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Abstract
Given1 a cloud of n data points in Rd, consider all projections onto m-dimensional subspaces of
Rd and, for each such projection, the empirical distribution of the projected points. What does this
collection of probability distributions look like when n, d grow large? We consider this question
under the null model in which the points are i.i.d. standard Gaussian vectors, focusing on the
asymptotic regime in which n, d → ∞, with n/d → α ∈ (0,∞), while m is fixed. Denoting by
Fm,α the set of probability distributions in Rm that arise as low-dimensional projections in this
limit, we establish several new results on this model:

Wasserstein radius for m = 1. Denoting by W2(P1, P2) the second Wasserstein distance between proba-
bility measures P1 and P2, we prove that sup{W2(P,N(0, 1)) : P ∈ F1,α} = 1/

√
α.

KL-Wasserstein outer bound. We show that, for any m, Fm,α is contained in a W2 neighborhood of the
set of distributions P such that DKL(P∥N(0, Im)) ≤ Cmα−1(1 ∨ logα), with DKL the Kullback-
Leibler divergence.

Information dimension bound. Denoting by d(P ) the lower information dimension of P , we prove that
Fm,α is contained in {P : d(P ) ≥ m(1− 1/α)} for α > 1.

The previous question has application to unsupervised learning methods, such as projection pursuit
and independent component analysis. We introduce a version of the same problem that is relevant
for supervised learning, where the labels depend on k-dimensional projections of the covariates
through a link function φ, and present the following results:

General ERM asymptotics. We consider a class of empirical risk minimization problems over functions
f : Rd → R of the form f(x) = h(W⊤x), and show that the asymptotics of the minimum empirical
risk can be expressed in terms of the feasibility set Fφ

m,α.

Wasserstein bound for m = 1. We prove an outer bound on Fφ
1,α for general k = O(1), which generalizes

the Wasserstein radius result obtained in the unsupervised setting. In fact, this outer bound character-
izes the maximum W2 distance between the empirical distribution of one-dimensional projections and
the expected distribution.

Interpolation for two-layer networks. As a corollary to the previous result, we prove that a neural network
with two-layers and m hidden neurons can separate n data points in d dimensions with margin κ only
if md ≥ Cκ2n. Earlier bounds only required md ≥ Cn/ log(d/κ).

Margin distributions for linear classifier. We demonstrate the tightness of our W2 bound by deriving the
asymptotic distribution of the margins in linear max-margin classification.

1. Extended abstract. Full version appears as [arXiv:2206.06526, v1]
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