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1. Introduction
1.1. Background

Consider the supervised learning problem in which we are given i.i.d. samples (y;,x;), i < n, from a
common probability distribution on R x X. Here x; € X is a vector of covariates, and y; is a response
variable. We are interested in learning a model f : X = R which, given a new point @, predicts the
corresponding response Yo, via f (Test)-
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A number of statistical learning methods can be viewed as a combination of two steps: featurization
and training. Featurization maps sample points into a convenient ‘feature space’ H (a vector space) via
a featurization map ¢ : X — H, x; — ¢(x;). Training fits a model that is linear in the feature space:
f(x) = (a, d(x))3. In this paper we will be concerned with a relatively simple method for training, ridge

regression:
n 9
a(\) = argmin { 3" (i — (@ o))" + Aallf, } &)
i=1
Here it is implicitly assumed that # is an Hilbert space, and therefore a € H and (-, - )4, || - ||% are the

scalar product and norm in H.
It is useful to discuss a few examples of this paradigm, some of which will play a role in what follows (we
refer to Section 2.1 for formal definitions).

Feature engineering. We use this term to refer to the classical approach of crafting a set of N features
o(x) = (p1(x),...,on(x)) € H=RY for a specific application, by leveraging domain expertise. This has
been the standard approach to computer vision for a long time [28,10], and is still the state of the art in
most of applied statistics [24].

Kernel methods. In this case H is a reproducing kernel Hilbert space (RKHS) defined implicitly via a positive
definite kernel H : X x X — R [15]. Rather than manually constructing features, the statistician/data
analyst only needs to encode in H(x1,x2) = (¢p(x1), p(x2))x a suitable notion of similarity in the input
space X'. The resulting model only depends on the kernel H, and a crucial role is played by its eigenvalue
decomposition H(x1,x2) = .oy AN2te(z1)be(x2). Ridge regression with RKHS featurization is referred to
as kernel ridge regression (KRR). Formally, the KRR estimator takes the form:

=Y hute@),  Hoe=D ((Mn) -1+ G) i Aede (Yo yn (2)
£=1 =1
Grer = Ao (e, Yo )n - (3)

Here (f,g)n :=n"'>"1" | f(x;)g(z;) denotes the scalar product with respect to the empirical measure.

For large n, we can imagine to replace the empirical scalar product with its population counterpart, and
therefore Gy &~ A?1y—p, whence f)\’g ~ ((A/n) + 22)7]A2 (Y, y)r. In words, KRR attempts to estimate
accurately the projection of f(x) = E[y|x] onto the eigenvectors of the kernel H, corresponding to large
eigenvalues Ay. On the other hand, it shrinks towards 0 the projections of f onto eigenvectors corresponding
to smaller eigenvalues.

Random Features (RF). Instead of constructing the featurization map ¢ on the basis of domain ex-
pertise, or, implicitly, via a kernel, RF methods use a random map ¢ : X — RY. We will study a
general construction that generalizes the original proposal of [38,7]. We sample N points in a space
via 01,...0N ~q 7 (for a certain probability measure 7 on ), and then define the mapping ¢ by letting
¢(x) = (o(x;01),...,0(x;0N)). Here 0 : X x Q@ — R is a square integrable function. We endow the feature
space Hy = R¥Y with the inner product (a;, as)y, = alas/N.

Because of the connection to two-layer neural networks (see below) we shall refer to N as the ‘number
of neurons’ (although, ‘number of parameters’ would be more appropriate), and to o as the ‘activation
function. The resulting function f takes the form

N 1
f@ia) = {a,d(@)n = Zaia(m; 0;). (4)
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We will refer to the procedure defined by Eq. (1) with ¢ the random feature map defined here as ‘random
feature ridge regression’ (RFRR). RFRR is closely related to KRR. First of all, we can view RFRR as an
example of KRR, with kernel

N
Hiv(as,22) = (@), $a))u = > o1 0)0(w2:0,)

Notice however that the kernel Hy has finite rank and is random, because of the random features 64, ..., 0.
Second, for large N, we can expect Hy to be a good approximation of its expectation

IEHN(:E17$2) = H(:Bl,.’llg) = /a(ml,O) O'(QZQ;O) T(de) . (5)
Q

Hence, for large IV, we expect RFRR to have generalization properties similar to the underlying RKHS,
while possibly exhibiting lower complexity because it only operates on N x n matrices (instead of n x n
matrices as for KRR).

Neural networks in the linear (lazy) regime. The methods described above fit the general paradigm of Eq. (1).
Training does not affect the feature map ¢. The model f,\( -) is linear in y, as a consequence of the fact
that the loss is quadratic (see also Eq. (2)). In contrast, neural networks aim at learning the best feature
representation of the data. The feature map changes during training, and indeed there is no clear separation
between the feature map ¢(x) and the coefficients a.

Nevertheless a copious line of recent research shows that —under certain training schemes— neural
networks are well approximated by their linearization around a random initialization [25,27,19,17,4,3,1,46,
36]. It is useful to recall the basic argument here. Denote by « — f(x; 0) the neural network, with parameters
(weights) @ € RY and by 6 the initialization for gradient-based training. For highly overparametrized
networks, a small change in the parameters 0 is sufficient to change significantly the evaluations of f at
the data points, i.e., the vector (f(x1;0),..., f(x,;0)). As a consequence, an empirical risk minimizer can
be found in a small neighborhood of the initialization 8y, and it is legitimate to approximate f by its first
order Taylor expansion in the parameters:

f(x;00 +a) = f(x;00) + (a, Vo f(x;60)) . (6)

Apart from the zero-th order term f(x;6g) (which has no free parameters, and hence plays the role of
an offset), this linearized model takes the same form f(z) = (a, ¢(x)). The featurization map is given by
¢(x) = Vo f(x;0). We refer to the model  — (a, Vg f(x;0))) as the neural tangent (NT) model.

Notice that the NT featurization map is random, because of the random initialization 8,. However, in
general it does not take the form of the RF model, because the entries of Vg f(x;0y) are not independent.
Despite this important difference, we expect key properties of the RF model to generalize to suitable classes
of NT models. Examples of this phenomenon were studied recently in [20,34].

The present paper focuses on KRR and RFRR. We introduce a set of assumptions on the data distribu-
tion, the choice of activation function, and the probability distribution 7 on the 8;’s, under which we can
characterize the large n, N behavior of the generalization (test) error. While our results apply to an abstract
input space X', our assumptions aim at capturing the behavior observed when X is high-dimensional, and
the distribution v on X satisfies strong concentration properties. For instance, our results apply to X = S%1
(the sphere in d dimension) or X = {+1, —1}¢, both endowed with the uniform measure.

Our results do not require the true regression function f, to belong to the associated RKHS and they
characterize the test error (with respect to the square loss) pointwise, i.e., for each specific target function
f«- This characterization holds up to error terms that are negligible compared to the null risk E{ f.(x)?}.
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In particular our results allow to answer in a quantitative way two sets of key questions that emerge from
the above discussion:

Q1. How does the test error of KRR depends on the sample size n, on the target function f,, and on the
kernel H? While this question has attracted considerable attention in the past (see Section 1.3 for an
overview), a very precise answer can be given in the present setting.

Q2. How does the test error of RFRR depend on the sample size n, and the number of neurons N7 In
particular, for a given sample size, how big N should be to achieve the same error as for the associated
KRR (which corresponds formally to N = 00)?

Q3. How do the answers to the previous questions depend on the regularization parameter A7 In particular,
in which cases is the optimal test error achieved by choosing A — 0, i.e. by using the minimum norm
interpolator to the training data?

Let us emphasize that the second question is technically more challenging than the first one, because it
amounts to studying KRR with a random kernel. The setting introduced here is particularly motivated by
the objective to address Q2 (and its ramifications in Q3). Indeed, to the best of our knowledge, we provide
the first set of results on the optimal choice of the overparametrization N/n under polynomial scalings of
N,n,d.

1.2. Summary of main results

Before summarizing our results, it is useful to describe informally our assumptions: we refer to Sections 2.2
and 3.2 for a formal statement of the same assumptions. We consider (x;)i<pn ~iiq ¥ With v a probability
distribution of the covariates space X, and y; = f.(x;) +¢;, where f is the target function and &; ~ N(0, o2)
independent of x; is noise.

An RFRR problem is specified by v, f., oc (which determine the data distribution), o, 7 (which determine
the RF representation), and the parameters n, N (sample size and number of neurons). The associated
kernel problem is obtained by using the kernel (5). It is also useful to introduce a kernel in the 0 space via
U(01,03) :=Ez,{o(x;01)0(x;03)}.

We will consider sequences of such problems indexed by an integer d, and characterize their behavior as
N,n,d — oo. In applications, d typically corresponds to the dimension of the covariates space X. In this
informal summary, we drop any reference to d for simplicity.

We next describe informally our key assumptions, which depends on integers (m,M,u), with v >
max (M, m). (For the sake of simplicity, we omit some assumptions of a more technical nature.)

1. Hypercontractivity. The top u eigenvectors of H are ‘delocalized’. We formalize this condition by requiring
that, for any function g € span(¢; : j < u), and for any integer k, E,{g(z)*} < Cy.E,{g9(z)*}*. We
assume a same condition for the eigenvectors of U.

2. Concentration of diagonal elements of the kernels. Denote by Hs, the kernel obtained from H by setting
to zero the eigenvalues Aq, ..., Am. We require that the diagonal elements { Hxm(;, ;) }i<n concentrate
around their expectation with respect to the measure v on X. Analogously, we require the diagonal
elements {Usm(60;,0;)}i<n to concentrate around their expectation.

This assumption amounts to a condition of symmetry: most points @ in the support of v are roughly
equivalent, in the sense of having the same value of H~,(x, ), and similarly for most @ in the support
of v.

3. Spectral gap. Recall that the ()\?) j>1 denote the eigenvalues of the kernel H in decreasing order. We then

assume one of the following two conditions to hold:
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Undeparametrized regime. We have N < n and
1 (oo}
= Z 2« N <y Z A (7)

'V' k=M+ 'V'+1 E=M+1

Overparametrized regime. We have n < N and

1 o]
vl Z 2<n <37 Z A2 (8)
m k=m+ m+1 k=m+1

This assumption ensures a clear separation between the subspace of Dy which is estimated accurately
(spanned by the eigenfunction of H corresponding to the top eigenvalues) and the subspace that is
estimated trivially by 0 (corresponding to the low eigenvalues of H.) As we will see, a spectral gap
condition holds for classical high-dimensional examples. On the other hand, we believe it should be
possible to avoid this condition at the price of a more complicated characterization of the risk, and
indeed we do not require it for KRR.

As explained above, KRR attempts to estimate accurately the projection of the target function f, onto
the top eigenvectors of the kernel H, and shrinks to zero its other components. RFRR behaves similarly,
except that it only constructs a finite rank approximation of the kernel H. How many components of the
target function are estimated accurately? There are of course two limiting factors: the statistical error,
which depends on the sample size n; and the approximation error, which depends on the number of neurons
N.

It turns out that, in the present setting, the interplay between n and N takes a particularly simple form.
In a nutshell, what matters is the smaller of n and N. If n < N, then the statistical error dominates,
and ridge regression estimates correctly the projection of f, onto the top m eigenfunctions of H (where m
is defined per Eq. (8)). If on the other hand N <« n, then the approximation error dominates and ridge
regression estimates correctly the projection of f, onto the top M eigenfunctions of H (where M is defined
per Eq. (7)).

In formulas, we denote by Rrp(fi;A) = E{(f«(x) — fr(x))?} the test error of RFRR (for square loss)
when the target function is f,. and the regularization parameter equals A. Our main result establishes that
for all A € [0, \,] (with a suitable choice of \.), in a certain asymptotic sense, the following hold:

E{(Pomfu(2))?} +0(1) - E{fu(®)?} ifn <N,

9
E{(P>mfi(2))?} +0(1) - E{fi(x)*} ifn> N, ¥

Rrp(fa; A) = {

where P+, is the projector onto the span of the eigenfunctions {t; : j > ¢}. This statement also applies to
KRR, if we interpret the latter as the N = oo case of RFRR. Further, no kernel machine achieves a smaller
erTor.

This characterization implies a relatively simple answer to questions Q1, Q2, and Q3, which we posed in
the previous section. We summarize some of the insights that follow from this result.

KRR acts as a projection. As mentioned above, Eq. (9) can be restated as saying that (for the special case

= 00), fA(:r:) ~ P<mf«(x). Indeed, we will prove a stronger result, which does not require the spectral

gap assumption of Eq. (8). The KRR estimator f,\ is well approximated by the KRR estimator for the

population problem (n = co0), but with a larger value of the ridge regularization v > A. In other words
KRR acts as a shrinkage operator along the eigenfunctions of the kernel.
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Effects of overparametrization. In random feature models, we are free to choose the number of neurons V.
Equation (9) indicates that any choice of N has roughly the same test error (which is also the test error
of KRR) as long as N > n. This is interesting in both directions. First, the test error does not deteriorate
as the number of parameters increases far beyond the sample size. This contrasts with a naive measure
of the model complexity: indeed, counting the number of parameters would naively suggest that N > n
might hurt generalization. Second, the error does not improve with overparametrization either, as long
as N > n.

Optimal overparametrization. At what level of overparametrization should we operate? In view of the
previous point, it is sufficient to use a model with a number of parameters much larger than the sample
size (formally, N > n'*? for some § > 0, although this specific condition is mainly dictated by our proof
technique). Further overparametrization does not improve the statistical behavior.

Let us also note that —as proven in [31]— choosing N/n =: ¢p = O(1) can lead to sub-optimal test
error, with the suboptimality vanishing if ¥ — oo after N,n — oco.

Optimality of interpolation. Finally, the above phenomena are obtained for all A € [0, A,]. The case A =0
corresponds to minimum norm interpolators. We also prove that the risk of any kernel machine is lower
bounded by E{(Psmf«(x))?} + o(1) - E{f.(x)?}. We therefore conclude that, in the overparametrized
regime N > n, min-norm interpolators are optimal among all kernel methods.

1.8. Related literature

The test error of KRR was studied by a number of authors in the past [16,26], [43, Theorem 13.17].
In particular, [16] establishes that KRR achieves minimax optimal rates over certain subclasses of the
associated RKHS. However these results require a strictly positive ridge regularizer (and hence do not cover
interpolation) and characterize the decay of the error as n — oo in fixed dimension d. In contrast our focus
is on the case in which both d and n grow simultaneously. Further, we provide upper and lower bounds that
hold pointwise (for each given target function f.) while earlier work mostly establish pointwise upper bound
and minimax lower bounds (for the worst case f.). The recent work [26] also derived pointwise upper and
lower bounds for kernel ridge regression (but with strictly positive ridge regularizer), which is very similar
to our Theorem 5. However, these results are based on a universality assumption whose validity is unclear
in specific settings.

Recently, the ridge-less (interpolation) limit of KRR was studied by Liang, Rakhlin and Zhai [29,30].
Again, these authors provide minimax upper bounds that hold within the RKHS, holding for inner product
kernel, when the feature vectors & have independent coordinates. Their results are related but not directly
comparable to ours.

The complexity of training a kernel machine scales at least quadratically in the sample size. This has
motivated the development of randomized techniques to lower the complexity of training and testing. While
our focus is on random feature methods, alternative approaches are based on subsampling the columns-rows
of the empirical kernel matrix, see e.g. [5,2,37]. In particular, [37] compares the prediction errors using the
sketched and the full kernel matrices, and shows that —for a fixed RKHS— it is sufficient to use a number
of rows/columns of the order of the square root of the sample size in order to achieve the minimax rate over
that RKHS.

The generalization properties of random feature methods have been studied in a smaller number of papers
[39,40,33]. Rahimi and Recht [39] proved an upper bound of the order 1/v/N 4 1/y/n on the generalization
error. The insight provided by this bound is similar to one of our points: about N < n neurons are sufficient
for the error to be of the same order as for N — co. On the other hand, [39] proves only a minimax upper
bound, it is limited to Lipschitz losses, and, crucially, requires the coefficients max;<n |a;| < C so that
|lall3 = O(N). In contrast, in the present setting, we typically have ||al|3 = ©(nN) The case of square
loss was considered earlier by Rudi and Rosasco [40] who proved that, for a target function f,. in the
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RKHS, N = Cy/nlogn is sufficient to learn a random feature model with test error of order 1/4/n. These
authors interpret this finding as implying that roughly \/n random features are sufficient: we will discuss
the difference between their setting and ours in Section 2.3.

Finally, [6] studies optimized distributions for sampling the random features, while [45] provides a com-
parison between random feature approaches and subsampling of the kernel matrix.

As pointed out above, we find that taking A — 0 yields nearly optimal test error, within our setting.
Optimality of minimum norm interpolators has attracted considerable attention recently [11,14,23,12,41].
In particular our results point in the same direction as the general analysis of ridge regression in [12,
41]. Note however that the general results of [12,41] do not apply to the present setting because they
require subgaussian features ¢(x;). Further, they only provide upper and lower bounds that match up to
factors depending on the condition number of a certain random matrix. In contrast, our characterization is
specialized to the random feature setting, does not require subgaussianity, and holds up to additive errors
that are negligible compared to the null risk.

The present paper solves a number of open problems that were left open in our earlier work [20]. First
of all, [20] only considered the cases n = oo (approximation error of random feature models) or N = oo
(generalization error of KRR). Here instead we establish the complete picture for both n and N finite.
Second, [20] assumed a special data distribution (v was the uniform distribution over the d-dimensional
sphere), a special structure for the kernel (inner product kernels), and a special type of activation functions
(depending on the inner product (@, x))). The present paper considers general data distribution, kernel,
and activation function, under a set of assumptions that covers the previous example as a special case.
Finally, the proofs of [20] made use of the moment method, which is difficult to generalize beyond special
examples. Here we use a decoupling approach and matrix concentration methods which are significantly
more flexible.

The results of [20] were generalized to certain anisotropic distributions in [21]. For the inner product
activation functions on the sphere, the precise asymptotics (for N,n,d — oo with N/d — 11, n/d — 1)a,
1,12 € (0,00)) of generalization error of random feature models was calculated in [31].

1.4. Notations

For a positive integer, we denote by [n] the set {1,2,...,n}. For vectors u,v € R?, we denote (u,v) =
uvy + ... + uqug their scalar product, and |lullz = (u,u)*/? the £, norm. Given a matrix A € R™ ™ we
denote || Al|op = max|jy|,—=1 [[Aul]2 its operator norm and by ||Al|r = (Z” A%j)l/2 its Frobenius norm. If
A € R™" is a square matrix, the trace of A is denoted by Tr(A) = >, ¢, Aii-

We use Og4(-) (resp. o4(-)) for the standard big-O (resp. little-o) relations, where the subscript d em-
phasizes the asymptotic variable. Furthermore, we write f = Qq4(g) if g(d) = O4(f(d)), and f = wq(g) if
g(d) = 04(f(d)). Finally, f = 04(g) if we have both f = O4(g) and f = Qq(g).

We use Ogp(-) (resp. ogp(-)) the big-O (resp. little-o) in probability relations. Namely, for hy(d) and
ha(d) two sequences of random variables, hi(d) = O4p(ha(d)) if for any € > 0, there exists C. > 0 and
de € Z~g, such that

P(lhi(d)/h2(d)| > Cc) <&, Vd=de,

and respectively: hi(d) = oq p(h2(d)), if h1(d)/ha(d) converges to 0 in probability. Similarly, we will denote
hl(d) = Qd’]p(hg(d)) if hg(d) = Od’]p(hl(d)), and hl(d) = wd7]1>(h2(d)) if hg(d) = Od’]p(hl(d)). Finally,
hl(d) = @d7P(h2(d)) if we have both h,l (d) = Od7]p(h2(d)) and hl(d) = Q,L]p (hg(d))



S. Mei et al. / Appl. Comput. Harmon. Anal. 59 (2022) 3-8/ 11

2. Generalization error of random feature ridge regression

In this section, we present our results on the generalization error of random feature models. We begin in
Section 2.1 by introducing the general abstract setting in which we work, and some of its basic properties.
We then state our assumptions in Section 2.2, and state our main theorem (Theorem 1) in Section 2.3.

Finally, Section 2.4 presents applications of our general theorem to (i) the case of covariates vectors
uniformly distributed over the sphere &; ~ Unif(S~1(v/d)), and (ii) the case of covariates vectors uniformly
distributed over the Hamming cube x; ~ Unif({+1,—1}%). While these applications are ‘simple’ in the
sense that checking the assumptions of our general theorem is straightforward, they are in themselves quite
interesting. In particular, our result for the uniform distribution on the sphere (cf. Proposition 2) closes the
main problem left unsolved in [20].

2.1. Random feature models, kernels, and their spectral decomposition

We consider two sequences of Polish probability spaces (Xy,vq) and (Q4,74), indexed by an integer d.
We denote by L?(X,) = L*(X,,v4) the space of square integrable functions on (Xy,v4), and by L?(Qy) =
L?(Qq,74) the space of square integrable functions on (Qg4,74). Since (X4,vq) and (4,74) are standard
probability spaces [18, Theorem 13.1.1], it follows that L?(X,;) and L*(Q4) are separable.

More generally for p > 1, we denote || f||r(x) = Ezw[|f(2)[P]*/P the LP norm of f. We will sometimes
omit X and write directly || f]|r2 and || f||r when clear from context.

Given two closed linear subspaces Dy C L?(X;), Vg C L%(4), and the activation function oy € L?(Xy x
0y, vq @ 74), we define a Fredholm integral operator Ty : Dy — Vy via

mmmz/}Aamwwwmw. (10)

Xa

Note that T4 is a compact operator by construction. We will assume that Tgg # 0 for any g € Dy \ {0}.
Also, without loss of generality, we can assume V; = Im(T,4) (which is closed since Ty is bounded). With
an abuse of notation, we will sometimes denote by Ty the extension of this operator obtained by setting
Tag = 0 for g € Dy . Notice that we can choose the kernel o4 so that fXd oa(z,0)g(x)ve(de) = 0 for any
g € Dy : we will assume such a choice hereafter.

While in simple examples we might assume Dy = L2(X;), the extra flexibility afforded by a general
subspace Dy C L?(X,;) allows to model some important applications (see Section 2.5 and [32]).

The adjoint operator Tj : V4 — Dg has kernel representation

Mﬂ@:/m@ﬁmmmw»

Qq

As before, we will sometimes extend T to £2(£2;) by setting Ker(T}) = V1.
The operator T, induces two compact self-adjoint positive definite operators: Ug = T4Tj : Vg4 — Vg, and
Hg = T;T4: Dg — Dg. These operators admit the kernel representations:

UM%=/%@WWMMM% (11)

Qq
Hmm:/mmfmwmmm (12)
Xq
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where Uy : Q4 X Q4 — R and Hy : X; x X3 — R are two measurable functions, satisfying respectively
Jo, Ua(6,0")f(8") 74(d0") = 0 for f € Vi, and [, Ha(z,x')g(x’) va(da’) = 0 for g € Dy. We immediately
have

Ud(91702) = ]E:IZNVd [O.d(m701)o-d(m702)]? (13)
Hd(m1,$2> = EgNTd[O'd(.’Bl,O)O’d(.’BQ,O)]. (14)

By Cauchy-Schwartz inequality, we have Uy € L?(Qg x Qq) and Hy € L*(X; x Xj).
By the spectral theorem of compact operators, there exist two orthonormal bases (¢;);>1, span(v;,j >

1) = Dy C L?*(X;) and (¢5)>1, span(¢j,j > 1) = Vg C L?(Qy), and eigenvalues (Aa,j)i>1 € R, with
nonincreasing absolute values [Aq 1| > [Ag2| > - -+, and 2321 Ag’j < 00 such that

Ta=Y Aaji¢), Ua=> Xj;6;¢;, Ha=> M u]

j=1 j=1 j=1

(Here convergence holds in operator norm.) In terms of the kernel, these identities read

0) = Najti(@)p;(0),  Ua(6:1,02) = ZA 167 (01)6;(62),
j=1
Hy(ay, @) = Y NG (2105 (ms). (15)
j=1

Here convergence holds in L?(X; x Qq4), L?(Qq x Q4), and L?(Xy x Xy).
Associated to the operator H, we can define a reproducing kernel Hilbert space (RKHS) H C D, defined
as

H={1eD: 1l = D A2 vi)ie < oo},

j=1

where || - || denotes the RKHS norm associated to H. In particular, # is dense in Dy, provided A7 ; > 0
for all j.

For S C {1,2,...}, we denote by Pg the projection operator from L?(X,;) onto Dy s := span(i;,j € S).
With a little abuse of notations, we also denote by Pg the projection operator from L?(Q4) onto Vi s :=
span(¢;,j € S). We denote by Ty g and 04,5 the corresponding operator and kernel

Tas = Y Aajtid],
jes

O'dS x, 9 Z/\d’ﬂ/}] )

JES

We define Ug g = Td,ST(}:s and Hy s = T;,STd,S, and denote by Uy, s and Hy g the corresponding kernels. If
S={jeN: j</{} we will write for brevity Ty <¢, Ug <, Hg <¢, and similarly for S ={j e N: j > (}.
Since o4 € L?(Xy x Qq), it follows that Uy g is trace class, for any S C N, with trace given by

Tr(Uss) = Y A3; = Eonr, [Ua,s(0,0)] < 0o
JjES

Similarly, we have
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TI‘(Hdﬁ) = Z Az,j = Em,\,yd [Hd7s(3'), 33)] < 0.
JjES

2.2. Assumptions

Let ©® = (Gi)ie[N] ~iid Td- We define the random feature function class by:

N
Fre,N(©) = {f(az;a) = %Zamd(mﬁi) ta; €ERi € [N}}

Note that the factor 1/N is immaterial here, and only introduced in order to match the definition of feature
map and scalar product in Section 1.1. Note that we use f instead of f to indicate that (,a) — f(x;a) is
a specific function R% x RN — R. It is also useful to view @ — f(-;a) as a map RN — L2(R% P).

We observe pairs (ys, €;)ie[n], With (Z;)ic(n) ~iid va, and y; = fu () + €5, fo € L*(Xy) and &; ~ N(0, 02)
independently. We fit the coefficients (a;);<n using ridge regression, cf. Eq. (1) that we reproduce here

a() = argmin{z (i — flwis0)) + %m@} . (16)

a i=1

We allow A to depend on the dimension parameter d. The test error is given by

Riw (/2. X.0.0) =, [(fu() — flaza(n) ] a7)

We next state our assumptions on the sequences of probability spaces (X4, vq) and (24, 74), and on the
activation functions o4. The first set of assumptions concerns the concentration properties of the feature
map, and are grouped in the next definition. These assumptions are quantified by four sequences of integers
{(N(d),M(d),n(d),m(d)) }4>1, where N (d) and n(d) are, respectively, the number of neurons and the sample
size. The integers M(d) and m(d) play a minor role in this definition, but will encode the decomposition of
L?(Q4) and L?(X,) (respectively) into the span of the top eigenvectors of Uy and Hy (of dimensions M(d)
and m(d)) and their complements.

Assumption 1 ({(N(d), M(d),n(d), m(d))}q>1-Feature Map Concentration Property). We say that the se-
quence of activation functions {o4}a>1 satisfies the Feature Map Concentration Property (FMCP) with
respect to the sequence {(N(d),M(d),n(d),m(d))}a>1 if there exists a sequence {u(d)}g>1 with u(d) >
max(M(d), m(d)) such that the following hold.

(a) (Hypercontractivity of finite eigenspaces)

(i) (Hypercontractivity of finite eigenspaces on Dy.) For any integer k > 1, there exists C' such that,
for any g € Dy <ya) = span(ys,1 < s < u(d)), we have

9l 2y < C - llgllL2(xa)-

(ii) (Hypercontractivity of finite eigenspaces on V,.) For any integer k > 2, there exists C' such that,
for any g € V4 <u(a) = span(¢s,1 < s < u(d)), we have

lgll2r00) < C" - llgllL2(00)-
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(b) (Properly decaying eigenvalues.) There exists a fived 69 > 0, such that, for all d large enough

2
0 2
(Zj:u(d)+1 )\d,j) (18)
2 ()41 Mg

max(N (d), n(d))2+5° <

(c) (Hypercontractivity of the high degree part.) Let oq <,y correspond to the projection on the high degree
part of oq. Then there exists a fized dg > 0 and an integer k such that

min(n, N) 2% max(N,n)"/*!log(max(N,n)) = 04(1),
and
Ez.0[05ua) (2 0)2F]Y/ ) = 04(1) - min(n, N)* - Eq g[05 ) (z; 0)%]/2.

(d) (Concentration of diagonal elements) For (x;)icin(a) ~iid Va and (0;)ic(n(d)) ~iid Td, we have

‘ S[ug)] ‘Hd,>m(d)(mivmi) —Ex[Hg>m@) (m,m)]‘ = 04p (1) Ex[Hg >m(a) (T, )],
1€en

?E?d)] ’Ud,>M(d)(0iaoi) - EO[Ud,>M(d)(070)]‘ = 04p(1) - Eg[Us>m(a)(0,0)].
1€

This statement formalizes three assumptions. The first one is hypercontractivity (points (a) and (c)).
Recall that Dg <, (q) is the eigenspace spanned by top eigenvectors of the operator Hy, and Vi <y (q) is the
eigenspace spanned by top eigenvectors of the operator Uy. We request that functions in these spaces have
comparable norms of all orders, which roughly amounts to saying that they take values of the same order as
their typical value for most « (or most ). This typically happens when the functions in the top eigenspaces
are delocalized.

The second assumption (assumption (b)) requires that the eigenvalues of kernel operators do not decay
too rapidly. If this is not the case, the RKHS will be very close to a low-dimensional space. For instance,
if A7 = k7>*, a > 0, then this condition holds as long as we take u(d) > max(N(d), n(d))?*% for some
do > 0.

Finally, assumption (d) concerns the diagonal elements of the kernel matrices. They require the truncated
kernel functions Hg ~mq) and Uy >m(q) evaluated on covariates and weight vectors to have nearly constant
diagonal values.

The second set of assumptions concerns the spectrum of the kernel operator, defined by the sequence
of eigenvalues ()\fl’ j)j21. We require that the spectrum has a gap: the location of this gap dictates the
relationship between N (d) and M(d) and between n(d) and m(d).

Assumption 2 (Spectral gap at level {(N(d),M(d),n(d),m(d))}a>1). We say that the sequence of activation
functions {oq}a>1 has a spectral gap at level {(N(d), M(d),n(d), m(d))}a>1 if one of the following conditions
(a), (b) hold for all d large enough.

(a) (Overparametrized regime.) We have N(d) > n(d) and
(i) (Number of samples) There exists fived 6o > 0 such that m(d) < n(d)*~% and

1 = _ 1 >
T Y M@ <n@ < o—— 3 N (19)
dm(d) g=m(d)+1 dm(d)+1 g=m(d)+1
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(ii) (Number of features) There exists fived 5o > 0 such that M(d) < N(d)'~%, M(d) > m(d) and
1 (o)

)\2
dM(d)+1 p=M(d)+1

N(d)'+% < AZ k- (20)

(b) (Underparametrized regime) We have n(d) > N(d) and
(i) (Number of features) There exists fized 69 > 0 such that M(d) < N(d)*~% and

1 1

> ML SN@T S N@T <

)\2 ~o Ag,k .
d,M(d) k=M(d)+1 dM(d)+1 g=M(d)+1

(i) (Number of samples) There exists fized 6o > 0 such that m(d) < n(d)*=%, m(d) > M(d) and

1 o0
n(d)' < 5——
Ad7m(d)+l k:m(d)+l

2
Ad,k}‘

The assumption of a spectral gap is useful in that it leads to a clear-cut separation in our main statement
below. For instance, in the overparametrized regime n(d) < N(d), the projection of the target function onto
Dy, <m(a) is estimated with negligible error, while the projection onto Dy ~m(q) is estimated with 0. If there
was no spectral gap, the transition would not be as sharp. However, we expect this to affect only target
functions with a large projection onto eigenfunctions whose indices are close to m(d). In this sense, while
restrictive, the spectral gap assumption can be in fact a good model for a more generic situation.

2.3. A general theorem

We are now in position to state our main results for random feature ridge regression.

Theorem 1 (Generalization error of Random Feature Ridge Regression). Let {f. € Dq}a>1 be a sequence
of functions, X = (i)icm(a) and O = (0;)jcin() with (x;)icm@)] ~ va and (05);en@) ~ Ta inde-
pendently. Let y; = fo(x;) + &; and &; ~iq N(0,02) for some o. > 0. Let {cq}a>1 be a sequence of
activation functions satisfying {(N(d), M(d),n(d), m(d))}a>1-FMCP (Assumption 1) and spectral gap at
level {(N(d),M(d),n(d), m(d)))}a>1 (Assumption 2). Then the following hold for the test error of RFRR
(see Eq. (17)):

(a) (Overparametrized regime) If N(d) > d°-n(d) for some § > 0, let A, be such that Ay = Ogq(Tr(Hg >m))-

Then, for any regularization parameter X € [0, \s], and any fized n > 0 and € > 0, with high probability
we have

|RRE(fis X, ©,0) = [PomfullZo| < & (1flliz + IPsmfilliaen + 02). (21)
(b) (Underparametrized regime) If n(d) > d° - N(d) for some § > 0, let A, be such that A\, = O4(n/N -

Tr(Ug >m)). Then, for any reqularization parameter A € [0, \], and any fired n > 0 and ¢ > 0, with
high probability we have

|Rrp(fi, X, 0,0) = [IPomfillie]l < e (If:llZe + IPsmfillosn +02). (22)
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Remark 2.1. The two limits N = oo and n = oo play a special role. For N = oo, the random kernel
Hy(xy,23) = N7! zzjil o(x1;0;)0(x2;6;) converges to its expectation, and we recover KRR. While this
case is not technically covered by Theorem 1, we establish the relevant characterization in Theorems 4 and
5.

In the case n = oo the generalization error vanishes, and we are left with the approximation error. This
case is covered separately in Appendix A. In both these limit cases we confirm the result that would have

been obtained by naively setting N = oo or n = oo in the last theorem.

Notice that the sample size n and the number of neurons N play a nearly symmetric role in this statement,
and the smallest of the two determines the test error. An important insight follows: in the present setting,
the test error is nearly insensitive to the number of neurons as long as we take N > n. If we want to minimize
computational complexity subject to achieving nearly optimal generalization properties, we should operate,
say, at N = n'*® for some small § > 0.

It is instructive to compare this result with [40] which instead suggests N =< y/nlogn. While our setting
differs from the one of [40] in a number of technical aspects, we believe that the core difference between the
two results lies in the treatment of the target function f.. Simplifying, the recommendation of [40] is based
on two results, the second of which proved in [16] (with an abuse of notation, we indicate the number of
neurons and sample size as arguments of Rrr(f«) = Rrr(f«; N,n), and use N = co to denote the KRR
limit case):

2
sup  Rep(fesNon) < Ci(d)—=,  for N, = nlogn, (23)
I fellm<r vn
log n b/(b+1)
sup  Rrr(fs;00,m) < Cg(d)?“z(%) , (24)

Hf*H’HST

where b € (1,00) encodes the decay of eigenvalues of the kernel.! Now, considering the worst case decay
b — 1, the error rate achieved by RFRR, cf. Eq. (23), is of the same order as the one achieved by KRR, cf.
Eq. (24).

Note several differences with respect to our results: (i) The analysis of [40,16] is minimax, over balls
in the RKHS, while our results hold pointwise, i.e., for each individual function f.; (i¢) Optimality in [40]
is established in terms of rates, i.e., up to multiplicative constant, while ours hold up to additive errors
(multiplicative constants are exactly characterized); (iii) The results of [40,16] apply to a fixed RKHS (in
particular, a fixed dimension d), while we study the case in which d is large and N,n,d are polynomially
related.

Some of these distinctions are also relevant in comparing our work to other recent results on KRR. In
particular points (i) and (i7) apply when comparing with [29,30].

2.4. Ezamples: The binary hypercube and the sphere

As examples we consider the case of covariates vectors @; that are uniformly distributed over the discrete
hypercube 2¢ = {—1,+1}% or the sphere S* ' (vd) = {x € R? : ||z|; = d}. Namely, letting Ay to be
either 29 or Sd_l(\/a) and pg = Unif(Ay), we set Xy = Ay and vg = pg. We further choose the 6;’s to be
distributed as the covariates vectors, namely V; = A4 and 74 = pq. Apart from simplifying our analysis, this
is a sensible choice: since the covariates vectors do not align along any preferred direction, it is reasonable
for the 8;’s to be isotropic as well.

! The results of [16,40] assume the weaker condition that infyecs || f« — g/ > is achieved in H: since H is dense in L*(X,) (provided
the kernel is strictly positive definite), this is equivalent to f. € H.
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Given a function g4 : R — R (which we allow to depend on the dimension d), we define the activation
function o4 : Ag x Ag — R by

ca(x; 0) = G4((x,0)/Vd). (25)

We denote by £4 <, the subspace of L?(Ag4, pg) spanned by polynomials of degree less or equal to £ and by
P<¢ the orthogonal projection on & <, in L?(Ag, pa). The projectors P, and P, are defined analogously
(see Appendix E for more details). Let us emphasize that the projectors ﬁg@ are related but distinct from
the P<m: while 555 projects onto eigenspaces of polynomials of degree at most ¢, P<p, projects onto the top
m-eigenfunctions.?

In order to apply Theorem 1, we make the following assumption about &4.

Assumption 3 (Assumptions on Ay at level (s,S) € N?). For {G4}a>1 a sequence of functions 54 : R — R,
we assume the following conditions to hold.

(a) There exists an integer k and constants c; < 1 and co > 0, 69 > 1/k such that n < N17% or N < nl=%
and |54(z)| < co exp(e12?/(4k)).

(b) We have
T,?Silsldsfﬂmk&d((ea M2 (a000) =2a(D), (26)
Iglgigdsfkﬂﬁk&d((ea DZ2 a0 =Ra(l), (27)
1P 52 max(s,s)+17a({€5 )l L2 (a4,p0) =2a(1), (28)

where e € Aq is a fized vector (it is easy to see that these quantities do not depend on e).
(c) If Ag = 2¢, we have, for all d large enough

RS _ 2 —2max(s,S)—2
P, . < . 2
kszrgf()s(s)ﬂd [Pa—raa({e, >)||L2(A47Pd) <d (29)

Assumption (a) requires n, N to be well separated and a technical integrability condition. The latter is
necessary for the hypercontractivity condition in Assumption 1.(c¢) to make sense.

Equations (26) and (27) (Assumption (b)) are a quantitative version of a universality condition: if
PrGa((e,-)/v/d) = 0 for some k, then linear combinations of &4 can only span a linear subspace of L?(Ag, pq)-
Equation (28) (Assumption (b)) requires the high degree part of 54 to be non-vanishing (and therefore induce
a non-zero regularization from the high degree non-linearity).

For Ay = 2¢, we further require Assumption (c), namely that the last eigenvalues of 54 decrease suffi-
ciently fast. This is a necessary conditions to avoid pathological sequences {G4}q>1 which are very rapidly
oscillating.

Remark 2.2. If 6, = & is independent of the dimension, then Assumptions (b), (¢) are easy to check:

o The first two parts of Assumption (b) (Egs. (26) and (27)) are satisfied if we require E{5(G) p(G)} # 0
for all non-vanishing polynomials p of degree at most max(s,S) (expectation being taken with respect to
G ~ N(0,1).) This is in turn equivalent to E{5(G) Hex(G)} # 0 for all k¥ < max(s,S), where Hey, is the
k-th Hermite polynomial.

2 The two coincide if m = Y <o B(Ag; £'), with B(Aqg;¢') the dimension of the space of degree-¢’ polynomials and the top m
eigenvalues verify )\Z_j = Qd(d_e), see Appendix D.
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o The third part of Assumption (b) (Eq. (28)) amounts to requiring & not to be a degree-(2 max(s,S) + 1)
polynomial.

o In Appendix D.2 we check that Assumption (c¢) holds if ¢ is smooth and there exists ¢y > 0 and ¢; < 1
constants such that the (2max(s,S) + 2)-th derivative verifies |5(2™2x(9)+2) (2)| < ¢g exp(ci22/4).

As an example, the shifted ReLu d4(x) = (x — ¢)+ with a generic ¢ € R\ {0} verifies Assumption 3. (The
case ¢ = 0 violates Eq. (26), since E{6(G)He,(G)} = 0 for k > 3 odd. This is not a limitation of our result:
the unshifted ReLU is not universal in the present setting.)

Theorem 2 (Generalization error of RFRR on the sphere and hypercube). Let {f. € L*(Ag,pa)}a>1 be
a sequence of functions. Let @ = (0;);cn) with (0;)icin) ~ pa independently and X = (x);epn) with
(xi)ie[n) ~ pa independently. Let y; = fi(x;) +e; and &; ~iia N(0,02) for some o. > 0. Assume dstoo <
n < dt17% gnd &% < N < d51=% for fived integers s,S and for some do > 0. Let {G4}a>1 satisfy
Assumption 3 at level (s,S). Then the following hold for the test error of RFRR (see Eq. (17)):

(a) Assume N > nd® for some § > 0. Then for any reqularization parameter X\ = Oq(1) (including X = 0
identically), any n > 0 and € > 0, we have, with high probability,

[RRF (£, X, 0,0) = IPssfilliel < e (1fllZe + IPssfallfaen +02). (30)

(b) Assume n > Nd° for some § > 0. Then, for any regularization parameter X\ = Oq(n/N) (including
A =0 identically), n > 0 and € > 0, we have, with high probability,

[Rre(fis X, 0,0) = [Posfilliel < e (I£lZ2 + [Posfillfoen +02). (31)

As mentioned in the introduction, [20] proves this theorem in the cases n = oo (RF approximation error)
and N = oo (generalization error of KRR), for the uniform measure on the sphere. The general case follows
here as a consequence of Theorem 1.

To see the connection between Theorem 1 and the results given here for the sphere and hypercube cases
(see Appendix D for details), notice that the integral operator T, associated to the inner product activation
function (25) is in this case symmetric, and commutes with rotations in SO(d) (for the sphere) or with the
action of (Z3)? (for the hypercube?). Hence, the eigenvectors of T4 (which is self-adjoint by construction) are
given by the spherical harmonics of degree ¢ (for the sphere) or the homogeneous polynomials of degree ¢ (for
the hypercube). The spaces spanned by the low degree spherical harmonics and homogeneous polynomials
verify the hypercontractivity condition of Assumption 1.(a) (see Appendix E.3). The corresponding distinct
eigenvalues are {4 ¢, with degeneracy

B(S% 1) =

d—2+20(d-3+¢
d—2 4 ’

B(2%¢) = (Z) : (32)

Notice that in both cases B(Aqg;¢) = (d°/€))(1 + 04(1)) and, hence &4, < d~%/? (by construction Tr(Hy) is
bounded uniformly). Indeed, by Assumption 3.(a), we have &4, =< d—*/2.

As a consequence, if we set m = Y7, B(Ag;€), M = 3, s B(Ag;€), we have Y7, A}, = O(1)
(indeed this sum is Og(1) because Tr(Hy) is bounded uniformly, and it is 4(1) by Assumption 3.(b)).
Therefore, the conditions (7) and (8) (or, more formally, the conditions in Assumption 2) can be rewritten

as

3 In the {+1, —1}% representation, z € {41, —1}% acts on 2¢ via @ — D, x, where D, is the diagonal matrix with diag(D,) = =.
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Fig. 1. Learning a polynomial f. (cf. Eq. (35)) over the d-dimensional sphere, d = 50, using a random feature model and min-norm
interpolation. We report the test error averaged over 10 realizations. Left: heatmap of the test error as a function of the number of
neurons N (y-axis) and number of samples n (z-axis). The dashed lines correspond to min(n, N) = d (black) and min(n, N) = d?
(white). Notice the blow-up at the interpolation threshold N & n, and the symmetry around this line. Right: decrease of the test
error as a function of sample size for scalings of the network size N = n®. (For interpretation of the colors in the figure, the reader
is referred to the web version of this article.)

1
&= 5 <N 5—=<d, (33)
5 &
1
E=—<n<g 5 =d, (34)
2
55 s+1

which matches the assumptions in Theorem 2.

Fig. 1 provides an illustration of Theorem 2, for the case of the uniform distribution over the sphere
Ag = Sd_l(\/a). We fix d = 50, and generate data {(x;,y;)}i<n With no noise o, = 0. We use the target
function

fi(®) = ga((v, @) , (35)

whereg € S 1(y/d) and g is a fourth-order polynomial: g(z) = %@:(z)—i— %QQ(Z)‘}‘ \/%@3(2)—}- \/%Q:;(z)
(here Q¢ is the (-th Gegenbauer polynomial, normalized so that [|Qe((v, )|l p2(ga-1(ya), = 1)- While the
precise form of f. does not really matter here, we note that ||[P1fil|2. = [[Pafil|2: = 0.4, |[Psfi]|2. =
[Pafil?22 = 0.1 and ||Psafs|%. = 0. We plot the test error of RFRR using o(x) = max(z — 0.5,0) (shifted
ReLu), and A = 04 (min-norm interpolation). We repeat this calculation for a grid of values of n, N, and
for each point in the grid report the average risk over 10 realizations.

We plot the observed average risk in the sample-size/number-of-parameters plane with axes logn/logd
and log N/logd (corresponding to the exponents in the polynomial relation between n and d, and between
N and d). Several prominent features of this plot are worth of note:

e The risk has a large peak for V & n. This phenomenon was characterized precisely in the proportional
regime N =< d, n < d in [23,31].

e The plot appears completely symmetric under exchange of N and n: the number of parameters and
sample size plays the same role in limiting the generalization abilities, as anticipated by Theorem 1 and
Theorem 2.

o The risk is bounded away from zero even for N,n =< d. Indeed, Theorem 2 implies that consistent
estimation would require N, n > d* in this case.
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« Finally, for a fixed n, near optimal test error is achieved when N = n!t%+ for §, a small positive constant.
2.5. Invariant function estimation

Many predictive tasks of practical interest present important symmetry properties. Namely, the ‘true’
label f,(x) does not change when a certain group of transformations is applied to the covariates vector x.
The goal is then to construct predictive models that exploit such invariances. As a further application of
our general theory, we discuss here the case of invariant random feature and kernel methods. We refer to
[32] for a more complete treatment.

We focus on the case of the cyclic group Cyc,; = {go,- .., gi—1}, where g; shifts the covariates vector by
i coordinates. Namely, for any = (z1,...,74)" € RY, the action of the group element g; on x is defined
by gi - = (Tit1, Tit2,---Td, T1,T2, ..., ;) . We take again x uniformly distributed on A4, the sphere or
the discrete hypercube (in particular the action of Cyc, preserves (Ag, pq)). The goal is to fit data where
the target function f, is invariant under the action of Cyc, i.e., fi belongs to the ‘cyclic functions’ class

L*(Aqg, Cycy) = {f € L2(Aa, pa) : flg-2) = f(a),Va € Ag,¥g € Cycd}.

For example, one can think about an image recognition task where f, € L?(Aqg, Cyc,) is a label that is
invariant by translation of the (one-dimensional) image x.

We define a cyclic activation function o4 : Ay X Ay — R as follows: given a function & : R — R (that we
take here independent of d),

&.
._.

0a(a;0) = 13" (g0 ,0)/Vd). (3)
)4

I
o

Following the notations of Section 2.1, we have Dy = V4 = L?*(Aq4, Cyc,) which is a closed linear subspace
of L?(Ag, pa)- Notice that f € Frr,n(©) can be written as

N d
f( :%Zalz ((g¢ - ,0;)/Vd) .

i=1 =1

In neural networks jargon, this corresponds to fitting the second layer weights of a two-layer convolutional
network with a nonlinear convolution of N filters 0,,...,0x € R? with the image « followed by global
average pooling. In contrast, the inner-product activation (25) corresponds to fitting the last layer of a
two-layer fully connected network.

The following result follows by verifying that the assumptions of Theorem 1 are verified by this invariant
model, which is done in [32, Theorem 1].

Theorem 3 (Generalization error of RFRR with cyclic activation [32]). Let {f. € L*(Aq4,Cycy)}ta>1 be a
sequence of cyclic functions. Assume d>~ 10 <n < &% and d> 1 < N < d°9 for fized integers s, S and
some 6 > 0. Let & be a function that satisfies some smoothness condition at level (s,S) [52, Assumption 1].
Then the following hold for the test error of RFRR with cyclic activation (36):

(a) (Overparametrized regime) Assume N > nd® for some § > 0. Then for any regularization parameter
A= 04(1) (including A =0) and n > 0, we have

Ryp(fo, X, W, A) = [Pssfille + 0ap (1) - (1fellZ24n +02). (37)
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(b) (Underparametrized regime) Assume n > Nd° for some 6 > 0. Then for any regularization parameter
A= 0q4(n/N) (including X\ =0) and any n > 0, we have,

Rep(fo, X, W, A) = [Pssfilliz +oap (1) - (1f:l 7240 + 02). (38)

The smoothness assumption on ¢ is somewhat technical, and we consider it mainly a proof artifact. It is
satisfied —for instance— by smooth versions of the ReLU activation, e.g. o(x) = E{(x — b —eG), }, where
expectation is over G ~ N(0,1), b # 0 is a fixed shift and € > 0 is a smoothing parameter that can be taken
arbitrarily small.

Theorem 3 can be contrasted to Theorem 2: to achieve the same test error, RFRR with inner-product
activation function needs d**° < n < d**'~9 and d°t% < N < @'~ Hence, we gain a factor d in
sample and feature complexity by using a cyclic-invariant activation compared to an inner-product activation
function. This gain can be understood using the following observation: the subspaces Vg of degree-k
polynomials (which are eigenspaces of the inner-product activation with eigenvalues &4 and degeneracies
B(Ag; k) = dim(Vy 1)) are preserved under the cyclic group Cyc,. Hence the cyclic activation has eigenspaces
Vax(Cycy) (the subspace of cyclic-invariant polynomials of degree-k) with same eigenvalues &4, and new
degeneracies D(Ag; k) := dim(Vy,(Cycy)) = Oa(d™t) - B(Ag; k). Setting m = >, D(Ag;¢) and M =
> i<s D(Ag; £), we have 372 ) AF ;= ©a(d™") with r = m or M. Injecting these bounds in Assumption 2
yields a factor d improvement in n and N.

In fact, [32] considers more general invariance groups G, called of ‘degeneracy o’, with o < 1, and shows
that RFRR with Gg-invariant activations gains a d® factor in sample size and number of features with
respect to RFRR with inner-product activations. The cyclic group Cyc, is an example of a degeneracy 1
group, and so is the group of shifts on 2-dimensional images.

3. Generalization error of kernel machines

Formally, kernel ridge regression (KRR) corresponds to the limit N — oo of random feature ridge
regression. Despite this, we cannot apply directly Theorem 1 with N = oo. We state therefore a separate
theorem for kernel methods. As a side benefit, we establish somewhat stronger results in this case. In
particular:

o We simplify the set of assumptions (in particular, the assumptions concern only Hy and not the activation
function oy, as they should).

e We prove a risk lower bound, Theorem 4, that holds for general kernel methods, not only KRR.

e Crucially, we remove the spectral gap assumption. In this more general setting, the risk of KRR is not
approximated by the square norm of the projection of f, orthogonal to the leading eigenfunctions of the
kernel. We instead obtain an approximation in terms of a population-level ridge regression problem, with
an effective value of the regularization parameter, which we determine.

Throughout this section, the setting is the same as in the previous one: we observe i.i.d. data (y;, Zi)ic[n],
with feature vectors @; from the probability space (X, v4). Responses are given by y; = f.(@;) +¢;, f« € Dy
and ¢; ~ N(0,02) independently of x;.

We introduce some general background in Section 3.1, then state our assumptions in Section 3.2, and
formally state our results in Sections 3.3 and 3.4.
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3.1. Background on kernel methods

We consider a general RKHS defined on the probability space (Xg,vq), via Hy a compact self-adjoint
positive definite operators: Hy : Dy — D4 with kernel representation

Hyg(z)) = / Hy(a, @' )g (' va(da')
Xq

where Hy @ X; x X3 — R is a square integrable function Hy € L?*(Xy x X4), with the property that
Jx, Ha(z, 2" )g(z')va(da’) = 0 for g € Dy
Given a loss function £: R x R — R>( a general kernel method learns the function

£ =argmjjn{z€(yi,f(wi))+>\|f|i¢} ; (39)

i=1

where ||f|% is the RKHS norm associated to Hy. Kernel ridge regression corresponds to the special case
(y,9) = (y—19)2. As before, we will evaluate kernel methods via their test error, which we denote as follows
in the case of KRR

Rr(fe, X, ) = ]Em[(f*(ac) - f;(ac))Q} : (40)

As mentioned above, any kernel method can be seen as the N — oo limit of a RF model. To see this,
note any positive semidefinite kernel can be written in the form Hy(x1,x2) = Egory[oa(x1, 0)oa(x2, 0)],
for some activation function o4, and some probability space (24, 74). This is akin to taking the square root
of a matrix and —as in the finite-dimensional case— the square root is not unique. For instance, we can let
o4 be the symmetric square root Hy(x1,x2) replacing )\3,]‘ by Ag; in Eq. (15).

Given a choice of this square root, we can rewrite the estimator (39) as fa(x) = f(x;a,), where ay €
Lz(Qd; I/d) and

i=1

Gy = argmain {Z@(yi,f(a:i;a)) + )\||a||%2} , (41)

f(@ia) = [ oul:6)a(6) r(d6). (42)

This can be informally seen as the N — oo limit of Eq. (16) if we choose the square loss function.
3.2. Assumptions on the kernel

As for the case of RFRR, we collect our assumptions in two groups. The first one is mainly concerned
with the concentration properties of the kernel, which are quantified in terms of the sequences of integers
n(d), m(d).
Assumption 4 ({n(d), m(d)}q>1-Kernel Concentration Property). We say that the sequence of operators
{Hga}a>1 satisfies the Kernel Concentration Property (KCP) with respect to the sequence {(n(d), m(d))}a>1

if there exists a sequence of integers {u(d)}q>1 with u(d) > m(d) such that the following conditions hold.

(a) (Hypercontractivity of finite eigenspaces.) For any fixed q > 1, there exists a constant C such that, for
any h € Dg,<y(ay = span(ys, 1 < s <u(d)), we have
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[hllL2e < C - ||A] L2 (43)

(b) (Properly decaying eigenvalues.) There exists fized §g > 0, such that, for all d large enough,

(E}iu(dm A?ij)Q

n(d)* < A= : (44)
2
o0 2
n(d)2+50 < (Zj:u(d)+1 Ad’j) (45)
T @ Ny

(c) (Concentration of diagonal elements of kernel) For (;)icin(a)] ~iid Va, we have:

Zél[l’fzg)] ’Emwud [Hd7>m(d) (5131', m)Q] - ]Em,m’wl/d [Hd,>m(d) (ZE, m/)ﬂ ’ :Od,]P(l) . Em,m’wvd [Hd,>m(d) (.’B, 3’3,)2}’
(46)

hax, ‘Hd >m(d) (Tis i) — Ea[Ha >m(a) (T, :v)]‘ = 04p(1) - Eg[Hgsm) (@, @)].  (47)

In the last definition, assumptions (a) and (c¢) have an interpretation that is similar to the one for RFRR.
Namely, assumption (a) requires that the top eigenvectors of H, are delocalized, and assumption (c) requires
that ‘most points’ in the sample space X; behave similarly, in the sense of having similar values of the kernel
diagonal H,(x,x). Condition (b) is very mild in high dimension, and concerns the tail of eigenvalues of H,.

The next condition essentially connects the sample size n(d) to the eigenvalue index m(d), via the eigen-
value sequence.

Assumption 5 (Eigenvalue condition at level {(n(d), m(d))}a>1). We say that the sequence of Kernel opera-
tors {Hg}a>1 satisfies the Eigenvalue Condition at level {(n(d), m(d))}a>1 if the following conditions hold
for all d large enough.

(a) There exists fixed 69 > 0, such that

1
n(d)'"+% < N Z Xk (48)
d;m(d)+1 g=m(d)+1
1 o0
AT S e D A (49)

m(d)+1 g=m(d)+1

(b) There exists fized g > 0, such that
m(d) < n(d)*~%.

Unlike in the case of RFRR, we do not require the existence of a spectral gap, but we assume two different
upper bounds n(d) to hold simultaneously. In many cases of interest, the right hand sides of (48) and (49)
have roughly the same value, which is given by the number of eigenvalues between Ag m(ay+1 and coAg,m(a)+1
for a small ¢y (counting degeneracy). The technical requirement (b) is mild and we do not know of any
interesting counterexample.
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3.8. Lower bound for general kernel methods

Consider any regression method of the form (39). By the representer theorem, there exist coefficients
Cis---,Cpn such that

fa(x) = Z@ Hy(x,z;) . (50)
i=1

We are therefore led to define the following data-dependent prediction risk function for kernel methods
. - 2
Ry(fu, X) = mCmIEz{(f*(w) —ZCin(wi,w)) } (51)
i=1

This is a lower bound on the prediction error of any kernel methods of the form (39).
The next theorem provides a lower bound on the generalization of kernel methods that is a consequence
of the approximation bound in Theorem 6.(a) derived for the random feature model, in Appendix A.

Theorem 4. Let {f. € Da}a>1 be a sequence of functions, (x;)ie[n(a)) ~ va independently, {Ha}a>1 be a
sequence of kernel operators such that {(Hg, n(d), m(d))}a>1 satisfies Egs. (43), (44), (46), and (48). Then
we have (cf. Eq. (51))

R (f, X) = Rz (P<m(ayfo X) — [Psm(a) f+llZ2| < 0ap (1) - | fell L2 [Psmay S+l 2 (52)

Proof. This follows immediately from Theorem 6 (a) stated in Appendix A. Indeed, setting o4(x,x’) =
Hy(x,x'), we obtain Ry (f«, X) = Rrr(f«, X), whence the claim follows by applying Eq. (60). O

Notice that Ry (P<m(a)fs, X) > 0 by construction and therefore this theorem immediately implies a
lower bound on the test error of kernel ridge regression (cf. Eq. (40))

Rgr(fs X, A) 2 Ru(fe, X) 2 [Poma fellz2 — 04 (1) - | fellz2 [P smiay fill 22 (53)

In words, if we neglect the error term o4 p(1)- || f«|| £2[|P>m(a).f+ |2, no kernel method can achieve non-trivial
accuracy on the projection of f, onto eigenvectors beyond the first m(d).

8.4. The risk of kernel ridge regression

Kernel ridge regression is one specific way of selecting the coefficients & in Eq. (50), namely by using
U9,y) = (§ — y)? in Eq. (39). Solving for the coefficients yields

¢=(H+A,) 'y,

where the kernel matrix H = (H;;);je[n) is given by Hyj = Hy(xi, z;), and y = (y1,...,yn) '

It is convenient to state our main results in terms of an effective ridge regression estimator
f . ol
f57 = avgruin (. — £12 + Z1fI%} (54)

This amounts to replacing the empirical risk in Eq. (39) by its population counterpart ||f. — f[%. =
E{(f.(z) — f(x))?}. Also note that the regularization parameter does not coincide with A: its precise value
will be specified below.
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The solution of the population ridge problem (54) can be explicitly written in terms of a shrinkage
operator in the basis of eigenfunctions of Hy:

[e’e) R [e’e) AQ
f@) = cbaelx) = f(@) = 52 ctba(z). (55)
o = Aaeta

Theorem 5. Let {f. € Da}a>1 be a sequence of functions, (T;)ic[n(ay ~ va independently, {Ha}a>1 be a se-
quence of kernel operators such that {(Hg,n(d), m(d))}a>1 satisfies {n(d), m(d)}q>1-KPCP (Assumption /)
and eigenvalue condition at level {n(d), m(d)}a>1 (Assumption 5). Define the effective regularization

Y= A+ Te(Ha > m(a)) - (56)

Then, for any regularization parameter X € [0,\.] where A\, = Tr(Hg>ma)), any n > 0, we have (cf.
Eq. (40))

[Bucn(fu X0 = 1. = fols

= o0ap (1) (I£llZ2 + [IPo>mfillZaen +02). (57)

Further, the ridge regression estimator fA is close to the effective estimator Asffﬁ, namely

A /\e 2
[ = Flallpo = 0ap () - (Ifullze + [IPomfillfoen +02). (58)

The proof of Theorem 5 is deferred to Appendix C.

In words, KRR behaves as ridge regression with respect to the population risk, except that the regu-
larization parameter is increased by Tr(Hg >m). The underlying mechanism is quite simple. The empirical
kernel matrix is decomposed as H = H <y, + H~pn, and the second component can be approximated by a
multiple of the identity: Hsm ~ Tr(Hg >m) - L,. This term acts as an additional ridge regularizer.

As mentioned above, we do not assume here any eigenvalue gap condition. However, formulas simplify if
we assume an eigenvalue gap, e.g.:

1

n(d) = wq(l) - )‘Z,k .

/\2
d,m(d)+1 g=m(d)+1

Under this additional assumption, Theorem 5 implies the following simplified formula for the test error:

RKR(f*7 Xa A) - ||P>m(d)f*H%2

= 0qp(1) - (|l fellZ2en + 02).
As anticipated, this coincides with the risk of RFRR, if we heuristically set N = oo in Theorem 1.
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Appendix A. Approximation error of random feature model

In this section, we consider the approximation error of the random feature function class. Formally, the
approximation error can be seen as the generalization error of random feature ridge regression for finite
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number of neurons N < oo and infinite data n = oco. However, we cannot apply directly Theorem 1 with
n = co. We therefore state a separate theorem. This is also used to prove the lower bound of Theorem 4 on
the generalization error of general kernel methods.

In Section A.1, we state our assumptions and theorem. Sections A.2 and A.3 provide a proof of the
theorem, while Section A.4 gathers key technical concentration results that will also be used in the proofs
of Theorem 1 and Theorem 5.

A.1. Assumptions and theorem

Recall the definition of the random feature function class (see Section 2.1): let @ = (0;);e[n] ~iid Tds

N
FrrN(©) = {f(fb';a) = Zaiad(w;ei) ca; €Ri € [N]}.

We define the approximation error of the random feature function class for a target function f. € L?(Xy)
as

Rapp(fo,©) = inf  Egur,[(fu(®) — f(2))?]. (59)
f€Frr,N(O)

Similarly to Sections 2.2 and 3.2, we will quantify our assumptions on the sequences of probability spaces
(X4, vq) and (24, 74), and on the activation functions o4 € L?(X,; x £4), in terms of the sequences of integers
N(d),M(d). We state the assumptions in two groups: Assumption 6 and Assumption 7 deal respectively
with the concentration properties and the spectrum of the sequence of feature kernel operators {Ug}a>1
defined as

Uq(61,02) = Egyoa(x; 01)04(x; 02)].

Assumption 6 (Feature kernel concentration at level {(N(d), M(d))}a>1). The sequences of spaces {Vy}a>1,
operators {Ugta>1 and numbers of neurons {N(d)}a>1 satisfy feature kernel concentration at level
{M(d)}a>1 if there exists a sequence {u(d)}q>1 with u(d) > M(d), such that the following hold.

(a) (Hypercontractivity of finite eigenspaces.) For any fized ¢ > 1, there exists C' such that, for any g €
Vircutd) = span(s, 1 < s < u(d)), we have

l9llz24(00) < C - 19l L2

(b) (Properly decaying eigenvalues.) There exists a fized dg > 0, such that

( Z;iu(d)Jrl Az,j) i

N(d)2+50 § =
Zj:u(d)-i—l )\ili,_]

(c) (Upper bound on the diagonal elements of the kernel) For (0;)ic[n(a) ~iid Ta and any 6 > 0, we have

U 0:,0;,) = O p(N(d)°) -Eg|U 0.0)].
Z_efflj\é;();)] 4,>M(d) (04, 0;) a2 (N(d)°) - Eg[Ug>m(a)(0,0)]

(d) (Lower bound on the diagonal elements of the kernel) For (6;)ie[n(q)) ~iida Ta and any 6 >0, we have

in U, 0,,0;) = Qup(N(d) %) -Eg[U, 0.0)].
o 4,>M(d) ) aP(N(d)"°) - Eg[Uq,>m(a) (0, 0)]
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Assumption 7 (Spectral gap at level {(N(d),M(d))}a>1). The sequence of operators {Uq}q>1 has a spectral
gap at level {(N(d), M(d))}a>1 if the following hold.

(a) There exists a fized oo > 0, such that

1 o0
N@'" < 37 M
de(d)J"l _]:M(d)+1

(b) There exists a fived 5o > 0, such that M(d) < N(d)*~% and

oo

N(d)1750 > 1

)\2
A j,d
d;M(d) j=M(d)+1

Remark A.1. In Assumption 6.(c), we can replace Uy sm(a) by Ug, >u(a) (see Lemma 7).

We are now in position to state our theorem on the approximation error of the random feature function
class. We state the lower and upper bounds and their assumptions separately.

Theorem 6 (Approzimation error of the random feature function class). Let {f. € Dg}a>1 be a sequence of
functions and © = (6;)ie[n(a) with (0:)icin(a)) ~ Ta independently. Let {ca}a>1 be a sequence of activa-
tion functions satisfying Assumptions 6.(a) and 6.(b) at level {M(d)}q>1. Then the following hold for the
approximation error of the random feature class (see Eq. (59)):

(a) (Lower bound) If {o4}a>1 satisfies further Assumptions 6.(d) and 7.(a), then we have

Rapp(fi: ©) = Rapp(P<m(a) f+: ©) — IPmay fell 72| < 0ap (1) - || fell 22lIP>meay fll L2 (60)

(b) (Upper bound) If {oq}a>1 satisfies further Assumptions 6.(c) and 7, then we have
Rapp(P<m(a) fe, ©)] < 0ap(1) - [|fell2 [P<mia) f<llz2- (61)

Point (a) is proved in Section A.2, while point (b) is proved in Section A.3.

The lower bound on general kernel methods in Theorem 4 is obtained as a direct consequence of The-
orem 6.(a), by taking o4(x, ') = Hg(x,x'). Indeed, it is easy to check that Eqgs. (43) and (45) imply
Assumptions 6.(a) and 6.(b), Eq. (47) implies Assumptions 6.(c) and 6.(d), and Eq. (49) implies Assump-
tion 7.(a).

A.2. Proof of Theorem 6.(a): lower bound on the approximation error

Let Eg denote the expectation operator with respect to 8 ~ 74, E, to be the expectation operator with
respect to & ~ v4. We will denote M = M(d) and N = N(d).

Define the random vector V' = (V4,...,Vy)T and its low- and high- degree parts given respectively by
VgM = (VLSM? R VNSM)T and Voy = (V17>M, cee VN7>M)T, with

Viiem = Egnwy [[P<mfil(x)0a(2; 65)],
Vvi,>M = ]EENVd[[P>Mf*](m)Jd(w; 01)]7
Vi= Emwud [f*(iB)O'd(:B; 01)] = VLSM + Vvix>M‘
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Define the random matrix U = (Uij); jen], With
Uij = Egnvyloa(x; 05)oa(x; 0;)]. (62)

In what follows, we write Rapp(f+) = Rapp(f«, @) for the approximation error of the random feature model,
omitting the dependence on the weights ®. By definition and a simple calculation, we have

Rapp(f:) = min {Eq[f.(2)?) = 2(a, V) + (a.Ua) | = Eq[f.(2)’ - VTU'V,

acRN

Rapp(P<uf) = min {Eo[P<mfu(2)’] - 2(a, V) + (a,Ua)} = Ex[Peuf.(@)?) - VEWU ™'V .
By orthogonality, we have

]Em[f*(w)ﬂ = Ew[[PSMf*](w)2] + EZ[[P>MJ[*]($)2]7
which gives
[Rapp(£2) = Rapp(P<ut) = Eo[[Pomf) (@)
:‘VZMU_1V§M - VTU_1V’ - ‘VZMU_1V§M — (Ve + Vo) U (Ve + Vo) )
- - 63

:\2VTU-1V>M - VIMU—1v>M] <2 U2V am| U2V o + U lop [V smll3

<2 U2op | Vomlizl fllzz + 10 lopVsmll3,
where the last inequality used the fact that

0< RAPD(f*) = ||f*||%2 - VTU_lV?

so that

U= 2VI3 = VIUV < ||ffZ-.

By Eq. (63), to prove Theorem 6.(a), we need to bound [[U™!||op||V sm||3. This is achieved in the two
following propositions.

Proposition 1 (Ezpected norm of V). Let {f. € Dq} be a sequence of target functions. Define Esm by

2
Eom = Eg [(]Ew[P>Mf*(a:)ad(m;0)]) }
Then we have
Esm < [Uasmllop - [IPsmfillZz-

Proof of Proposition 1. We have

5>M = EBNTd[<P>Mf*7 O'd( ) 9)>%2(Xd)]
= EGNTd]EmhszVd [P>Mf* (ml)ad(mh Q)O'd(:IiQ, 9)P>Mf* ($2)]
= E:m,:czNW [P>Mf* (ml)]EeNTd [O'd(xh O)O'd(SCQ, 0)]P>Mf*(w2)]
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= (Pomfe, HgPsmfi)r2 = (Pomfe, Ha smPsmfi) 2
< [HasmllopllPsmfillze = IUasmllopIP>mfellZe-
This proves the proposition. 0O
Proposition 2 (Lower bound on the kernel matriz). Let {o4}a>1 be a sequence of activation functions satis-
fying Assumptions 6.(a), 6.(b) and 7.(a) at level {(N(d),M(d))}a>1. Let (8;)icn) ~ Ta independently and
let U € RN*N be the kernel matriz defined by Eq. (62). Then, we have

U > ksm(A + A), (64)

with A = diag((Ug,>m(0s,0:)/k>m)iciny), k>m = Tr(Ug>m), and A is such that there exists some §' > 0,
such that

E[|A[lop] = Oa(N™").
Proof of Proposition 2. This is a direct consequence of Theorem 7.(a). O
By Proposition 1, we have
E[IVsmlls] = Nesm < N - [Ugsmllop - [P>mfll7. (65)

Next, it follows by Proposition 2 and Assumption 6.(d), that for any fixed § > 0 with 6 < ¢’,
,1—1
U op - Tr(Ug,sm) < [irél[i]{[l] Ug>m(0:,0:)/Tr(Ugsm) — Oap(N77)| < Ogp(N?),

and hence by Markov’s inequality, we obtain

1T oIV >mll3
IPsmfsllZ

Ug,>mllo
< N(S N - || , > P .
> Od,P( ) TI‘([Ud)>M) (66)

By Assumption 7.(a), we have N - |Ug smllop/Tr(Ugsm) = Og(N7%) for some § > 0. Plugging this
equation into Eq. (66) and choosing § < d¢ yield

1T lop |V 5wl =04, (1) - [P>m Sz (67)
Combining Eq. (67) with Eq. (63) proves Theorem 6.(a).
A.3. Proof of Theorem 6.(b): upper bound on the approximation error
In the following, we would like to calculate the quantity Rapp(P<mfs, ®). We have
Rapp(P<mfe,©) = [Pemfelli, - VEuU 'V,
where Vay = (Vam, ..., Vemn) ' and U = (Uj;);5¢(n) with

Vam,i =Egrwy[P<mfu(x)oa(z; 0:)],
Uij =Eg~v,[0a(x;0;)04(x; 6;)).
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Recall that (¢x)k>1 is the orthonormal eigenbasis of Hy. We denote the decomposition of P<m f in this
basis by

i
Mz

M
Pemfe(@) =D (furthn) 2t (
k=1

k=1

Recall the decomposition of oy

= Z A,k V() 0r(0).
k=1

By orthonormality of the (¢x)r>1, we have

M
Vam,i = Z Fidaxor(6:).

k=1

Define

}:( 7"'an)T€RM7

D = diag(\g.1, .- -, Aam) € RMXM,
® = (¢x(0:))ic|N kem) € € RVM,
L

Then we have
M
Veu = (Z k)\d’k(bk(ei))ie[N] —®D}f =L}

By Eq. (70) in Theorem 7, there exists A € RV*¥ such that
U=®D?®" + kom(A+A)=LL" + sop(A+ A),

where kv = Tr(Ug,>m), A = diag((Uq,>m(0i, 0:)/k>m)ie[n))- By simple algebra,

A

VWU 'V = ' SF,
where
S=L"(LL" + kom(A + A))™!
Therefore, we obtain

Rapp(P<mfe, W) =[P<mfulll, = VIMU 'Veu = | FI3 - (f.SF)
<[Tm = SllopllF1I3 = 0ap (1) - [P<mfull?2-

The last equation follows from Lemma 1 which is stated and proved below. This proves the theorem.
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Lemma 1 (Concentration of S). Let Assumptions 6.(a), 6.(b), 6.(c) and 7 hold. Then we have
[Tm — Sllop = 0a,p(1).
Proof of Lemma 1. Applying the Sherman-Morrison-Woodbury formula produces the identity
Iv—S=Iy—L(LL" + koA + AN 'L=Ou+ L (A+A)'L/kam) Y,
so that
1Tm — Sllop < 1/Amin(LT (A + A) " L/ksm). (68)
Note that we have

Amin(LT(A + A) L) /kom = Amin(D®T(A + A) 18 D) /Ko
> Amin (@TR/N) - [N - Amin (D?)/ksml/ | A + Allop (69)
= Anin(®T®/N) - [N - Anin(Ua, <m) /5>m] /| A + Allop.

By Theorem 7.(b), we know that
)\min((I)T(I)/N) = @d,P(l)'

By Assumption 6.(c), we have ||A||op = O4p(N°) for any § > 0. Therefore, by Theorem 7.(a), for any § > 0,
we obtain

1A+ Allop < [[Allop + [[Allop = Oa(N°).
By Assumption 7.(b), there exists dy > 0, such that
[NV - Amin (Ug, <) /K>m] = Qa(N).
Combining the above equalities with Eq. (69) and choosing § such that 0 < § < do, lead to
Amin(LT(A + A) ' L/ksm) = wap(1).
Combining with Eq. (68) proves the lemma. O
A.J. Structure of the empirical kernel matriz

In this section, we present a key theorem describing the structure of the empirical kernel matrix U =
(U(6:,6));,jen) € RY*N. The proof of this theorem relies on two propositions: Proposition 3 shows that
the matrix of the top eigenvectors evaluated on the random weights (6;);e[n] is nearly orthogonal and
is presented in Section A.4.1; Proposition 4 shows the concentration to zero in operator norm of the off-
diagonal part of the matrix Uy and is presented in Section A.4.2. The proof of Proposition 4 is deferred
to Section A.5.

Theorem 7 (Structure of the empirical kernel matriz). Let Assumptions 6.(a), 6.(b) and 7.(a) hold. Let
(0i)icin) ~ Ta independently, and define U = (Ui;);jein) with

Uij = Ud(Bi, 0]) .
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(Recall that Uy(0;,0;) = Eqy,[0a(x,0;)04(2, 0;)].) Then, we can rewrite U (by choosing A € RVN*N)
U=®D?®" + kom(A+ A), (70)
with ksm = Tr(Ug,>m) and
® = (¢r(0:))iciN) ke, D = diag(Ag1,- .., Aam), A = diag(Ug,>m(0i,0:)/K>m)icn)-
The following hold:
(a) There exists a fivzed &' > 0, such that
E[|Alop) = Oa(N ™).
(b) If further we assume M(d) < N(d)'=% for a fized 6o > 0, then we have

H@ch/N Iy

= Od7]p (1)
op

Proof of Theorem 7. For S C {1,2,3,...}, recall that

Udas = Y A7 ,0s0%,

seS

and let Uy s denote the kernel associated to Ug,s. Define Qg = (Qs.ij)i,je[n(a) DY

Qs,ij = Ua,s(0i,0;)1iz;.
By decomposing the entries of U in the orthonormal basis {¢;};>1, we can write U = U<m + U sm where

U<n = ®D°®7,
Usm = (Ua>m(0i,05)); jev -

We begin by part (b). By Assumption 6.(a) and M(d) < N(d)*~%, the assumptions of Proposition 3 are
satisfied with D = M and (¢1,...,¢m) the top M eigenvectors of U. Hence, there exists C = C(q) > 0, a
constant that depends only on ¢ such that

M log(N)

.
E[|eTe/N - 1 T

J<c
op
Taking ¢ > 1/, the right hand side becomes 04(1) and Theorem 7.(b) follows by Markov’s inequality.

Next, we prove part (a), namely that Usy = ksm - (A + A) with |Allep = Ogp(N~%) for some & > 0.

Letting Q@ € RV*Y be the matrix with entries Q;; = (Usm)ijLlix;. Then we have Usym = k=mA + Q.
We next apply Proposition 4 to the operator ﬁd = Ug,>m and subspace 17d = Vi >m. Notice that the
assumptions of Proposition 4 are satisfied by Assumptions 6.(a), 6.(b) and 7.(a). We therefore conclude
that E[||Qllop] = Oa(N=9) - Tr(Ugsm) = Og(N=%) - ks for some & > 0. This concludes the proof of
Theorem 7.(a). O

This theorem implies a particularly simple structure of the empirical kernel matrix U. Under the ad-
ditional Assumptions 6.(c), 6.(d) and 7.(b), U can be written as a sum of a ‘spike’ U<m (of rank M and
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eigenvalues > Tr(Ug >m)) and a full rank matrix Usm with eigenvalues of order Tr(Ug >m). The ‘spike’
matrix U<wm has the following approximate diagonalization:

Uoy = 8D°37,

where & = ®/v/N € RV*M is approximately an orthogonal matrix ||®T® — Iy|ep = 04p(1) and the
diagonal matrix D° = diag(NAZ 1, ..., NAG ) verifies D? - N(d)%°Tr(Ug>m) - Iy (by Assumption 7.(b)).
Furthermore, by Assumptions 6.(c), and 6.(d), and Theorem 7.(a), we have for any § > 0,

Qup(N70) - Tr(Ugom) - In 2 Usm = Ogp(N°) - Tr(Ug =m) - In.

A.4.1. Concentration of the top eigenvectors

Here we state and prove a general matrix concentration result. For each d > 1, let (24, 74) be a (Polish)
probability space, and (¢x)x>1 an orthonormal basis of L?(Qq, 74). Define ¢(0) = (¢1(0),...,¢p(0))" € RP,
and let (6;);<n ~iiq Ta- The law of large numbers and orthonormality imply that, for any fixed D,

lim_ >~ ¢(6)8(6) = [ 6(6)6(6)T 7a(d6) = L (1)

The next proposition establishes a generalization of this fact for the case in which both D and N diverge.

Proposition 3. Let {¢), € L*(Q,7)}f_, be orthonormal functions. Let {0;};c(n) ~ T independently. Define
o, = 0(0;) = (01(0:),...,0p(0,))T € RP fori € [N]. We assume that, for any integer q > 2, there exists
C = C(q) such that we have

sup [|px|[z20 < C(q). (72)
ke[D]

Then for any q > 2, there exists K = K(q) that only depends on C(q), such that denoting 6 = K(q)D log(DV
N)/N'=14, we have

N
1
IEH— o —1 H < 6V V).
N ; ¢z¢z D op = ( )
Proof of Proposition 3. By the hypercontractivity assumption, cf. Eq. (72), we have

1/q
=FE|m 1% <E|m 12 < NVa. 12971/4
I E[ieggﬁmllz} = E[ieﬁ@ﬂmllg ] < NVT-E[l127)

D
= N300, < NV max fléxllEen < Ola)* NYD.
k=1

Applying Lemma 2 below proves the proposition. 0O

Lemma 2 ([/2] Theorem 5.45). Let {a; € RP};cin) be independent random vectors with Elaa]] = Ip.
Denote I' = E[max;eni ||ai||3]. Then there exists a universal constant C, such that denoting 6 = C - T -
log(N A D)/N, we have

N
E[H%Zam} —1Ip Op] < 5V,
i=1
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A.4.2. Bounding the off-diagonal part of the matriz Usy
We state a key proposition) whose proof will be presented in Section A.5. The statement and the as-
sumptions are self-contained.

Proposition 4 (Bound on the off- diagonal part of the matriz Uswm ). Let (0; )Ze[N(d)] ~iia Ta. Let Ug be a
self-adjoint positive definite operator Ud : Vd — Vd, Vd C L3(Q4) with kernel Ud € L2(Qq x Q4) (see
Eq. (11)) satisfying de U4(0,0')f(0')74(d0') = 0 for any f € V. Let (¢j);51 be an orthonormal basis

of eigenfunctions with Span(qgﬁj >1) = Y, C L?(Qq), and eigenvalues (j\d,j)jzl C R with nonincreasing
absolute values |Ag1| > [Ag2| > -+ and dois1 5\273- < oo, such that

Os =3 33,0505, Ua(0,0) = va (0)6;(0).
j=1 i=1
When S C {1,2,3,...}, we denote

Uss =Y A,0,0,  Uas(0.6)=>_3.6,(0)0;(6).

JES jES

We make the following assumptions:

(A1) There exists a sequence {v( V}a>1, such that for any fivzed ¢ > 1, there exists C = C(q,{v(d)}a>1)
such that, for any f.« € Vd <v(d) = span(gﬁs, 1 < s <w(d)), we have

[ fillza < C - || fellze.
(A2) For the same sequence {v(d)}q>1 as in (Al), there exists fized 5o > 0, such that
Tr(®§,>v(d)) N (d)*% = 04(1) - Tr(Ug s0(a)*-
(A3) There exists 69 > 0, such that
N(@) % - | Oallop = Oa(1) - Te(Ta). (73)
Consider the random matriz Q = (Qij)i je[N ()] € RNVNXN with
Qij = Ua(0:,60;)152;.
Then there exists &' > 0, such that
E[[|Qllop] = Oa(N~"") - Tr(Ua).
A.5. Proof of Proposition /
We begin by stating two key estimates which are used in the proof of Proposition 4. The notations
of Lemma 3 follow the notations of Proposition 4. The notations and assumptions of Proposition 5 are

self-contained. We collect a number of technical lemmas in Section A.5.1.

Lemma 3. Consider the same setup as Proposition j. Let {N(d)}q>1 and {v(d)}a>1 be two sequences, and
assume that there exists 69 > 0 such that (this is Assumption (A2) in Proposition /)
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N(d)? - Te(U3 5 g)) = Oa(N ) - Te(Ug,50(a)?. (74)

Consider the random matriz Q.4 = (Q>v(d),ij)ije[N(d) € RNXN *with

Q>v(d),ij = Ud,>v(d)(0i,0;)Lizj.

Then we have

E[|Qx () 12,]"? = Oa(N%) - Tr(Ug > v (a)-
Proposition 5 (Vanishing off-diagonal). Let U be a compact self-adjoint positive definite operator on a

closed subspace V C L*(Q,7), U : V — V, with corresponding kernel U € L*(Q x Q), satisfying
fQ U0,0") f(6")7(d8’) = 0 for all f € V. For any q > 1, we assume that there exists C(q) such that

E91,92~T[‘U(01a 02)|2q}1/(2® < C(q) ’ E91,92NT[U(017 02)2]1/27

— - (75)
Eo~[|U(8,0)|"? < C(q) - Eo~-[U(6,0)].

Moreover, let {0;};cin) ~iia T independently, and consider A = (Ay;); je[N] € RYXN - with

Aij = U(Oz, Oj)]-i;ﬁj~

Then for any integer p > 0, there exists a constant K(p) which only depends on the constant C(p), such
that

E[|Allop] < K@) - { N Tllop + [T opTr(T)N"+2/7 log NJ/2}. (76)
We are now in position to prove Proposition 4.

Proof of Proposition 4. We decompose the operator [[AJd = I[AJdSv(d) + T[AJd7>v(d), and the kernel ﬁd =
Ud,<v(d) + Ud,>v(a)- Define Qg = (Qs,i5)i je[n(a) with

Qs,ij =Ua,5(0:,0;)1;2;.
By Assumption (A2) and by Lemma 3, we have
E[||Q>U(d)||gp]l/2 = 0a(N~%) - Tr(Ug, 5 (a))-
By Assumption (A1) and Lemma 6 which is stated in Section A.5.1 below, the assumptions of Proposition 5
are satisfied, in which we take A = ng(d), U=0U, ,<v(d)> U=1U, ,<v(d), and V= span(¢s : 1 < s < wv(d)).

Further by Assumption (A3) as in Eq. (73), we fix some p > 4/dy in Proposition 5, then for ¢’ = §p/4 > 0,
we obtain

ElQ<y@llop) = Oa(N~°) - Tr(Ug,<u(a))-
Combining the equations in the last two displays proves the proposition. O

We next prove Lemma 3 and Proposition 5
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Proof of Lemma 3. We have

El|Qs.llop) < EllQsuyllz] = N(N —1) - E[Q2, 4 45
=NN-1)- TT(@§,>U(d)) = 04(N™%)  Te(Ug > ()%,

where the last equation is by Eq. (74). This proves the lemma. O

Proof of Proposition 5. With a little abuse of notation, we define U = (U(8;, 6;)); je(n) € RV V.

Step 1. Bound E[||A|,,] using matrix decoupling. For T7,T> C [N], we denote Ar, 1, = (Aij)ier, jers- By
Lemma 4, which is stated in Section A.5.1 below, we have

E[|Allop] <4 sup E[|Arre|op]. (77)
TC[N]

For any S C [N], we denote Eg to be the expectation with respect to {6;},cs and conditional on {6,},ecge.
Fix T' C [N]. Using Lemma 5 (which is stated in Section A.5.1 below) conditioning on {0} cre, we get

Er[l|Azze|lop] < [S(T) - NV +C - (D(T) - log N)'/2,

where X(T) = ||Eg, [ATcuAyre]llop (for some u € T) and I'(T) = Ep[max;er ||Asre
Holder’s inequality:

2]. Therefore, by

Efl|Allop] < 4 sup E[[|A7re|lop] =4 sup ErcEr[[|Arre|op]
TC[N] TC[N]
(78)

<4 sup {[Bre[S(T)]- NJY2 +C - (Eze[D(T)] - log N)/2}.
TC[N]

Step 3. Bound E<[X(T)]. By the compactness of operator Uly;, there exists orthogonal basis {¢y }x>1 and
real numbers {\;}y>1, such that U(0;,0;) = >, A\2¢y(0;)¢1(0;). Therefore, we have

S(T) = [Eo, [Arculurelllop = sup > Y Niow(0:)0k(6;)zi2
I=ll2=1, Se7e
< Tllop - sup > N6k (0:)0k(0;)ziz;

|z]|2= leTC k

= | Ullop - (Tij)ijerellop < 1 Ullop - [Iddiag(T)lop + | Allop]

where we denoted ddiag(U) the diagonal matrix obtained by zeroing the non-diagonal elements of U. Note
by the hypercontractivity assumption as in Eq. (75), we have

N
E[||ddiag(T) op] < E [ZUZ} < NP R[TP)P < Cp)NVP - BT < C(p)N? - Te(T).

This gives
Er<[S(T)] < C(p)N? - |[UopTe(T) + | Ullop E[| A lop)]- (79)

Step 4. Bound E1[I'(T")]. By the hypercontractivity assumption as in Eq. (75), we obtain
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Er[I(T)]=E [max HAZ-TCHS} <N-E {maxmax Au]
€T €T jeTe

<N-IE[ max AP} /p<N1+2/p~]E[A2P]1/p (80)
- ieT,jeTe " - v

= C(p)>’N'"*/P . E[A}] < C(p)>N'+*/7 - ||Ul|op T (D).

The last inequality holds since E[AZ;] = E{[}, Audr(0:)0x(0;)]*} = D2, Ak < U [|opTr(T).
Step 5. Combining the equations. Combining Eq. (78), (79), and (80):
E[Allop] <4 sup {[Ee[S(T)]- '/ + C - (Ere[D(T)] - 1og N)'/?}
TC[N]
< K){ {0 op Tr(T)N 27 1og N}V2 4 (N[ T E|A 0]} 2.

Denote 1 = K (p)(N||Ullop)'/* 2 0 and 5 = K (p){||U]|op Tr(U)N'**/Plog N}!/? > 0, 2 = E[[| Allop] /.
The above inequality implies 2% — £12 — g5 < 0, which gives = < [e1 + (€7 + 4€2)"/?]/2 < (7 + 4e5)'/2. This
concludes the proof. O

A.5.1. Auxiliary lemmas
The following standard decoupling trick follows, for instance, from [42] in Lemma 5.60.

Lemma 4 (Matriz decoupling). Let A € RN*N be a real symmetric random matriz. For Ty, T, C
{1,2,..., N}, we denote Ar, 1, = (Aij)ier, jer,- Then we have

— 1 < c
E[|4 - dding(4) op] < 4 g E[| Az re]lop).

Proof of Lemma 4. Let T be a random subset of {1,2,..., N}, with each element selected with probability

SN—l

1/2 independently. For any x € , we have

(z,[A — ddiag(A)]z) = 4]ET{ Z Amxlx]}

i€T,jET*

By Jensen’s inequality we get

E[||A — ddiag(A)|lop) = Ea| sup (x,[A-— ddiag(A)]a:ﬁ < 4IETIEA[ sup Z Aija:i:z:j}

N-—-1 N—-1
zEeS xzES ieT,jeTe

<4 sup E[||Arrelop]-
TCIN]

This completes the proof. O

Lemma 5 ([/2] Theorem 5.48). Let A € RN*" with AT = [a4,...,ay] where a; are independent random
vectors in R™ with the common second moment matriz X = E[al 7. Let T = E[max;e(n) [|aill3]. Then
there exists a universal constant C, such that

E[|A[2,]" < (IZllop - N)'/2 +C - (T - log(N An))'/2.

Lemma 6. Let {¢r}1<k<z C L*(Q,7) be a set of orthonormal functions. We assume that, for any fived
q > 1, there exists C = C(q), such that for any f € span{¢y, : 1 < k < Z}, we have
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[fllz2a < Cg) - 1 f 2

For 6,0" € Q, we denote U(6,0') = Zle N2 (0)dr(0') where {\i}1<k<z are fized real numbers. Then
for any q > 1, we have

Eg, 0,0 (01,02)%1" 2D < C(q)? - Eq, 0, U (61,02)%]"/?, (81)
E@NT [U(ev O)q]l/q § C(q)2 : EONT[U(ev 0)] (82)

Proof of Lemma 6. For any ¢ > 1, we have

£, 0,+[U (010" =E91~T{E92~T{[im (00)61(602)] )"1}}

N

(a)

< C(g)*- ]Ealw{]EeQNTHZZ:)\k% 01)bk( 02} ‘Ol}q} © C(q)* JEeN{[ZAm (61) } }

Z q q
Clg)™ - { Y ~E91NT[¢k<el>2q}1/Q} < g {c<q>2 S b Eew[m(el)?]}

k=1 k=1

—
INa

) C q)4q [i)\i]q (i) C(q)4q . {E91,92~T[U(01,02)2]}q.
k=1

Here, inequality (a) follows by applying the hypercontractivity inequality with respect to the function
f(02) = Zle A2k (01)dr(62) (and conditional on 61). Equality (b) by the fact that (¢x)1<x<z are or-
thonormal functions. Inequality (¢) is by the Minkowski inequality. Inequality (d) follows by applying the
hypercontractivity inequality with respect to f(01) = ¢x(601). Equality (e) holds because (¢x)1<k<z are
orthonormal functions. Finally, equality (f) follows by simple calculation. This proves Eq. (81).

For any ¢ > 1, we have

Eo.[U(0,0)] =Eg-, [(iAiQSk(@)z)q] (%) [i)‘i ,EGNT[m(g)zq]l/q}q
k=1 k=1
< oW[fAi Eowr[01(0)2)] < [fA |"@ cwp{mo-. 0,00}

k=1 k=1

Here, inequality (a) holds by Minkowski inequality. Inequality (b) follows by applying the hypercontractivity
inequality with respect to f(0) = ¢(6). Equality (c) holds because (¢y)1<k<z are orthonormal functions,
and equality (d) by a simple calculation. This proves Eq. (82). O

Lemma 7 (Bound on the maximum of diagonal). Consider a sequence of probability spaces (Qq,7q4) with
{¢ar}rk>1 an orthonormal basis of functions for Dy C L*(Q4,7a). Assume that there exists a sequence of
integers {u(d)}q>1 such that the subspace Dy <4y = span(dax : 1 < k < u(d)) is hypercontractive, i.e., for
any fived k > 1, there exists a constant C' such that, for any g € Dy <y(q), we have

91l z2x (20) < C - N9l 2(00)-

Let {Ug}ta>1 be a sequence of positive definite kernels Ug € L?(Qq x Qq) with

Ua(61,62) = > N 1 0ar(01)bak(62).

Jj=1
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Denote Ug,~¢ the kernel function obtained by setting Ag1 = ... = Ag¢ = 0. Letting (ei)ie[N(d)] ~iid Td, if
we assume that for any § > 0,

hax Ui, >u(a)(0:,0:) = O4p(N(d)°) - Eorry [Ug > u(a) (6, 0)], (83)
then for any § > 0,
‘max Uy(8;,0;) = Ogp(N(d)®) - Egr, [Ua(8,0)). (84)
i€[N(d)]

Furthermore, if we assume that for any 6 > 0,

ier[nz\%)]EGN” Ui >u(a)(0:,0)%] = Ogp(N(d)°) - Eo, 05~rg [Ua,>u(a) (81, 02)2], (85)

then for any § > 0,

Ef{l]?();)]Eewd [Ua(6:,6)%] = O4p(N(d)°) - Eg, 05, [Ua(01,02)7]. (86)

Proof of Lemma 7. Let us decompose Uy in a high and low degree parts, Us = Ug <y, + Ug, >, Where

Ua,<u(01,02) = Y N} 1 6ak(01)ar(02),

k=1

Ua>u(01,02) = > Ajxbak(01)dak(62).

k=u+1
By Lemma 6, we have for any ¢ > 1,

1/q
E max U 09,0, <E max U 9“0 q
|:i [N( )] d7<u( (3 1):| = |:1 [N( )] d7<u( z) :|

IN

NVaE [Ud,gu(e, 9)(1} e

IA

C(q)*N'TE [Ug <u(6,6)]
Hence, by Markov’s inequality and condition (83), we get for any § > 0, taking ¢ sufficiently large,

‘max_Uy(6;,0;) = Ogp(N(d)°) - Egr, [Ua(8,0)).
i€[N(d)]

The proof of Eq. (86) follows from a similar argument. O
Appendix B. Generalization error of random feature model: Proof of Theorem 1

In this section, we prove Theorem 1. The proof in the overparametrized regime is presented in Section B.1.
The proof in the underparametrized regime follows from a very similar argument: we will omit it and simply
add comments in the overparametrized proof where they differ.

We defer the proofs of some technical results to later sections. Section B.2 proves a key proposition on
the structure of the feature matrix Z = (04(xi;0;))icmn),je(nv]- Section B.3 gather some technical bounds
necessary for the proof of Theorem 1. Finally, Section B.4 contains concentration results on the high degree
part of the feature matrix.
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B.1. Proof of Theorem 1 in the overparametrized regime

In this section, we prove Theorem 1 in the overparametrized regime. We defer the proofs of some of the
technical lemmas and matrix concentration results to Sections B.2, B.3 and B.4. The underparametrized
case follows from the same proof with the following mapping n <+ N, m <> M and A — Ay = NA/n. We
will add remarks in the proof when a difference arises.

Step 1. Rewrite the y, V, U, Z matrices.
We recall that the random feature ridge regression solution is given by

n
N . » 2 A
a(\) = argmin { Z (yi — f(misa))” + N||a||§}
@ i=1
Solving for the coefficients yields
a(\)=(Z'Z/N +\y) ' 2y,

where y = (y1,...,yn) and Z = (Zij)icin)jery) € R™N with Z;; = oa(24;6;). Hence, the prediction
function at location x is given by

flx:a(\) =y "Z(Z"Z/N + M\y) o (x)/N,

where o (z) = (04(x;01),...,04(x;0x)) € RV.
Expanding the test error, we get

2
Rrr(fe, X, 0, )) =E, [(f*(m) —yTZ(Z"Z/N + )\IN)_lcr(w)/N) }
—E,[f.(x)%] — 24T ZU, VN + 42U, 'UU, ZTy/N?,
where V = (Vi,...,Vy)T and U = (Uy;);jen) With
Vi =Eg[f«(x)oq(x; 0;)],
Uij =Egloa(x; 0;)oa(x; 0;)],

andUy=2"2Z /N + My is the (rescaled) regularized empirical kernel matrix
A 1
Ux,ij = N k%:] oq(r; 0:)oq(Tr; 05) + Ny

We recall that the eigendecomposition of o4 is given by

oa(xz;0) = Z Ak Vr ()1 (6).
k=1

We write the orthogonal decomposition of f, in this basis as

oo

ful@) = fartoi(),

k=1

Define
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P =), ., Yr(@a))T €R™,
¢k :(¢k(91)7 ) ¢)k(9N))T S RNa
ng :diag()\dyl, )\d,g, ey >\d,m) S Rmxm7

YV<m :(¢k($i))ie[n,],ke[m] eR )
b<m =(0,(0:))ic) kem € RV,
}Sm :(fd,lv fd,?v sy fd,m)T cR™
Recall that y = (y1,...,9yn)" = f + € with
f :(f*(w1)7 B f*(wn))-r
€ :(61,...,sn)T.
Using the above notations, we can decompose the vectors and matrices f, V', U, and as
f:f§m+f>ma fgm:,t/}gm}gma .f>m: Z fd,kwka
k=m+1
V=Vin+Von, Vim=¢cnDcmFfem:  Vom= > fardardy,
k=m+1 (88)
[oe]
U= Ugm +Usm, Ugm = d)SmDQSmd);m? Usm= Z )\fl,kcbkcbl,
k=m+1
Z=Zcm+ Zom, Zem=%cnD<mdln,  Zom= Y lax¥oy .
k>m+41
Step 2. Decompose the risk.
We decompose the risk with respect to y = f + € as follows
R (fe: X, W, A) = fullF2 — 2T1 + To + T3 — 2Ty + 275,
where
T, =fTZU, VN,
T, =fTZU, UU, Z"f/N?,
Ty =" ZU, UU, Z"e/N?, (89)

T, ="ZU, VN,
Ty =T ZU, 'UU, ' Z" f/N2.
The proof relies on the following key result on the structure of the feature matrix Z:

Proposition 6 (Structure of the feature matriz Z). Follow the assumptions and the notations in the proof
of Theorem 1 in the overparametrized regime (note in particular that N > n't% and n > m'*% for some
fized 6o > 0). Consider the singular value decomposition of Z = (Z;;)icin),jeiN] With Zij = oa(xi; 0;):

Z/VN = PAQ" = [Py, Pyldiag(A1, A2)[Q;, Q)" € R™V,
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where P € R™ ™ and Q € RN*" and P; € R™™ and Q, € RNX™ correspond to the left and right
singular vectors associated to the largest m singular values Ay, while Py € R™("=™) and Q; € RN (n=m)
correspond to the left and right singular vectors associated to the last (n — m) smallest singular values As.
Define ksm = Tr(Hg >m).

Then the singular value decomposition has the following properties:

(a) Define A = diag((ai(Z/\/N))ie[n]) the singular values (in non increasing order) of Z/v/N. Then the
singular values verify

Omin(A1) = irél[irlnl] oi(Z/VN) = kY2 wap(1), (90)
142 = K2 Tomlop = _max [0 Z/VN) = wla] = 20 0qp (1), (91)

(b) The left and right singular vectors associated to the (n — m) smallest singular values verify
n 2L Pellop = 0ap (1), N7TV2[¢LnQsllop = 04 (1). (92)
(¢c) We have
NPT Z5nQsllop = 1m - 02 (1). (93)
We defer the proof of Proposition 6 to Section B.2.

Remark B.1. Proposition 6 shows that the feature matrix Z = Z<n+ Z~n, (cf. Eq. (88)) is a spiked matrix,
with m spikes with singular values A; much larger than Hl>/m2 coming from the low-degree part Z<p, (in
particular, Proposition 6.(b) shows that the left and right singular vectors of the spikes are approximately
spanned by the left and right singular vectors of Z<,) while the rest of the singular values are approximately

constant equal to m;/ﬁ. The proof of this proposition is based on the following observations:

(a) Z<m/VN = ngmDqub;m/\/N is a rank m matrix with

(i) PY<m/+/n and ¢>Sm/\/ﬁ are approximately orthogonal matrices (see Eq. (108)).
(it) vn|D<m| = diag(v/n|A1],...,v/n|Am|) = wdyp(n;/,:) - I from condition (19) in Assumption 2.(a).

(b) The high degree part Z~m,/v/N has nearly constant singular values | ZsmZL /N — fsmnllop = fsm -

04,p(1) and is nearly orthogonal to the span of the right singular vectors of Z<p, i.e., | Z>m@<n/N|lop =

/—11>/m2 -0q,p(1) (see Proposition 8 in Section B.4).

Using Proposition 6, we can prove the following list of bounds that will be the main tools for the rest of
the proof of Theorem 1.

Proposition 7. Follow the assumptions and the notations in the proof of Theorem 1 in the overparametrized
regime. Then the following bounds hold. (Recall that ksm = Tr(Hg >m).)

(a) Bounds on U;l =(Z"Z/N + \y) '

A —1
YL, 20, ¢ D<m/N =10+ A, (94)
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~ —1
ID<npZnUs Z" fom/Nlz = [Pomfellzeen - 0ap (1), (95)

VAl|ZU, ¢ <D</ Nllop = Oup (1), (96)
where |Allop = 04,p(1). Furthermore, we have
1205 VN lop = 553* - Oup (1). 07)
(b) Bound on Usp:
U mllop = Fom - 042 (1).
(¢) Bounds on f:

I£ll2 =vnlfullz2 - Oap(1),
% LS sm/ll2 =|IPsmfull24n - 04 (1)-

(d) Bound on Vsp:

n
51V mllz = RERIIPm llze - 04p (1).

The proof of Proposition 7 is deferred to Section B.3.

Remark B.2. In the underparametrized case, the proofs and statements of Proposition 6 and Proposi-
tion 7.(a) and 7.(c) are symmetric under the mapping n <+ N, m <+ M and A\ — Ay = NA/n. The bounds
in Propositions 7.(b) and 7.(d) can be easily replaced by

1/2
U smllop = Ksm - Oap(D), IVsmllz = £X31Psmfollzz - 0ap(1):

In order to bound the term T2 in Eq. (103), we will further use the following bound

A —1 _
1O Z7F/nllop = 52417 1 £ellz2 - 0ap (L),

that we prove in Section B.3.5. It is easy to insert into the new bounds below the aforementioned mapping
and check that the underparametrized case follows indeed from the same computation.

The rest of the proof amounts to controlling each term separately using the claims listed in Proposition 7.
We will use extensively the following (basic) properties of the operator norm: for A € R™*?P B € RP*4,
u € R™ and v € RP, we have

T T
1A]lop =I[AT A3 = [ AAT| 32,
[ABllop <[|Allop|| Bllop;
u' Av <||ul)2]|Allop ]2
Step 3. Term T;.
Let us decompose T} into

Ty =Ty + Tia + Th3,
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where
T A —1
Ty =fLo,ZU, V<u/N,
A —1
Tio =fl o ZU, V<u/N,

A —1
Tis=f'ZU, V-,/N.

Recall that V<, = QSSmDSm}'Sm and f, = "bgm}gm- Hence by Eq. (94) in Proposition 7.(a):

~T A —1 N
T :fgm(,l:b;mZU)\ ¢§mD§m/N)f§m
AT N
=fcmIm+A) o (98)
=[[P<mfellie + IP<mfelliz - 0ap(1).

Similarly by Eq. (95) in Proposition 7.(a),
A —1 ~
| Tio| =|fimZU ¢<mD<mf <m/N|

A —1 ~
< DemdnUs ZT f o/ N2l F <mll2 (99)
=|IPsmfillzztn |P<mfillz2 - 0ap(1).

Using Proposition 7.(c) and 7.(d) as well as Eq. (97) in Proposition 7.(a), we get
1 A1
| Tis| = 1T ZU Vom/N| <|f/Val2ll(Z/VN)O lop - VI/NV sl

<Oap (I fell22) - Oap (55?) - 0ap (KX lPsmfell2) (100)
—lfell 2 [Psmfellz2 - 0ap(1).

Combining Egs. (98), (99) and (100) yields
T = [P<mfullze +o0ap(1) - (1£cllZ2 + [IP>mfull Zosn)- (101)

Step 4. Term 75
Recalling U = ¢§mD2§m¢—I§—m + U=, we can decompose T5 as

Ty =151 + Tho,
where

A —1 A —1

Ty, =(f'ZU, ¢<yD<m/N)(D<mol, U, Z'f/N),
A —1 A —1

Too =f'ZU, U U, Z"f/N2

From Eqs. (94) and (95) in Proposition 7.(a), we obtain

L -1 .1 A 1
Dfm(b;mU)\ ZTf/N :Dﬁm(ﬁ;mUA ZTwSmem/N + Dqub;mUA ZT«f>m/N
:(Im + AO)}gm + ||P>mf*||L2+” : Alu

where HA1||OP = Od,]p(l), HA2||2 = Od7]p(1). Hence,
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Tor =[Pmfillze + (1felliz + [IPs>mfellZors) - 0ap (D). (102)
From Eq. (97) in Proposition 7.(a) as well as Proposition 7.(b), 7.(c), the second term is bounded by
A1 n—1
[Too| =|FT 20U\ Ul 27 f/N?|

<NV sl | (Z/VNNTS 1215 /3/113 (103)

=04p (K>m) - Oap(K5m) - Oap(If:l72) = IfllZ2 - 0ap(1).
As a result, combining Eqs. (102) and (103) leaves us with
Ty = [IP<mfilli +0ap (1) - (1fllZ2 + IP>mfellZ2en)- (104)

Step 5. Terms 75,7, and T5.
Let us start with the term T3. Decompose U = qumDQquﬁ;m +Usm:

E.[T3)/0? =tr(ZU, UU, Z7)/N?
—t1(ZU ) ¢ D@Ly Z7)/N2 +t2(ZU UsnlU, Z7)/N2.
By Eq. (96) in Proposition 7.(a), and since m < n'~% by Assumption 2.(a), we get
(20 ¢ nD%n¢LnU5 ZT)/N? <m- | 20, ¢cnDem/N|2, = = - Oup(1) = 042 (D).
By Eq. (97) in Proposition 7.(a) as well as Proposition 7.(b), the second term is bounded by

A1 A1 A =2
t(ZU, UsnUy Z7)/N? <[|(0/N)U snllopl|ZU " ZT /N||op/n
=04p (F>m) - Oap(KSm) - n " =o04p(1).
Combining these two bounds and using Markov’s inequality, we get
Ts = oqp(1)- 02 (105)
Let us consider term Ty. Recall that we can decompose V = ¢§mD§m}§m +Vaom, so
E.[T?]/0? =t2(ZU, VVTU Z7)/N?

VU, 'z z0, v /N?
A1 A1

<2(|ZU\ Vu/NI3+ 12U, Vom/NI3).

We have by Eq. (96) in Proposition 7.(a),

. —1 A —1 ~
[ZUy V<m/Nl2 S| ZUy ¢<D<m/Nllopllf<mllz = [P<mfillzz - 0ap (1),

and by Proposition 7.(d),

~ —1 ~ —1
1ZU\ Vom/Nl2 <1 ZU, VN2V 5m/VN]2

=04p(konl?) - 04 (KY2lIPamfull L2n2) = [Psmfell 2 - 0ap (1).
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Combining the two above bounds, we get by Markov’s inequality
Ti=o0ap (1) 0c|fullz2 = 0ap(1) - (02 + [Iful72). (106)
Let us consider the last term Tx:
E.[T2)/0? =t2(ZU, UU, 2 $#72U, UU, Z7)/N*
=120, U ZTF N3 < | 205 U0, 27 N2, | £/l
By Eq. (95) in Proposition 7.(a), and Proposition 7.(b),
1205 U0, 27V /N op <V | 205 dcnDm/NI2y + IV2/N?Usinllop| 205" 27 /N o
=o0q,p(1).
Hence, by Proposition 7.(c),
Ec[T3)/02 = 04w (1) - | £/V2l3 = | f<]13 - 0a (1),
which gives by Markov’s inequality:
Ts = oc| felle2 - 0a,p (1) = (02 + || fill72) - 0a,p (1) (107)

Step 6. Finish the proof.
Combining Egs. (101), (104), (105), (106) and (107), we have

RRF(f*aXa Wv)\) :”f*H%g - 2T1 + T2 + T3 - 27ﬂ’4 + 2T5
=[fllZz = 2IP<mfillZ2 + IP<m fillZ2 + 0ap (1) - (I fellZ2 + IP>mfull Zosn +02)
=[Pomfillzz + 04 (1) - (1fll72 + [PomfillZeen +02),

which concludes the proof.
B.2. Proof of Proposition 6: structure of the feature matriz Z

Recall the definition Z = (o4(x:; 0;))icn),je[n)- Recall the decomposition Z = Z<n + Z~r, into a low-
and high- degree parts, as per Eq. (88). For convenience, we will consider the normalized quantities

\\E

:Z/ ZSm:ZSm/\/N7 Z>m:Z>m/\/N7

) '{ngm = ¢§m/\/ﬁ7 ng = \/ﬁng

25

¢<m

Sm/

In particular, notice that TjA = ZTZ + My and ng = &Smbgmgb;m.
By Proposition 3 applied to ¢<,, and ¥, (with assumptions satisfied by Assumption 1.(a) and As-
sumption 2.(a)), we get

~T ~ ~T ~
¢Sm¢)§m = Im + Ala d]Sm’lpSm = Im + AQa (108)

with [|A;|lop = 04p(1) for ¢ = 1,2. Furthermore, by Proposition 8 (stated in Section B.4), we have

T - ~
Z>mZ>m = K>m - (In + AZ)a ||Z>m¢§m||op = H‘l>/nz : Od,]P’(l)v (109)
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with [|Az|lop = 04,p(1) and where we recall £~y = Tr(Hg >m). Furthermore, Assumption 2.(a) implies that
Oin(D<m) = min{v/nlAal} = wa(1) - w2, (110)

Hence, we expect Z = ng + Z>m to have m large singular values wq(1) - /11>/rﬁ associated to ng with

left and right singular vectors spanned approximately by {ﬂgm and éSm, and n — m small singular values

approximately equal to /11>/,3 associated to Z ~m-

Proof of Proposition 6. Claim (a). Bound on the singular values.
Using Egs. (108) and (110), we have

S ~ = AT o~ o= ~T
ZSmZSm = ¢§mD§m¢§m¢§mD§m¢§m

~ . . ~T
= ¢§mD§m(Im + A)Dﬁm¢§m

~ =2 ~T
= Qip(1) Y DonP<m
T
= R>m * Wd(l) ' ¢<m¢<m

Furthermore, by ’[/}lm,&gm = I, + Ay, we deduce that the singular values of Z <m are lower bounded as

follows

rél[ln] 0i(Z<m) = K>m - wap(1). (111)

By Lemma 8 stated below in Section B.2.1, we have for i € [n],
10(Z) = 0i(Z<m)| < 1 Z>mllop- (112)
Recalling Eq. (109), [|Zsmllop = Oap(1) - m;/,z. Hence the first m singular values obey:
0i(Z) > 0)(Z<m) — k- Oap(1). (113)

Using Eq. (111) implies omin(A1) = min;gjm 0i(Z) = n;/n?\ -wq,p(1). This proves Eq. (90).
Using again Eq. (112), the n — m smallest singular values obey:

max  o;(Z) < kY2 (14 ogp(1)). (114)

i=m+1,....,n

In order to lower bound the n — m smallest singular values, we lower bound the eigenvalues of ZZ T wWe

decompose

where HAZHop = Od,]P’(l)'
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Denote L = {bgmbgm(lm +A)Y?2and T = Z>m¢~)§m(1m +A)"'/2. By Eq. (109), we have HTTT||Op =
K>m - 0q,p(1). Combining these remarks leads to the lower bound

ZZ = LL"+TL + LT +TT" —TT" + Z.,Z.
(L+TYLA+T)" + ksm - (I, + A7)
E R>m - (In + A/)7

where ||A'||op = 04,p(1). We deduce that

O’min(Z) = Hel[ln] 0'1(2) 1/2 (]. + Od’]p(]_)),

which combined with Eq. (114) yields Eq. (91).
Part (b). Left and right singular vectors.
Let us prove ||q~b;mQ2||op = 04,p(1). The proof for 'JJ;mPg follows from the same argument by replacing
Z by Z' and using the bound |\Z>m<§5§m||0p = /<al>/,§ -oq.p (1), cf. Eq. (109).
Let us consider a sequence u € R”™™ (where we keep the dependency on d implicit) such that [|uls =1
and ||<~b;mQ2u||2 = H(}b;mQQHOp. For convenience, denote & = (}b;mQQU. We have
u' Adu = uTQ;ZTZQﬂ/,
o o 5T =T o
= uTQg(ngZ§m+Z>mZ§m+Z§mZ>m +Z>mZ>m)Q2u (115)

_ o L .
=@ Dem(In + A2) Dt + 28" D (Y Z>mtt) + | Z5mQuul3.

From step 1, we know u"A2u = xp, - Og4.p(1). Furthermore,

@ Dem(Im + A2)Depir = Qup(1) - | Dem@t||3,
a'D (¢<mZ>mU) ||D<mu||2||¢<mz>m||0pa (116)
1@ ZnZsmllop < % <mllopl| Z>mllop = £ - Oup (1).
Therefore, using the bounds (116) in Eq. (115), we get
~ _ - B ~T =
Qup(1) - [Demtly — 2| D<m@l2<mZsmllop < fom - Oap (D).

Hence,
|D<mills = O p (i (522, 9 L Zomllop) ) = 22 - Oap (1), (117)

/2 1/2

cwa(l) - |lalle = kY, - wa(l) - ||ng~ﬁgm\|op in Eq. (117), we deduce that
Qs ¢§mHop = 04p(1). This concludes the proof of Proposition 6.(b).

Using the bound || D <ty = Y7

Part (c). Cross-term bound.
1/2Z<m+
1/2Z>m Indeed, Eq. (111) implies that Umin(ﬁ>m Z<m) = wap(1) and Eq. (109) gives \\n>mZ>mZ1m -

n||op = 04, p(1). Furthermore, the right singular vectors V of Z <m are spanned by the left singular vectors
of [bgm. From Eq. (109), we have ||Z>m(?)§m||op = fil>/r§'0d,IP’(1)- Combined with ||‘~b;m‘z’§m_1m‘|op = oap(1),
we get ||H;#/QZ>mVO||0p =oq4p(l). O

This is a direct application of Lemma 9 (stated below in Section B.2.1) with matrix £ \Vig
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B.2.1. Auziliary lemmas
We recall the following classical perturbation theory result, which we quote from [44, Page 102, Section 3].

Theorem 8 (Sin(©) theorem for rectangular matrices [44]). Let Ag be a n x N-matrixz with singular value
decomposition

Ag=U,=,Vy,
where Uy € R™™ Vi € RVYXM gerify m < min(n, N) and UgUO = VgVo = I, and we denoted 3y =
diag((0i(Ao))ie[m)) = the singular values. Let M be a perturbation n x N-matriz and consider B = Ag+ M
with singular value decomposition

B = PXQ = [Py, Py]diag(A1,A2)[Q,, Q)"

where P, € R™™ Q, ¢ RV*™ P, ¢ R7*(n—m) Q, € RN*(n=m) - Assume that Omin(A1) > 0. Then

max(|MQ,||op, |[MTP
(L, = UaUg)Pillop [y = VoV 3) Qs o) < 2R @on IS Frllr),

(118)
Lemma 8 (Weyl’s inequality). Consider Ag, M € R™N and define B = Ay + M. Then for any i €
[min(n, N)], we have

|0i(B) = 0i(Ao)| < [[M|op- (119)

The next lemma implies that the projection of the noise matrix M on the top left singular vectors of the
full matrix is approximately in the space orthogonal to the right singular vectors.

Lemma 9 (Null space of right singular vectors). Let {N(d)}a>1, {n(d)}a>1 and {m(d)}4>1 be three sequences
of integers. For convenience, we denote N = N(d), n = n(d) and m = m(d). Assume that N > n+ m and
n > m. Consider the following sequence of random spiked matrices:

B:=B(d)=Ay+ M =Uy3S,V| + M € RV,

where UOEOVE is the singular value decomposition of the rank m matriz Ay with Uy € R™™, Vi, € RVXm
and UOTUO = VgVo = I, and 3o = diag((00,i(Ao))ieim)) € R™*™ are the singular values. Further assume
that

(a) omin(Ao) = min,gjm) 00,i(Ao) = wa,p(1),
(b) [[MVllop = 0qp (1),
(c) IMMT —T,lop = 04,p(1).

Denote B = PAQ" = [Py, Pyldiag(A1, A2)[Qq, Q5]T the singular value decomposition of B where
Py € R™™ and Q, € RNX™ correspond to the left and right singular vectors associated to the first m
singular values A1, while Py € R™ ™™ and Q, € RN*("=™) correspond to the left and right singular
vectors associated to the last (n — m) singular values As.

Then we have

|1PTMQ|lop = 04.p(1)- (120)
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Proof of Lemma 9. Step 1. Simplification of the problem.
Without loss of generality, we can choose an orthonormal basis in RY so that, in that basis

Inm
Voslodn] M= M O] )

where M1 € R™*™ and My € R™*"™. Because the space corresponding to the last N — (n 4+ m) coordinates
of the row is in the right null space of both Ay and M, we can forget about them and consider —without
loss of generality- M = [My, M5] € R"*("*™ N =p 4 m.

From the assumption ||[MVl|op = 04p (1), we have

[M1lop = 0a.p(1)- (122)
Furthermore, from the assumption |MM ' —1,,|lop = 0qp (1),
IM2M —Lolop = 0ap(1). (123)

Step 2. There exists an orthogonal matrix R € R™*™ such that ||P; — UoR||op = 04p(1).
Recall that Ay = diag((o1,i(B))ie[m))- By Lemma 8, we have for any i € [m],

lo1,i(B) = 00,i(Ao)| < [[M|lop-
Using the assumption (a) that omin(Ag) = wgp (1) and assumption (¢) || M||op = Oqp(1), we deduce that

Jnlin(Al) = wd,IP’(]-)~ (124)

Furthermore |[MQ |lop < ||M||op = Ogp(1) and similarly || M P1|lop = Ogqp(1). We can therefore apply
Theorem 8 which gives

(X, — UoUJ)Pillop = 0ap(1).

Denote by Uy, | € R™*(n=m) 5 matrix such that [Ug, Uy, 1] is orthogonal. The last equation implies that
||UgyJ_P1||Op = 04,p(1). Further,

PIUUP, =1, — P{(1, — UgU}) Py,

which shows that |[P{UUJ Py — Inllop = 0ap(1). This implies UJ Py is an approximately orthogonal
matrix. Namely, let its singular value decomposition be U gPl =R, S R;. Then, by defining the orthogonal
matrix R := R; Ry € R™™ we have |P; — UoR)||op = 04p(1).

Step 3. The null space of the right eigenvectors Q.
Let us explicitly describe the null space of Q € R(+m)xn (recall that we removed the N — (n 4+ m) last

coordinates of the columns). Consider N7 € R™*™ a rank m matrix and write N2 € R™*™ as a function

of N1 such that ker(Q) is spanned by the columns of the matrix N = [%;] e R(rtmixm y o "BN =0,

that is

N,

[UoSo+ M Mo, [M

] = UoXZo+M1)N1+ M>yN,=0.

Projecting on the two orthogonal subspaces U and Uy |, this is equivalent to
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Ny =—(Z0+U M) ‘U] M;N,, Uy, MNy=-Uj M>;N>. (125)

Let us do the following reparametrization Ny = My Ny and fix N; = —(Zg+ U} M1)~'. Then Eq. (125)
gives

UjNy =1, Ug Ny=Uj M(Zg+UgM;) ™,

which gives Ny = Ug + Uo U | M1(Zo + Ui M), and

)

Ni= —(Z0+UjM;) !,
Ny = M;'Uo+ M;'Uo Uy, M(Z+UjM;) "

By the assumption Amin(Zo) = wap (1) and Eq. (122), we have ||(Zo+Ug§M1) " |lop = 04p (1). Furthermore,
from Eq. (123), we have [|[M5" — M} ||lop = 04p(1). We deduce that

”NT - [On,m U-(I)—MZ] HOP = Od,]P(l)- (126)

Step 4. Concluding the proof.
By construction, N'Q = 0 and using Eq. (126), we get

INTQ = [0 UTM:] Qllop = || [04m UgM2] Qllop = 0ap (1) (127)
Furthermore using step 2 and recalling that || M |lop = 0qp(1),
IPTM = [0,m RTUIM>] [lop = 0ap (1) (128)
Combining Eqgs. (127) and (128) yield
IRP{MQ — [0, UjM2]Qlop = 0up(1),
and |P{MQ|op = || RP{MQ||op = 0ap (1), which concludes the proof. 0
B.3. Proof of Proposition 7: technical bounds in the overparametrized regime

We prove the claims of this proposition in a different order than stated.

B.3.1. Proof of claim (c)
First, notice that E[|| f||3] = n||f«||3.. Hence, by Markov’s inequality, || f||3 = n||f|%2 - Oap(1).
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Let us now consider 1/)£mf>m/n. For any n > 0,

E [[0lnfsnld] /n? =Eal( 3 futr])bcntln( X fw)]/n?

u>m—+1 v>m+1

S 3 Y {E[neiviedi @) 2},

w,v>m+1 s=0 Z,jE[n}

w,v>m+1 s=0 i€[n]

= 3 Ea[(Panfi@) uu(@)?] < Z||P>mf*\\L2+n||ws||m+w

n
s=0

~ m
< CO) 2 Pomfulern,

where the last inequality uses the hypercontractivity assumption of Assumption 1.(a):

24n . _2n [

HwS||2L(4+2n)/n = Ew[¢8(w)2 nJare < C((2+1m)/n)Ee ¢S(:I:)2] =C((2+n)/n),

and C(n) = C((2 +n)/n). By Markov’s inequality (using m < n'~% in Assumption 2.(a) for some fixed
0o > 0), we get

19 Zmf sm/nll2 = 042 (1) - [IPsmfillp2en.

B.3.2. Proof of Proposition 7.(a)
Throughout the proof, we will generically denote A any matrix with ||Allop = 04p(1). In particular, A
can change from line to line. For convenience, we will use the notations introduced in Section B.2.
oo —1 _
Step 0. Bound || ZU, ||op = n;{ O p(1).
Recall the definition U = Z'z + My and the singular value decomposition Z = PAQ". Hence, we

can rewrite

L a1 A T
ZUN =P 9

where we denoted by a slight abuse of notation A/(A? + \) := diag((A;/(A? + A))ie[n)). From Proposi-
tion 6.(a), omin(A) = 1/ (14 o04p(1)). We deduce that

120 lop = w2l - Oap (D).

~T ~a—1~ -
Step 1. Bound ||1/J§mZU>\ @<mD<m — Inllop = 0qp(1).

First notice that é)gmbgm = Z;m({p;mﬂ =(Z - Z>m)T({p;m)T. Furthermore, by Eq. (108), we have
('[b;m)T = "ng + A. Hence,

(129)

Let us decompose the first term along the large singular values A; and small singular values As:
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~T 12T, ~T ~T A?
¢§mZU)\ Z ('lljgm)]L = "/"gm A2 +>\PT(¢<m>
~ T A2 - T A2
=Y P A2+>\PT("/’<m) +PmP2 A2 +)\PT(¢<m) .

From Eqs. (90) and (92) in Proposition 6 and the assumption in the theorem A = O4(1) - kK>m, we have

~T
HA2+ 5 Do =ear ). IBInPallp = 0up (1),
Hence,
- T A3 - T - T
[#nPo 2 PYG L) | < 1 EnPallopll #E) llop = 00 (1),
2 op
and
~T A2 T + T T t / /
1/’§mP1A2+)\P (¢<m) _1/’<mP Py (¢<m) +A= ¢<mPP (¢<m) +A =In+ A,

=og,p(1). (130)

Consider the second term in Eq. (129):

As
A2+)\

ma—1=T ~T

1’2’; zZU Z>m(/l»b<m)'r = ¢1mpl

< < A2+)\ (¢<m) .

QT >m(177)<m) + {ZJ;m

Ubing Eq. (90) in Proposition 6, we have omin(A1) = /11>/n% - wap(1). Then, recalling that [|Zsmlop =

/{>m Og4p(1), we obtain

~T ~T ~T = ~
[$EnPr g QT2 B < 15 Ellonl A1 /(A2 + Nl Zmlop B+ Al

A2 + A
= Oap(1)-0up(ror) - Oap (k) - Oap(1) = 04p (1).
By Egs. (91) and (92) in Proposition 6, we get

As

H¢<mP2A2 A

T -7 ~T = ~
(@ Zn)'|| < 1Pl A2/ (AZ + Vo1 Z5mllop [ <m + Alop

= 04p(1) - Ogp(ron?) - Oap(k¥e) - Ogp(1) = 0gp(1).

We deduce that

| Lm 20 ZL (L) [op = 0a2(1). (131)

Combining Egs. (130) and (131) into Eq. (129) yields

where [|Allop = 04,7 (1).
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S ST 1T
Step 2. Bound |[D<no .Uy Z f../vnll2 = [[Psmfellzz+n - 04p(1)-
Let us denote f- ., = f-./v/7 for convenience. Let us use again that qNbSmDSm =(Z - Z>m)T({b;m)T:

~ ~T -~ ~ = a =1 ~T-~ ~ = A —=1~T-~
DqubSmU/\ Z f>m = (’lrbgm)TZU)\ Z -f>m - (Qrbgm)TZ>mU)\ Z .f>m' (132)

First notice that because ||12J;m’l~ﬁ§m —In|lop = 0q,p(1), we have ||12}2mP2||0p = 04,p (1) in Proposition 6.(b)
that implies ||(1~ﬂ§m)TP2 llop = 04p (1) (for example by looking at the singular value decomposition of 1,~b§m).

— ~T = s . . ~ i
Similarly [[th<p fomllz = [Psmfillz2+0 - 0ap (1) (Proposition 7.(c)) implies [[(¥<) fomllz = [IPsmfellp2+n -
04,p(1). Using the same argument as in the proof of Eq. (130), we have

- Y oaA—1~T~
||(¢§m)TZU)\ Z f>m||2

[0t
H(q’bﬁm) Azl Toml, (133)
< @ <m) Fomllz + 002 (1) - (@ <m) lopll Fsmllz + IP>mfillzz - Oap (1) - (% <m) Pallop
= [[P>mfill2+n - 04p(1).
The second term (132) can be decomposed as
~ . =1 ~T~ ~ Aq ~ A,
(wgm)TZ>mU/\ Z f>m = (¢g )TZ>mQ1 2 1f>m (d’g )TZ>mQ2 2 2f>m'
A? AS+ A
. 1/2 = 1/2 .
Using that omin(A1) = £ - wap (1) and || Zsm|lop = £3m - Ogq.p (1) yields
bm) Z APT < N(Wpem)Z A1/(A3 4 Nllop|| P f
(P <m) @ S P fon| 1% <m)'Z>m @i llopl| A1/ (AT + A)lop [ P1 f > mllop
134
= 0up(5%2) - 0ap (5 Oup (P fell) .
= [IPsm/fellz2 - 0ap (1),
For the second term, recall that (ﬂzgm)T = @;m + A and introduce PP" = P, P| + P,P] =1,,:
~ Ao
| <) Zom Qa5 P T
op
P,P| + P,P]|Z Az P;
H('(/"<m) [ 17 + P ] >mQ2A2 f>mH op
< 1<) Pillop | PT Z5m Q2 llop [l A2/ (A3 + M lopl| P2 F 5 mllop (135)

(8 <) Pl PEZ5nQallop [ A2/ (A3 + 0| IPEF o

= 04 (k) - Oap (5¥m) - [Pomfell 12
= [P>mfellzz - 0ap (1),

where we used Eq. (93) in Proposition 6, and opin(As) = H>m - Qg p(1) to obtain the second to last line.
Combining Egs. (133), (134) and (135) yields the result.

A —1
Step 3. Bound \/n||ZU, ¢, D<m/N|op = Oqp(1).
First notice that || Zsm®<pllop = £72 - 0g.p (1) implies || Zsm (@) llop = £2 - 045 (1), where we used
~T ~ - -
that ||¢§m¢§m - ImHop = OdJP’(l)'
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. b = 5 5 2T\t
Using ¢« nD<m = (Z — Z>m)(¢<pn)', we have

1205 éenDenllop < 1205 Z(@L) lop + 1205 Zom(dlm) llop
< A2 /(A2 + Mllopll@Zn) lop + 1 ZT5 Nlopll Z5m(@Z ) llon
= 04p(1) + Oup(kon’) - 0ap (KYm)
= 0y4p(1),

which concludes the proof of the claims in Proposition 7.(a).

B.3.8. Proof of Proposition 7.(b)
Denote

Dm :diag()\d,mH, )\d,m+27 e )\d,M) S R(Mim)X(Mim),

B =(D1(0:))ic(N] ki1, m € RYXM=m),

Applying Theorem 7 to Usn (where the assumptions are satisfied by Assumptions 1.(a) and (b) and
Assumption 2.(a)), we get with Assumption 1.(d),

Usim = nmDiam®mm + sm(In + A),

where ||Allop = 0qp(1) and kxm = Tr(Hg >m). By assumption, we have N > n'td for some fixed o > 0
and therefore

n
~ IE>mIy + Allop = Ksm - 0qp(1). (136)
By Proposition 3 (assumptions satisfied by Assumptions 1.(a) and 2.(a)), we get

||¢—nrq:M¢m:M/N —IM-mllop = 0ap(1).

Furthermore, by Assumption 2.(a), we have n' ™% - [Hy s mllop = Oa(1) - £5m for a fixed o > 0. Therefore
n||D2m:MH0p = K>m - 04(1). Hence,

n
V1O Drmbmmlop < [ bmmn/ VNI 0Dy pllop = f5m - 04 (1). (137)
Combining Egs. (136) and (137) yields
n
N||U>m||0p = K>m - 0qp(1).

B.3.4. Proof of Proposition 7.(d)
Recall

Vom= Z farran®p-

k=m+1

Taking the expectation over (01,...,0y), we get

n A
FEUVsml3] =n D Nwfik <n-Hasmllop - [PsmfellZa-
k>m+1
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From condition (19) in Assumption 2.(a), we have n'*% ||Hg <ml|lop = Od(1) - K>m, and we conclude, via
Markov’s inequality, that

In
NHv>m||2 = \/"5>m||P>mf*||L2 'Od,]P’(l)~

B.3.5. Bounds in the underparametrized regime
In the underparametrized case, we further prove the following lemma.

Lemma 10. Follow the assumptions of Theorem 1 in the underparametrized case as well as the notations in
Section B.1. Then, we have

1ZTFom/nllz = 625 - IPsmfill z2en - 0ap (1), (138)
1T Z7 £ /nllop = w2 - 0ap (1) - (I fellzz + [Psmfll240). (139)
Proof of Lemma 10. Step 1. Bound || ZL\f-u/nll2 = Ii ||P>|\/|f*||L2+n oqp(1).

Recall the decomposition of Z< in the eigenbasis of functlons.

Zsm = Z Ad,ﬂ/’k‘bz-

k=M+1

Consider the expected square norm (with respect to © = (8;),¢[n])

Z )\d,k)\d,ZEQ[flM¢d,k¢g,k¢d,£¢d,Zf>M]

k4=M+1

Eo[[IZ1nf ull3]

N Z N (Fimtban)?

k=M+1

where we used that ]E@[d);k(bd’@] = Ny, ¢ by orthonormality of {¢g x}r>1. Expanding with respect to the
x;’s, we get

Eol|Zlufoul3] =N Z {Hd,>M:m(ﬁ'3ivmi)[P>Mf*(fci)]2+Hd,>m(mz"wi)[P>Mf*(~’Ci)]2}

i€[n]

FN YT N Pak@)Pom (@) - Pak(@))Pom (),

i#£j€[n] k=M+1
where we recall

Hymeu (i, ;) = E Adkwdkmz,
k=M1

Hysu(®i ;) = Z /\dk¢dk($z)~
k=u+1

Consider the first term depending on Hgm:m. Using the same computation as in the proof of Proposi-
tion 7.(¢) and Lemma 6 (with the hypercontractivity assumption up to v > m of Assumption 1.(a)), by
Holder’s inequality we have for the ¢
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]E[Hd,M:m(m>w)[P>Mf*(w)]2:| S ||Hd,M:m||L1+2/71 P>Mf*H%2+n

< C(1+2/n)* Eo[Hamm(x, )] - [Pomfl 200

We deduce by Markov’s inequality that the first term is bounded by

> Hamem(@i, ) [Pomfu(®@))* = Ogp(1) - 0 Tr(Hamm) - [Pomfal[Fosn- (140)
1€[n]

For the second term, recall that by Assumption 1.(d), we have

max Hysm(xi, @) = Ogp(1) - Tr(Hg, >m)-

x; € [n]

Hence

Y Hasm(@i,)[Pomfu(@)]® = Oqp(1) - Tr(Hasm) - Y [Pomfulzi)),

1€[n] i€[n]

and by Markov’s inequality

Y Hism(@i @) [Pomfu(@i)® = Oup(1) -1 Tr(Hasm) - [PomfelZe. (141)

i€[n]

Taking the expectation of the third term gives

n(n=1) > NERar@)Pomfe@)]]’ =nn-1) > Nfiy

k=M+1 k=M+1 (142>

< n(n = 1)|[Ha>ullopP>mfellZe-

Merging Eqs. (140), (141) and (142), we get

N
Eo[lZlufsm/nl3] € = - Oap(1) - Tr(Hasm) - [IPsmfullZarn + NIHasullop - [IP>mfellZ:

n

04(1) - Tr(Ha,>m) - [PsmfellZzen,

where we used Assumption 2.(b) (N - [|[Hgsullop = Ogp(N7%)Tr(Hg sy) as well as n > N1+ for a fixed
0o > 0). Using Markov’s inequality proves Eq. (138).

A1
Step 2. Bound on |U, Z" f/n||,.
By Proposition 6.(a) in the underparametrized case, we have

032" n = Qg5 PLI N+ Qo g PH VAL (143)

1/2

where oyin(A1) = wap (1) - £y and omin(Az) = /€1/2

(1 +o04p(1)). In particular, this shows that

@ g IV, < cua A1/l < 002 (1) o e (144)

For the second term (143), decompose f = foy + fom. Recall foy = ¢<Mj”<M By Proposition 6.(b),

we have ||P§¢Sm/\/ﬁ||op = o4p(1). Furthermore, using Eq. (138), namely [|ZLyFfom/nl2 = /-c1>/,\2/|~

[P full2n - 0ap (1), we get || P fom/v7llop = [[Psmfellpz4n - 0qp(1). We deduce



58 S. Mei et al. / Appl. Comput. Harmon. Anal. 59 (2022) 3-8/

@2 K23 PEEVA|, < omin(82) 7 UPTF cu/ Vil + [ PESua/ Vi)

= Oup (52 0ap (1) - (I £ullze + [Porafulloen) (145)

kot 2 (I fulloz + IPsmfellp24n) - 0ap (1)

Combining Egs. (144) and (145) yields Eq. (139). O
B.J. Concentration of the random feature kernel matriz Z7Z

We recall the following standard result on concentration of random matrices with independent rows:

Lemma 11 ([42] Theorem 5.45). Let A be a p x g matriz whose rows a; are independent random vectors in
R with common second moment matriz ¥ = Ela; ® a;]. Let T := Elmax;cpy [|as||3]. Then

E[|ATA/p — Zlop] < max(|[E]5}n. 7%),

where n = C4y/ Flog+m(p’q)) and C is an absolute constant.

We will also use the following corollary for asymmetric matrices:

Corollary 1. Let A be a n x N matriz whose rows a; are independent random vectors in RN with common
second moment matriz Xq = Ela; ® a;]. Let B be a n X m matriz whose rows b; are independent random
vectors in R™ with common second moment matriz Xy = E[b; ® b;]. Let Ty := E[max;cpy [|a;l|3] and
[y := E[max;epy) [|bi]|3]. Denote Eap = Ela; ® b;]. Then,

E[|ATB/n = Sabllop] < max ((|Zallop + [Zsllop) /. 7%), (146)

where n = C\/(F“+F")log£lmin("’N’m)) and C is an absolute constant.

Proof of Corollary 1. Define C = [A, B] € R™(V+™) whose rows ¢; = [a;, b;] are independent random

vectors in RV*T™ with common second matrix X, = [g: ZE:J,, } By Lemma 11, we have
a

E[|CTC/n — Sellop] < max(|[ ]|t 7).

I"log(min(n,N+m))
n

where n = C with

I = E[max [¢;[|3] < E[max [la;[|3] + E[max [|b;]|3] < Tq + T
i€[n] i€[n]

i€ln
Notice that ||Ze¢llop < C(||Zallop + | Zbllop), and
IATB/n — Zap|lop < [CTC/n — Zc|lop-
Combining these bounds yields Eq. (146). O

Consider the feature matrix Z = (oq(xi;6;))ic[n),je[n)- We recall the decomposition Z = Z<pn + Z-m
into a low and high degree parts:



S. Mei et al. / Appl. Comput. Harmon. Anal. 59 (2022) 3-84 59

Zem=YcmDcmdln,  Zom= Y Maxtpor.

k>m-+1

We prove the following concentration result on Z~ .

Proposition 8 (Concentration of Z'Z matriz). Consider the overparametrized case N(d) > n(d)'+% for
some fized o > 0. Let {o4}a>1 be a sequence of activation functions satisfying the feature map concentration
(Assumption 1) and the spectral gap (Assumption 2) at level {(N(d),M(d),n(d),m(d))}a>1. Then, we have

Z>mZ£m

N = RK>m " (In + AZ)7 (147)

where ksm = Tr(Hg>m) and ||Az|lop = 0qp(1). Furthermore,

1/2

VA
HL% = Kdm - 0qp(1). (148)

N

op
Proof of Proposition 8. For convenience, we will drop the subscript d.

Step 1. Bound on |Z~nZ L, /N — ksmy|lop-
Denote AT = Z.,, = [a1,...,ayn] € RN with a; = (0sm(1;0;), ..., 05m(x,;0;)) € R™. Conditioned
n (x1,...,&,), the rows a; are independent with common second moment matrix

Em[ai ® ai] = H>m7

where Hom = (Hsom,ij)1<ij<n With Hamj = Eg[osm(i;0)o>m(x;;0)]. By applying Theorem 7 to the
kernel matrix H -, (assumptions satisfied by Assumptions 1 and 2), we have H~y = ksm - (In + Ag)
where ||Ag|lop = 04,p(1). Therefore it is sufficient to show that

HZ>mZ§m

—~H-,
N >

= Od’]p (].)
op

Let us decompose o, into a low- and high- degree parts osm = 0m., + 0>, (recall that u(d) > m(d)):

Umuwe Z )\dkwk ()

k=m+1

osu(x;0) Z Adk Pk () Pr ().

k=u+1

Let a; = (Omu(®1;0i), .., Om (@0 0;)) € R™ and @; = (054(21;05), ..., 050 (20n;0;:)) € R™, a; = a; + @;.
Then

= Ee[gg[a;;] ]3] < 2Eo[gg[a}\>,<] @3] + 2]Ee[irg§§] lla; 3]-

Let ¢ > 0 be an integer as in Assumption 1.(c). We have

1/q
Eo | max @13 < Eo| max [@ll]]  <N'Eolla,[3"".
1€[N] 1€[N]

By Jensen’s inequality and Assumption 1.(c), there exists a fixed dp > 0 such that
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Evolail'] = Ewo[( 3 osu(z;0)?)']

j€[n]

< nq_l]Em’g[ Z o>u(:cj;0)2q]

j€ln]

< anz,9[0>u(mJ; 0)2(1] = Od(l) : nq(1+26o) ' K(I>u7
where ks, = Tr(Hsqy) = Yo, 41 A7~ Hence, by Markov’s inequality, we get

Eo[g[az\}f] [@:]3] = Ogp(1) - NY/ ! F2% o (149)

Similarly, by the hypercontractivity assumption (Assumption 1.(a)), we obtain

Ea [Eo | max 3] < C,N"Ea o[ a;13] = CuNYon i

1€

where Kma = Y p_m 41 A7. Hence, by Markov’s inequality,
Eg[max Hgng} = O0up(1) NV K. (150)
1€[N]
Combining Egs. (149) and (150) yields
Tq = Ogp(1)- NYVinp!t2o0,
We can therefore apply Lemma 11. Recalling ||[Hsmllop = Ogp(1l) - £>m, we have
Eo[| ZomZLn/N — Hanl|,,] < Oup (1) -max(s2Zn.n?).

with 7 = (Ksm NV 1pl+2% log(N))l/2 = /<;1>/m2 -04,p (1) by the choice of ¢ in Assumption 1.(c). We conclude

1Z>mZL /N = Hon|,, = F>m - 0ap(1).

Step 2. Bound on || Z ¢, /N||op-

Consider B = /11>/r§ <m = [b1,...,by]TRY*™ where b; = n;/ri [1(6:),...,¢0,(0;)] € R™ are independent
rows with second moment matrix Xp = E[b; ® b;] = KsmIn. Furthermore, by the hypercontractivity
assumption (Assumption 1.(a)), we have

Py = Eo | max [bu[3] < CN*/"Bo[[bil3] = CuN"/m -,
1€

Notice that E[a; ® b;] = 0. Furthermore, recalling the previous step, we have |Zgllop = |[H>mllop =
Ogqp(l) - Ksm and

[Zallop + [[Zbllop =Oap(1) - Km,
T'a+T% ZOd’P(l) - NVapl+2% K>m

Then by Corollary 1 applied to A'B /N and recalling the assumption on ¢ in Assumption 1.(c),

Eo[||Zn®<m/Nllop] = 0ap (1) - £,

which concludes the proof by Markov’s inequality. O
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Appendix C. Generalization error of kernel ridge regression: Proof of Theorem 5

In this section, we prove Theorem 5. We will then prove a different version of the same theorem in
Section C.2, under somewhat different assumptions. Namely, we will relax Assumption 4.(c¢) and instead
impose a gap condition on the eigenvalues of the kernel.

C.1. Proof of Theorem 5

In this section, we prove Theorem 9. Throughout the proof, we will denote A any matrix with ||A|l, =
04,p(1). In particular, A can change from one line to line. We defer the proofs of some more technical results
to Section C.1.1.

Step 1. Expressing the risk in terms of empirical kernel matrix.
Recall that the KRR estimator is given by

A

@) =y " (H + \y) " th(z),

where y = (y1,...,yn) and H = (H(x;, ;)); je[n), h(x) = (Ha(x,x1),. .., Hi(x,,)) € R". The resulting
test error is

Rt (f2 X 0) = Eo [ (fo(@) 9" (H + ML) h(a)) |

= Ea|fu(®)®] =2y (H + \L,) 'E + y"(H + \L,) "M (H + \L,) "'y,
where E = (Ey,...,E,)", M = (M;});jein and H = (H;j);je(n) are defined by
i = Ex[fu(z)Ha(z, 2:)],

E
M;j = Eq[Ha(x;, @) Ha(w;, )],

We recall that the eigendecomposition of Hy is given by

Hy(m,y) = Y A3 ptn(@)ve(y)-
k=1

We write the orthogonal decomposition of f. in the basis {¢x }r>1 as

fol@) = fartn(@).
k=1

Define

¥y, = (Yp(x1),- .. Yr(zn)) T € R,
D« = diag(Ag1, a2, -, Adaym) € R™T,
Wom = (Y(®i))ien),ke[m) € R™*™
}Sm = (fd,l?fd,27 .- -afd’m)T S Rm.
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We decompose the vectors and matrices f, E, H, and M in terms of orthogonal basis

f:f§m+f>m7 fﬁm:\IISm}Sm7 f>m: Z fd,kdjlm
k=m+1
00
E=FEcn+E-p, E<n= YD fem, Eom= > Nolarty
k=m+1
H=Hcn+Hs.p, Hep= 9o D2, WL H.m > AN,
k=m+1
M=Mcn+ M, M<m = ‘IISmDém\Ijgmv Mom = Z /\é,k'l/)kw-llc-
k=m+1

(151)

Applying Theorem 7 with respect to the operator Hy and H2% where the assumptions are satisfied by
Assumptions 4.(a), 4.(b), cf. Egs. (43) and (45), and 5.(a), cf. Eq. (49), and using Assumption 4.(c), the

kernel matrices H and M can be rewritten as

H=% ,D2 Wl +ry(I+Ap),
M = lIISmD%m\Ilgm + v I+ Ay,

where
K)H—TI‘ Hd>m = E )\d]iﬂ
k>m+1
K/M — TI" Hd >m Z )\d ks
k>m+1
and

max{[|Ansllop; [[Asllop} = 0a,p(1)-

Let us introduce the shrinkage matrix

Kg+ A __o\!L A2
ng:(Im-s- Hn 2 d.j

n

Step 2. Decompose the risk
Recalling y = f + €, we decompose the risk as follows

RKR(f*axy/\) = ”f*H%z =21y + T + T3 — 2T, + 275,
where
= f(H +1,)"'E,
Ty = fT(H 4+ \,) *M(H + \I,,)"* f,
Ts=¢e"(H +A,,) 'M(H + )I,,)!
Ty=¢e"(H+\,)'E,
=e"(H+M,) 'M(H +\1,,)"' f.

&
|

D§m> = diag((s;)jem)  where s; = N
a; t T

(152)

(153)

(154)
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Step 3. Term 75
Note we have

Ty = To1 + Tag + Ths,

where

Ty = fgm(HJrAIn)‘lM(H +AL) " f s
Ty = zf;m(H+AIn)—lM(H+A1n)—1f>m, (155)
Toz = fL (H + L) ' M(H + \L,) "' f ..

By Lemma 12 which is stated in Section C.1.1 below, we have

[n(H 4+ AL,) "M (H + AL,) ' = $,8%2 WL /nlop = oap(l), (156)
hence
~T A~
To1 = fen@L (H+ L) 'M(H + L) "W fo,
~T A A
= .fg ‘I’;mq’—gmsimmﬁm‘yﬁmfgm/n2 + [”‘I’Sm.fgm”%/n} : Od,]P’(1>'

By Assumption 4.(a), the conditions of Theorem 7.(b) are satisfied, and we have (with ||Allop = 04,p(1))

AT ~ AT A~
fgm‘I’gm‘I’SmSém‘I’;m‘I’Smfgm/HQ = fgm(I+ A)S (I+ A) = ||S<mf<mH2 + 04 ]P( ) . ||.f§m||§

Moreover,

1% e fcmll3/n = Flm@+ A)F = [ Faml30 +0up(1)).

As a result, we obtain

Tor = |S<mf <mll3 + 042 (1) - [|1f <nll? = 1S <mf <inll3 + 002 (1) - [P fillZ2- (157)

By Eq. (156) again, we simplify

Tos = (Y Sl )(H +AL) " MH L) (Y wehi)

E>m+1 E>m+1
S i) enSL WL (Y i) 4[| S wudi|[ ] a0
k>m+1 k>m+1 k>m+1

Note that S<m = I, and we have
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> ] Wm0, (X i)/

k>m+1 k>m+1
> ) ¥l (Y wid)]/m
k>m+1 k>m+1

DND DI DI £ IRESHNERUNEBIRES) R VA

u,v>m+1 s=1 'L,]e[n]

S5 (B v @inen)] /o

u,v>m+1 s=1 i€[n]

L ZE [(Pome@) @] < = 37 IPomfellfara 0l asann

s=1

IN

O [P felern,

where the last inequality used the hypercontractivity assumption as in Assumption 4.(a). Moreover

[ X wil]= X - IPnkilie
k=m+1

k>m+1

Using the last two displays, and the fact that m(d) < n(d)*~° by Assumption 5.(b),
Tos3 = 0qp(1) - |PomfullFasn- (158)
Using Cauchy-Schwarz inequality with term Ths, we get
Tog < 2(ToTaz)'/? = 04,p (1) - [[P<mfellL2||Psmfell 240 (159)
As a result, combining Eqgs. (157), (158) and (159) leads to

Ty = |[S<mf <mll3 +0ap () - (I fllZ2 + IP>mfillZaen)- (160)

Step 4. Term 7.
We decompose

Ty =Ty + T2 + T3,

where

Ty = f-lg—m(H‘F AIn)ilEva
Tio = fLo(H +\,) ' Ecp,
Tis = f(H + \L,) 'E-p,.

By Lemma 13 stated in Section C.1.1 below, we have
1L, (H + ML) " ®<mDL,, — S<mllop = 0ap (1),

so that
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~T ~
Ty = f<m\I’-£m(H + )‘In)_l‘ll<mD2<mf<m

= |SY2F 2+ 0ap (1) - [|F<mlld = ISY2 Fcml3 + 0ap (1) - [P<mfull2. (161)

Applying Cauchy-Schwarz inequality to 772, and by the expression M = \Ilngém\Il;m +rm (Tar+An),
cf. Eq. (152), we get with high probability

|Tha| = ’ > hevp(H + )‘In)_l\I’SmDQSm}.Sm‘
k=m+1

| S Al L) D2, | [l

k=m+1

2 i Fed ) (H 4+ \1) " @ DL, WL (H 4+ 2L) 7 Z fmk)]wllfgmllz

k=m+1 k=m+1

(162)

2% Awl) @) ME L) (Y Ay 1l

k=m+1 k=m+1

()
QTN F <mlls € 00 (1) - [P<mulli2Pomfellzen-

Here (a) follows by Cauchy-Schwarz; (b) by the definition of norm; (¢) because M = \PSmDém\I’;m +
kv (IT+ Ap) = \IISmDém\Il;m; (d) by the definition of T as in Eq. (155); (e) by Eq. (158).
For term T3, we have

[ Tas| = |FT(H + A1) " Esml| < IFll2[l(H + ML)~ opll Esmll2.

Note that we have E[|| f||3] = n||f.||2.. Further by Eq. (152), we have ||[(H + AL,) " *|lop < 2/(km + A) with
high probability. Finally,

E[|Esml3) =n Z Agkfk §n[ r>nax Adk} ||P>mf*HL2
k=m+1

As a result, we obtain

1/2
Tis| < Oap (1) - [IPom o2l L2 [n? max ] /e + )

= 0up(V) - Pomfillzellfullze [n max N3] /(30 Nie+ ) (163)

k>m-+1
= 04,p(1) - IPsmfullLz | fill L2,

where the last equality used Eq. (49) in Assumption 5.(a) and the fact that A € [0, Tr(Hg >m)]. Combining
Egs. (161), (162) and (163) yields
Ty = |ISY2F <3 + 0ap (1) - (1fell2 + [PsmfellFoin). (164)

Step 5. Terms T5.
Again, by Lemma 12,

1
—Ee[Ts] = Tr((H + AL,) "M(H + AIL,) ') = Tr(¥<mSZ, WL, /n?) + oqp(1).

€
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Hence, using Proposition 3 and noting that S<m =< I, we obtain

1 1

1
ﬁTr(\Ilgm\Ilgm) = ﬁTr(\Ilgm\Ilgm) = n—nm(l +04p(1)) = 0qp(1).

1
ETI(\IISmSém\Il;m) < =

We conclude

Ty = o4 (1) - 0. (165)
Step 6. Terms T}.
Note that
1 2 1 T 1T -1
SE T2 = E e (H +AL,) 'EET(H + L) '€]
O—E O—E
= E"(H + )1,)7%E.
Notice that M > \IISLD‘%L'IIEL for any L € N, by the decomposition of Eq. (151). Therefore:
HDQSL\P;L(H + )\In)fz‘I'SLD%LHop = [[(H + AIn)fl‘I’SLDéL‘I’EL(H + AL) " lop (166)
< |(H + ML) "M (H + AL,) ™ |op-
Further notice that, using Lemma 12 (stated below) followed by Proposition 3, we get
I(H + ML) " M (H + ML) ™ lop =¥ <mSZn ¥ L /nllop/n + 0ap(1/n) (167)

<C <@ Ln/nllop/n+ 0ap (1) = 0ap (1)
Hence,
ET(H +)1,)’E = Jim EL, (H+),) 2E<,
—00 - -
. aT _ =
= nggo fgL[D%L‘I’EL(HJr)‘In) 2‘I’§LD2§L]f§L

< limsup HDQSL‘I’;L(H + )\In)_Q‘I’SLD%LHop ) Lh_{léo HJACSLHS

L—oo

< NI(H + ML) M(H + ML) ™ op - | £:]122

—~
)
~

< ogp(1) - [l fullZe,

where the limits for L — oo exist with high probability. In particular, (a) holds with high probability since
|EL, —E|lz = 0as L — oo, and ||[(H + AL,) " 2|lop < 1/Amin(H)? < (2/k1)?, by the decomposition (152),
together with the fact that |Am|lop = 0ap(1), cf. Eq. (153). Further, (b) is by definition of E<r; (c) by
definition of operator norm; (d) by Eq. (166); (e) by Eq. (167).

We thus obtain

Ty = 04p(1) -0 - | fullL2 = 04p (1) - (02 + || fl|72)- (168)

Step 7. Terms 75.
We decompose T5 using f = f<n + foms

Ts = T51 + Tso,
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where

Ty = € (H + \L,) " 'M(H + \L,) "' f ..,
Tso =€ (H +\L,) "M(H + \L,) "' fo .

First notice that, by Eq. (167),
IMY2(H + M) "M op = [[(H + AL) ™ M(H + ML) ™ lop = 0ap(1).

Then by Lemma 12,

1 1 _ _ _ _
J—E]EE[T;] = U—§EE[€T(H +AL) T M(H + \L,) 7 fo fL(H + ML) "' M(H + AL,) " 'e]

= fLo[(H+ ML) 'M(H + \L,) £,

<MY (H + ML) 7MY op | MY (H + AL ™ f ol
=o04p (1) T

= 04p(1) - [IP<mfell7z,

where the last equality follows by Eq. (157). Similarly, we get
Ee[T5)/02 = 04p(1) - Tog = 04.p(1) - [Pm full72-

By Markov’s inequality, we deduce that

Ts = 04p (1) - 0c(|Pmfullzz + IPsmfellr2) = 0ap(1) - (02 + || fill72). (169)

Step 8. Finish the proof.
Combining Egs. (160), (164), (165), (168) and (169), we have
Rir(fe, X, A) = || fellF2 — 210 + To + T3 — 2Ty + 2T
N 1724 N
= 1F <mld = 218 L2F cnll3 + S <mF <3 + IPmfell32
+0ap (1) - (IfllZz + IP>mfillZoen +02)
= (T = S<m)F<mll3 + [IPomfullzz + 0ap(1) - (I fllZ2 + [PomfalFoen +02).

Recall the expression (55) of A;‘gfﬁ:
o0 2

Peff d,j 2
f,?,eff = Z o, f farta,j,

J=1"%d,j n

with v = X\ + kg. From Assumption 5.(a), we have max;sm )\ZJ =04(1) - Ky /n and we deduce

1T — S<m)f<mll? + IPsmfellie = 1fs = flnlFe + [ £l72 - 0ap (1).

We conclude

Rir(fe, X, 0) = I = folallEe +0ap () - (IfllZ2 + IPsmfillZoen +02).
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Proceeding analogously (with fjjfﬁv replacing f,) we obtain

1Fx = Felalle = 0ap (1) - (£l 72 + IPsmfullZ2rn + 02).
C.1.1. Auziliary lemmas
Lemma 12. Follow the assumptions and notations in the proof of Theorem 5. We have
[n(H + AL,) "M (H + \L,) ™' = ¥,S2, WL /n|lo, = 04p(1),

where S<m is the shrinkage matriz defined in Equation (154).

Proof of Lemma 12. We simplify the notations by defining 1, = (¥x(%:))icin) € R" ¥ = ¥, € R™*™,

D = ng = diag(/\cu, ceey )\de) e Rmxm,
Then recalling Eq. (152), we have

H=9D?V" 4 ky(I1+ Ap),
M =UD*WOT 4 k3 (T4 Ay,

where kg = Tr(Hg >m) and xpr = TT(H§,>m)a and
max{||Axlop, | Asllop} = 0ap(1).
As a result, we obtain the decomposition
n(H 4+ L) "M (H + \I,,)"' = Ty + T,

where

Ty = nrpr(H + 2L,) " (T + Ay (H + M) 7L,
Ty =n(H + \L,) "¢ D*WT(H + \I,,) L.

Step 1. Bound term 73.
For Ty, by Egs. (170) and (171),

I Tillop < nins | (H + M) “HIS T + Ansllop = Oap (1) - nlkins /).
By Eq. (49) in Assumption 5.(a), we have

/{_M . TT(H§,>m) < ||Hd,>mHop _ O (7171750).

’f%{ B Tr(Ha,>m)? = Tr(Hg>m)

We conclude that

[T1]lop = 0a,p(1)-

Step 2. Bound term T5.

(170)

(171)

(172)

For Ty, setting Ay = kg Apg/(A+ kg ), the Sherman-Morrison-Woodbury formula produces the identity

To=nI+ AY) " (kg + D>+ TT(I+ A1) 20 (T + AY) ™!
=EVR’V"E/n,
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where

E=(I+A%)"
R=[(kg +\(nD*) "' + OTEW/n]~ L.

Denote S := S<p = [T + (kg + \)(nD?)~1]~1. We get

T2 = @78 /nllop < (1+ || E]lop) | B — Llop | CR*ET /n| + [CR™*®T /0 — ®S*T /n]|op
< A+ Elop) | E — op [ CR*ET /n]lop + [CET /nlop| R — §7||op.

Recalling Eq. (171), we have | E —1I||op = 04p (1) and by Theorem 7.(b), we have [|[&T¥ /n—1||o, = 0qp(1).
Furthermore

IR? = S%|lop = IR = Sllop (| Rllop + 1S]lop0 < [ RlloplISllop (| Rllop + ISllop) IR = S {lop
and

IR™ = 87 lop < [[TE®/n— OT¥ /nlop + [ €T /0~ 1|op
< TE/nop| B~ Tlop + €T /0~ Tlop = 0ap(1).

Using that || S||op < 1, we obtain by the above computation that || R||op < 14 04p(1). Combining the above
inequalities yields

[T — OTS*W /n[|op = 0qp(L).
This gives
In(H + AL,) "' M(H + AL,) ™" = ®S*®" /n||op < [|Th[lop + | T2 — TS*ET /1o, = 04p (1),
which completes the proof. O
Lemma 13. Follow the assumptions and notations in the proof of Theorem 5. We have
|S<m — W (H + ML) " WD [lop = 0gp(1),
where S<m is the shrinkage matriz defined in Equation (154).

Proof of Lemma 13. We will follow the notations in the proof of Proposition 12. Applying Theorem 7 with
respect to operator Hy and by Eq. (174) in Assumption 4.(cl),

H A+, =UD*T" + k1, + Ay) + AL, = DT + (kg + \)(I, + Aly),
where ||A g ||op, | A% llop = 04,p(1). The Sherman-Morrison-Woodbury formula gives the identity
UTOD*WT 4 (ky + NI, + Ay '®D? =¥ E"'"WR/n,
where E =1, + Ay and R = (kg + \)(nD?)~' + T E~'W/n]~!. We obtain the inequality
IS — WTE R /nllop < | Rlop|¥TE% /0~ Top + | R — S]op.

In the proof of Lemma 12, we already showed that [|[BTE™'®/n —1I|op = 04p(1), |R — S|lop = 0ap(1)
and || R||op = Og,p(1). This concludes the proof. O
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C.2. Kernel ridge regression under relaxzed assumptions on the diagonal

In this section, we state and prove a version of Theorem 5 that holds under weaker assumptions. Namely,
instead of the concentration bound in Assumption 4.(c) we only require that the diagonal terms are upper
bounded by a sub-polynomial factor times their expectation. Instead, we assume a spectral gap condition
that was not required in the previous section.

We will first describe the modified assumption, then state the new version of the theorem. The proof is
very similar to the one in the previous section. We will therefore use the same notations and only sketch
the differences.

Assumption 8 (Relazed kernel concentration at level {(n(d), m(d))}a>1). We assume the kernel concentration
property at level {(n(d), m(d))}a>1, as stated in Assumption 4, with condition (c) replaced by the following

(c’) (Upper bound on the diagonal elements of the kernel) For (2;)ic[n(ay ~iid Va and any 6 > 0, we have

zen[lnaéi)] Emwu(d) [Hd,>u(d) (mia w)Q] = Od,]P’ (n(d)6) : Ew,m’Nud [Hd,>u(d) (iL’, iL'/)2] ’ (173)
e Hy suay(@i, i) = Oqp(n(d)°) - Egny [Ha su(a) (2, 2)]- (174)

Assumption 9 (Eigenvalue condition at level {(n(d), m(d))}a>1). We assume the eigenvalue condition As-
sumption 5 and, in addition, the following to hold

(c) There exists a fized 6o > 0, such that

1 2

nt=% > Adk -

/\dvm(d) k=m(d)+1

Assumption 10 (Regularization and lower bound on diagonal elements). Consider the regularization param-
eter A € R>o. We assume that one of the following holds:

(1) For (x;)ic[n(a)] ~iid Va and any § > 0, we have

ier[fjli({li)] Eomva[Ha>m(a) (@i, 2)%] =Qap (n(d) ) - B a/mvy [Ha sm(a) (@, ")), (175)
ZGI[I:LI(rcli)] Hd,>m(d) (mi’ wi) = QdJP (n<d)_5) ’ ]Em[Hd,>m(d) (w? w)]a (176)

and X = Oq(1) - Tr(Hg,>m(q)) (in particular, taking A = 0 is fine).
(ii) We have X = ©4(1) - Tr(Hg,>m(a))-

Theorem 9. Let {f. € Dg}a>1 be a sequence of functions, (2;)icinay ~ Va independently, {Hg}a>1 be
a sequence of kernel operators such that {(Hg,n(d), m(d))}a>1 and the regularization parameter \ satisfy
Assumptions 8, 9, and 10. Then for any fixed n > 0, we have

|Rir(fis X, 0,0) = [IPomfellZa| = 0ap (1) - (IfllZ2 + [Psmfillfeen +02). (177)

C.2.1. Proof outline for Theorem 9
Throughout this section, we will denote §y > 0 a fixed constant and § > 0 a constant that can be
arbitrarily small. The value of Jy is allowed to change from line to line.
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By the spectral gap condition (Assumption 9), the population estimator fifﬁv defined in Eq. (55) is
approximately given by

1o~ Pemflle = 0ap (V) - [ £:]132.

Similarly, the shrinkage matrix defined in Eq. (154) verifies

IS <m — Inllop = Oap(n™).
From Theorem 7 applied to the operator Hy and H2, the kernel matrices H and M can be rewritten as

H = \IISmDQSm\Ilgm + k(A + Ag),

b T (178)
M = lI’SmDSm‘IISm —+ KJ]\/[(AM + AM),
where
RH = TI" Hd>m = Z )‘dkv
k>m+1
KJM—TI‘ Hd>m Z )\dk,
k>m+1
and
Ag —dlag({Hd >m xlv T /K:H}ze[n )
Ans =diag({Ex[Hosm(@o o]/} )
and there exists a fixed dg > 0 such that
max{[|Ans[|op, [Amlop} = Ode(n*‘;O). (179)
From Lemma 7 applied to Ay and A s with Assumptions 4.(a) and 8.(¢), we have
Ap 204p(n°) - 1,,
( 5) (180)
Ay 20gp(n°) -1,
Furthermore from Assumption 10 and Eq. (179), we have for any 6 < ¢,
H—i—)\In i KH(AH‘i’AH)‘i‘)\In thJp(’n_d)HHIn (181)

The handling of the bounds on T3, Ts, T3, Ty and T5 follows from the same computation as Section C.1,
where every ogp (1) is replaced by Og4p (n=%) for some fixed &y > 0 while every Ogqp(1) is replaced by
Ogp(n°) with § > 0 arbitrary small. In particular, bounds of the form Oy p(1) - 04p (1) should be replaced
by Ogqp(n®) - Ogp(n2), and taking § > 0 sufficiently small yields a bound o4 p (1) (see the proofs bellow
for some examples).

Below we detail the proof of the updated auxiliary lemmas from Section C.1.1. Eq. (182) is used to bound
the term T51, Eq. (183) is used to bound the term Th3, while Eq. (184) is used to bound the term T3, T}
and Ts.
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Lemma 14. Follow the assumptions of Theorem 9 and the same notations as in Section C.1. Define
G =n(H+)\L,) 'M(H + \I,,)~*

Then, there exists a fized dg > 0 such that for any 6 > 0,

9L G /1 — Inllop = Oqp(n™%), (182)
FLnGFom/n= 0gp(n) - |Pomful2asn, (183)
|Glop < Oap(n?). (184)

Proof of Lemma 14. Recall that we denote d; > 0 a fixed constant and § > 0 a constant that can be
arbitrarily small. The value of §y is allowed to change from line to line.
Following the notations as in the proof of Lemma 12, we have
H=9D*V" 1 k5 (Ag+ Ap),
M = OD*®T + kp(Apr 4+ Apy).

Consider the same decomposition G = T'1 + T3 as in the proof of Lemma 12, where

T, = nli]V[(H + )\In)_l(AM + AM>(H + )\In)_l
Ty =n(H + \L,) ' D*®T(H + \1,,) !

Step 1. Bound term T';.
For Ty, by Eqs. (180) and (181), we have for any § > 0,

T lop < nar||(HE + ML) I 1 (Anr + Anr)lop

< O4p(1) - nkpr - 0¥y -0 (185)

K
< Ogp(1)-n't4=,
Ky

By Eq. (49) in Assumption 5.(a),

’%12\/[ ( d>m2 < ||Hd>>mHOP -0 ( —1—50).
kg Tr(Ha>m) Tr(Hg,>m)

Hence, taking § sufficiently small in Eq. (172) yields
IT1]lop = Oap ().

Step 2. Simplifying the term T's.
Introduce A = Ay + A + (A/kg) - I, so that

H+ ), =9D?¥" 4y A.
The Sherman-Morrison-Woodbury formula gives the identity

= A" (kg(nD?) "+ A" w/n) YT AT n.
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From Assumption 9.(b), we have kg (nD?)~! < Q4 p(n=%)-I,. Furthermore, recalling that |1 9 —Im|lop =
oqp(1) and A™! = Oy p(n?)I, for any & > 0, we deduce (for example from Lemma 8)

|T2— A (T A” w/) YA /nH = Ogp(n%).

Denote S = Ay + (A/ku) - I, the diagonal matrix such that we have ||A — S||op = Ogp(n~%). We have
Qy(n=?%) -1, =8 < O4(n%) - 1,,. Similarly to the previous line, we get

A (T A p/n) T AT n = ST (9T ST /) TS || = Oap(n).

Denote R = S~ '4p (37 S ap/n) “opT S~ /n.

Step 3. Proving the bounds.
First notice that because Qq(n=?%) - I, <8 < 04(n’) - I, and [[¢p" 9 — In|lop = 0ap (1),

||GHOP < ||T1HOP + HT2 - RHOp + HR”OP = Od,]P’(né)a

for any ¢ > 0, which proves Eq. (184). Similarly,

1" G/ —Tmllop < (IT1llop + 1T = Rllop)llee/Vall2, + 14" Rep/n = Tnlop = Oap (=),

which proves Eq. (182).
Notice that

R=8""y(¢TS  p/n) "¢TS ™ /n < Ogp(n®) - .S ppT S /n
Denote S = diag((si)ic[n)) and recall the decomposition
> fetpy
k=m+1
We have

E[fLnS e S fon|m? = E|( X Sl ) ST 0@l 57 (D widi)|/n

k>m+1 k>m+1

32 s v ) )

u,v>m+1 t=1 4 Je[n]

> 3 S R @) ).

u,v>m+1 t=1 16[%]

ZE [(Pome(@) " (@)’]

1
< Ou(n”) -~ Z IPsmfllZosn el T caan

t=1

m _
< 04(n”) - —PomfullZerera = Oa(n™) - [PomfullFsn

By Markov’s inequality, we get
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[F LR S sm/n| < |FLnS ™ e ST F o /] = Oa(n™®) - [Pom ful| 720
‘We deduce that
| FLnGF ol < (IT1llop + IT2 = Rllop) [ Fom/VAll3 + | £ LR s m/nl = Oa(n™%) - [IPsmfull 72,
which concludes the proof. 0O

Lemma 15. Follow the assumptions of Theorem 9 and the same notations as in Section C.1. There exists a
fized 69 > 0 such that

T<m — Ly (H + L) ' Cen DI flop = Ogp(n™™).
Proof of Lemma 15. We follow the same argument as in Lemma 13. We decompose
H+ ), =9D?U" + k- A,

where we denoted A = Ay + A + (A/kg) - I. By the Sherman-Morrison-Woodbury formula, we have the
identity

U @D?®T + AW D? =0T A ' kg (nD?) "+ OTATIW /0] /0.
Hence
[T — OTA ' W[kg(nD*) " + T AW /0] /n|lop = ke (nD*) (kg (nD*) ™ + BTA T /n) 7Y |op.

We know that by Assumption 9, nD? = Qg(n%) - kg - I,. Furthermore, by Eq. (181), we have A™! >
Qa(n°%) - kg - I,. Using that [[ETE — I,||op = 0qp (1), we deduce that for any 6 > 0,

(ke (nD?)~! + CTAT® /1)~ |op = Ogp (n°).
We obtain the bound
[In — ¥TA ' W[y (nD*) ™ + @ TAT /0]~ /n|op = Ogp(n %) - Ogp(n®).
Taking § sufficiently small concludes the proof. O
Appendix D. Proof of Theorem 2: generalization error of RFRR on the sphere and hypercube

We check that Assumption 3 implies the assumptions of Theorem 1 on the sphere (Section D.1) and on
the hypercube (Section D.2).

D.1. On the sphere

Proof of Theorem 2 on the sphere. Consider the spherical case 8, 2 ~ Unif(S?(v/d)) and d*t% < n <
dst1=% and d5t% < N < d5t1=%_ Take oq(x; 0) = G4((x, 8) /+/d) for some activation function 4 : R — R
satisfying Assumption 3 at level (s,S) (see Section 2.4 in the main text).

Step 1. Diagonalization of the activation function and choosing m = m(d), M = M(d).
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By rotational invariance, we can decompose & in the basis of spherical harmonics (see Section E.1)

oa(®;0) = G4((x,0)/Vd) = ngkB (T4 k)R ((x, 6)) ngk S Via(®)Yis(0)

k=0 s€[B(d,k)]

where the distinct eigenvalues are &4, with degeneracy

B(ST k) = d—2+2k<d—3+k>.

d—2 k

We have for fixed k, B(S%*; k) = ©4(d*). Furthermore, we have uniformly supys, B(S* ;1 k)~ = O4(d ™)
(see Lemma 1 in [20]). Notice that by Assumption 3 (see for example Lemma 5 in [20]), there exists a
constant C' > 0 such that

lalls => &, B k) < C, (186)

which implies that §§’k = 04(B(S%1;k)~1). In particular,

5up§d w = Oa(d™" b, (187)
k>s
sup&i = Oq(d™>71). (188)
k>S

Furthermore, by noting that &3, = B(S* ';k)~|[Praa((e, -))||3 -, conditions (26), (27) and (28) can be
rewritten as follows in terms of the coefficients (£4 1 )xk>0:

min & r=Qa(d™), (189)
min &g, = Qa(d™), (190)
> GBS E) = Qa(D). (191)

k=2max(s,S)+2

Denote {4 ;};>1 the eigenvalues {{4 1 } x>0 with their degeneracy in non increasing order of their absolute
value. Set M and m to be the number of eigenvalues associated to spherical harmonics of degree less or equal
to S and s respectively, i.e.,

S
M=> B(S" k) =04d%), m=> B(S" k) =04c). (192)
k=0 k=0

Notice that Egs. (187) and (189) imply that (Aq;);j<m corresponds exactly to all the eigenvalues associated
to spherical harmonics of degree less or equal to s. Similarly Egs. (188) and (190) imply that (Ag,;);j<m
corresponds exactly to all the eigenvalues associated to spherical harmonics of degree less or equal to S.
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Notice that the diagonal elements of the truncated kernels are given by (for any x,8 € S~'(v/d))

Hysm(z, ) Z BT (@, 2) = Y 4B k) = [Psoalls = Tr(Ha sm),
k=s+1 k=s+1

Ua,>m(6,0) Z & BTV (0.0) = > €, B8 k) = [Pastall?e = Tr(Ugsm),
k=S+1 k=S+1
(193)
where we used that Q(d)( d)=1.

Step 2. Checking the assumptions at level {(N(d), M(d),n(d), m(d))}a>1-

We are now in position to verify the assumptions of Theorem 1. Choose u := u(d) to be the number
of eigenvalues with absolute value Qg(d=2™2x(5)=249) for some ¢ > 0 that will be chosen small enough,
see Eq. (194). In particular, (Ag,j);e[.) contains all the eigenvalues associated to the spherical harmonics of
degree less or equal to max(S,s), and none of the eigenvalues associated to spherical harmonics of degree
2max(S,s) + 2 and bigger. We therefore must have u > max(M(d), m(d)).

Let us verify the conditions of (N, M, n, m)-FMCP in Assumption 1 with the sequence of integers u(d):

(a) The hypercontractivity of the space of polynomials of degree less or equal 2 max(S,s)+1 is a consequence
of a classical result due to Beckner [9] (see Section E.3).
(b) Let us lower bound the right-hand side of Eq. (18). We have

oo oo

YoM=Y @uBEThE) = %),
j=u(d)+1 k=2max(s,S)+2
Z /\3,]' < {sup)\ } Z )\ d 2 max(s,S) 2+5 Z )\2,]
j=u(d)+1 I d)+1 2)+1
Hence,
(ZJ;u(dHl i,j) = QA9 +278) > may(n, N2, (194)
Zj:u(d)-i—l Ad,]

for § > 0 small enough, where we recall that n < dst1=% and N < d5+1=% for some fixed &y > 0.
(¢) From Eq. (28) in Assumption 3, we only need to check that for ¢ such that

min(n, N) max(N, n)* 7 log(max(N,n)) = 04(1),
we have
Ex6[[P>uda] (. 0)/Vd)*] /) = 04(1).

Denote S the set of eigenvalues Ag ;, with 7 > u, associated to spherical harmonics of degree less of
equal to 2max(s,S) 4+ 1. By triangular inequality, we have

) [[P>ua—d](<m’ g>/\/a)2q] 1/(29)

E
< Egzpo [[Psﬁd](@a 9)/\/3)2{1} Heo +Ezo Hﬁ>2max(s,S)+16’d](<w’ 9>/\/3)2q]1/(2(n = 04(1),
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where we used that Pggy is a polynomial of degree less or equal to 2max(S,s) + 1 in each variable x
and 0 and satisfies the hypercontractivity property (see Lemma 6), i.e

Esxo [[Ps6d](<w,0>/\/g)2q] = 04(1) - Ex[Has(x, )] = 04(1) - Tr(Hg,s)? = Oq(1),

while the bound on 5>2max(5’5)+15d follows from Assumption 3.(a) and Lemma 16 stated below.
(d) This is automatically verified because the diagonal elements are constant in this case (Eq. (193)).

Next, we check Assumption 2 at level (N, M, n, m). Consider the overparametrized case N(d) > n(d), and
therefore M > m. The underparametrized case N(d) < n(d) is treated analogously.

(i) The eigenvalue sums in Eq. (19) can be estimated as follows

1 o0
T D A= 5 S ELBEE) = 0uld). (195)
d,m(d) f=m(d)+1 ds k=s+1
1 > 1
SC— A2y = & Z € .B(S" k) > B(S™ s+ 1) = Qu(dT) . (196)
dvm(d)"’_l k:m(d)—‘,—l d,;s+1 k=s+1

The last equality in (195) follows from Eq. (186) and the assumption (189). Hence condition (19)
in Assumption 2 is satisfied since, by the statement of Theorem 2, we assume d*t% < n < gst179,
Furthermore, by Eq. (192), we have m < n'=9 for some § > 0 chosen small enough.

(74) The eigenvalue sum in Eq. (20) is

1 > 1
Vo YN = Z & BT k) > B(STS +1) = Qa(d>™) . (197)
M(d)+1 k=M(d)+1 gd S+ k=541

Hence condition (20) in Assumption 2 is satisfied since, by the statement of Theorem 2, N < d@>T1=%,
By Eq. (192), we have M < N'=9 for some § > 0 chosen small enough. 0O

Lemma 16. Consider m,{ two fized integers. Assume |54(z)| < coexp(ciz?/(4m)) with co > 0 and ¢; < 1.
Then

Epymry [0a,50(21)*™] = 0a(1),

where T} is the marginal distribution of (e, x) with |le|lz = 1 and & ~ Unif(S*1(V/d)), and we denoted

Od,>¢ = P>0q.

Proof of Lemma 16. Recall that
04,>0(x) = oa(x Z§d k(0)B(ST 1 k)QY (Vdx), (198)

where &;1(0)?B(d, k) < ||Gal|2. < C for some constant C' > 0 (using |54(x)| < coexp(c1z?/(4m))) and
v/ B(Se1: k) ;Cd) is a degree-k polynomial that converges to the Hermite polynomial Hey/v/Ek! (see Sec-
tion E.1.3). Therefore, o4 >, is equal to 4 plus a polynomial of degree ¢ with bounded coefficients. In
particular, from the assumption |54(z)| < coexp(cia?/(4m)), we deduce there exists ¢, > 0 such that

|Ga,>e(x)| < ¢ exp(cr12?/(4m)), whence:
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Eq, [04,>¢(21)*™]| < (c0)* ™ Eq, [exp(c127/2))- (199)

Furthermore, recall that 7} (dz) = Cy(1 — x2/d)(d*3)/21we[f\/&’\/g]dx < Cexp(—x?/2)dz. We can therefore
upper bound the right hand side of Eq. (199) and use dominated convergence, which concludes the proof. O

D.2. On the hypercube

The proof for the hypercube 2¢ follows from the same proof as for the sphere. We refer to [35] for
background on Fourier analysis on 2¢, and Section E.2 for notations that make the analogy with the
sphere transparent. In particular, an analog of Lemma 16 follows by noticing that the law (1, )/ Vd is a
standardized binomial, which can be in terms of the standard normal distribution, times polynomial factors.
The only difference comes from the degeneracy

B(2%k) = (‘D

Hence Assumption 3.(a) only implies £ ; , = O4(d™*) for the last coefficients, which is the reason for the
further requirement Assumption 3.(c).

Let us check that Assumption 3.(c) holds for a class of smooth activation functions. We believe that
indeed this assumption holds much more generally, but we leave such generalizations to future work.

Lemma 17. Consider £ a fived integer. Assume there exist constants co > 0 and ¢y < 1 such that |6 (z)| <
coexp(c1z?/4) for all z € R. Then, we have

_\o ¢
I?gz{fd,dfk((f) = 0q4(d™),

where Eq.4-1(7) = (7((e, -)), Qu_r(Vd(e, ) 1224y, and Qy, is the k-th hypercubic Gegenbauer polynomial
(see Appendiz E.2).

Proof of Lemma 17. By the mean value theorem, we have for any k < /,

Ei1a(@) =Ea[a((1,2) /VA)QY, (1, 2))]
(1 +...+x
—E, [wl"'xd—W(Tdﬂ
l+zo+4+...+24 —14+a+...4+ x4

I N (O R el

1 _
:ﬁEzz"”’xd [:132 .. .xd,ka(l)(gl(mg, ... 7gcd))],

where on the third line we integrated over the first coordinate x; and on the last line |¢!(xo,...,24)) —
(z2 + ...+ xq)/Vd| < 1/Vd. By iterating this computation ¢ times, we get

_ 1 _
§a—k,a(0) ZWEWH,M,M Tot1 - amk e O (C@esrs - . 7$d))}7

where |C(zpq1, ... 2q) — (Tep1 + ...+ x4)/Vd| < £/V/d. Hence,
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|
S BB X i ttaa) vl XD X2+ 12 [d)]

:Od(d_€/2)7

where we used that X converges weakly to the standard normal distribution and dominated convergence. O
Appendix E. Technical background
E.1. Functions on the sphere

E.1.1. Functional spaces over the sphere

For d > 3, we let S¥~!(r) = {& € R?: ||x|2 = r} denote the sphere with radius r in R?. We will mostly
work with the sphere of radius v/d, Sdil(\/&) and will denote by 74 the uniform probability measure on
S4-1(v/d). All functions in this section are assumed to be elements of L?(S?~1(v/d), 74), with scalar product
and norm denoted as (-, -)r2 and || - ||p2:

(f,g)1e = / f(@) g(x) Ta(dz) (200)
S4-1(v/d)

For { € Z>o, let le be the space of homogeneous harmonic polynomials of degree £ on R (i.e. homoge-
neous polynomials ¢(x) satisfying Ag(x) = 0), and denote by Vg, the linear space of functions obtained by
restricting the polynomials in Vd,lf to S4~1(v/d). With these definitions, we have the following orthogonal
decomposition

L (SN (V) ma) = D Vae (201)
£=0
The dimension of each subspace is given by

dim(Vy ) = B(S4 1 0) =

2€+d—2<€+d—3). (202)

d—2 14
For each ¢ € Z>g, the spherical harmonics {Ye(j)}lgjg B(sa-1;¢) form an orthonormal basis of V

d d
(VA YD) 2 = 010k,
Note that our convention is different from the more standard one, that defines the spherical harmonics as
functions on S971(1). It is immediate to pass from one convention to the other by a simple scaling. We will
drop the superscript d and write Yy ; = Ye(j)
We denote by Py the orthogonal projections to Vg, in L2(S4~1(v/d), 74). This can be written in terms

of spherical harmonics as

whenever clear from the context.

B(S4 k)

Puf(@)= Y (f.Ye)2Yu(x). (203)

=1

We also define P<y = Y% Pp, Poy=1—Pey = > hevs1 Proand Py =Poy 1, Pop =Py
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E.1.2. Gegenbauer polynomials
The ¢-th Gegenbauer polynomial Qéd) is a polynomial of degree ¢. Consistently with our convention for

spherical harmonics, we view Qﬁd) as a function Qg,d) : [-d,d] — R. The set {di)}zzo forms an orthogonal
basis on L?([—d, d],7}), where 7 is the distribution of vd{z, e;) when x ~ 74, satisfying the normalization
condition:
(d) (d) - 1
(@ (Vd(er,)), Q" (Vdler, ) 2 (si-1(vay) = BT h) Ok - (204)

In particular, these polynomials are normalized so that Qéd)(d) = 1. As above, we will omit the superscript
(d) in di) when clear from the context.

Gegenbauer polynomials are directly related to spherical harmonics as follows. Fix v € Sdil(\/cii) and
consider the subspace of V;, formed by all functions that are invariant under rotations in R¢ that keep v
unchanged. It is not hard to see that this subspace has dimension one, and coincides with the span of the
function szd)((v, ).

We will use the following properties of Gegenbauer polynomials

1. For z,y € ST 1(Vd)

(d) (d) _ 1 (d)
Q7 ((, ), Q ((y,))) 22 = m%k(f»)k (z,y)). (205)
2. For z,y € S 1(Vd)
1 B(S41k)
(d) _ (d) (d)
k (z,y)) = m £ Yii (w)Ykz (y)- (206)
These properties imply that —up to a constant— ,(cd)(<as, y)) is a representation of the projector onto the
subspace of degree -k spherical harmonics
(Prf)(@) = B(S*";k) / Q" (@, ) f(y) aldy) (207)

SI=1 (V)

For a function & € L?([—V/d,V/d], 7}) (where 7} is the distribution of (e, ) when & ~;q Unif(S*(V/d))),
denoting its spherical harmonics coefficients &4 5(d) to be

@)= [ o@)Q (Var)rida), (208)
[-Vd,Vd]

then we have the following equation holds in L?([—v/d,V/d], 7} _,) sense
o(@) = Y €an(0) BST 5 k)QL" (V).
k=0

To any rotationally invariant kernel Hy(x1, x2) = ha((x1,®2)/d), with ha(v/d-) € L*([~Vd, Vd],T}), we
can associate a self-adjoint operator . : L*>(S?~1(v/d)) — L*(S*1(/d)) via
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Haf(x) = / ha({x, 1) /d) f (1) Ta(d1) . (209)
Sd—l(\/a)

By rotational invariance, the space Vi of homogeneous polynomials of degree k is an eigenspace of 773, and
we will denote the corresponding eigenvalue by &£q,%(hq). In other words 5 f(x) = > .2, €1k (ha)Prf. The
eigenvalues can be computed via

€un(ha) = / ha(e/VA) QW (Viz)r)  (dx). (210)
V]

E.1.3. Hermite polynomials

The Hermite polynomials {Hey }x>o form an orthogonal basis of L?(R,~), where vy(dz) = e*w2/2dx/\/ﬂ
is the standard Gaussian measure, and Hey has degree k. We will follow the classical normalization (here
and below, expectation is with respect to G ~ N(0,1)):

E{He;(G) Her(G)} = k! 61, (211)

As a consequence, for any function g € L?(R,~), we have the decomposition

o@) =3 D by @), (o) = B{0(G) Hew (@) (212)
k=0

The Hermite polynomials can be obtained as high-dimensional limits of the Gegenbauer polynomials
introduced in the previous section. Indeed, the Gegenbauer polynomials (up to a V/d scaling in domain) are
constructed by Gram-Schmidt orthogonalization of the monomials {2} k>0 With respect to the measure %L%,
while Hermite polynomial are obtained by Gram-Schmidt orthogonalization with respect to +. Since 7 = =y
(here = denotes weak convergence), it is immediate to show that, for any fixed integer k,

lim Coeff{Q\” (Vdx) B(S?~'; k)/?} = Coeff {(k')lm Hek(z)} . (213)

Here and below, for P a polynomial, Coeff{P(x)} is the vector of the coeflicients of P. As a consequence,
for any fixed integer k, we have

p(0) = dlir{;fd,k(5)(3(8d_l;k)k!)l/za (214)
where p(6) and &4 (o) are given in Eq. (212) and (208).
E.2. Functions on the hypercube

Fourier analysis on the hypercube is a well studied subject [35]. The purpose of this section is to introduce
some notations that make the correspondence with proofs on the sphere straightforward. For convenience,
we will adopt the same notations as for their spherical case.

E.2.1. Fourier basis

Denote 29 = {—1,+1}? the hypercube in d dimension. Let us denote 74 to be the uniform probability
measure on 29. All the functions will be assumed to be elements of L?(29 7,) (which contains all the
bounded functions f : 2¢ — R), with scalar product and norm denoted as (-, )2 and || - || z2:
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f )i = /f Drlde) = o Y fl@g

re2d

Notice that L?(2% 7,) is a 2" dimensional linear space. By analogy with the spherical case we decompose
L?(24,74) as a direct sum of d + 1 linear spaces obtained from polynomials of degree ¢ =0,...,d

227 7y) @v“

For each ¢ € {0,...,d}, consider the Fourier basis {}Q(,?}Sg[d],|5|=é of degree ¢, where for a set S C [d],
the basis is given by

Yé(? =z H T;.

€S

It is easy to verify that (notice that ¥ = z; if k is odd and a¥ = 1 if k is even)
V2,9 12 = E[25 x %] = §¢,485,5'.

Hence {Yz < } scld),|s|=¢ form an orthonormal basis of Vy , and

dim(Vy) = B(2%¢) = (;f)

As above, we will omit the superscript (d) in Ye((é) when clear from the context.

E.2.2. Hypercubic Gegenbauer
We consider the following family of polynomials {Qﬁd)}g:o,,,,,d that we will call hypercubic Gegenbauer,
defined as

1
D@y = grgng 2 V@Y.
"7 SCld],|S|=t

Notice that the right hand side only depends on (x, y) and therefore these polynomials are uniquely defined.
In particular,

1

(@7 (L@ (L M) = Gz e

Hence {Qéd) }e—o,....a form an orthogonal basis of L2({—d, —d+2,...,d—2,d}, 7}) where 7} is the distribution
of (1,x) when = ~ 74, i.e., 71 ~ 2Bin(d, 1/2) — d/2.
We have
() (d) _ 1
(@4 (2. QL (W12 = gy Qel ()

For a function (-/Vd) € L*({—d,—d +2,...,d — 2,d},7}), denote its hypercubic Gegenbauer coefficients
€a,k(0) to be

fun(o) = / 5 (VDR ()7} (dx).

{—d,—d+2,...,d—2,d}
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Notice that by weak convergence of (1,)/v/d to the normal distribution, we have also convergence of
the (rescaled) hypercubic Gegenbauer polynomials to the Hermite polynomials, i.e., for any fixed k, we have

dli_)n;o Coeff{Q,(cd)(\/Ex) B(2% k)Y = Coeﬂ“{(k!)#l/2 Hek(:zr)} . (215)

E.3. Hypercontractivity of Gaussian measure and uniform distributions on the sphere and the hypercube

By Holder’s inequality, we have || f||L» < ||f||zs for any f and any p < q. The reverse inequality does not
hold in general, even up to a constant. However, for some measures, the reverse inequality will hold for some
sufficiently nice functions. These measures satisfy the celebrated hypercontractivity properties [22,13,8,9].

Lemma 18 (Hypercube hypercontractivity [S]). For any £ = {0,...,d} and f. € L*(2%) to be a degree {
polynomial, then for any integer q > 2, we have

1l Facoay < (@ =D 1 flF2(oa)-

Lemma 19 (Spherical hypercontractivity [9]). For any £ € N and f. € L?(S?™1) to be a degree ¢ polynomial,
for any q > 2, we have

£l 0 (ga-1y < (@ =D - [ fullF2(ga-1y-

Lemma 20 (Gaussian hypercontractivity). For any £ € N and f € L?(R,~) to be a degree £ polynomial on
R, where v is the standard Gaussian distribution. Then for any q > 2, we have

11 7er < (@= D" 1£172R )

The Gaussian hypercontractivity is a direct consequence of hypercube hypercontractivity.
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