of events in the computation.
Thus, when working with a longer computation, keeping the
maximum clock skew and the number of segments constant,
we should see a longer verification time as well. Results in
Fig. 5d supports the above claim.

Impact of number truth values per segment. In order to take
into consideration all possible truth values of a computation,
we execute the SMT problem multiple times, with the verdict
of all previous executions being added to the SMT problem
such that no two verdict is repeated. Here in Fig. 5e we see
that the runtime is linearly effected by increasing number
of distinct verdicts. This is because, the complexity of the
problem that the SMT is trying to solve does not change when
trying to evaluate to a different solution.

Impact of event-rate. Increasing the event rate involves more
number of events that needs to be processed by our verification
algorithm per segment and thereby increasing the runtime at
an exponential rate as seen in Fig. 5f. We also observe that
with higher number of processes, the rate at which the runtime

of our algorithm increases is higher for the same increase in
event rate.

B. Blockchain
1) Setup: We implemented the following cross-chain proto-

cols from [12]: two-party swap, multi-party swap, and auction.
The protocols are written as smart contracts in Solidity and
tested using Ganache, a tool that creates mocked Ethereum
blockchains. Using a single mocked chain, we mimicked
cross-chain protocols via several (discrete) tokens and smart
contracts, which do not communicate with each other.

We use the hedged two-party swap example from [12] to
describe our experiments. The implementation of the other two
protocols are similar. Suppose Alice would like to exchange
her apricot tokens with Bob’s banana tokens, using the hedged
two-party swap protocol shown in Fig. 1. This protocol pro-
vides protection for parties compared to a standard two-party
swap protocol [26], in that if one party locks their assets to
exchange which is refunded later, this party gets a premium
as compensation for locking their assets. The protocol consists
of six steps to be executed by Alice and Bob in turn. In our
example, we let the amount of tokens they are exchanging
be 100 ERC20 tokens and the premium pb be 1 token and
pa + pb be 2 tokens. We deploy two contracts on both apricot
blockchain(the contract is denoted as ApricotSwap) and ba-
nana blockchain (denoted as BananaSwap) by mimicking the
two blockchains on Ethereum. Denote the time that they reach
an agreement of the swap as startT ime. � is the maximum

8

time for parties to observe the state change of contracts by
others and take a step to make changes on contracts. In our
experiment, � = 500 milliseconds. By the definition of the
protocol, the execution should be:

• Step 1. Alice deposits 2 tokens as premium in
BananaSwap before � elapses after startT ime .

• Step 2. Bob should deposit 1 token as premium in
ApricotSwap before 2� elapses after startT ime.

• Step 3. Alice escrows her 100 ERC20 tokens to
ApricotSwap before 3� elapses after startT ime.

• Step 4. Bob escrows her 100 ERC20 tokens to
BananaSwap before 4� elapses after startT ime.

• Step 5. Alice sends the preimage of the hashlock to
BananaSwap to redeem Bob’s 100 tokens before 5�
elapses after startT ime. Premium is refunded.

• Step 6. Bob sends the preimage of the hashlock to
ApricotSwap to redeem Alice’s 100 tokens before 6�
elapses after startT ime. Premium is refunded.

If all parties are conforming, the protocol is executed as
above. Otherwise, some asset refund and premium redeem
events is triggered to resolve the case where some party
deviates. To avoid distraction, we do not provide details here.

Each smart contract provides functions to let parties
deposit premiums DepositPremium(), escrow an as-
set EscrowAsset(), send a secret to redeem assets
RedeemAsset(), refund the asset if it is not redeemed after
timeout, RefundAsset(), and counterparts for premiums
RedeemPremium() and RefundPremium(). Whenever
a function is called successfully (meaning the transaction sent
to the blockchain is included in a block), the blockchain
emits an event that we then capture and log. The event
interface is provided by the Solidity language. For example,
when a party successfully calls DepositPremium(), the
PremiumDeposited event emits on the blockchain. We
then capture and log this event, allowing us to view the values
of PremiumDeposited’s declared fields: the time when it
emits, the party that initiated DepositPremium(), and the
amount of premium sent. Those values are later used in the
monitor to check against the specification.

2) Log Generation and Monitoring: Our tests simulates
different executions of the protocols and generated 1024,
4096, and 3888 different sets of logs for the aforementioned
protocols, respectively. We again use the hedged two-party
swap as an example to show how we generate different
logs to simulate different execution of the protocol. On each
contract, we enforce the order of those steps to be executed.
For example, step 3 EscrowAsset() on the ApricotSwap
cannot be executed before Step 1 is taken, i.e. the premium
is deposited. This enforcement in the contract restricts the
number of possible different states in the contract. Assume we
use a binary indicator to denote whether a step is attempted
by the corresponding party. 1 denotes a step is attempted,
and 0 denotes this step is skipped. If the previous step is
skipped, then the later step does not need to be attempted
since it will be rejected by the contract. We use an array
to denote whether each step is taken for each contract. On

each contract, the different executions of those steps can be
[1,1,1] meaning all steps are attempted, or [1,1,0] meaning
the last step is skipped, and so on. Each chain has 4 different
executions. We take the Cartesian product of arrays of two
contracts to simulate different combinations of executions on
two contracts. Furthermore, if a step is attempted, we also
simulate whether the step is taken late, or in time. Thus
we have 26 possibilities of those 6 steps. In summary, we
succeeded generating 4 · 4 · 26 = 1024 different logs.

In our testing, after deploying the two contracts, we it-
erate over a 2D array of size 1024 ⇥ 12, and each time
takes one possible execution denoted as an array length of
12 to simulate the behavior of participants. For example,
[1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] stands for the first step is at-
tempted but it is late, and the steps after second step are all
attempted in time. Indexed from 0, the even index denotes
if a step is attempted or not and the odd index denotes the
former step is attempted in time or late. By the indicator given
by the array, we let parties attempt to call a function of the
contract or just skip. In this way, we produce 1024 different
logs containing the events emitted in each iteration.

We check the policies mentioned in [12]: liveness, safety,
and ability to hedge against sore loser attacks. Live-
ness means that Alice should deposit her premium on
the banana blockchain within � from when the swap
started([0,�) ban.premium_deposited(alice)) and
then Bob should deposit his premiums, and then they escrow
their assets to exchange, redeem their assets (i.e. the assets
are swapped), and the premiums are refunded. In our testing,
we always call a function to settle all assets in the contract
if the asset transfer is triggered by timeout. Thus, in the
specification, we also check all assets are settled:

'liveness = [0,�) ban.premium_deposited(alice)^

[0,2�) apr.premium_deposited(bob)^

[0,3�) apr.asset_escrowed(alice)^

[0,4�) ban.asset_escrowed(bob)^

[0,5�) ban.asset_redeemed(alice)^

[0,6�) apr.asset_redeemed(bob)^

[0,5�) ban.premium_refunded(alice)^

[0,6�) apr.premium_refunded(bob)^

[6�,1) apr.all_asset_settled(any)^

[5�,1) ban.all_asset_settled(any)

Safety is provided only for conforming parties, since if one
party is deviating and behaving unreasonably, it is out of
the scope of the protocol to protect them. Alice should
always deposit her premium first to start the execution of the
protocol([0,�) ban.premium_deposited(alice))
and proceed if Bob proceeds with the next step. For
example, if Bob deposits his premium, then Alice
should always go ahead and escrow her asset to
exchange([0,2�) apr.premium_deposited(bob) !

[0,3�) apr.asset_escrowed(alice)). Alice should

9

4 8 12 16 20 24 28

1

5
10

50
100

500

No. of events

R
un

tim
e

(s
)

2-party swap; g = 1
3-party swap; g = 2

aunction; g = 2

Fig. 6: Blockchain Experiments

never release her secret if she does not redeem, which means
Bob should not be able to redeem unless Alice redeems,
which is expressed as ¬apr.asset_redeemed(bob)U
ban.asset_redeemed(alice):

'alice conform = [0,�) ban.premium_deposited(alice)^�
[0,2�) apr.premium_deposited(bob) !

[0,3�) apr.asset_escrowed(alice)
�
^

�
[0,4�) ban.asset_escrowed(bob) !

[0,5�) ban.asset_redeemed(alice)
�
^

�
¬apr.asset_redeemed(bob)U
ban.asset_redeemed(alice)

�

By definition, safety means a conforming party does not end
up with a negative payoff. We track the assets transferred
from parties and transferred to parties in our logs. Thus,
a conforming party is safe. e.g. Alice, is specified as safe
'alice safety:

'alice safety ='alice conform !
� X

TransTo = alice

amount �
X

TransFrom = alice

amount

�

To enable a conforming party to hedge against the sore loser
attack if they escrow assets to exchange which is refunded
in the end, our protocol should guarantee the aforementioned
party get a premium as compensation, which is expressed as
'alice hedged:

'alice hedged =
�
'alice conform^

apr.asset_escrowed(alice)^
apr.asset_refunded(any)

�
!

� X

TransferTo = alice

amount �
X

TransferFrom = alice

amount

+ apr.premium.amount

�

3) Analysis of Results: We put our monitor to test the traces
generated by the Truffle-Ganache framework. To monitor the
2-party swap protocol we do not divide the trace into multiple
segments due to the low number of events that are involved in

the protocol. On the other hand, both 3-party swap and auction
protocol involve a higher number of events and thus we divide
the trace into two segments (g = 2). In Fig. 6, we show how
the runtime of the monitor is effected by the number of events
in each transaction log.

Additionally, we generate transaction logs with different
values for deadline (�) and time synchronization constant (✏)
to put the safety of the protocol in jeopardy. We observe both
true and false verdict when ✏ ' �. This is due to the
non deterministic time stamp owning to the assumption of
a partially synchronous system. The observed time stamp of
each event can at most be off by ✏. Thus, we recommend not
to use a value of � that is comparable to the value of ✏ when
designing the smart contract.

VII. RELATED WORK

Centralized and decentralized online predicate detection in
an asynchronous distributed system have been extensively
studied (e.g., [27], [28]). Extensions to include temporal
operators appear in [29], [30]. The line of work in [27]–
[31] considers a fully asynchronous system. An SMT-based
predicate detection solution has been introduced in [32]. On
the other hand, runtime monitoring for synchronous distributed
system has been studied in [33]–[35]. This approach has
shortcoming, the major one being the assumption of a common
global clock shared among all the processes. Finally, fault-
tolerant monitoring, where monitors can crash, has been inves-
tigated in [36] for asynchronous and in [37] for synchronized
distributed processes.

Runtime monitoring of time sensitive distributed system
has been studied in [14], [15], [38], [39] and security vul-
nerabilities posed by blockchains have also been extensively
studied in [40]–[44]. However, these methods fall short to
verify the correctness of cross-chain protocols, due to their
assumption regarding synchronous systems and the presence
of a global clock. On the contrary, we assume the presence of
a clock synchronization algorithm which limits the maximum
clock skew among processes (blockchain in this context)
to a constant. This is a realistic assumption since different
blockchains have their own local clock and it is certain to
have a skew between them. A similar SMT-based solution
was studied for LTL specifications in [16], which we extend
to include a more expressive time bounded logic relevant to
the usage we mention in this paper.

VIII. CONCLUSION

In this paper, we study distributed runtime verification.
We propose a technique which takes an MTL formula and
a distributed computation as input. By assuming partial syn-
chrony among all processes, first we chop the computation
into several segments and then apply a progression-based
formula rewriting monitoring algorithm implemented as an
SMT decision problem in order to verify the correctness of the
distributed system with respect to the formula. We conducted
extensive synthetic experiments on traces generated by the tool
UPPAAL and a set of blockchain smart contracts.

10

For future work, we plan to study the trade off between
accuracy and scalability of our approach. Another important
extension of our work is distributed runtime verification where
the processes are dynamic, i.e., the process can crash and
can also restore its state at any given time during execution.
This will let us study a wide range of applications including
airspace monitoring.

REFERENCES

[1] Y. Lu, “The blockchain: State-of-the-art and research challenges,” Jour-
nal of Industrial Information Integration, vol. 15, pp. 80–90, 2019.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[3] M. Herlihy, “Atomic cross-chain swaps,” in Proceedings of the 2018
ACM symposium on principles of distributed computing, 2018, pp. 245–
254.

[4] M. Herlihy, B. Liskov, and L. Shrira, “Cross-chain deals and adversarial
commerce,” The VLDB Journal, pp. 1–19, 2021.

[5] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” Ieee Access, vol. 4, pp. 2292–2303, 2016.

[6] J. Xu, K. Xue, S. Li, H. Tian, J. Hong, P. Hong, and N. Yu, “Healthchain:
A blockchain-based privacy preserving scheme for large-scale health
data,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8770–8781,
2019.

[7] L. W. Cong and Z. He, “Blockchain disruption and smart contracts,”
The Review of Financial Studies, vol. 32, no. 5, pp. 1754–1797, 2019.

[8] C. Dannen, Introducing Ethereum and solidity. Springer, 2017, vol.
318.

[9] J. Ellul and G. J. Pace, “Runtime verification of ethereum smart
contracts,” in 2018 14th European Dependable Computing Conference
(EDCC). IEEE, 2018, pp. 158–163.

[10] P. Technologies, As of 2017. [Online]. Available: https://github.com/
paritytech/parity

[11] R. Koymans, “Specifying Real-Time Properties with Metric Temporal
Logic,” RealTime Systems, vol. 2, no. 4, pp. 255–299, 1990.

[12] Y. Xue and M. Herlihy, “Hedging against sore loser attacks in cross-
chain transactions,” arXiv preprint arXiv:2105.06322, 2021.

[13] D. Mills, “Network time protocol version 4: Protocol and algorithms
specification,” Internet Requests for Comments, RFC Editor, RFC 5905,
June 2010.

[14] D. Basin, F. Klaedtke, S. Müller, and E. Zălinescu, “Monitoring metric
first-order temporal properties,” J. ACM, vol. 62, no. 2, may 2015.
[Online]. Available: https://doi.org/10.1145/2699444

[15] J. Worrell, J. Ouaknine, and H.-M. Ho, “On the expressiveness and
monitoring of metric temporal logic,” Logical Methods in Computer
Science, vol. 15, 2019.

[16] R. Ganguly, A. Momtaz, and B. Bonakdarpour, “Distributed Runtime
Verification Under Partial Synchrony,” in 24th International Conference
on Principles of Distributed Systems (OPODIS 2020), vol. 184,
2021, pp. 20:1–20:17. [Online]. Available: https://drops.dagstuhl.de/
opus/volltexte/2021/13505

[17] A. Momtaz, N. Basnet, H. Abbas, and B. Bonakdarpour, “Predicate
monitoring in distributed cyber-physical systems,” in Proceedings of the
21st International Conference on Runtime Verification (RV), 2021, pp.
3–22.

[18] K. G. Larsen, P.Pattersson, and W. Yi, “UPPAAL in a nutshell,”
International Journal on Software Tools for Technology Transfer, vol. 1,
no. 1-2, pp. 134–152, 1997.

[19] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, p. 558–565, jul 1978. [Online].
Available: https://doi.org/10.1145/359545.359563

[20] R. Alur and T. A. Henzinger, “Logics and models of real time: A survey,”
in Real-Time: Theory in Practice, J. W. de Bakker, C. Huizing, W. P.
de Roever, and G. Rozenberg, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1992, pp. 74–106.

[21] ——, “A really temporal logic,” J. ACM, vol. 41, no. 1, p. 181–203,
jan 1994. [Online]. Available: https://doi.org/10.1145/174644.174651

[22] A. Bauer and Y. Falcone, “Decentralised ltl monitoring,” in FM 2012:
Formal Methods, D. Giannakopoulou and D. Méry, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 85–100.

[23] K. Havelund and G. Rosu, “Monitoring programs using rewriting,” in
Proceedings of the 16th IEEE International Conference on Automated
Software Engineering, ser. ASE ’01. USA: IEEE Computer Society,
2001, p. 135.

[24] V. K. Garg, Elements of Distributed Computing. USA: John Wiley &
Sons, Inc., 2002.

[25] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on UPPAAL,” in
Formal Methods for the Design of Real-Time Systems: 4th International
School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM-RT 2004, no. 3185, 2004, pp. 200–236.

[26] T. Nolan, “Alt chains and atomic transfers,” https://bitcointalk.org/index.
php?topic=193281.0, May, 2013, bitcoin Forum.

[27] H. Chauhan, V. K. Garg, A. Natarajan, and N. Mittal, “A distributed
abstraction algorithm for online predicate detection,” in Proceedings of
the 32nd IEEE Symposium on Reliable Distributed Systems (SRDS),
2013, pp. 101–110.

[28] N. Mittal and V. K. Garg, “Techniques and applications of computation
slicing,” Distributed Computing, vol. 17, no. 3, pp. 251–277, 2005.

[29] V. A. Ogale and V. K. Garg, “Detecting temporal logic predicates
on distributed computations,” in Proceedings of the 21st International
Symposium on Distributed Computing (DISC), 2007, pp. 420–434.

[30] M. Mostafa and B. Bonakdarpour, “Decentralized runtime verification
of LTL specifications in distributed systems,” in Proceedings of the
29th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2015, pp. 494–503.

[31] K. Sen, A. Vardhan, G. Agha, and G.Rosu, “Efficient decentralized
monitoring of safety in distributed systems,” in Proceedings of the 26th
International Conference on Software Engineering (ICSE), 2004, pp.
418–427.

[32] V. T. Valapil, S. Yingchareonthawornchai, S. S. Kulkarni, E. Torng,
and M. Demirbas, “Monitoring partially synchronous distributed systems
using SMT solvers,” in Proceedings of the 17th International Conference
on Runtime Verification (RV), 2017, pp. 277–293.

[33] L. M. Danielsson and C. Sánchez, “Decentralized stream runtime
verification,” in Proceedings of the 19th International Conference on
Runtime Verification (RV), 2019, pp. 185–201.

[34] C. Colombo and Y. Falcone, “Organising LTL monitors over distributed
systems with a global clock,” Formal Methods in System Design, vol. 49,
no. 1-2, pp. 109–158, 2016.

[35] B. Bonakdarpour and B. Finkbeiner, “Runtime verification for hyper-
ltl,” in Proceedings of the 16th International Conference on Runtime
Verification, 2016, pp. 41–45.

[36] B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. A. Rosenblueth,
and C. Travers, “Decentralized asynchronous crash-resilient runtime
verification,” in Proceedings of the 27th International Conference on
Concurrency Theory (CONCUR), 2016, pp. 16:1–16:15.

[37] L. Lamport and N. Lynch, Handbook of Theoretical Computer Science.
Amsterdam: Elsevier Science Publishers B. V., 1990, vol. B, ch. 18:
Distributed Computing: Models and Methods.

[38] D. Basin, F. Klaedtke, and S. Müller, “Monitoring security policies
with metric first-order temporal logic,” in Proceedings of the 15th ACM
Symposium on Access Control Models and Technologies, ser. SACMAT
’10. New York, NY, USA: Association for Computing Machinery, 2010,
p. 23–34. [Online]. Available: https://doi.org/10.1145/1809842.1809849

[39] P. Thati and G. Roşu, “Monitoring algorithms for metric temporal logic
specifications,” Electron. Notes Theor. Comput. Sci., vol. 113, no. C, p.
145–162, jan 2005.

[40] A. Garcı́a, E. Cambronero, C. Colombo, L. Dı́az, and G. Pace, Runtime
Verification of Contracts with Themulus, 09 2020, pp. 231–246.

[41] S. Azzopardi, J. Ellul, and G. J. Pace, “Runtime monitoring processes
across blockchains,” in Fundamentals of Software Engineering, H. Hojjat
and M. Massink, Eds. Cham: Springer International Publishing, 2021,
pp. 142–156.

[42] S. Azzopardi, G. Pace, F. Schapachnik, and G. Schneider, “On the
specification and monitoring of timed normative systems,” in Runtime
Verification, L. Feng and D. Fisman, Eds. Cham: Springer International
Publishing, 2021, pp. 81–99.

[43] X. Chen, D. Park, and G. Roşu, “A language-independent approach
to smart contract verification,” in Leveraging Applications of Formal
Methods, Verification and Validation. Industrial Practice, T. Margaria
and B. Steffen, Eds. Cham: Springer International Publishing, 2018,
pp. 405–413.

[44] D. Park, Y. Zhang, M. Saxena, P. Daian, and G. Roşu, “A
formal verification tool for ethereum vm bytecode,” in Proceedings

11

https://github.com/paritytech/%20parity
https://github.com/paritytech/%20parity
https://doi.org/10.1145/2699444
https://drops.dagstuhl.de/opus/volltexte/2021/13505
https://drops.dagstuhl.de/opus/volltexte/2021/13505
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/174644.174651
https://bitcointalk.org/index.php?%20topic=193281.0
https://bitcointalk.org/index.php?%20topic=193281.0
https://doi.org/10.1145/1809842.1809849

of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2018. New York, NY, USA:
Association for Computing Machinery, 2018, p. 912–915. [Online].
Available: https://doi.org/10.1145/3236024.3264591

IX. APPENDIX

Here, in Section IX-A we explain how the different UPPAAL
models work and in Section IX-B we dive into the MTL
specifications we use to verify 3-party swap and the auction
protocol.

A. UPPAAL Models

Below we explain in details how each of the UPPAAL
models work. In respect to our monitoring algorithm, we
consider multiple instances of each of the models as different
processes. Each event consists of the action that was taken
along with the time of occurrence of the event. In addition to
this, we assume a unique clock for each instance, synchronized
by the presence of a clock synchronization algorithm with a
maximum clock skew of ✏.

a) The Train-Gate: It models a railway control system
which controls access to a bridge for several trains. The bridge
can be considered as a shared resource and can be accessed
by one train at a time. Each train is identified by a unique
id and whenever a new train appears in the system, it sends
a appr message along with it’s id. The Gate controller has
two options: (1) send a stop message and keep the train in
waiting state or (2) let the train cross the bridge. Once the
train crosses the bridge, it sends a leave message signifying
the bridge is free for any other train waiting to cross.

Safe

Appr

Stop

Start

Cross

appr[id]

stop[id] go[id]

leave[id]

Fig. 7: Train model

The gate keeps track of the state of the bridge, in other
words the gate acts as the controller of the bridge for the trains.
If the bridge is currently not being used, the gate immediately
offers any train appearing to go ahead, otherwise it sends a
stop message. Once the gate is free again from a train leaving
the bridge, it sends out a go message to any train that had
appeared in the mean time and was waiting in the queue.

Free

Occ

go[front()]

appr[e]

leave[id]

appr[e] stop[tail()]

Fig. 8: Gate model

b) The Fischer’s Protocol: It is a mutual exclusion
protocol designed for n processes. A process always sends
in a request to enter the critical section (cs). On receiving the
request, a unique pid is generated and the process moves to a
wait state. A process can only enter into the critical section
when it has the correct id. Upon exiting the critical section,
the process resets the id which enables other processes to
enter the cs

A

cs wait

req

id = 0

id == pid

id = 0id = pid

id = 0

Fig. 9: Fischer model

Start

Call

Listen

start()

talk() listen()

exchange()

Fig. 10: Gossiping people model

12

https://doi.org/10.1145/3236024.3264591

c) The Gossiping People: The model consists of n
people, each having a private secret they wish to share with
each other. Each person can Call another person and after
a conversation, both person mutually knows about all their
secrets. With respect to our monitoring problem, we make
sure that each person generates a new secret that needs to be
shared among others infinitely often.

B. Blockchain
Below shows the specifications we used to verify the

correctness of hedged three-party swap and auction protocols,
as shown in [12]. The structure of the specifications are similar
to that of hedged two-party swap protocol.

1) Hedged 3-Party Swap Protocol: The three-party swap
example we implemented can be described as a digraph where
there are directed edges between Alice, Bob and Carol. For
simplicity, we consider each party transfers 100 assets. Trans-
fer between Alice and Bob is called ApricotSwap, meaning
Alice proposes to transfer 100 apricot tokens to Bob, transfer
between Bob and Carol called BananaSwap, meaning Bob
proposes to transfer 100 banana tokens to Carol, transfer
between Carol and Alice, called CherrySwap, meaning Carol
proposes to transfer 100 cherry tokens to Alice. Different
tokens are managed by different blockchains (Apricot, Banana
and Cherry respectively).

We denote the time they reach an agreement of the swap as
startT ime. � is the maximum time for parties to observe the
state change of contracts by others and take a step to make
changes on contracts. According of the protocol, the execution
should follow the following steps:

• Step 1. Alice deposits 3 tokens as escrow premium in
ApricotSwap before � elapses after startT ime .

• Step 2. Bob deposits 3 tokens as escrow premium in
BananaSwap before 2� elapses after startT ime .

• Step 3. Carol deposits 3 tokens as escrow premium in
CherrySwap before 3� elapses after startT ime.

• Step 4. Alice deposits 3 tokens as
redemption premium in CherrySwap before
4� elapses after startT ime.

• Step 5. Carol deposits 2 tokens as
redemption premium in BananaSwap before
5� elapses after startT ime .

• Step 6. Bob deposits 1 token as redemption premium
in ApricotSwap before 6� elapses after startT ime.

• Step 7. Alice escrows 100 ERC20 tokens to
ApricotSwap before 7� elapses after startT ime.

• Step 8. Bob escrows 100 ERC20 tokens to BananaSwap
before 8� elapses after startT ime.

• Step 9. Carol escrows 100 ERC20 tokens to
CherrySwap before 9� elapses after startT ime.

• Step 10. Alice sends the preimage of the hashlock to
CherrySwap to redeem Carol’s 100 tokens before 10�
elapses after startT ime.

• Step 11. Carol sends the preimage of the hashlock to
BananaSwap to redeem Bob’s 100 tokens before 11�
elapses after startT ime.

• Step 12. Bob sends the preimage of the hashlock to
ApricotSwap to redeem Alice’s 100 tokens before 12�
elapses after startT ime.

If all parties are conforming, the protocol is executed as
above. Otherwise, some asset refund and premium redeem
events will be triggered to resolve the case where some party
deviates. To avoid distraction, we do not provide details here.

a) Liveness: Below shows the specification to liveness,
if all the steps of the protocol has been taken:

'liveness = [0,�) apr.depositEscrowPr(alice)

^ [0,2�) ban.depositEscrowPr(bob)

^ [0,3�) che.depositEscrowPr(carol)

^ [0,4�) che.depositRedemptionPr(alice)

^ [0,5�) ban.depositRedemptionPr(carol)

^ [0,6�) apr.depositRedemptionPr(bob)

^ [0,7�) apr.assetEscrowed(alice)

^ [0,8�) ban.assetEscrowed(bob)

^ [0,9�) che.assetEscrowed(carol)

^ [0,10�) che.hashlockUnlocked(alice)

^ [0,11�) ban.hashlockUnlocked(carol)

^ [0,12�) apr.hashlockUnlocked(bob)

^ assetRedeemed(alice)

^ assetRedeemed(bob)

^ assetRedeemed(carol)

^ EscrowPremiumRefunded(alice)

^ EscrowPremiumRefunded(bob)

^ EscrowPremiumRefunded(carol)

^ RedemptionPremiumRefunded(alice)

^ RedemptionPremiumRefunded(bob)

^ RedemptionPremiumRefunded(carol)

b) Safety: Below shows the specification to check if
an individual party is conforming. If a party is found to
be conforming we ensure that there is no negative payoff
for the corresponding party. Specification to check Alice is

13

conforming:

'alice conf = [0,�) apr.depositEscrowPr(alice)

^
�

[0,3�) che.depositEscrowPr(carol) !

[0,4�) che.depositRedemptionPr(alice)
�

^
�
¬che.depositRedemptionPr(alice)U

che.depositEscrowPr(carol)

�
^

�
[0,6�) apr.depositRedemptionPr(bob) !

[0,7�) apr.assetEscrowed(alice)
�

^
�
¬apr.assetEscrowed(alice)U

apr.depositRedemptionPr(bob)

�

^
�

[0,9�) che.assetEscrowed(carol) !

[0,10�) che.hashlockUnlocked(alice)
�

^
�
¬che.hashlockUnlocked(alice)U

che.assetEscrowed(carol)

�
^

�
¬ban.hashlockUnlocked(carol)U
che.hashlockUnlocked(alice)

�

^
�
¬apr.hashlockUnlocked(bob)U

che.hashlockUnlocked(alice)

�

Specification to check conforming Alice does not have a
negative payoff:

'alice safety = 'alice conform !
� X

TransTo = alice

amount �
X

TransFrom = alice

amount

�

c) Hedged: Below shows the specification to check that,
if a party is conforming and its escrowed asset is refunded,
then it gets a premium as compensation.

'alice hedged =
�
'alice conform

^ apr.assetEscrowed(alice)

�

!
� X

TransTo = alice

amount

�
X

TransFrom = alice

amount

+ apr.redemptionPremium.amount

�

2) Auction Protocol: In the auction example, we consider
Alice to be the auctioneer who would like to sell a ticket
(worth 100 ERC20 tokens) on the ticket (tckt) blockchain,
and Bob and Carol bid on the coin blockchain and the
winner should get the ticket and pay for the auctioneer what
they bid, and the loser will get refunded. We denote the time
that they reach an agreement of the auction as startT ime.
� is the maximum time for parties to observe the state
change of contracts by others and take a step to make changes
on contracts. Let T icketAuction be a contract managing
the “ticket” on the ticket blockchain, and CoinAuction be
a contract managing the bids on the coin blockchain. The
protocol is briefed as follows.

• Setup. Alice generates two hashes h(sb) and h(sc). h(sb)
is assigned to Bob and h(sc) is assigned to Carol. If
Bob is the winner, then Alice releases sb. If Carol is
the winner, then Alice releases sc. If both sb and sc are
released in T icketAuction, then the ticket is refunded.
If both sb and sc are released in CoinAuction , then all
coins are refunded. In addition, Alice escrows her ticket
as 100 ERC20 tokens in T icketAuction and deposits 2
tokens as premiums in CoinAuction.

• Step 1 (Bidding). Bob and Carol bids before � elapses
after startT ime.

• Step 2 (Declaration). Alice sends the winner’s secret to
both chains to declare a winner before 2� elapses after
startT ime.

• Step 3 (Challenge). Bob and Carol challenges if they
see two secrets or one secret missing, i.e. Alice cheats,
before 4� elapses after startT ime. They challenge by
forwarding the secret released by Alice using a path
signature scheme [3].

• Step 4 (Settle). After 4� elapses after startT ime, on
the CoinAuction, if only the hashlock corresponding
to the actual winner is unlocked, then the winner’s bid
goes to Alice. Otherwise, the winner’s bid is refunded.
Loser’s bid is always refunded. If the winner’s bid is
refunded, all bidders including the loser gets 1 token as
premium to compensate them. On the T icketAuction, if
only one secret is released, then the ticket is transferred
to the corresponding party who is assigned the hash of
the secret. Otherwise, the ticket is refunded.

a) Liveness: Below shows the specification to check that,
if all parties are conforming, the winner (Bob) gets the ticket
and the auctioneer gets the winner’s bid.

'liveness = [0,�) coin.bid(bob)

^ [0,2�) coin.declaration(alice, sb)

^ [0,2�) tckt.declaration(alice, sb)

^ (4�,1) coin.redeemBid(any)

^ (4�,1) coin.refundPremium(any)

^
�
coin.bid(carol) !

[0,�) coin.refundBid(any)
�

^ tckt.redeemTicket(any)

^ ¬coin.challenge(any)
^ ¬tckt.challenge(any)

b) Safety: Below shows the specification to check that,
if a party is conforming, this party does not end up worse off.
Take Bob (the winner) for example.

14

Specification to define Bob is conforming:

'bob conform = [0,�) coin.bid(bob)

^
⇣�
coin.declaration(alice, sc)_

coin.challenge(carol, sc)
�
!

^
�
tckt.declaration(alice, sc)_

tckt.challenge(carol, sc)_

tckt.challenge(bob, sc)
�⌘

^
⇣�
coin.declaration(alice, sb)_

coin.challenge(carol, sb)
�
!

^
�
tckt.declaration(alice, sb)_

tckt.challenge(carol, sb)_

tckt.challenge(bob, sb)
�⌘

^
⇣�
tckt.declaration(alice, sc)_

tckt.challenge(carol, sc)
�
!

^
�
coin.declaration(alice, sc)_

coin.challenge(carol, sc)_

coin.challenge(bob, sc)
�⌘

^
⇣�
tckt.declaration(alice, sb)_

tckt.challenge(carol, sb)
�
!

^
�
coin.declaration(alice, sb)_

coin.challenge(carol, sb)_

coin.challenge(bob, sb)
�⌘

Specification to define Bob does not end up worse off:

'bob safety = 'bob conform !
⇣�
coin.refundBid(any)

^ coin.redeemPremium(any)

�
_

tckt.redeemTicket(any)

⌘

c) Hedged: Below shows the specification to check that,
if a party is conforming and its escrowed asset is refunded,
then it gets a premium as compensation.

'bob hedged =
⇣
'bob conforming

^
�
tckt.refundTicket(alice)_

tckt.redeemTicket(carol)

�⌘
!

�
coin.refundBid(any)

^ coin.redeemPremium(any)

�

15

	Introduction
	Preliminaries
	Distributed Computation
	Metric Temporal Logic (MTL) mtl1992,mtl1994

	Formal Problem Statement
	Formula Progression for MTL
	SMT-based Solution
	SMT Entities
	SMT Constraints
	Segmentation and Parallelization of Distributed Computation

	Case Study and Evaluation
	UPPAAL Benchmarks
	Setup
	Analysis

	Blockchain
	Setup
	Log Generation and Monitoring
	Analysis of Results

	Related Work
	Conclusion
	References
	Appendix
	UPPAAL Models
	Blockchain
	Hedged 3-Party Swap Protocol
	Auction Protocol

