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Consider the classical supervised learning problem: we are given data (yi, xi), i ≤ n, 
with yi a response and xi ∈ X a covariates vector, and try to learn a model f̂ : X →
R to predict future responses. Random feature methods map the covariates vector xi

to a point φ(xi) in a higher dimensional space RN , via a random featurization map 
φ. We study the use of random feature methods in conjunction with ridge regression 
in the feature space RN . This can be viewed as a finite-dimensional approximation 
of kernel ridge regression (KRR), or as a stylized model for neural networks in the 
so called lazy training regime.
We define a class of problems satisfying certain spectral conditions on the underlying 
kernels, and a hypercontractivity assumption on the associated eigenfunctions. 
These conditions are verified by classical high-dimensional examples. Under these 
conditions, we prove a sharp characterization of the error of random feature ridge 
regression. In particular, we address two fundamental questions: (1) What is the 
generalization error of KRR? (2) How big N should be for the random feature 
approximation to achieve the same error as KRR?
In this setting, we prove that KRR is well approximated by a projection onto the top 
! eigenfunctions of the kernel, where ! depends on the sample size n. We show that 
the test error of random feature ridge regression is dominated by its approximation 
error and is larger than the error of KRR as long as N ≤ n1−δ for some δ > 0. We 
characterize this gap. For N ≥ n1+δ, random features achieve the same error as the 
corresponding KRR, and further increasing N does not lead to a significant change 
in test error.
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1. Introduction

1.1. Background

Consider the supervised learning problem in which we are given i.i.d. samples (yi, xi), i ≤ n, from a 
common probability distribution on R × X . Here xi ∈ X is a vector of covariates, and yi is a response 
variable. We are interested in learning a model f̂ : X → R which, given a new point xtest, predicts the 
corresponding response ytest via f̂(xtest).
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A number of statistical learning methods can be viewed as a combination of two steps: featurization 
and training. Featurization maps sample points into a convenient ‘feature space’ H (a vector space) via 
a featurization map φ : X → H, xi %→ φ(xi). Training fits a model that is linear in the feature space: 
f̂(x) = 〈a, φ(x)〉H. In this paper we will be concerned with a relatively simple method for training, ridge 
regression:

â(λ) := arg min
a

{ n∑

i=1

(
yi − 〈a,φ(xi)〉H

)2 + λ‖a‖2
H

}
. (1)

Here it is implicitly assumed that H is an Hilbert space, and therefore a ∈ H and 〈 · , · 〉H, ‖ · ‖H are the 
scalar product and norm in H.

It is useful to discuss a few examples of this paradigm, some of which will play a role in what follows (we 
refer to Section 2.1 for formal definitions).

Feature engineering. We use this term to refer to the classical approach of crafting a set of N features 
φ(x) = (φ1(x), . . . , φN (x)) ∈ H = RN for a specific application, by leveraging domain expertise. This has 
been the standard approach to computer vision for a long time [28,10], and is still the state of the art in 
most of applied statistics [24].

Kernel methods. In this case H is a reproducing kernel Hilbert space (RKHS) defined implicitly via a positive 
definite kernel H : X × X → R [15]. Rather than manually constructing features, the statistician/data 
analyst only needs to encode in H(x1, x2) = 〈φ(x1), φ(x2)〉H a suitable notion of similarity in the input 
space X . The resulting model only depends on the kernel H, and a crucial role is played by its eigenvalue 
decomposition H(x1, x2) =

∑∞
!=1 λ

2
!ψ!(x1)ψ!(x2). Ridge regression with RKHS featurization is referred to 

as kernel ridge regression (KRR). Formally, the KRR estimator takes the form:

f̂λ(x) =
∞∑

!=1
f̂λ,!ψ!(x) , f̂λ,! =

∞∑

!′=1
((λ/n) · I + G)−1

!,!′λ!λ!′〈ψ!′ , y〉n , (2)

G!,!′ := λ!λ!′〈ψ!,ψ!′〉n . (3)

Here 〈f, g〉n := n−1 ∑n
i=1 f(xi)g(xi) denotes the scalar product with respect to the empirical measure.

For large n, we can imagine to replace the empirical scalar product with its population counterpart, and 
therefore G!,!′ ≈ λ2

!1!=!′ , whence f̂λ,! ≈ ((λ/n) + λ2
!)−1λ2

!〈ψ!, y〉n. In words, KRR attempts to estimate 
accurately the projection of f(x) = E[y|x] onto the eigenvectors of the kernel H, corresponding to large 
eigenvalues λ!. On the other hand, it shrinks towards 0 the projections of f onto eigenvectors corresponding 
to smaller eigenvalues.

Random Features (RF). Instead of constructing the featurization map φ on the basis of domain ex-
pertise, or, implicitly, via a kernel, RF methods use a random map φ : X → RN . We will study a 
general construction that generalizes the original proposal of [38,7]. We sample N points in a space Ω
via θ1,. . .θN ∼iid τ (for a certain probability measure τ on Ω), and then define the mapping φ by letting 
φ(x) = (σ(x; θ1), . . . , σ(x; θN )). Here σ : X ×Ω → R is a square integrable function. We endow the feature 
space HN = RN with the inner product 〈a1, a2〉HN = aT

1a2/N .
Because of the connection to two-layer neural networks (see below) we shall refer to N as the ‘number 

of neurons’ (although, ‘number of parameters’ would be more appropriate), and to σ as the ‘activation 
function.’ The resulting function f̂ takes the form

f̂(x;a) := 〈a,φ(x)〉H = 1
N

N∑

i=1
aiσ(x;θi) . (4)
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We will refer to the procedure defined by Eq. (1) with φ the random feature map defined here as ‘random 
feature ridge regression’ (RFRR). RFRR is closely related to KRR. First of all, we can view RFRR as an 
example of KRR, with kernel

HN (x1,x2) = 〈φ(x1),φ(x2)〉H = 1
N

N∑

i=1
σ(x1;θi)σ(x2;θi).

Notice however that the kernel HN has finite rank and is random, because of the random features θ1, . . . , θN .
Second, for large N , we can expect HN to be a good approximation of its expectation

EHN (x1,x2) = H(x1,x2) :=
∫

Ω

σ(x1;θ)σ(x2;θ) τ(dθ) . (5)

Hence, for large N , we expect RFRR to have generalization properties similar to the underlying RKHS, 
while possibly exhibiting lower complexity because it only operates on N × n matrices (instead of n × n

matrices as for KRR).

Neural networks in the linear (lazy) regime. The methods described above fit the general paradigm of Eq. (1). 
Training does not affect the feature map φ. The model f̂λ( · ) is linear in y, as a consequence of the fact 
that the loss is quadratic (see also Eq. (2)). In contrast, neural networks aim at learning the best feature 
representation of the data. The feature map changes during training, and indeed there is no clear separation 
between the feature map φ(x) and the coefficients a.

Nevertheless a copious line of recent research shows that —under certain training schemes— neural 
networks are well approximated by their linearization around a random initialization [25,27,19,17,4,3,1,46,
36]. It is useful to recall the basic argument here. Denote by x %→ f(x; θ) the neural network, with parameters 
(weights) θ ∈ RN , and by θ0 the initialization for gradient-based training. For highly overparametrized 
networks, a small change in the parameters θ is sufficient to change significantly the evaluations of f at 
the data points, i.e., the vector (f(x1; θ), . . . , f(xn; θ)). As a consequence, an empirical risk minimizer can 
be found in a small neighborhood of the initialization θ0, and it is legitimate to approximate f by its first 
order Taylor expansion in the parameters:

f(x;θ0 + a) ≈ f(x;θ0) + 〈a,∇θf(x;θ0)〉 . (6)

Apart from the zero-th order term f(x; θ0) (which has no free parameters, and hence plays the role of 
an offset), this linearized model takes the same form f̂(x) = 〈a, φ(x)〉. The featurization map is given by 
φ(x) = ∇θf(x; θ0). We refer to the model x %→ 〈a, ∇θf(x; θ0)〉 as the neural tangent (NT) model.

Notice that the NT featurization map is random, because of the random initialization θ0. However, in 
general it does not take the form of the RF model, because the entries of ∇θf(x; θ0) are not independent. 
Despite this important difference, we expect key properties of the RF model to generalize to suitable classes 
of NT models. Examples of this phenomenon were studied recently in [20,34].

The present paper focuses on KRR and RFRR. We introduce a set of assumptions on the data distribu-
tion, the choice of activation function, and the probability distribution τ on the θi’s, under which we can 
characterize the large n, N behavior of the generalization (test) error. While our results apply to an abstract 
input space X , our assumptions aim at capturing the behavior observed when X is high-dimensional, and 
the distribution ν on X satisfies strong concentration properties. For instance, our results apply to X = Sd−1

(the sphere in d dimension) or X = {+1, −1}d, both endowed with the uniform measure.
Our results do not require the true regression function f∗ to belong to the associated RKHS and they 

characterize the test error (with respect to the square loss) pointwise, i.e., for each specific target function 
f∗. This characterization holds up to error terms that are negligible compared to the null risk E{f∗(x)2}.
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In particular our results allow to answer in a quantitative way two sets of key questions that emerge from 
the above discussion:

Q1. How does the test error of KRR depends on the sample size n, on the target function f∗, and on the 
kernel H? While this question has attracted considerable attention in the past (see Section 1.3 for an 
overview), a very precise answer can be given in the present setting.

Q2. How does the test error of RFRR depend on the sample size n, and the number of neurons N? In 
particular, for a given sample size, how big N should be to achieve the same error as for the associated 
KRR (which corresponds formally to N = ∞)?

Q3. How do the answers to the previous questions depend on the regularization parameter λ? In particular, 
in which cases is the optimal test error achieved by choosing λ → 0, i.e. by using the minimum norm 
interpolator to the training data?

Let us emphasize that the second question is technically more challenging than the first one, because it 
amounts to studying KRR with a random kernel. The setting introduced here is particularly motivated by 
the objective to address Q2 (and its ramifications in Q3). Indeed, to the best of our knowledge, we provide 
the first set of results on the optimal choice of the overparametrization N/n under polynomial scalings of 
N, n, d.

1.2. Summary of main results

Before summarizing our results, it is useful to describe informally our assumptions: we refer to Sections 2.2
and 3.2 for a formal statement of the same assumptions. We consider (xi)i≤n ∼iid ν with ν a probability 
distribution of the covariates space X , and yi = f∗(xi) +εi, where f is the target function and εi ∼ N(0, σ2

ε)
independent of xi is noise.

An RFRR problem is specified by ν, f∗, σε (which determine the data distribution), σ, τ (which determine 
the RF representation), and the parameters n, N (sample size and number of neurons). The associated 
kernel problem is obtained by using the kernel (5). It is also useful to introduce a kernel in the θ space via 
U(θ1, θ2) := Ex∼ν{σ(x; θ1) σ(x; θ2)}.

We will consider sequences of such problems indexed by an integer d, and characterize their behavior as 
N, n, d → ∞. In applications, d typically corresponds to the dimension of the covariates space X . In this 
informal summary, we drop any reference to d for simplicity.

We next describe informally our key assumptions, which depends on integers (m, M, u), with u ≥
max(M, m). (For the sake of simplicity, we omit some assumptions of a more technical nature.)

1. Hypercontractivity. The top u eigenvectors of H are ‘delocalized’. We formalize this condition by requiring 
that, for any function g ∈ span(ψj : j ≤ u), and for any integer k, Eν{g(x)2k} ≤ Ck,uEν{g(x)2}k. We 
assume a same condition for the eigenvectors of U .

2. Concentration of diagonal elements of the kernels. Denote by H>m the kernel obtained from H by setting 
to zero the eigenvalues λ1, . . . , λm. We require that the diagonal elements {H>m(xi, xi)}i≤n concentrate 
around their expectation with respect to the measure ν on X . Analogously, we require the diagonal 
elements {U>M(θi, θi)}i≤N to concentrate around their expectation.

This assumption amounts to a condition of symmetry: most points x in the support of ν are roughly 
equivalent, in the sense of having the same value of H>m(x, x), and similarly for most θ in the support 
of ν.

3. Spectral gap. Recall that the (λ2
j)j≥1 denote the eigenvalues of the kernel H in decreasing order. We then 

assume one of the following two conditions to hold:
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Undeparametrized regime. We have N / n and

1
λ2

M

∞∑

k=M+1
λ2
k / N / 1

λ2
M+1

∞∑

k=M+1
λ2
k , (7)

Overparametrized regime. We have n / N and

1
λ2m

∞∑

k=m+1
λ2
k / n / 1

λ2
m+1

∞∑

k=m+1
λ2
k . (8)

This assumption ensures a clear separation between the subspace of Dd which is estimated accurately 
(spanned by the eigenfunction of H corresponding to the top eigenvalues) and the subspace that is 
estimated trivially by 0 (corresponding to the low eigenvalues of H.) As we will see, a spectral gap 
condition holds for classical high-dimensional examples. On the other hand, we believe it should be 
possible to avoid this condition at the price of a more complicated characterization of the risk, and 
indeed we do not require it for KRR.

As explained above, KRR attempts to estimate accurately the projection of the target function f∗ onto 
the top eigenvectors of the kernel H, and shrinks to zero its other components. RFRR behaves similarly, 
except that it only constructs a finite rank approximation of the kernel H. How many components of the 
target function are estimated accurately? There are of course two limiting factors: the statistical error, 
which depends on the sample size n; and the approximation error, which depends on the number of neurons 
N .

It turns out that, in the present setting, the interplay between n and N takes a particularly simple form. 
In a nutshell, what matters is the smaller of n and N . If n / N , then the statistical error dominates, 
and ridge regression estimates correctly the projection of f∗ onto the top m eigenfunctions of H (where m
is defined per Eq. (8)). If on the other hand N / n, then the approximation error dominates and ridge 
regression estimates correctly the projection of f∗ onto the top M eigenfunctions of H (where M is defined 
per Eq. (7)).

In formulas, we denote by RRF(f∗; λ) = E{(f∗(x) − fλ(x))2} the test error of RFRR (for square loss) 
when the target function is f∗ and the regularization parameter equals λ. Our main result establishes that 
for all λ ∈ [0, λ∗] (with a suitable choice of λ∗), in a certain asymptotic sense, the following hold:

RRF(f∗;λ) =
{
E{(P>mf∗(x))2} + o(1) · E{f∗(x)2} if n / N ,
E{(P>Mf∗(x))2} + o(1) · E{f∗(x)2} if n 0 N ,

(9)

where P>! is the projector onto the span of the eigenfunctions {ψj : j > (}. This statement also applies to 
KRR, if we interpret the latter as the N = ∞ case of RFRR. Further, no kernel machine achieves a smaller 
error.

This characterization implies a relatively simple answer to questions Q1, Q2, and Q3, which we posed in 
the previous section. We summarize some of the insights that follow from this result.

KRR acts as a projection. As mentioned above, Eq. (9) can be restated as saying that (for the special case 
N = ∞), f̂λ(x) ≈ P≤mf∗(x). Indeed, we will prove a stronger result, which does not require the spectral 
gap assumption of Eq. (8). The KRR estimator f̂λ is well approximated by the KRR estimator for the 
population problem (n = ∞), but with a larger value of the ridge regularization γ > λ. In other words 
KRR acts as a shrinkage operator along the eigenfunctions of the kernel.
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Effects of overparametrization. In random feature models, we are free to choose the number of neurons N . 
Equation (9) indicates that any choice of N has roughly the same test error (which is also the test error 
of KRR) as long as N 0 n. This is interesting in both directions. First, the test error does not deteriorate 
as the number of parameters increases far beyond the sample size. This contrasts with a naive measure 
of the model complexity: indeed, counting the number of parameters would naively suggest that N 0 n

might hurt generalization. Second, the error does not improve with overparametrization either, as long 
as N 0 n.

Optimal overparametrization. At what level of overparametrization should we operate? In view of the 
previous point, it is sufficient to use a model with a number of parameters much larger than the sample 
size (formally, N ≥ n1+δ for some δ > 0, although this specific condition is mainly dictated by our proof 
technique). Further overparametrization does not improve the statistical behavior.

Let us also note that —as proven in [31]— choosing N/n =: ψ = O(1) can lead to sub-optimal test 
error, with the suboptimality vanishing if ψ → ∞ after N, n → ∞.

Optimality of interpolation. Finally, the above phenomena are obtained for all λ ∈ [0, λ∗]. The case λ = 0
corresponds to minimum norm interpolators. We also prove that the risk of any kernel machine is lower 
bounded by E{(P>mf∗(x))2} + o(1) · E{f∗(x)2}. We therefore conclude that, in the overparametrized 
regime N 0 n, min-norm interpolators are optimal among all kernel methods.

1.3. Related literature

The test error of KRR was studied by a number of authors in the past [16,26], [43, Theorem 13.17]. 
In particular, [16] establishes that KRR achieves minimax optimal rates over certain subclasses of the 
associated RKHS. However these results require a strictly positive ridge regularizer (and hence do not cover 
interpolation) and characterize the decay of the error as n → ∞ in fixed dimension d. In contrast our focus 
is on the case in which both d and n grow simultaneously. Further, we provide upper and lower bounds that 
hold pointwise (for each given target function f∗) while earlier work mostly establish pointwise upper bound 
and minimax lower bounds (for the worst case f∗). The recent work [26] also derived pointwise upper and 
lower bounds for kernel ridge regression (but with strictly positive ridge regularizer), which is very similar 
to our Theorem 5. However, these results are based on a universality assumption whose validity is unclear 
in specific settings.

Recently, the ridge-less (interpolation) limit of KRR was studied by Liang, Rakhlin and Zhai [29,30]. 
Again, these authors provide minimax upper bounds that hold within the RKHS, holding for inner product 
kernel, when the feature vectors x have independent coordinates. Their results are related but not directly 
comparable to ours.

The complexity of training a kernel machine scales at least quadratically in the sample size. This has 
motivated the development of randomized techniques to lower the complexity of training and testing. While 
our focus is on random feature methods, alternative approaches are based on subsampling the columns-rows 
of the empirical kernel matrix, see e.g. [5,2,37]. In particular, [37] compares the prediction errors using the 
sketched and the full kernel matrices, and shows that —for a fixed RKHS— it is sufficient to use a number 
of rows/columns of the order of the square root of the sample size in order to achieve the minimax rate over 
that RKHS.

The generalization properties of random feature methods have been studied in a smaller number of papers 
[39,40,33]. Rahimi and Recht [39] proved an upper bound of the order 1/

√
N + 1/√n on the generalization 

error. The insight provided by this bound is similar to one of our points: about N 2 n neurons are sufficient 
for the error to be of the same order as for N → ∞. On the other hand, [39] proves only a minimax upper 
bound, it is limited to Lipschitz losses, and, crucially, requires the coefficients maxi≤N |ai| ≤ C so that 
‖a‖2

2 = O(N). In contrast, in the present setting, we typically have ‖a‖2
2 = Θ(nN) The case of square 

loss was considered earlier by Rudi and Rosasco [40] who proved that, for a target function f∗ in the 
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RKHS, N = C
√
n logn is sufficient to learn a random feature model with test error of order 1/√n. These 

authors interpret this finding as implying that roughly 
√
n random features are sufficient: we will discuss 

the difference between their setting and ours in Section 2.3.
Finally, [6] studies optimized distributions for sampling the random features, while [45] provides a com-

parison between random feature approaches and subsampling of the kernel matrix.
As pointed out above, we find that taking λ → 0 yields nearly optimal test error, within our setting. 

Optimality of minimum norm interpolators has attracted considerable attention recently [11,14,23,12,41]. 
In particular our results point in the same direction as the general analysis of ridge regression in [12,
41]. Note however that the general results of [12,41] do not apply to the present setting because they 
require subgaussian features φ(xi). Further, they only provide upper and lower bounds that match up to 
factors depending on the condition number of a certain random matrix. In contrast, our characterization is 
specialized to the random feature setting, does not require subgaussianity, and holds up to additive errors 
that are negligible compared to the null risk.

The present paper solves a number of open problems that were left open in our earlier work [20]. First 
of all, [20] only considered the cases n = ∞ (approximation error of random feature models) or N = ∞
(generalization error of KRR). Here instead we establish the complete picture for both n and N finite. 
Second, [20] assumed a special data distribution (ν was the uniform distribution over the d-dimensional 
sphere), a special structure for the kernel (inner product kernels), and a special type of activation functions 
(depending on the inner product 〈θ, x〉)). The present paper considers general data distribution, kernel, 
and activation function, under a set of assumptions that covers the previous example as a special case. 
Finally, the proofs of [20] made use of the moment method, which is difficult to generalize beyond special 
examples. Here we use a decoupling approach and matrix concentration methods which are significantly 
more flexible.

The results of [20] were generalized to certain anisotropic distributions in [21]. For the inner product 
activation functions on the sphere, the precise asymptotics (for N, n, d → ∞ with N/d → ψ1, n/d → ψ2, 
ψ1, ψ2 ∈ (0, ∞)) of generalization error of random feature models was calculated in [31].

1.4. Notations

For a positive integer, we denote by [n] the set {1, 2, . . . , n}. For vectors u, v ∈ Rd, we denote 〈u, v〉 =
u1v1 + . . . + udvd their scalar product, and ‖u‖2 = 〈u, u〉1/2 the (2 norm. Given a matrix A ∈ Rn×m, we 
denote ‖A‖op = max‖u‖2=1 ‖Au‖2 its operator norm and by ‖A‖F =

(∑
i,j A

2
ij

)1/2 its Frobenius norm. If 
A ∈ Rn×n is a square matrix, the trace of A is denoted by Tr(A) =

∑
i∈[n] Aii.

We use Od( · ) (resp. od( · )) for the standard big-O (resp. little-o) relations, where the subscript d em-
phasizes the asymptotic variable. Furthermore, we write f = Ωd(g) if g(d) = Od(f(d)), and f = ωd(g) if 
g(d) = od(f(d)). Finally, f = Θd(g) if we have both f = Od(g) and f = Ωd(g).

We use Od,P ( · ) (resp. od,P ( · )) the big-O (resp. little-o) in probability relations. Namely, for h1(d) and 
h2(d) two sequences of random variables, h1(d) = Od,P (h2(d)) if for any ε > 0, there exists Cε > 0 and 
dε ∈ Z>0, such that

P (|h1(d)/h2(d)| > Cε) ≤ ε, ∀d ≥ dε,

and respectively: h1(d) = od,P (h2(d)), if h1(d)/h2(d) converges to 0 in probability. Similarly, we will denote 
h1(d) = Ωd,P (h2(d)) if h2(d) = Od,P (h1(d)), and h1(d) = ωd,P (h2(d)) if h2(d) = od,P (h1(d)). Finally, 
h1(d) = Θd,P (h2(d)) if we have both h1(d) = Od,P (h2(d)) and h1(d) = Ωd,P (h2(d)).
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2. Generalization error of random feature ridge regression

In this section, we present our results on the generalization error of random feature models. We begin in 
Section 2.1 by introducing the general abstract setting in which we work, and some of its basic properties. 
We then state our assumptions in Section 2.2, and state our main theorem (Theorem 1) in Section 2.3.

Finally, Section 2.4 presents applications of our general theorem to (i) the case of covariates vectors 
uniformly distributed over the sphere xi ∼ Unif(Sd−1(

√
d)), and (ii) the case of covariates vectors uniformly 

distributed over the Hamming cube xi ∼ Unif({+1, −1}d). While these applications are ‘simple’ in the 
sense that checking the assumptions of our general theorem is straightforward, they are in themselves quite 
interesting. In particular, our result for the uniform distribution on the sphere (cf. Proposition 2) closes the 
main problem left unsolved in [20].

2.1. Random feature models, kernels, and their spectral decomposition

We consider two sequences of Polish probability spaces (Xd, νd) and (Ωd, τd), indexed by an integer d. 
We denote by L2(Xd) = L2(Xd, νd) the space of square integrable functions on (Xd, νd), and by L2(Ωd) =
L2(Ωd, τd) the space of square integrable functions on (Ωd, τd). Since (Xd, νd) and (Ωd, τd) are standard 
probability spaces [18, Theorem 13.1.1], it follows that L2(Xd) and L2(Ωd) are separable.

More generally for p ≥ 1, we denote ‖f‖Lp(X ) = Ex∼ν [|f(x)|p]1/p the Lp norm of f . We will sometimes 
omit X and write directly ‖f‖L2 and ‖f‖Lp when clear from context.

Given two closed linear subspaces Dd ⊆ L2(Xd), Vd ⊆ L2(Ωd), and the activation function σd ∈ L2(Xd ×
Ωd, νd ⊗ τd), we define a Fredholm integral operator Td : Dd → Vd via

Tdg(θ) ≡
∫

Xd

σd(x,θ)g(x)νd(dx). (10)

Note that Td is a compact operator by construction. We will assume that Tdg 7= 0 for any g ∈ Dd \ {0}. 
Also, without loss of generality, we can assume Vd = Im(Td) (which is closed since Td is bounded). With 
an abuse of notation, we will sometimes denote by Td the extension of this operator obtained by setting 
Tdg = 0 for g ∈ D⊥

d . Notice that we can choose the kernel σd so that 
∫
Xd

σd(x, θ)g(x)νd(dx) = 0 for any 
g ∈ D⊥

d : we will assume such a choice hereafter.
While in simple examples we might assume Dd = L2(Xd), the extra flexibility afforded by a general 

subspace Dd ⊆ L2(Xd) allows to model some important applications (see Section 2.5 and [32]).
The adjoint operator T∗

d : Vd → Dd has kernel representation

T∗
d f(x) =

∫

Ωd

σd(x,θ)f(θ)τd(dθ).

As before, we will sometimes extend T∗
d to L2(Ωd) by setting Ker(T∗

d ) = V⊥
d .

The operator Td induces two compact self-adjoint positive definite operators: Ud = TdT∗
d : Vd → Vd, and 

Hd = T∗
dTd : Dd → Dd. These operators admit the kernel representations:

Udf(θ) =
∫

Ωd

Ud(θ,θ′)f(θ′)τd(dθ′), (11)

Hdg(x) =
∫

Xd

Hd(x,x′)g(x′)νd(dx′) , (12)
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where Ud : Ωd × Ωd → R and Hd : Xd × Xd → R are two measurable functions, satisfying respectively ∫
Ωd

Ud(θ, θ′)f(θ′) τd(dθ′) = 0 for f ∈ V⊥
d , and 

∫
Xd

Hd(x, x′)g(x′) νd(dx′) = 0 for g ∈ D⊥
d . We immediately 

have

Ud(θ1,θ2) = Ex∼νd [σd(x,θ1)σd(x,θ2)], (13)
Hd(x1,x2) = Eθ∼τd [σd(x1,θ)σd(x2,θ)]. (14)

By Cauchy-Schwartz inequality, we have Ud ∈ L2(Ωd × Ωd) and Hd ∈ L2(Xd × Xd).
By the spectral theorem of compact operators, there exist two orthonormal bases (ψj)j≥1, span(ψj , j ≥

1) = Dd ⊆ L2(Xd) and (φj)j≥1, span(φj , j ≥ 1) = Vd ⊆ L2(Ωd), and eigenvalues (λd,j)j≥1 ⊆ R, with 
nonincreasing absolute values |λd,1| ≥ |λd,2| ≥ · · · , and 

∑
j≥1 λ

2
d,j < ∞ such that

Td =
∞∑

j=1
λd,jψjφ

∗
j , Ud =

∞∑

j=1
λ2
d,jφjφ

∗
j , Hd =

∞∑

j=1
λ2
d,jψjψ

∗
j .

(Here convergence holds in operator norm.) In terms of the kernel, these identities read

σd(x,θ) =
∞∑

j=1
λd,jψj(x)φj(θ), Ud(θ1,θ2) =

∞∑

j=1
λ2
d,jφj(θ1)φj(θ2),

Hd(x1,x2) =
∞∑

j=1
λ2
d,jψj(x1)ψj(x2). (15)

Here convergence holds in L2(Xd × Ωd), L2(Ωd × Ωd), and L2(Xd × Xd).
Associated to the operator H, we can define a reproducing kernel Hilbert space (RKHS) H ⊆ Dd defined 

as

H =
{
f ∈ D : ‖f‖2

H =
∞∑

j=1
λ−2
d,j〈f,ψj〉2L2 < ∞

}
,

where ‖ · ‖H denotes the RKHS norm associated to H. In particular, H is dense in Dd, provided λ2
d,j > 0

for all j.
For S ⊆ {1, 2, . . . }, we denote by PS the projection operator from L2(Xd) onto Dd,S := span(ψj , j ∈ S). 

With a little abuse of notations, we also denote by PS the projection operator from L2(Ωd) onto Vd,S :=
span(φj , j ∈ S). We denote by Td,S and σd,S the corresponding operator and kernel

Td,S =
∑

j∈S

λd,jψjφ
∗
j ,

σd,S(x,θ) =
∑

j∈S

λd,jψj(x)φj(θ).

We define Ud,S = Td,ST∗
d,S and Hd,S = T∗

d,STd,S , and denote by Ud,S and Hd,S the corresponding kernels. If 
S = {j ∈ N : j ≤ (} we will write for brevity Td,≤!, Ud,≤!, Hd,≤!, and similarly for S = {j ∈ N : j > (}.

Since σd ∈ L2(Xd × Ωd), it follows that Ud,S is trace class, for any S ⊆ N, with trace given by

Tr(Ud,S) ≡
∑

j∈S

λ2
d,j = Eθ∼τd [Ud,S(θ,θ)] < ∞ .

Similarly, we have
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Tr(Hd,S) ≡
∑

j∈S

λ2
d,j = Ex∼νd [Hd,S(x,x)] < ∞ .

2.2. Assumptions

Let Θ = (θi)i∈[N ] ∼iid τd. We define the random feature function class by:

FRF,N (Θ) =
{
f̂(x;a) = 1

N

N∑

i=1
aiσd(x,θi) : ai ∈ R, i ∈ [N ]

}
.

Note that the factor 1/N is immaterial here, and only introduced in order to match the definition of feature 
map and scalar product in Section 1.1. Note that we use f̂ instead of f to indicate that (x, a) %→ f̂(x; a) is 
a specific function Rd ×RN → R. It is also useful to view a %→ f̂( · ; a) as a map RN → L2(Rd; P ).

We observe pairs (yi, xi)i∈[n], with (xi)i∈[n] ∼iid νd, and yi = f∗(xi) + εi, f∗ ∈ L2(Xd) and εi ∼ N(0, σ2
ε)

independently. We fit the coefficients (ai)i≤N using ridge regression, cf. Eq. (1) that we reproduce here

â(λ) = arg min
a

{
n∑

i=1

(
yi − f̂(xi;a)

)2 + λ

N
‖a‖2

2

}
. (16)

We allow λ to depend on the dimension parameter d. The test error is given by

RRF(f∗,X,Θ,λ) := Ex

[(
f∗(x) − f̂(x; â(λ))

)2]
. (17)

We next state our assumptions on the sequences of probability spaces (Xd, νd) and (Ωd, τd), and on the 
activation functions σd. The first set of assumptions concerns the concentration properties of the feature 
map, and are grouped in the next definition. These assumptions are quantified by four sequences of integers 
{(N(d), M(d), n(d), m(d))}d≥1, where N(d) and n(d) are, respectively, the number of neurons and the sample 
size. The integers M(d) and m(d) play a minor role in this definition, but will encode the decomposition of 
L2(Ωd) and L2(Xd) (respectively) into the span of the top eigenvectors of Ud and Hd (of dimensions M(d)
and m(d)) and their complements.

Assumption 1 ({(N(d), M(d), n(d), m(d))}d≥1-Feature Map Concentration Property). We say that the se-
quence of activation functions {σd}d≥1 satisfies the Feature Map Concentration Property (FMCP) with 
respect to the sequence {(N(d), M(d), n(d), m(d))}d≥1 if there exists a sequence {u(d)}d≥1 with u(d) ≥
max(M(d), m(d)) such that the following hold.

(a) (Hypercontractivity of finite eigenspaces)

(i) (Hypercontractivity of finite eigenspaces on Dd.) For any integer k ≥ 1, there exists C such that, 
for any g ∈ Dd,≤u(d) = span(ψs, 1 ≤ s ≤ u(d)), we have

‖g‖L2k(Xd) ≤ C · ‖g‖L2(Xd).

(ii) (Hypercontractivity of finite eigenspaces on Vd.) For any integer k ≥ 2, there exists C ′ such that, 
for any g ∈ Vd,≤u(d) = span(φs, 1 ≤ s ≤ u(d)), we have

‖g‖L2k(Ωd) ≤ C ′ · ‖g‖L2(Ωd).
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(b) (Properly decaying eigenvalues.) There exists a fixed δ0 > 0, such that, for all d large enough

max(N(d), n(d))2+δ0 ≤

(∑∞
j=u(d)+1 λ

2
d,j

)2

∑∞
j=u(d)+1 λ

4
d,j

. (18)

(c) (Hypercontractivity of the high degree part.) Let σd,>u(d) correspond to the projection on the high degree 
part of σd. Then there exists a fixed δ0 > 0 and an integer k such that

min(n,N)1+2δ0 max(N,n)1/k−1 log(max(N,n)) = od(1),

and

Ex,θ[σ>u(d)(x;θ)2k]1/(2k) = Od(1) · min(n,N)δ0 · Ex,θ[σ>u(d)(x;θ)2]1/2.

(d) (Concentration of diagonal elements) For (xi)i∈[n(d)] ∼iid νd and (θi)i∈[N(d)] ∼iid τd, we have

sup
i∈[n(d)]

∣∣∣Hd,>m(d)(xi,xi) − Ex[Hd,>m(d)(x,x)]
∣∣∣ = od,P (1) · Ex[Hd,>m(d)(x,x)] ,

sup
i∈[N(d)]

∣∣∣Ud,>M(d)(θi,θi) − Eθ[Ud,>M(d)(θ,θ)]
∣∣∣ = od,P (1) · Eθ[Ud,>M(d)(θ,θ)].

This statement formalizes three assumptions. The first one is hypercontractivity (points (a) and (c)). 
Recall that Dd,≤u(d) is the eigenspace spanned by top eigenvectors of the operator Hd, and Vd,≤u(d) is the 
eigenspace spanned by top eigenvectors of the operator Ud. We request that functions in these spaces have 
comparable norms of all orders, which roughly amounts to saying that they take values of the same order as 
their typical value for most x (or most θ). This typically happens when the functions in the top eigenspaces 
are delocalized.

The second assumption (assumption (b)) requires that the eigenvalues of kernel operators do not decay 
too rapidly. If this is not the case, the RKHS will be very close to a low-dimensional space. For instance, 
if λ2

d,k 2 k−2α, α > 0, then this condition holds as long as we take u(d) ≥ max(N(d), n(d))2+δ0 for some 
δ0 > 0.

Finally, assumption (d) concerns the diagonal elements of the kernel matrices. They require the truncated 
kernel functions Hd,>m(d) and Ud,>M(d) evaluated on covariates and weight vectors to have nearly constant 
diagonal values.

The second set of assumptions concerns the spectrum of the kernel operator, defined by the sequence 
of eigenvalues (λ2

d,j)j≥1. We require that the spectrum has a gap: the location of this gap dictates the 
relationship between N(d) and M(d) and between n(d) and m(d).

Assumption 2 (Spectral gap at level {(N(d), M(d), n(d), m(d))}d≥1). We say that the sequence of activation 
functions {σd}d≥1 has a spectral gap at level {(N(d), M(d), n(d), m(d))}d≥1 if one of the following conditions 
(a), (b) hold for all d large enough.

(a) (Overparametrized regime.) We have N(d) ≥ n(d) and

(i) (Number of samples) There exists fixed δ0 > 0 such that m(d) ≤ n(d)1−δ0 and

1
λ2
d,m(d)

∞∑

k=m(d)+1
λ2
d,k ≤ n(d)1−δ0 ≤ n(d)1+δ0 ≤ 1

λ2
d,m(d)+1

∞∑

k=m(d)+1
λ2
d,k . (19)
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(ii) (Number of features) There exists fixed δ0 > 0 such that M(d) ≤ N(d)1−δ0 , M(d) ≥ m(d) and

N(d)1+δ0 ≤ 1
λ2
d,M(d)+1

∞∑

k=M(d)+1
λ2
d,k. (20)

(b) (Underparametrized regime) We have n(d) ≥ N(d) and

(i) (Number of features) There exists fixed δ0 > 0 such that M(d) ≤ N(d)1−δ0 and

1
λ2
d,M(d)

∞∑

k=M(d)+1
λ2
d,k ≤ N(d)1−δ0 ≤ N(d)1+δ0 ≤ 1

λ2
d,M(d)+1

∞∑

k=M(d)+1
λ2
d,k .

(ii) (Number of samples) There exists fixed δ0 > 0 such that m(d) ≤ n(d)1−δ0 , m(d) ≥ M(d) and

n(d)1+δ0 ≤ · 1
λ2
d,m(d)+1

∞∑

k=m(d)+1
λ2
d,k .

The assumption of a spectral gap is useful in that it leads to a clear-cut separation in our main statement 
below. For instance, in the overparametrized regime n(d) / N(d), the projection of the target function onto 
Dd,≤m(d) is estimated with negligible error, while the projection onto Dd,>m(d) is estimated with 0. If there 
was no spectral gap, the transition would not be as sharp. However, we expect this to affect only target 
functions with a large projection onto eigenfunctions whose indices are close to m(d). In this sense, while 
restrictive, the spectral gap assumption can be in fact a good model for a more generic situation.

2.3. A general theorem

We are now in position to state our main results for random feature ridge regression.

Theorem 1 (Generalization error of Random Feature Ridge Regression). Let {f∗ ∈ Dd}d≥1 be a sequence 
of functions, X = (xi)i∈[n(d)] and Θ = (θj)j∈[N(d)] with (xi)i∈[n(d)] ∼ νd and (θj)j∈[N(d)] ∼ τd inde-
pendently. Let yi = f∗(xi) + εi and εi ∼iid N(0, σ2

ε) for some σε > 0. Let {σd}d≥1 be a sequence of 
activation functions satisfying {(N(d), M(d), n(d), m(d))}d≥1-FMCP (Assumption 1) and spectral gap at 
level {(N(d), M(d), n(d), m(d)))}d≥1 (Assumption 2). Then the following hold for the test error of RFRR 
(see Eq. (17)):

(a) (Overparametrized regime) If N(d) ≥ dδ ·n(d) for some δ > 0, let λ( be such that λ∗ = Od(Tr(Hd,>m)). 
Then, for any regularization parameter λ ∈ [0, λ(], and any fixed η > 0 and ε > 0, with high probability 
we have

|RRF(f∗,X,Θ,λ) − ‖P>mf∗‖2
L2 | ≤ ε · (‖f∗‖2

L2 + ‖P>mf∗‖2
L2+η + σ2

ε). (21)

(b) (Underparametrized regime) If n(d) ≥ dδ · N(d) for some δ > 0, let λ( be such that λ( = Od(n/N ·
Tr(Ud,>M)). Then, for any regularization parameter λ ∈ [0, λ(], and any fixed η > 0 and ε > 0, with 
high probability we have

|RRF(f∗,X,Θ,λ) − ‖P>Mf∗‖2
L2 | ≤ ε · (‖f∗‖2

L2 + ‖P>Mf∗‖2
L2+η + σ2

ε). (22)
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Remark 2.1. The two limits N = ∞ and n = ∞ play a special role. For N = ∞, the random kernel 
HN (x1, x2) = N−1 ∑N

i=1 σ(x1; θi)σ(x2; θi) converges to its expectation, and we recover KRR. While this 
case is not technically covered by Theorem 1, we establish the relevant characterization in Theorems 4 and 
5.

In the case n = ∞ the generalization error vanishes, and we are left with the approximation error. This 
case is covered separately in Appendix A. In both these limit cases we confirm the result that would have 
been obtained by naively setting N = ∞ or n = ∞ in the last theorem.

Notice that the sample size n and the number of neurons N play a nearly symmetric role in this statement, 
and the smallest of the two determines the test error. An important insight follows: in the present setting, 
the test error is nearly insensitive to the number of neurons as long as we take N 0 n. If we want to minimize 
computational complexity subject to achieving nearly optimal generalization properties, we should operate, 
say, at N 2 n1+δ for some small δ > 0.

It is instructive to compare this result with [40] which instead suggests N 2
√
n logn. While our setting 

differs from the one of [40] in a number of technical aspects, we believe that the core difference between the 
two results lies in the treatment of the target function f∗. Simplifying, the recommendation of [40] is based 
on two results, the second of which proved in [16] (with an abuse of notation, we indicate the number of 
neurons and sample size as arguments of RRF(f∗) = RRF(f∗; N, n), and use N = ∞ to denote the KRR 
limit case):

sup
‖f∗‖H≤r

RRF(f∗;Nn, n) ≤ C1(d)
r2
√
n
, for Nn 2

√
n log n , (23)

sup
‖f∗‖H≤r

RRF(f∗;∞, n) ≤ C2(d)r2
( log n

n

)b/(b+1)
, (24)

where b ∈ (1, ∞) encodes the decay of eigenvalues of the kernel.1 Now, considering the worst case decay 
b → 1, the error rate achieved by RFRR, cf. Eq. (23), is of the same order as the one achieved by KRR, cf. 
Eq. (24).

Note several differences with respect to our results: (i) The analysis of [40,16] is minimax, over balls 
in the RKHS, while our results hold pointwise, i.e., for each individual function f∗; (ii) Optimality in [40]
is established in terms of rates, i.e., up to multiplicative constant, while ours hold up to additive errors 
(multiplicative constants are exactly characterized); (iii) The results of [40,16] apply to a fixed RKHS (in 
particular, a fixed dimension d), while we study the case in which d is large and N, n, d are polynomially 
related.

Some of these distinctions are also relevant in comparing our work to other recent results on KRR. In 
particular points (i) and (ii) apply when comparing with [29,30].

2.4. Examples: The binary hypercube and the sphere

As examples we consider the case of covariates vectors xi that are uniformly distributed over the discrete 
hypercube Qd = {−1, +1}d or the sphere Sd−1(

√
d) = {x ∈ Rd : ‖x‖2 = d}. Namely, letting Ad to be 

either Qd or Sd−1(
√
d) and ρd = Unif(Ad), we set Xd = Ad and νd = ρd. We further choose the θi’s to be 

distributed as the covariates vectors, namely Vd = Ad and τd = ρd. Apart from simplifying our analysis, this 
is a sensible choice: since the covariates vectors do not align along any preferred direction, it is reasonable 
for the θi’s to be isotropic as well.

1 The results of [16,40] assume the weaker condition that infg∈H ‖f∗−g‖L2 is achieved in H: since H is dense in L2(Xd) (provided 
the kernel is strictly positive definite), this is equivalent to f∗ ∈ H.
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Given a function σ̄d : R → R (which we allow to depend on the dimension d), we define the activation 
function σd : Ad ×Ad → R by

σd(x;θ) = σ̄d(〈x,θ〉/
√
d). (25)

We denote by Ed,≤! the subspace of L2(Ad, ρd) spanned by polynomials of degree less or equal to ( and by 
P≤! the orthogonal projection on Ed,≤! in L2(Ad, ρd). The projectors P! and P>! are defined analogously 
(see Appendix E for more details). Let us emphasize that the projectors P≤! are related but distinct from 
the P≤m: while P≤! projects onto eigenspaces of polynomials of degree at most (, P≤m projects onto the top 
m-eigenfunctions.2

In order to apply Theorem 1, we make the following assumption about σ̄d.

Assumption 3 (Assumptions on Ad at level (s, S) ∈ N2). For {σ̄d}d≥1 a sequence of functions σ̄d : R → R, 
we assume the following conditions to hold.

(a) There exists an integer k and constants c1 < 1 and c0 > 0, δ0 > 1/k such that n ≤ N1−δ0 or N ≤ n1−δ0

and |σ̄d(x)| ≤ c0 exp(c1x2/(4k)).
(b) We have

min
k≤s

ds−k‖Pkσ̄d(〈e, · 〉)‖2
L2(Ad,ρd) =Ωd(1), (26)

min
k≤S

dS−k‖Pkσ̄d(〈e, · 〉)‖2
L2(Ad,ρd) =Ωd(1), (27)

‖P>2 max(s,S)+1σ̄d(〈e, · 〉)‖L2(Ad,ρd) =Ωd(1), (28)

where e ∈ Ad is a fixed vector (it is easy to see that these quantities do not depend on e).
(c) If Ad = Qd, we have, for all d large enough

max
k≤2 max(s,S)+2

d−k‖Pd−kσ̄d(〈e, · 〉)‖2
L2(Ad,ρd) ≤ d−2 max(s,S)−2 . (29)

Assumption (a) requires n, N to be well separated and a technical integrability condition. The latter is 
necessary for the hypercontractivity condition in Assumption 1.(c) to make sense.

Equations (26) and (27) (Assumption (b)) are a quantitative version of a universality condition: if 
Pkσ̄d(〈e, ·〉/

√
d) = 0 for some k, then linear combinations of σ̄d can only span a linear subspace of L2(Ad, ρd). 

Equation (28) (Assumption (b)) requires the high degree part of σ̄d to be non-vanishing (and therefore induce 
a non-zero regularization from the high degree non-linearity).

For Ad = Qd, we further require Assumption (c), namely that the last eigenvalues of σ̄d decrease suffi-
ciently fast. This is a necessary conditions to avoid pathological sequences {σ̄d}d≥1 which are very rapidly 
oscillating.

Remark 2.2. If σ̄d = σ̄ is independent of the dimension, then Assumptions (b), (c) are easy to check:

• The first two parts of Assumption (b) (Eqs. (26) and (27)) are satisfied if we require E{σ̄(G) p(G)} 7= 0
for all non-vanishing polynomials p of degree at most max(s, S) (expectation being taken with respect to 
G ∼ N(0, 1).) This is in turn equivalent to E{σ̄(G) Hek(G)} 7= 0 for all k ≤ max(s, S), where Hek is the 
k-th Hermite polynomial.

2 The two coincide if m = ∑
"′≤" B(Ad; !′), with B(Ad; !′) the dimension of the space of degree-!′ polynomials and the top m

eigenvalues verify λ2
d,j = Ωd(d−"), see Appendix D.
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• The third part of Assumption (b) (Eq. (28)) amounts to requiring σ̄ not to be a degree-(2 max(s, S) + 1)
polynomial.

• In Appendix D.2 we check that Assumption (c) holds if σ̄ is smooth and there exists c0 > 0 and c1 < 1
constants such that the (2 max(s, S) + 2)-th derivative verifies |σ̄(2 max(s,S)+2)(x)| ≤ c0 exp(c1x2/4).

As an example, the shifted ReLu σ̄d(x) = (x − c)+ with a generic c ∈ R \{0} verifies Assumption 3. (The 
case c = 0 violates Eq. (26), since E{σ̄(G)Hek(G)} = 0 for k ≥ 3 odd. This is not a limitation of our result: 
the unshifted ReLU is not universal in the present setting.)

Theorem 2 (Generalization error of RFRR on the sphere and hypercube). Let {f∗ ∈ L2(Ad, ρd)}d≥1 be 
a sequence of functions. Let Θ = (θi)i∈[N ] with (θi)i∈[N ] ∼ ρd independently and X = (xi)i∈[n] with 
(xi)i∈[n] ∼ ρd independently. Let yi = f∗(xi) + εi and εi ∼iid N(0, σ2

ε) for some σε > 0. Assume ds+δ0 ≤
n ≤ ds+1−δ0 and dS+δ0 ≤ N ≤ dS+1−δ0 for fixed integers s, S and for some δ0 > 0. Let {σ̄d}d≥1 satisfy 
Assumption 3 at level (s, S). Then the following hold for the test error of RFRR (see Eq. (17)):

(a) Assume N ≥ ndδ for some δ > 0. Then for any regularization parameter λ = Od(1) (including λ = 0
identically), any η > 0 and ε > 0, we have, with high probability,

|RRF(f∗,X,Θ,λ) − ‖P>sf∗‖2
L2 | ≤ ε · (‖f∗‖2

L2 + ‖P>sf∗‖2
L2+η + σ2

ε). (30)

(b) Assume n ≥ Ndδ for some δ > 0. Then, for any regularization parameter λ = Od(n/N) (including 
λ = 0 identically), η > 0 and ε > 0, we have, with high probability,

|RRF(f∗,X,Θ,λ) − ‖P>Sf∗‖2
L2 | ≤ ε · (‖f∗‖2

L2 + ‖P>Sf∗‖2
L2+η + σ2

ε). (31)

As mentioned in the introduction, [20] proves this theorem in the cases n = ∞ (RF approximation error) 
and N = ∞ (generalization error of KRR), for the uniform measure on the sphere. The general case follows 
here as a consequence of Theorem 1.

To see the connection between Theorem 1 and the results given here for the sphere and hypercube cases 
(see Appendix D for details), notice that the integral operator Td associated to the inner product activation 
function (25) is in this case symmetric, and commutes with rotations in SO(d) (for the sphere) or with the 
action of (Z2)d (for the hypercube3). Hence, the eigenvectors of Td (which is self-adjoint by construction) are 
given by the spherical harmonics of degree ( (for the sphere) or the homogeneous polynomials of degree ( (for 
the hypercube). The spaces spanned by the low degree spherical harmonics and homogeneous polynomials 
verify the hypercontractivity condition of Assumption 1.(a) (see Appendix E.3). The corresponding distinct 
eigenvalues are ξd,!, with degeneracy

B(Sd−1; () = d− 2 + 2(
d− 2

(
d− 3 + (

(

)
, B(Qd; () =

(
d

(

)
. (32)

Notice that in both cases B(Ad; () = (d!/(!)(1 + od(1)) and, hence ξd,! ! d−!/2 (by construction Tr(Hd) is 
bounded uniformly). Indeed, by Assumption 3.(a), we have ξd,! 2 d−!/2.

As a consequence, if we set m =
∑

!≤s B(Ad; (), M =
∑

!≤S B(Ad; (), we have 
∑∞

k=!+1 λ
2
k,d = Θ(1)

(indeed this sum is Od(1) because Tr(Hd) is bounded uniformly, and it is Ωd(1) by Assumption 3.(b)). 
Therefore, the conditions (7) and (8) (or, more formally, the conditions in Assumption 2) can be rewritten 
as

3 In the {+1, −1}d representation, z ∈ {+1, −1}d acts on Qd via x ,→ Dzx, where Dz is the diagonal matrix with diag(Dz) = z.
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Fig. 1. Learning a polynomial f∗ (cf. Eq. (35)) over the d-dimensional sphere, d = 50, using a random feature model and min-norm 
interpolation. We report the test error averaged over 10 realizations. Left: heatmap of the test error as a function of the number of 
neurons N (y-axis) and number of samples n (x-axis). The dashed lines correspond to min(n, N) = d (black) and min(n, N) = d2

(white). Notice the blow-up at the interpolation threshold N ≈ n, and the symmetry around this line. Right: decrease of the test 
error as a function of sample size for scalings of the network size N = nα. (For interpretation of the colors in the figure, the reader 
is referred to the web version of this article.)

dS 2 1
ξ2
S
/ N / 1

ξ2
S+1

2 dS+1 , (33)

ds 2 1
ξ2
s
/ n / 1

ξ2
s+1

2 ds+1 , (34)

which matches the assumptions in Theorem 2.
Fig. 1 provides an illustration of Theorem 2, for the case of the uniform distribution over the sphere 

Ad = Sd−1(
√
d). We fix d = 50, and generate data {(xi, yi)}i≤n with no noise σε = 0. We use the target 

function

f∗(x) = gd(〈v,x〉) , (35)

where v ∈ Sd−1(
√
d) and g is a fourth-order polynomial: g(z) = 2√

5Q̂1(z) + 2√
5Q̂2(z) + 1√

10 Q̂3(z) + 1√
10 Q̂4(z)

(here Q̂! is the (-th Gegenbauer polynomial, normalized so that ‖Q̂!(〈v, · 〉)‖L2(Sd−1(
√
d)) = 1). While the 

precise form of f∗ does not really matter here, we note that ‖P1f∗‖2
L2 = ‖P2f∗‖2

L2 = 0.4, ‖P3f∗‖2
L2 =

‖P4f∗‖2
L2 = 0.1 and ‖P>4f∗‖2

L2 = 0. We plot the test error of RFRR using σ(x) = max(x − 0.5, 0) (shifted 
ReLu), and λ = 0+ (min-norm interpolation). We repeat this calculation for a grid of values of n, N , and 
for each point in the grid report the average risk over 10 realizations.

We plot the observed average risk in the sample-size/number-of-parameters plane with axes logn/ log d
and logN/ log d (corresponding to the exponents in the polynomial relation between n and d, and between 
N and d). Several prominent features of this plot are worth of note:

• The risk has a large peak for N ≈ n. This phenomenon was characterized precisely in the proportional 
regime N 2 d, n 2 d in [23,31].

• The plot appears completely symmetric under exchange of N and n: the number of parameters and 
sample size plays the same role in limiting the generalization abilities, as anticipated by Theorem 1 and 
Theorem 2.

• The risk is bounded away from zero even for N, n 2 d3. Indeed, Theorem 2 implies that consistent 
estimation would require N, n 0 d4 in this case.
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• Finally, for a fixed n, near optimal test error is achieved when N 2 n1+δ∗ , for δ∗ a small positive constant.

2.5. Invariant function estimation

Many predictive tasks of practical interest present important symmetry properties. Namely, the ‘true’ 
label f∗(x) does not change when a certain group of transformations is applied to the covariates vector x. 
The goal is then to construct predictive models that exploit such invariances. As a further application of 
our general theory, we discuss here the case of invariant random feature and kernel methods. We refer to 
[32] for a more complete treatment.

We focus on the case of the cyclic group Cycd = {g0, . . . , gd−1}, where gi shifts the covariates vector by 
i coordinates. Namely, for any x = (x1, . . . , xd)T ∈ Rd, the action of the group element gi on x is defined 
by gi · x = (xi+1, xi+2, . . . xd, x1, x2, . . . , xi)T. We take again x uniformly distributed on Ad, the sphere or 
the discrete hypercube (in particular the action of Cycd preserves (Ad, ρd)). The goal is to fit data where 
the target function f( is invariant under the action of Cycd, i.e., f( belongs to the ‘cyclic functions’ class

L2(Ad,Cycd) :=
{
f ∈ L2(Ad, ρd) : f(g · x) = f(x),∀x ∈ Ad,∀g ∈ Cycd

}
.

For example, one can think about an image recognition task where f( ∈ L2(Ad, Cycd) is a label that is 
invariant by translation of the (one-dimensional) image x.

We define a cyclic activation function σd : Ad ×Ad → R as follows: given a function σ̄ : R → R (that we 
take here independent of d),

σd(x;θ) = 1
d

d−1∑

!=0
σ̄(〈g! · x,θ〉/

√
d) . (36)

Following the notations of Section 2.1, we have Dd = Vd = L2(Ad, Cycd) which is a closed linear subspace 
of L2(Ad, ρd). Notice that f̂ ∈ FRF,N (Θ) can be written as

f̂(x) = 1
d

N∑

i=1
ai

d∑

!=1
σ̄(〈g! · x,θi〉/

√
d) .

In neural networks jargon, this corresponds to fitting the second layer weights of a two-layer convolutional 
network with a nonlinear convolution of N filters θ1, . . . , θN ∈ Rd with the image x followed by global 
average pooling. In contrast, the inner-product activation (25) corresponds to fitting the last layer of a 
two-layer fully connected network.

The following result follows by verifying that the assumptions of Theorem 1 are verified by this invariant 
model, which is done in [32, Theorem 1].

Theorem 3 (Generalization error of RFRR with cyclic activation [32]). Let {f∗ ∈ L2(Ad, Cycd)}d≥1 be a 
sequence of cyclic functions. Assume ds−1+δ ≤ n ≤ ds−δ and dS−1+δ ≤ N ≤ dS−δ for fixed integers s, S and 
some δ > 0. Let σ̄ be a function that satisfies some smoothness condition at level (s, S) [32, Assumption 1]. 
Then the following hold for the test error of RFRR with cyclic activation (36):

(a) (Overparametrized regime) Assume N ≥ ndδ for some δ > 0. Then for any regularization parameter 
λ = Od(1) (including λ = 0) and η > 0, we have

RRF(f∗,X,W ,λ) = ‖P>sf∗‖2
L2 + od,P (1) · (‖f∗‖2

L2+η + σ2
ε). (37)
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(b) (Underparametrized regime) Assume n ≥ Ndδ for some δ > 0. Then for any regularization parameter 
λ = Od(n/N) (including λ = 0) and any η > 0, we have,

RRF(f∗,X,W ,λ) = ‖P>Sf∗‖2
L2 + od,P (1) · (‖f∗‖2

L2+η + σ2
ε). (38)

The smoothness assumption on σ is somewhat technical, and we consider it mainly a proof artifact. It is 
satisfied —for instance— by smooth versions of the ReLU activation, e.g. σ(x) = E{(x − b − εG)+}, where 
expectation is over G ∼ N(0, 1), b 7= 0 is a fixed shift and ε > 0 is a smoothing parameter that can be taken 
arbitrarily small.

Theorem 3 can be contrasted to Theorem 2: to achieve the same test error, RFRR with inner-product 
activation function needs ds+δ ≤ n ≤ ds+1−δ and dS+δ ≤ N ≤ dS+1−δ. Hence, we gain a factor d in 
sample and feature complexity by using a cyclic-invariant activation compared to an inner-product activation 
function. This gain can be understood using the following observation: the subspaces Vd,k of degree-k 
polynomials (which are eigenspaces of the inner-product activation with eigenvalues ξd,k and degeneracies 
B(Ad; k) = dim(Vd,k)) are preserved under the cyclic group Cycd. Hence the cyclic activation has eigenspaces 
Vd,k(Cycd) (the subspace of cyclic-invariant polynomials of degree-k) with same eigenvalues ξd,k and new 
degeneracies D(Ad; k) := dim(Vd,k(Cycd)) = Θd(d−1) · B(Ad; k). Setting m =

∑
!≤s D(Ad; () and M =∑

!≤S D(Ad; (), we have 
∑∞

k=r+1 λ
2
k,d = Θd(d−1) with r = m or M. Injecting these bounds in Assumption 2

yields a factor d improvement in n and N .
In fact, [32] considers more general invariance groups Gd called of ‘degeneracy α’, with α ≤ 1, and shows 

that RFRR with Gd-invariant activations gains a dα factor in sample size and number of features with 
respect to RFRR with inner-product activations. The cyclic group Cycd is an example of a degeneracy 1
group, and so is the group of shifts on 2-dimensional images.

3. Generalization error of kernel machines

Formally, kernel ridge regression (KRR) corresponds to the limit N → ∞ of random feature ridge 
regression. Despite this, we cannot apply directly Theorem 1 with N = ∞. We state therefore a separate 
theorem for kernel methods. As a side benefit, we establish somewhat stronger results in this case. In 
particular:

• We simplify the set of assumptions (in particular, the assumptions concern only Hd and not the activation 
function σd, as they should).

• We prove a risk lower bound, Theorem 4, that holds for general kernel methods, not only KRR.
• Crucially, we remove the spectral gap assumption. In this more general setting, the risk of KRR is not 

approximated by the square norm of the projection of f∗ orthogonal to the leading eigenfunctions of the 
kernel. We instead obtain an approximation in terms of a population-level ridge regression problem, with 
an effective value of the regularization parameter, which we determine.

Throughout this section, the setting is the same as in the previous one: we observe i.i.d. data (yi, xi)i∈[n], 
with feature vectors xi from the probability space (Xd, νd). Responses are given by yi = f∗(xi) +εi, f∗ ∈ Dd

and εi ∼ N(0, σ2
ε) independently of xi.

We introduce some general background in Section 3.1, then state our assumptions in Section 3.2, and 
formally state our results in Sections 3.3 and 3.4.
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3.1. Background on kernel methods

We consider a general RKHS defined on the probability space (Xd, νd), via Hd a compact self-adjoint 
positive definite operators: Hd : Dd → Dd with kernel representation

Hdg(x1) =
∫

Xd

Hd(x,x′)g(x′)νd(dx′) ,

where Hd : Xd × Xd → R is a square integrable function Hd ∈ L2(Xd × Xd), with the property that ∫
Xd

Hd(x, x′)g(x′)νd(dx′) = 0 for g ∈ D⊥
d .

Given a loss function ( : R ×R → R≥0 a general kernel method learns the function

f̂λ = arg min
f

{
n∑

i=1
((yi, f(xi)) + λ‖f‖2

H

}
, (39)

where ‖f‖H is the RKHS norm associated to Hd. Kernel ridge regression corresponds to the special case 
((y, ŷ) = (y− ŷ)2. As before, we will evaluate kernel methods via their test error, which we denote as follows 
in the case of KRR

RKR(f∗,X,λ) := Ex

[(
f∗(x) − f̂λ(x)

)2]
. (40)

As mentioned above, any kernel method can be seen as the N → ∞ limit of a RF model. To see this, 
note any positive semidefinite kernel can be written in the form Hd(x1, x2) = Eθ∼τd [σd(x1, θ)σd(x2, θ)], 
for some activation function σd, and some probability space (Ωd, τd). This is akin to taking the square root 
of a matrix and —as in the finite-dimensional case— the square root is not unique. For instance, we can let 
σd be the symmetric square root Hd(x1, x2) replacing λ2

d,j by λd,j in Eq. (15).
Given a choice of this square root, we can rewrite the estimator (39) as f̂λ(x) = f(x; ̂aλ), where âλ ∈

L2(Ωd; νd) and

âλ = arg min
a

{
n∑

i=1
((yi, f(xi; a)) + λ‖a‖2

L2

}
, (41)

f(x; a) :=
∫

σd(x;θ) a(θ) τd(dθ) . (42)

This can be informally seen as the N → ∞ limit of Eq. (16) if we choose the square loss function.

3.2. Assumptions on the kernel

As for the case of RFRR, we collect our assumptions in two groups. The first one is mainly concerned 
with the concentration properties of the kernel, which are quantified in terms of the sequences of integers 
n(d), m(d).

Assumption 4 ({n(d), m(d)}d≥1-Kernel Concentration Property). We say that the sequence of operators 
{Hd}d≥1 satisfies the Kernel Concentration Property (KCP) with respect to the sequence {(n(d), m(d))}d≥1
if there exists a sequence of integers {u(d)}d≥1 with u(d) ≥ m(d) such that the following conditions hold.

(a) (Hypercontractivity of finite eigenspaces.) For any fixed q ≥ 1, there exists a constant C such that, for 
any h ∈ Dd,≤u(d) = span(ψs, 1 ≤ s ≤ u(d)), we have
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‖h‖L2q ≤ C · ‖h‖L2 . (43)

(b) (Properly decaying eigenvalues.) There exists fixed δ0 > 0, such that, for all d large enough,

n(d)2+δ0 ≤

(∑∞
j=u(d)+1 λ

4
d,j

)2

∑∞
j=u(d)+1 λ

8
d,j

, (44)

n(d)2+δ0 ≤

(∑∞
j=u(d)+1 λ

2
d,j

)2

∑∞
j=u(d)+1 λ

4
d,j

. (45)

(c) (Concentration of diagonal elements of kernel) For (xi)i∈[n(d)] ∼iid νd, we have:

max
i∈[n(d)]

∣∣∣Ex∼νd

[
Hd,>m(d)(xi,x)2

]
− Ex,x′∼νd

[
Hd,>m(d)(x,x′)2

]∣∣∣ =od,P (1) · Ex,x′∼νd

[
Hd,>m(d)(x,x′)2

]
,

(46)

max
i∈[n(d)]

∣∣∣Hd,>m(d)(xi,xi) − Ex[Hd,>m(d)(x,x)]
∣∣∣ = od,P (1) · Ex[Hd,>m(d)(x,x)]. (47)

In the last definition, assumptions (a) and (c) have an interpretation that is similar to the one for RFRR. 
Namely, assumption (a) requires that the top eigenvectors of Hd are delocalized, and assumption (c) requires 
that ‘most points’ in the sample space Xd behave similarly, in the sense of having similar values of the kernel 
diagonal Hd(x, x). Condition (b) is very mild in high dimension, and concerns the tail of eigenvalues of Hd.

The next condition essentially connects the sample size n(d) to the eigenvalue index m(d), via the eigen-
value sequence.

Assumption 5 (Eigenvalue condition at level {(n(d), m(d))}d≥1). We say that the sequence of Kernel opera-
tors {Hd}d≥1 satisfies the Eigenvalue Condition at level {(n(d), m(d))}d≥1 if the following conditions hold 
for all d large enough.

(a) There exists fixed δ0 > 0, such that

n(d)1+δ0 ≤ 1
λ4
d,m(d)+1

∞∑

k=m(d)+1
λ4
d,k, (48)

n(d)1+δ0 ≤ 1
λ2
d,m(d)+1

∞∑

k=m(d)+1
λ2
d,k. (49)

(b) There exists fixed δ0 > 0, such that

m(d) ≤ n(d)1−δ0 .

Unlike in the case of RFRR, we do not require the existence of a spectral gap, but we assume two different 
upper bounds n(d) to hold simultaneously. In many cases of interest, the right hand sides of (48) and (49)
have roughly the same value, which is given by the number of eigenvalues between λd,m(d)+1 and c0λd,m(d)+1
for a small c0 (counting degeneracy). The technical requirement (b) is mild and we do not know of any 
interesting counterexample.
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3.3. Lower bound for general kernel methods

Consider any regression method of the form (39). By the representer theorem, there exist coefficients 
ζ̂1, . . . , ζ̂n such that

f̂λ(x) =
n∑

i=1
ζ̂i Hd(x,xi) . (50)

We are therefore led to define the following data-dependent prediction risk function for kernel methods

RH(f∗,X) := min
ζ

Ex

{(
f∗(x) −

n∑

i=1
ζiHd(xi,x)

)2}
. (51)

This is a lower bound on the prediction error of any kernel methods of the form (39).
The next theorem provides a lower bound on the generalization of kernel methods that is a consequence 

of the approximation bound in Theorem 6.(a) derived for the random feature model, in Appendix A.

Theorem 4. Let {f∗ ∈ Dd}d≥1 be a sequence of functions, (xi)i∈[n(d)] ∼ νd independently, {Hd}d≥1 be a 
sequence of kernel operators such that {(Hd, n(d), m(d))}d≥1 satisfies Eqs. (43), (44), (46), and (48). Then 
we have (cf. Eq. (51))

∣∣∣RH(f∗,X) −RH(P≤m(d)f∗,X) − ‖P>m(d)f∗‖2
L2

∣∣∣ ≤ od,P (1) · ‖f∗‖L2‖P>m(d)f∗‖L2 . (52)

Proof. This follows immediately from Theorem 6 (a) stated in Appendix A. Indeed, setting σd(x, x′) =
Hd(x, x′), we obtain RH(f∗, X) = RRF(f∗, X), whence the claim follows by applying Eq. (60). !

Notice that RH(P≤m(d)f∗, X) ≥ 0 by construction and therefore this theorem immediately implies a 
lower bound on the test error of kernel ridge regression (cf. Eq. (40))

RKR(f∗;X,λ) ≥ RH(f∗,X) ≥ ‖P>m(d)f∗‖2
L2 − od,P (1) · ‖f∗‖L2‖P>m(d)f∗‖L2 . (53)

In words, if we neglect the error term od,P (1) ·‖f∗‖L2‖P>m(d)f∗‖L2 , no kernel method can achieve non-trivial 
accuracy on the projection of f∗ onto eigenvectors beyond the first m(d).

3.4. The risk of kernel ridge regression

Kernel ridge regression is one specific way of selecting the coefficients ζ̂ in Eq. (50), namely by using 
((ŷ, y) = (ŷ − y)2 in Eq. (39). Solving for the coefficients yields

ζ̂ = (H + λIn)−1y,

where the kernel matrix H = (Hij)ij∈[n] is given by Hij = Hd(xi, xj), and y = (y1, . . . , yn)T.
It is convenient to state our main results in terms of an effective ridge regression estimator

f̂ eff
γ = arg min

f

{
‖f∗ − f‖2

L2 + γ

n
‖f‖2

H

}
. (54)

This amounts to replacing the empirical risk in Eq. (39) by its population counterpart ‖f∗ − f‖2
L2 =

E{(f∗(x) − f(x))2}. Also note that the regularization parameter does not coincide with λ: its precise value 
will be specified below.



S. Mei et al. / Appl. Comput. Harmon. Anal. 59 (2022) 3–84 25

The solution of the population ridge problem (54) can be explicitly written in terms of a shrinkage 
operator in the basis of eigenfunctions of Hd:

f(x) =
∞∑

!=1
c!ψd,!(x) %→ f̂ eff

γ (x) =
∞∑

!=1

λ2
d,!

λ2
d,! + γ

n

c!ψd,!(x) . (55)

Theorem 5. Let {f∗ ∈ Dd}d≥1 be a sequence of functions, (xi)i∈[n(d)] ∼ νd independently, {Hd}d≥1 be a se-
quence of kernel operators such that {(Hd, n(d), m(d))}d≥1 satisfies {n(d), m(d)}d≥1-KPCP (Assumption 4) 
and eigenvalue condition at level {n(d), m(d)}d≥1 (Assumption 5). Define the effective regularization

γeff := λ + Tr(Hd,>m(d)) . (56)

Then, for any regularization parameter λ ∈ [0, λ(] where λ( = Tr(Hd,>m(d)), any η > 0, we have (cf. 
Eq. (40))

∣∣∣RKR(f∗,X,λ) − ‖f∗ − f̂ eff
γeff‖L2

∣∣∣ = od,P (1) · (‖f∗‖2
L2 + ‖P>mf∗‖2

L2+η + σ2
ε). (57)

Further, the ridge regression estimator f̂λ is close to the effective estimator f̂ eff
γeff, namely

∥∥f̂λ − f̂ eff
γeff

∥∥2
L2 = od,P (1) · (‖f∗‖2

L2 + ‖P>mf∗‖2
L2+η + σ2

ε). (58)

The proof of Theorem 5 is deferred to Appendix C.
In words, KRR behaves as ridge regression with respect to the population risk, except that the regu-

larization parameter is increased by Tr(Hd,>m). The underlying mechanism is quite simple. The empirical 
kernel matrix is decomposed as H = H≤m + H>m, and the second component can be approximated by a 
multiple of the identity: H>m ≈ Tr(Hd,>m) · In. This term acts as an additional ridge regularizer.

As mentioned above, we do not assume here any eigenvalue gap condition. However, formulas simplify if 
we assume an eigenvalue gap, e.g.:

n(d) = ωd(1) · 1
λ2
d,m(d)+1

∞∑

k=m(d)+1
λ2
d,k .

Under this additional assumption, Theorem 5 implies the following simplified formula for the test error:
∣∣∣RKR(f∗,X,λ) − ‖P>m(d)f∗‖2

L2

∣∣∣ = od,P (1) · (‖f∗‖2
L2+η + σ2

ε).

As anticipated, this coincides with the risk of RFRR, if we heuristically set N = ∞ in Theorem 1.
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Appendix A. Approximation error of random feature model

In this section, we consider the approximation error of the random feature function class. Formally, the 
approximation error can be seen as the generalization error of random feature ridge regression for finite 
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number of neurons N < ∞ and infinite data n = ∞. However, we cannot apply directly Theorem 1 with 
n = ∞. We therefore state a separate theorem. This is also used to prove the lower bound of Theorem 4 on 
the generalization error of general kernel methods.

In Section A.1, we state our assumptions and theorem. Sections A.2 and A.3 provide a proof of the 
theorem, while Section A.4 gathers key technical concentration results that will also be used in the proofs 
of Theorem 1 and Theorem 5.

A.1. Assumptions and theorem

Recall the definition of the random feature function class (see Section 2.1): let Θ = (θi)i∈[N ] ∼iid τd,

FRF,N (Θ) =
{
f̂(x;a) =

N∑

i=1
aiσd(x;θi) : ai ∈ R, i ∈ [N ]

}
.

We define the approximation error of the random feature function class for a target function f∗ ∈ L2(Xd)
as

RApp(f∗,Θ) := inf
f̂∈FRF,N (Θ)

Ex∼τd [(f∗(x) − f̂(x))2]. (59)

Similarly to Sections 2.2 and 3.2, we will quantify our assumptions on the sequences of probability spaces 
(Xd, νd) and (Ωd, τd), and on the activation functions σd ∈ L2(Xd×Ωd), in terms of the sequences of integers 
N(d), M(d). We state the assumptions in two groups: Assumption 6 and Assumption 7 deal respectively 
with the concentration properties and the spectrum of the sequence of feature kernel operators {Ud}d≥1
defined as

Ud(θ1,θ2) = Ex∼νd [σd(x;θ1)σd(x;θ2)].

Assumption 6 (Feature kernel concentration at level {(N(d), M(d))}d≥1). The sequences of spaces {Vd}d≥1, 
operators {Ud}d≥1 and numbers of neurons {N(d)}d≥1 satisfy feature kernel concentration at level 
{M(d)}d≥1 if there exists a sequence {u(d)}d≥1 with u(d) ≥ M(d), such that the following hold.

(a) (Hypercontractivity of finite eigenspaces.) For any fixed q ≥ 1, there exists C such that, for any g ∈
Vd,≤u(d) = span(φs, 1 ≤ s ≤ u(d)), we have

‖g‖L2q(Ωd) ≤ C · ‖g‖L2(Ωd).

(b) (Properly decaying eigenvalues.) There exists a fixed δ0 > 0, such that

N(d)2+δ0 ≤

(∑∞
j=u(d)+1 λ

2
d,j

)2

∑∞
j=u(d)+1 λ

4
d,j

.

(c) (Upper bound on the diagonal elements of the kernel) For (θi)i∈[N(d)] ∼iid τd and any δ > 0, we have

max
i∈[N(d)]

Ud,>M(d)(θi,θi) = Od,P (N(d)δ) · Eθ[Ud,>M(d)(θ,θ)].

(d) (Lower bound on the diagonal elements of the kernel) For (θi)i∈[N(d)] ∼iid τd and any δ > 0, we have

min
i∈[N(d)]

Ud,>M(d)(θi,θi) = Ωd,P (N(d)−δ) · Eθ[Ud,>M(d)(θ,θ)].
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Assumption 7 (Spectral gap at level {(N(d), M(d))}d≥1). The sequence of operators {Ud}d≥1 has a spectral 
gap at level {(N(d), M(d))}d≥1 if the following hold.

(a) There exists a fixed δ0 > 0, such that

N(d)1+δ0 ≤ 1
λ2
d,M(d)+1

∞∑

j=M(d)+1
λ2
j,d .

(b) There exists a fixed δ0 > 0, such that M(d) ≤ N(d)1−δ0 and

N(d)1−δ0 ≥ 1
λ2
d,M(d)

∞∑

j=M(d)+1
λ2
j,d .

Remark A.1. In Assumption 6.(c), we can replace Ud,>M(d) by Ud,>u(d) (see Lemma 7).

We are now in position to state our theorem on the approximation error of the random feature function 
class. We state the lower and upper bounds and their assumptions separately.

Theorem 6 (Approximation error of the random feature function class). Let {f∗ ∈ Dd}d≥1 be a sequence of 
functions and Θ = (θi)i∈[N(d)] with (θi)i∈[N(d)] ∼ τd independently. Let {σd}d≥1 be a sequence of activa-
tion functions satisfying Assumptions 6.(a) and 6.(b) at level {M(d)}d≥1. Then the following hold for the 
approximation error of the random feature class (see Eq. (59)):

(a) (Lower bound) If {σd}d≥1 satisfies further Assumptions 6.(d) and 7.(a), then we have
∣∣∣RApp(f∗,Θ) −RApp(P≤M(d)f∗,Θ) − ‖P>M(d)f∗‖2

L2

∣∣∣ ≤ od,P (1) · ‖f∗‖L2‖P>M(d)f∗‖L2 . (60)

(b) (Upper bound) If {σd}d≥1 satisfies further Assumptions 6.(c) and 7, then we have
∣∣∣RApp(P≤M(d)f∗,Θ)

∣∣∣ ≤ od,P (1) · ‖f∗‖L2‖P≤M(d)f∗‖L2 . (61)

Point (a) is proved in Section A.2, while point (b) is proved in Section A.3.
The lower bound on general kernel methods in Theorem 4 is obtained as a direct consequence of The-

orem 6.(a), by taking σd(x, x′) = Hd(x, x′). Indeed, it is easy to check that Eqs. (43) and (45) imply 
Assumptions 6.(a) and 6.(b), Eq. (47) implies Assumptions 6.(c) and 6.(d), and Eq. (49) implies Assump-
tion 7.(a).

A.2. Proof of Theorem 6.(a): lower bound on the approximation error

Let Eθ denote the expectation operator with respect to θ ∼ τd, Ex to be the expectation operator with 
respect to x ∼ νd. We will denote M = M(d) and N = N(d).

Define the random vector V = (V1, . . . , VN )T and its low- and high- degree parts given respectively by 
V ≤M = (V1,≤M, . . . , VN,≤M)T and V >M = (V1,>M, . . . , VN,>M)T, with

Vi,≤M ≡ Ex∼νd [[P≤Mf∗](x)σd(x;θi)],
Vi,>M ≡ Ex∼νd [[P>Mf∗](x)σd(x;θi)],

Vi ≡ Ex∼νd [f∗(x)σd(x;θi)] = Vi,≤M + Vi,>M.
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Define the random matrix U = (Uij)i,j∈[N ], with

Uij = Ex∼νd [σd(x;θi)σd(x;θj)]. (62)

In what follows, we write RApp(f∗) = RApp(f∗, Θ) for the approximation error of the random feature model, 
omitting the dependence on the weights Θ. By definition and a simple calculation, we have

RApp(f∗) = min
a∈RN

{
Ex[f∗(x)2] − 2〈a,V 〉 + 〈a,Ua〉

}
= Ex[f∗(x)2] − V TU−1V ,

RApp(P≤Mf∗) = min
a∈RN

{
Ex[P≤Mf∗(x)2] − 2〈a,V ≤M〉 + 〈a,Ua〉

}
= Ex[P≤Mf∗(x)2] − V T

≤MU−1V ≤M.

By orthogonality, we have

Ex[f∗(x)2] = Ex[[P≤Mf∗](x)2] + Ex[[P>Mf∗](x)2],

which gives
∣∣∣RApp(f∗) −RApp(P≤Mf∗) − Ex[[P>Mf∗](x)2]

∣∣∣

=
∣∣∣V T

≤MU−1V ≤M − V TU−1V
∣∣∣ =

∣∣∣V T
≤MU−1V ≤M − (V ≤M + V >M)TU−1(V ≤M + V >M)

∣∣∣

=
∣∣∣2V TU−1V >M − V T

>MU−1V >M
∣∣∣ ≤ 2‖U−1/2V >M‖2‖U−1/2V ‖2 + ‖U−1‖op‖V >M‖2

2

≤2‖U−1/2‖op‖V >M‖2‖f∗‖L2 + ‖U−1‖op‖V >M‖2
2,

(63)

where the last inequality used the fact that

0 ≤ RApp(f∗) = ‖f∗‖2
L2 − V TU−1V ,

so that

‖U−1/2V ‖2
2 = V TU−1V ≤ ‖f∗‖2

L2 .

By Eq. (63), to prove Theorem 6.(a), we need to bound ‖U−1‖op‖V >M‖2
2. This is achieved in the two 

following propositions.

Proposition 1 (Expected norm of V ). Let {f∗ ∈ Dd} be a sequence of target functions. Define E>M by

E>M ≡ Eθ

[(
Ex[P>Mf∗(x)σd(x;θ)]

)2]
.

Then we have

E>M ≤ ‖Ud,>M‖op · ‖P>Mf∗‖2
L2 .

Proof of Proposition 1. We have

E>M ≡ Eθ∼τd [〈P>Mf∗,σd( · ,θ)〉2L2(Xd)]
= Eθ∼τdEx1,x2∼νd [P>Mf∗(x1)σd(x1,θ)σd(x2,θ)P>Mf∗(x2)]
= Ex1,x2∼νd [P>Mf∗(x1)Eθ∼τd [σd(x1,θ)σd(x2,θ)]P>Mf∗(x2)]
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= 〈P>Mf∗,Hd P>Mf∗〉L2 = 〈P>Mf∗,Hd,>MP>Mf∗〉L2

≤ ‖Hd,>M‖op‖P>Mf∗‖2
L2 = ‖Ud,>M‖op‖P>Mf∗‖2

L2 .

This proves the proposition. !

Proposition 2 (Lower bound on the kernel matrix). Let {σd}d≥1 be a sequence of activation functions satis-
fying Assumptions 6.(a), 6.(b) and 7.(a) at level {(N(d), M(d))}d≥1. Let (θi)i∈[N ] ∼ τd independently and 
let U ∈ RN×N be the kernel matrix defined by Eq. (62). Then, we have

U 8 κ>M(Λ + ∆), (64)

with Λ = diag((Ud,>M(θi, θi)/κ>M)i∈[N ]), κ>M = Tr(Ud,>M), and ∆ is such that there exists some δ′ > 0, 
such that

E[‖∆‖op] = Od(N−δ′).

Proof of Proposition 2. This is a direct consequence of Theorem 7.(a). !

By Proposition 1, we have

E[‖V >M‖2
2] = NE>M ≤ N · ‖Ud,>M‖op · ‖P>Mf∗‖2

L2 . (65)

Next, it follows by Proposition 2 and Assumption 6.(d), that for any fixed δ > 0 with δ < δ′,

‖U−1‖op · Tr(Ud,>M) ≤
[

min
i∈[N ]

Ud,>M(θi,θi)/Tr(Ud,>M) −Od,P (N−δ′)
]−1

≤ Od,P (N δ),

and hence by Markov’s inequality, we obtain

‖U−1‖op‖V >M‖2
2

‖P>Mf∗‖2
L2

≤ Od,P (N δ) ·N · ‖Ud,>M‖op
Tr(Ud,>M) . (66)

By Assumption 7.(a), we have N · ‖Ud,>M‖op/Tr(Ud,>M) = Od(N−δ0) for some δ0 > 0. Plugging this 
equation into Eq. (66) and choosing δ < δ0 yield

‖U−1‖op‖V >M‖2
2 =od,P (1) · ‖P>Mf∗‖2

L2 . (67)

Combining Eq. (67) with Eq. (63) proves Theorem 6.(a).

A.3. Proof of Theorem 6.(b): upper bound on the approximation error

In the following, we would like to calculate the quantity RApp(P≤Mf∗, Θ). We have

RApp(P≤Mf∗,Θ) = ‖P≤Mf∗‖2
L2 − V T

≤MU−1V ≤M,

where V ≤M = (V≤M,1, . . . , V≤M,N )T and U = (Uij)ij∈[N ] with

V≤M,i =Ex∼νd [P≤Mf∗(x)σd(x;θi)],
Uij =Ex∼νd [σd(x;θi)σd(x;θj)].
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Recall that (ψk)k≥1 is the orthonormal eigenbasis of Hd. We denote the decomposition of P≤Mf∗ in this 
basis by

P≤Mf∗(x) =
M∑

k=1
〈f∗,ψk〉L2ψk(x) ≡

M∑

k=1
f̂kψk(x) .

Recall the decomposition of σd

σd(x,θ) =
∞∑

k=1
λd,kψk(x)φk(θ).

By orthonormality of the (ψk)k≥1, we have

V≤M,i =
M∑

k=1
f̂kλd,kφk(θi).

Define

f̂ = (f̂1, . . . , f̂M)T ∈ RM,

D = diag(λd,1, . . . ,λd,M) ∈ RM×M,

Φ = (φk(θi))i∈[N ],k∈[M] ∈ RN×M,

L = ΦD ∈ RN×M.

Then we have

V ≤M =
( M∑

k=1
f̂kλd,kφk(θi)

)

i∈[N ]
= ΦDf̂ = Lf̂ .

By Eq. (70) in Theorem 7, there exists ∆ ∈ RN×N such that

U = ΦD2ΦT + κ>M(Λ + ∆) = LLT + κ>M(Λ + ∆),

where κ>M = Tr(Ud,>M), Λ = diag((Ud,>M(θi, θi)/κ>M)i∈[N ]). By simple algebra,

V T
≤MU−1V ≤M = f̂

T
Sf̂ ,

where

S = LT(LLT + κ>M(Λ + ∆))−1L.

Therefore, we obtain

RApp(P≤Mf∗,W ) =‖P≤Mf∗‖2
L2 − V T

≤MU−1V ≤M = ‖f̂‖2
2 − 〈f̂ ,Sf̂〉

≤‖IM − S‖op‖f̂‖2
2 = od,P (1) · ‖P≤Mf∗‖2

L2 .

The last equation follows from Lemma 1 which is stated and proved below. This proves the theorem.



S. Mei et al. / Appl. Comput. Harmon. Anal. 59 (2022) 3–84 31

Lemma 1 (Concentration of S). Let Assumptions 6.(a), 6.(b), 6.(c) and 7 hold. Then we have

‖IM − S‖op = od,P (1).

Proof of Lemma 1. Applying the Sherman-Morrison-Woodbury formula produces the identity

IM − S = IM −LT(LLT + κ>M(Λ + ∆))−1L = (IM + LT(Λ + ∆)−1L/κ>M)−1,

so that

‖IM − S‖op ≤ 1/λmin(LT(Λ + ∆)−1L/κ>M). (68)

Note that we have

λmin(LT(Λ + ∆)−1L)/κ>M = λmin(DΦT(Λ + ∆)−1ΦD)/κ>M

≥ λmin(ΦTΦ/N) · [N · λmin(D2)/κ>M]/‖Λ + ∆‖op

= λmin(ΦTΦ/N) · [N · λmin(Ud,≤M)/κ>M]/‖Λ + ∆‖op.

(69)

By Theorem 7.(b), we know that

λmin(ΦTΦ/N) = Θd,P (1).

By Assumption 6.(c), we have ‖Λ‖op = Od,P (N δ) for any δ > 0. Therefore, by Theorem 7.(a), for any δ > 0, 
we obtain

‖Λ + ∆‖op ≤ ‖Λ‖op + ‖∆‖op = Od(N δ).

By Assumption 7.(b), there exists δ0 > 0, such that

[N · λmin(Ud,≤M)/κ>M] = Ωd(N δ0).

Combining the above equalities with Eq. (69) and choosing δ such that 0 < δ < δ0, lead to

λmin(LT(Λ + ∆)−1L/κ>M) = ωd,P (1).

Combining with Eq. (68) proves the lemma. !

A.4. Structure of the empirical kernel matrix

In this section, we present a key theorem describing the structure of the empirical kernel matrix U =
(U(θi, θj))i,j∈[N ] ∈ RN×N . The proof of this theorem relies on two propositions: Proposition 3 shows that 
the matrix of the top eigenvectors evaluated on the random weights (θi)i∈[N ] is nearly orthogonal and 
is presented in Section A.4.1; Proposition 4 shows the concentration to zero in operator norm of the off-
diagonal part of the matrix U>M and is presented in Section A.4.2. The proof of Proposition 4 is deferred 
to Section A.5.

Theorem 7 (Structure of the empirical kernel matrix). Let Assumptions 6.(a), 6.(b) and 7.(a) hold. Let 
(θi)i∈[N ] ∼ τd independently, and define U = (Uij)ij∈[N ] with

Uij := Ud(θi,θj) .
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(Recall that Ud(θi, θj) ≡ Ex∼νd [σd(x, θi)σd(x, θj)].) Then, we can rewrite U (by choosing ∆ ∈ RN×N )

U = ΦD2ΦT + κ>M(Λ + ∆), (70)

with κ>M = Tr(Ud,>M) and

Φ = (φk(θi))i∈[N ],k∈[M], D = diag(λd,1, . . . ,λd,M), Λ = diag((Ud,>M(θi,θi)/κ>M)i∈[N ]).

The following hold:

(a) There exists a fixed δ′ > 0, such that

E[‖∆‖op] = Od(N−δ′).

(b) If further we assume M(d) ≤ N(d)1−δ0 for a fixed δ0 > 0, then we have
∥∥∥ΦTΦ/N − IM

∥∥∥
op

= od,P (1).

Proof of Theorem 7. For S ⊆ {1, 2, 3, . . . }, recall that

Ud,S ≡
∑

s∈S

λ2
d,sφsφ

∗
s ,

and let Ud,S denote the kernel associated to Ud,S . Define QS = (QS,ij)i,j∈[N(d)] by

QS,ij = Ud,S(θi,θj)1i0=j .

By decomposing the entries of U in the orthonormal basis {φj}j≥1, we can write U = U≤M + U>M where

U≤M = ΦD2ΦT ,

U>M = (Ud,>M(θi,θj))i,j∈[N ] .

We begin by part (b). By Assumption 6.(a) and M(d) ≤ N(d)1−δ0 , the assumptions of Proposition 3 are 
satisfied with D = M and (φ1, . . . , φM) the top M eigenvectors of U . Hence, there exists C = C(q) > 0, a 
constant that depends only on q such that

E
[∥∥∥ΦTΦ/N − IM

∥∥∥
op

]
≤ C

M log(N)
N1−1/q .

Taking q > 1/δ0, the right hand side becomes od(1) and Theorem 7.(b) follows by Markov’s inequality.
Next, we prove part (a), namely that U>M = κ>M · (Λ + ∆) with ‖∆‖op = Od,P (N−δ′) for some δ′ > 0.
Letting Q ∈ RN×N be the matrix with entries Qij = (U>M)ij1i0=j . Then we have U>M = κ>MΛ + Q. 

We next apply Proposition 4 to the operator Ûd = Ud,>M and subspace V̂d = Vd,>M. Notice that the 
assumptions of Proposition 4 are satisfied by Assumptions 6.(a), 6.(b) and 7.(a). We therefore conclude 
that E[‖Q‖op] = Od(N−δ′) · Tr(Ud,>M) = Od(N−δ′) · κ>M for some δ′ > 0. This concludes the proof of 
Theorem 7.(a). !

This theorem implies a particularly simple structure of the empirical kernel matrix U . Under the ad-
ditional Assumptions 6.(c), 6.(d) and 7.(b), U can be written as a sum of a ‘spike’ U≤M (of rank M and 
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eigenvalues 0 Tr(Ud,>M)) and a full rank matrix U>M with eigenvalues of order Tr(Ud,>M). The ‘spike’ 
matrix U≤M has the following approximate diagonalization:

U≤M = Φ̃D̃
2Φ̃T,

where Φ̃ = Φ/
√
N ∈ RN×M is approximately an orthogonal matrix ‖Φ̃TΦ̃ − IM‖op = od,P (1) and the 

diagonal matrix D̃
2 = diag(Nλ2

d,1, . . . , Nλ2
d,M) verifies D̃2 8 N(d)δ0Tr(Ud,>M) · IN (by Assumption 7.(b)). 

Furthermore, by Assumptions 6.(c), and 6.(d), and Theorem 7.(a), we have for any δ > 0,

Ωd,P (N−δ) · Tr(Ud,>M) · IN 9 U>M 9 Od,P (N δ) · Tr(Ud,>M) · IN .

A.4.1. Concentration of the top eigenvectors
Here we state and prove a general matrix concentration result. For each d ≥ 1, let (Ωd, τd) be a (Polish) 

probability space, and (φk)k≥1 an orthonormal basis of L2(Ωd, τd). Define φ(θ) ≡ (φ1(θ), . . . , φD(θ))T ∈ RD, 
and let (θi)i≤N ∼iid τd. The law of large numbers and orthonormality imply that, for any fixed D,

lim
N→∞

1
N

N∑

i=1
φ(θi)φ(θi)T =

∫

Ωd

φ(θ)φ(θ)T τd(dθ) = ID . (71)

The next proposition establishes a generalization of this fact for the case in which both D and N diverge.

Proposition 3. Let {φk ∈ L2(Ω, τ)}Dk=1 be orthonormal functions. Let {θi}i∈[N ] ∼ τ independently. Define 
φi = φ(θi) = (φ1(θi), . . . , φD(θi))T ∈ RD for i ∈ [N ]. We assume that, for any integer q ≥ 2, there exists 
C = C(q) such that we have

sup
k∈[D]

‖φk‖L2q ≤ C(q). (72)

Then for any q ≥ 2, there exists K = K(q) that only depends on C(q), such that denoting δ ≡ K(q)D log(D∨
N)/N1−1/q, we have

E
∥∥∥

1
N

N∑

i=1
φiφ

T
i − ID

∥∥∥
op

≤ (δ ∨
√
δ).

Proof of Proposition 3. By the hypercontractivity assumption, cf. Eq. (72), we have

Γ := E
[

max
i∈[N ]

‖φi‖2
2

]
≤ E

[
max
i∈[N ]

‖φi‖
2q
2

]1/q
≤ N1/q · E[‖φi‖

2q
2 ]1/q

= N1/q ·
∥∥∥

D∑

k=1
φ2
k

∥∥∥
Lq

≤ N1/qD · max
k∈[D]

‖φk‖2
L2q ≤ C(q)2 ·N1/qD.

Applying Lemma 2 below proves the proposition. !

Lemma 2 ([42] Theorem 5.45). Let {ai ∈ RD}i∈[N ] be independent random vectors with E[aiaT
i ] = ID. 

Denote Γ ≡ E[maxi∈[N ] ‖ai‖2
2]. Then there exists a universal constant C, such that denoting δ ≡ C · Γ ·

log(N ∧D)/N , we have

E
[∥∥∥

1
N

N∑

i=1
aia

T
i − ID

∥∥∥
op

]
≤ δ ∨

√
δ.
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A.4.2. Bounding the off-diagonal part of the matrix U>M
We state a key proposition) whose proof will be presented in Section A.5. The statement and the as-

sumptions are self-contained.

Proposition 4 (Bound on the off-diagonal part of the matrix U>M). Let (θi)i∈[N(d)] ∼iid τd. Let Ûd be a 
self-adjoint positive definite operator Ûd : V̂d → V̂d, V̂d ⊆ L2(Ωd) with kernel Ûd ∈ L2(Ωd × Ωd) (see 
Eq. (11)) satisfying 

∫
Ωd

Ûd(θ, θ′)f(θ′) τd(dθ′) = 0 for any f ∈ V⊥
d . Let (φ̂j)j≥1 be an orthonormal basis 

of eigenfunctions with span(φ̂j , j ≥ 1) = V̂d ⊆ L2(Ωd), and eigenvalues (λ̂d,j)j≥1 ⊆ R with nonincreasing 
absolute values |λ̂d,1| ≥ |λ̂d,2| ≥ · · · and 

∑
j≥1 λ̂

2
d,j < ∞, such that

Ûd =
∞∑

j=1
λ̂2
d,j φ̂j φ̂

∗
j , Ûd(θ,θ′) =

∞∑

j=1
λ̂2
d,j φ̂j(θ)φ̂j(θ′).

When S ⊆ {1, 2, 3, . . .}, we denote

Ûd,S =
∑

j∈S

λ̂2
d,j φ̂j φ̂

∗
j , Ûd,S(θ,θ′) =

∑

j∈S

λ̂2
d,j φ̂j(θ)φ̂j(θ′).

We make the following assumptions:

(A1) There exists a sequence {v(d)}d≥1, such that for any fixed q ≥ 1, there exists C = C(q, {v(d)}d≥1)
such that, for any f∗ ∈ V̂d,≤v(d) ≡ span(φ̂s, 1 ≤ s ≤ v(d)), we have

‖f∗‖L2q ≤ C · ‖f∗‖L2 .

(A2) For the same sequence {v(d)}d≥1 as in (A1), there exists fixed δ0 > 0, such that

Tr(Û2
d,>v(d)) ·N(d)2+δ0 = Od(1) · Tr(Ûd,>v(d))2.

(A3) There exists δ0 > 0, such that

N(d)1+δ0 · ‖Ûd‖op = Od(1) · Tr(Ûd). (73)

Consider the random matrix Q = (Qij)i,j∈[N(d)] ∈ RN×N , with

Qij = Ûd(θi,θj)1i0=j .

Then there exists δ′ > 0, such that

E[‖Q‖op] = Od(N−δ′) · Tr(Ûd).

A.5. Proof of Proposition 4

We begin by stating two key estimates which are used in the proof of Proposition 4. The notations 
of Lemma 3 follow the notations of Proposition 4. The notations and assumptions of Proposition 5 are 
self-contained. We collect a number of technical lemmas in Section A.5.1.

Lemma 3. Consider the same setup as Proposition 4. Let {N(d)}d≥1 and {v(d)}d≥1 be two sequences, and 
assume that there exists δ0 > 0 such that (this is Assumption (A2) in Proposition 4)
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N(d)2 · Tr(Û2
d,>v(d)) = Od(N−δ0) · Tr(Ûd,>v(d))2. (74)

Consider the random matrix Q>v(d) = (Q>v(d),ij)i,j∈[N(d)] ∈ RN×N , with

Q>v(d),ij = Ûd,>v(d)(θi,θj)1i0=j .

Then we have

E[‖Q>v(d)‖2
op]1/2 = Od(N−δ0) · Tr(Ûd,>v(d)).

Proposition 5 (Vanishing off-diagonal). Let U be a compact self-adjoint positive definite operator on a 
closed subspace V ⊆ L2(Ω, τ), U : V → V, with corresponding kernel U ∈ L2(Ω × Ω), satisfying ∫
Ω U(θ, θ′) f(θ′) τ(dθ′) = 0 for all f ∈ V⊥. For any q ≥ 1, we assume that there exists C(q) such that

Eθ1,θ2∼τ [|U(θ1,θ2)|2q]1/(2q) ≤ C(q) · Eθ1,θ2∼τ [U(θ1,θ2)2]1/2,
Eθ∼τ [|U(θ,θ)|q]1/q ≤ C(q) · Eθ∼τ [U(θ,θ)].

(75)

Moreover, let {θi}i∈[N ] ∼iid τ independently, and consider ∆ = (∆ij)i,j∈[N ] ∈ RN×N , with

∆ij = U(θi,θj)1i0=j .

Then for any integer p > 0, there exists a constant K(p) which only depends on the constant C(p), such 
that

E[‖∆‖op] ≤ K(p) ·
{
N‖U‖op + [‖U‖opTr(U)N1+2/p logN ]1/2

}
. (76)

We are now in position to prove Proposition 4.

Proof of Proposition 4. We decompose the operator Ûd = Ûd,≤v(d) + Ûd,>v(d), and the kernel Ûd =
Ûd,≤v(d) + Ûd,>v(d). Define QS = (QS,ij)i,j∈[N(d)] with

QS,ij = Ud,S(θi,θj)1i0=j .

By Assumption (A2) and by Lemma 3, we have

E[‖Q>v(d)‖2
op]1/2 = Od(N−δ0) · Tr(Ûd,>v(d)).

By Assumption (A1) and Lemma 6 which is stated in Section A.5.1 below, the assumptions of Proposition 5
are satisfied, in which we take ∆ = Q≤v(d), U = Ûd,≤v(d), U = Ûd,≤v(d), and V ≡ span(φs : 1 ≤ s ≤ v(d)). 
Further by Assumption (A3) as in Eq. (73), we fix some p > 4/δ0 in Proposition 5, then for δ′ = δ0/4 > 0, 
we obtain

E[‖Q≤v(d)‖op] = Od(N−δ′) · Tr(Ûd,≤v(d)).

Combining the equations in the last two displays proves the proposition. !

We next prove Lemma 3 and Proposition 5.
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Proof of Lemma 3. We have

E[‖Q>v(d)‖2
op] ≤ E[‖Q>v(d)‖2

F ] = N(N − 1) · E[Q2
>v(d),ij ]

= N(N − 1) · Tr(Û2
d,>v(d)) = Od(N−δ0) · Tr(Ûd,>v(d))2,

where the last equation is by Eq. (74). This proves the lemma. !

Proof of Proposition 5. With a little abuse of notation, we define U = (U(θi, θj))i,j∈[N ] ∈ RN×N .

Step 1. Bound E[‖∆‖op] using matrix decoupling. For T1, T2 ⊆ [N ], we denote AT1,T2 = (Aij)i∈T1,j∈T2 . By 
Lemma 4, which is stated in Section A.5.1 below, we have

E[‖∆‖op] ≤ 4 sup
T⊆[N ]

E[‖∆TT c‖op]. (77)

For any S ⊆ [N ], we denote ES to be the expectation with respect to {θi}i∈S and conditional on {θj}j∈Sc . 
Fix T ⊆ [N ]. Using Lemma 5 (which is stated in Section A.5.1 below) conditioning on {θj}j∈T c , we get

ET [‖∆TT c‖op] ≤ [Σ(T ) ·N ]1/2 + C · (Γ(T ) · logN)1/2,

where Σ(T ) ≡ ‖Eθu [∆T cu∆uT c ]‖op (for some u ∈ T ) and Γ(T ) ≡ ET [maxi∈T ‖∆iT c‖2
2]. Therefore, by 

Holder’s inequality:

E[‖∆‖op] ≤ 4 sup
T⊆[N ]

E[‖∆TT c‖op] = 4 sup
T⊆[N ]

ET cET [‖∆TT c‖op]

≤ 4 sup
T⊆[N ]

{
[ET c [Σ(T )] ·N ]1/2 + C · (ET c [Γ(T )] · logN)1/2

}
.

(78)

Step 3. Bound ET c [Σ(T )]. By the compactness of operator U |V , there exists orthogonal basis {φk}k≥1 and 
real numbers {λk}k≥1, such that U(θi, θj) =

∑
k λ

2
kφk(θi)φk(θj). Therefore, we have

Σ(T ) = ‖Eθu [∆T cu∆uT c ]‖op = sup
‖z‖2=1

∑

i,j∈T c

∑

k

λ4
kφk(θi)φk(θj)zizj

≤ ‖U‖op · sup
‖z‖2=1

∑

i,j∈T c

∑

k

λ2
kφk(θi)φk(θj)zizj

= ‖U‖op · ‖(U ij)i,j∈T c‖op ≤ ‖U‖op · [‖ddiag(U)‖op + ‖∆‖op] ,

where we denoted ddiag(U) the diagonal matrix obtained by zeroing the non-diagonal elements of U . Note 
by the hypercontractivity assumption as in Eq. (75), we have

E[‖ddiag(U)‖op] ≤ E
[ N∑

i=1
U

p
ii

]1/p
≤ N1/p · E[Up

ii]1/p ≤ C(p)N1/p · E[U ii] ≤ C(p)N1/p · Tr(U).

This gives

ET c [Σ(T )] ≤ C(p)N1/p · ‖U‖opTr(U) + ‖U‖opE[‖∆‖op]. (79)

Step 4. Bound ET c [Γ(T )]. By the hypercontractivity assumption as in Eq. (75), we obtain
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ET c [Γ(T )] ≡ E
[
max
i∈T

‖∆iT c‖2
2

]
≤ N · E

[
max
i∈T

max
j∈T c

∆2
ij

]

≤ N · E
[

max
i∈T,j∈T c

∆2p
ij

]1/p
≤ N1+2/p · E[∆2p

ij ]1/p

= C(p)2N1+2/p · E[∆2
ij ] ≤ C(p)2N1+2/p · ‖U‖opTr(U).

(80)

The last inequality holds since E[∆2
ij ] = E{[

∑
k λkφk(θi)φk(θj)]2} =

∑
k λ

4
k ≤ ‖U‖opTr(U).

Step 5. Combining the equations. Combining Eq. (78), (79), and (80):

E[‖∆‖op] ≤ 4 sup
T⊆[N ]

{
[ET c [Σ(T )] ·N ]1/2 + C · (ET c [Γ(T )] · logN)1/2

}

≤ K(p)
{
{‖U‖opTr(U)N1+2/p logN}1/2 + {N‖U‖opE[‖∆‖op]}1/2

}
.

Denote ε1 = K(p)(N‖U‖op)1/2 ≥ 0 and ε2 = K(p){‖U‖opTr(U)N1+2/p logN}1/2 ≥ 0, x = E[‖∆‖op]1/2. 
The above inequality implies x2 − ε1x − ε2 ≤ 0, which gives x ≤ [ε1 + (ε2

1 + 4ε2)1/2]/2 ≤ (ε2
1 + 4ε2)1/2. This 

concludes the proof. !

A.5.1. Auxiliary lemmas
The following standard decoupling trick follows, for instance, from [42] in Lemma 5.60.

Lemma 4 (Matrix decoupling). Let A ∈ RN×N be a real symmetric random matrix. For T1, T2 ⊆
{1, 2, . . . , N}, we denote AT1,T2 = (Aij)i∈T2,j∈T2 . Then we have

E[‖A− ddiag(A)‖op] ≤ 4 max
T⊆[N ]

E[‖AT,T c‖op].

Proof of Lemma 4. Let T be a random subset of {1, 2, . . . , N}, with each element selected with probability 
1/2 independently. For any x ∈ SN−1, we have

〈x, [A− ddiag(A)]x〉 = 4ET

[ ∑

i∈T,j∈T c

Aijxixj

]
.

By Jensen’s inequality we get

E[‖A− ddiag(A)‖op] = EA

[
sup

x∈SN−1
〈x, [A− ddiag(A)]x〉

]
≤ 4ETEA

[
sup

x∈SN−1

∑

i∈T,j∈T c

Aijxixj

]

≤ 4 sup
T⊆[N ]

E[‖ATT c‖op].

This completes the proof. !

Lemma 5 ([42] Theorem 5.48). Let A ∈ RN×n with AT = [a1, . . . , aN ] where ai are independent random 
vectors in Rn with the common second moment matrix Σ = E[aiaT

i ]. Let Γ ≡ E[maxi∈[N ] ‖ai‖2
2]. Then 

there exists a universal constant C, such that

E[‖A‖2
op]1/2 ≤ (‖Σ‖op ·N)1/2 + C · (Γ · log(N ∧ n))1/2.

Lemma 6. Let {φk}1≤k≤Z ⊆ L2(Ω, τ) be a set of orthonormal functions. We assume that, for any fixed 
q ≥ 1, there exists C = C(q), such that for any f ∈ span{φk : 1 ≤ k ≤ Z}, we have
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‖f‖L2q ≤ C(q) · ‖f‖L2 .

For θ, θ′ ∈ Ω, we denote U(θ, θ′) =
∑Z

k=1 λ
2
kφk(θ)φk(θ′) where {λk}1≤k≤Z are fixed real numbers. Then 

for any q ≥ 1, we have

Eθ1,θ2∼τ [U(θ1,θ2)2q]1/(2q) ≤ C(q)2 · Eθ1,θ2∼τ [U(θ1,θ2)2]1/2, (81)
Eθ∼τ [U(θ,θ)q]1/q ≤ C(q)2 · Eθ∼τ [U(θ,θ)]. (82)

Proof of Lemma 6. For any q ≥ 1, we have

Eθ1,θ2∼τ [U(θ1,θ2)2q] = Eθ1∼τ

{
Eθ2∼τ

{[ Z∑

k=1
λ2
kφk(θ1)φk(θ2)

]2q∣∣∣θ1
}}

(a)
≤ C(q)2q · Eθ1∼τ

{
Eθ2∼τ

{[ Z∑

k=1
λ2
kφk(θ1)φk(θ2)

]2∣∣∣θ1
}q

}
(b)= C(q)2q · Eθ1∼τ

{[ Z∑

k=1
λ4
kφk(θ1)2

]q
}

(c)
≤ C(q)2q ·

{
Z∑

k=1
λ4
k · Eθ1∼τ [φk(θ1)2q]1/q

}q
(d)
≤ C(q)2q ·

{
C(q)2

Z∑

k=1
λ4
k · Eθ1∼τ [φk(θ1)2]

}q

(e)= C(q)4q
[ Z∑

k=1
λ4
k

]q (f)= C(q)4q ·
{
Eθ1,θ2∼τ [U(θ1,θ2)2]

}q
.

Here, inequality (a) follows by applying the hypercontractivity inequality with respect to the function 
f(θ2) =

∑Z
k=1 λ

2
kφk(θ1)φk(θ2) (and conditional on θ1). Equality (b) by the fact that (φk)1≤k≤Z are or-

thonormal functions. Inequality (c) is by the Minkowski inequality. Inequality (d) follows by applying the 
hypercontractivity inequality with respect to f(θ1) = φk(θ1). Equality (e) holds because (φk)1≤k≤Z are 
orthonormal functions. Finally, equality (f) follows by simple calculation. This proves Eq. (81).

For any q ≥ 1, we have

Eθ∼τ [U(θ,θ)q] = Eθ∼τ

[( Z∑

k=1
λ2
kφk(θ)2

)q] (a)
≤

[ Z∑

k=1
λ2
k · Eθ∼τ [φk(θ)2q]1/q

]q

(b)
≤ C(q)2q

[ Z∑

k=1
λ2
k · Eθ∼τ [φk(θ)2]

]q (c)= C(q)2q
[ Z∑

k=1
λ2
k

]q (d)= C(q)2q
{
Eθ∼τ [U(θ,θ)]

}q
.

Here, inequality (a) holds by Minkowski inequality. Inequality (b) follows by applying the hypercontractivity 
inequality with respect to f(θ) = φk(θ). Equality (c) holds because (φk)1≤k≤Z are orthonormal functions, 
and equality (d) by a simple calculation. This proves Eq. (82). !

Lemma 7 (Bound on the maximum of diagonal). Consider a sequence of probability spaces (Ωd, τd) with 
{φd,k}k≥1 an orthonormal basis of functions for Dd ⊆ L2(Ωd, τd). Assume that there exists a sequence of 
integers {u(d)}d≥1 such that the subspace Dd,≤u(d) = span(φd,k : 1 ≤ k ≤ u(d)) is hypercontractive, i.e., for 
any fixed k ≥ 1, there exists a constant C such that, for any g ∈ Dd,≤u(d), we have

‖g‖L2k(Ωd) ≤ C · ‖g‖L2(Ωd).

Let {Ud}d≥1 be a sequence of positive definite kernels Ud ∈ L2(Ωd × Ωd) with

Ud(θ1,θ2) =
∞∑

j=1
λ2
d,kφd,k(θ1)φd,k(θ2).
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Denote Ud,>! the kernel function obtained by setting λd,1 = . . . = λd,! = 0. Letting (θi)i∈[N(d)] ∼iid τd, if 
we assume that for any δ > 0,

max
i∈[N(d)]

Ud,>u(d)(θi,θi) = Od,P (N(d)δ) · Eθ∼τd [Ud,>u(d)(θ,θ)], (83)

then for any δ > 0,

max
i∈[N(d)]

Ud(θi,θi) = Od,P (N(d)δ) · Eθ∼τd [Ud(θ,θ)]. (84)

Furthermore, if we assume that for any δ > 0,

max
i∈[N(d)]

Eθ∼τd [Ud,>u(d)(θi,θ)2] = Od,P (N(d)δ) · Eθ1,θ2∼τd [Ud,>u(d)(θ1,θ2)2], (85)

then for any δ > 0,

max
i∈[N(d)]

Eθ∼τd [Ud(θi,θ)2] = Od,P (N(d)δ) · Eθ1,θ2∼τd [Ud(θ1,θ2)2]. (86)

Proof of Lemma 7. Let us decompose Ud in a high and low degree parts, Ud = Ud,≤u + Ud,>u where

Ud,≤u(θ1,θ2) =
u∑

k=1
λ2
d,kφd,k(θ1)φd,k(θ2),

Ud,>u(θ1,θ2) =
∞∑

k=u+1
λ2
d,kφd,k(θ1)φd,k(θ2).

By Lemma 6, we have for any q ≥ 1,

E
[

max
i∈[N(d)]

Ud,≤u(θi,θi)
]
≤ E

[
max

i∈[N(d)]
Ud,≤u(θi,θi)q

]1/q

≤ N1/qE
[
Ud,≤u(θ,θ)q

]1/q

≤ C(q)2N1/qE
[
Ud,≤u(θ,θ)

]
.

Hence, by Markov’s inequality and condition (83), we get for any δ > 0, taking q sufficiently large,

max
i∈[N(d)]

Ud(θi,θi) = Od,P (N(d)δ) · Eθ∼τd [Ud(θ,θ)].

The proof of Eq. (86) follows from a similar argument. !

Appendix B. Generalization error of random feature model: Proof of Theorem 1

In this section, we prove Theorem 1. The proof in the overparametrized regime is presented in Section B.1. 
The proof in the underparametrized regime follows from a very similar argument: we will omit it and simply 
add comments in the overparametrized proof where they differ.

We defer the proofs of some technical results to later sections. Section B.2 proves a key proposition on 
the structure of the feature matrix Z = (σd(xi; θj))i∈[n],j∈[N ]. Section B.3 gather some technical bounds 
necessary for the proof of Theorem 1. Finally, Section B.4 contains concentration results on the high degree 
part of the feature matrix.
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B.1. Proof of Theorem 1 in the overparametrized regime

In this section, we prove Theorem 1 in the overparametrized regime. We defer the proofs of some of the 
technical lemmas and matrix concentration results to Sections B.2, B.3 and B.4. The underparametrized 
case follows from the same proof with the following mapping n ↔ N , m ↔ M and λ → λN = Nλ/n. We 
will add remarks in the proof when a difference arises.

Step 1. Rewrite the y, V , U , Z matrices.
We recall that the random feature ridge regression solution is given by

â(λ) = arg min
a

{ n∑

i=1

(
yi − f̂(xi;a)

)2 + λ

N
‖a‖2

2

}
.

Solving for the coefficients yields

â(λ) = (ZTZ/N + λIN )−1ZTy,

where y = (y1, . . . , yn) and Z = (Zij)i∈[n],j∈[N ] ∈ Rn×N with Zij = σd(xi; θj). Hence, the prediction 
function at location x is given by

f̂(x; â(λ)) = yTZ(ZTZ/N + λIN )−1σ(x)/N,

where σ(x) = (σd(x; θ1), . . . , σd(x; θN )) ∈ RN .
Expanding the test error, we get

RRF(f∗,X,Θ,λ) ≡Ex

[(
f∗(x) − yTZ(ZTZ/N + λIN )−1σ(x)/N

)2]

=Ex[f∗(x)2] − 2yTZÛ
−1
λ V /N + yTZÛ

−1
λ UÛ

−1
λ ZTy/N2,

where V = (V1, . . . , VN )T and U = (Uij)ij∈[N ] with

Vi =Ex[f∗(x)σd(x;θi)],
Uij =Ex[σd(x;θi)σd(x;θj)],

and Ûλ = ZTZ/N + λIN is the (rescaled) regularized empirical kernel matrix

Ûλ,ij = 1
N

∑

k∈[n]
σd(xk;θi)σd(xk;θj) + λδij .

We recall that the eigendecomposition of σd is given by

σd(x;θ) =
∞∑

k=1
λd,kψk(x)φk(θ).

We write the orthogonal decomposition of f∗ in this basis as

f∗(x) =
∞∑

k=1
f̂d,kψk(x),

Define
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ψk =(ψk(x1), . . . ,ψk(xn))T ∈ Rn,

φk =(φk(θ1), . . . ,φk(θN ))T ∈ RN ,

D≤m =diag(λd,1,λd,2, . . . ,λd,m) ∈ Rm×m,

ψ≤m =(ψk(xi))i∈[n],k∈[m] ∈ Rn×m,

φ≤m =(φk(θi))i∈[N ],k∈[m] ∈ RN×m,

f̂≤m =(f̂d,1, f̂d,2, . . . , f̂d,m)T ∈ Rm.

(87)

Recall that y = (y1, . . . , yn)T = f + ε with

f =(f∗(x1), . . . , f∗(xn))T

ε =(ε1, . . . , εn)T.

Using the above notations, we can decompose the vectors and matrices f , V , U , and as

f = f≤m + f>m, f≤m = ψ≤mf̂≤m, f>m =
∞∑

k=m+1
f̂d,kψk,

V = V ≤m + V >m, V ≤m = φ≤mD≤mf̂≤m, V >m =
∞∑

k=m+1
f̂d,kλd,kφk,

U = U≤m + U>m, U≤m = φ≤mD
2
≤mφ

T
≤m, U>m =

∞∑

k=m+1
λ2
d,kφkφ

T
k ,

Z = Z≤m + Z>m, Z≤m = ψ≤mD≤mφ
T
≤m, Z>m =

∑

k≥m+1
λd,kψkφ

T
k .

(88)

Step 2. Decompose the risk.
We decompose the risk with respect to y = f + ε as follows

RKR(f∗,X,W ,λ) =‖f∗‖2
L2 − 2T1 + T2 + T3 − 2T4 + 2T5,

where

T1 =fTZÛ
−1
λ V /N,

T2 =fTZÛ
−1
λ UÛ

−1
λ ZTf/N2,

T3 =εTZÛ
−1
λ UÛ

−1
λ ZTε/N2,

T4 =εTZÛ
−1
λ V /N,

T5 =εTZÛ
−1
λ UÛ

−1
λ ZTf/N2.

(89)

The proof relies on the following key result on the structure of the feature matrix Z:

Proposition 6 (Structure of the feature matrix Z). Follow the assumptions and the notations in the proof 
of Theorem 1 in the overparametrized regime (note in particular that N ≥ n1+δ0 and n ≥ m1+δ0 for some 
fixed δ0 > 0). Consider the singular value decomposition of Z = (Zij)i∈[n],j∈[N ] with Zij = σd(xi; θj):

Z/
√
N = PΛQT = [P 1,P 2]diag(Λ1,Λ2)[Q1,Q2]T ∈ Rn×N ,
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where P ∈ Rn×n and Q ∈ RN×n, and P 1 ∈ Rn×m and Q1 ∈ RN×m correspond to the left and right 
singular vectors associated to the largest m singular values Λ1, while P 2 ∈ Rn×(n−m) and Q2 ∈ RN×(n−m)

correspond to the left and right singular vectors associated to the last (n − m) smallest singular values Λ2. 
Define κ>m = Tr(Hd,>m).

Then the singular value decomposition has the following properties:

(a) Define Λ = diag((σi(Z/
√
N))i∈[n]) the singular values (in non increasing order) of Z/

√
N . Then the 

singular values verify

σmin(Λ1) = min
i∈[m]

σi(Z/
√
N) = κ1/2

>m · ωd,P (1), (90)

‖Λ2 − κ1/2
>m · In−m‖op = max

i=m+1,...,n

∣∣σi(Z/
√
N) − κ1/2

>m
∣∣ = κ1/2

>m · od,P (1). (91)

(b) The left and right singular vectors associated to the (n − m) smallest singular values verify

n−1/2‖ψT
≤mP 2‖op = od,P (1), N−1/2‖φT

≤mQ2‖op = od,P (1). (92)

(c) We have

N−1/2‖P T
1Z>mQ2‖op = κ1/2

>m · od,P (1). (93)

We defer the proof of Proposition 6 to Section B.2.

Remark B.1. Proposition 6 shows that the feature matrix Z = Z≤m +Z>m (cf. Eq. (88)) is a spiked matrix, 
with m spikes with singular values Λ1 much larger than κ1/2

>m coming from the low-degree part Z≤m (in 
particular, Proposition 6.(b) shows that the left and right singular vectors of the spikes are approximately 
spanned by the left and right singular vectors of Z≤m) while the rest of the singular values are approximately 
constant equal to κ1/2

>m. The proof of this proposition is based on the following observations:

(a) Z≤m/
√
N = ψ≤mD≤mφ

T
≤m/

√
N is a rank m matrix with

(i) ψ≤m/
√
n and φ≤m/

√
N are approximately orthogonal matrices (see Eq. (108)).

(ii) √
n|D≤m| = diag(√n|λ1|, . . . , 

√
n|λm|) 8 ωd,P (κ1/2

>m) · Im from condition (19) in Assumption 2.(a).

(b) The high degree part Z>m/
√
N has nearly constant singular values ‖Z>mZ

T
>m/N − κ>mIn‖op = κ>m ·

od,P (1) and is nearly orthogonal to the span of the right singular vectors of Z≤m, i.e., ‖Z>mφ≤m/N‖op =
κ1/2
>m · od,P (1) (see Proposition 8 in Section B.4).

Using Proposition 6, we can prove the following list of bounds that will be the main tools for the rest of 
the proof of Theorem 1.

Proposition 7. Follow the assumptions and the notations in the proof of Theorem 1 in the overparametrized 
regime. Then the following bounds hold. (Recall that κ>m = Tr(Hd,>m).)

(a) Bounds on Û
−1
λ = (ZTZ/N + λIN )−1:

ψT
≤mZÛ

−1
λ φ≤mD≤m/N = Im + ∆, (94)
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‖D≤mφ
T
≤mÛ

−1
λ ZTf>m/N‖2 = ‖P>mf∗‖L2+η · od,P (1), (95)

√
n‖ZÛ

−1
λ φ≤mD≤m/N‖op = Od,P (1), (96)

where ‖∆‖op = od,P (1). Furthermore, we have

‖ZÛ
−1
λ /

√
N‖op = κ−1/2

>m ·Od,P (1). (97)

(b) Bound on U>m:

n

N
‖U>m‖op = κ>m · od,P (1).

(c) Bounds on f :

‖f‖2 =
√
n‖f∗‖L2 ·Od,P (1),

‖ψT
≤mf>m/n‖2 =‖P>mf∗‖L2+η · od,P (1).

(d) Bound on V >m:
√

n

N
‖V >m‖2 = κ1/2

>m‖P>mf∗‖L2 · od,P (1).

The proof of Proposition 7 is deferred to Section B.3.

Remark B.2. In the underparametrized case, the proofs and statements of Proposition 6 and Proposi-
tion 7.(a) and 7.(c) are symmetric under the mapping n ↔ N , m ↔ M and λ → λN = Nλ/n. The bounds 
in Propositions 7.(b) and 7.(d) can be easily replaced by

‖U>M‖op = κ>M ·Od,P (1), ‖V >M‖2 = κ1/2
>M‖P>mf∗‖L2 · od,P (1).

In order to bound the term T22 in Eq. (103), we will further use the following bound

‖Û
−1
λ ZTf/n‖op = κ−1/2

>M · ‖f∗‖L2 · od,P (1),

that we prove in Section B.3.5. It is easy to insert into the new bounds below the aforementioned mapping 
and check that the underparametrized case follows indeed from the same computation.

The rest of the proof amounts to controlling each term separately using the claims listed in Proposition 7. 
We will use extensively the following (basic) properties of the operator norm: for A ∈ Rm×p, B ∈ Rp×q, 
u ∈ Rm and v ∈ Rp, we have

‖A‖op =‖ATA‖1/2
op = ‖AAT‖1/2

op ,

‖AB‖op ≤‖A‖op‖B‖op,

uTAv ≤‖u‖2‖A‖op‖v‖2.

Step 3. Term T1.
Let us decompose T1 into

T1 = T11 + T12 + T13,
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where

T11 =fT
≤mZÛ

−1
λ V ≤m/N,

T12 =fT
>mZÛ

−1
λ V ≤m/N,

T13 =fTZÛ
−1
λ V >m/N.

Recall that V ≤m = φ≤mD≤mf̂≤m and f≤m = ψ≤mf̂≤m. Hence by Eq. (94) in Proposition 7.(a):

T11 =f̂
T
≤m(ψT

≤mZÛ
−1
λ φ≤mD≤m/N)f̂≤m

=f̂
T
≤m(Im + ∆)f̂≤m

=‖P≤mf∗‖2
L2 + ‖P≤mf∗‖2

L2 · od,P (1).

(98)

Similarly by Eq. (95) in Proposition 7.(a),

|T12| =|fT
>mZÛ

−1
λ φ≤mD≤mf̂≤m/N |

≤‖D≤mφ
T
≤mÛ

−1
λ ZTf>m/N‖2‖f̂≤m‖2

=‖P>mf∗‖L2+η‖P≤mf∗‖L2 · od,P (1).

(99)

Using Proposition 7.(c) and 7.(d) as well as Eq. (97) in Proposition 7.(a), we get

|T13| = |fTZÛ
−1
λ V >m/N | ≤‖f/

√
n‖2‖(Z/

√
N)Û−1

λ ‖op ·
√

n/N‖V >m‖2

≤Od,P (‖f∗‖L2) ·Od,P (κ−1/2
>m ) · od,P (κ1/2

>m‖P>mf∗‖L2)
=‖f∗‖L2‖P>mf∗‖L2 · od,P (1).

(100)

Combining Eqs. (98), (99) and (100) yields

T1 = ‖P≤mf∗‖2
L2 + od,P (1) · (‖f∗‖2

L2 + ‖P>mf∗‖2
L2+η). (101)

Step 4. Term T2
Recalling U = φ≤mD

2
≤mφ

T
≤m + U>m, we can decompose T2 as

T2 = T21 + T22,

where

T21 =(fTZÛ
−1
λ φ≤mD≤m/N)(D≤mφ

T
≤mÛ

−1
λ ZTf/N),

T22 =fTZÛ
−1
λ U>mÛ

−1
λ ZTf/N2.

From Eqs. (94) and (95) in Proposition 7.(a), we obtain

D≤mφ
T
≤mÛ

−1
λ ZTf/N =D≤mφ

T
≤mÛ

−1
λ ZTψ≤mf̂≤m/N + D≤mφ

T
≤mÛ

−1
λ ZTf>m/N

=(Im + ∆0)f̂≤m + ‖P>mf∗‖L2+η ·∆1,

where ‖∆1‖op = od,P (1), ‖∆2‖2 = od,P (1). Hence,
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T21 =‖P≤mf∗‖2
L2 + (‖f∗‖2

L2 + ‖P>mf∗‖2
L2+δ) · od,P (1). (102)

From Eq. (97) in Proposition 7.(a) as well as Proposition 7.(b), 7.(c), the second term is bounded by

|T22| =|fTZÛ
−1
λ U>mÛ

−1
λ ZTf/N2|

≤‖(n/N)U>m‖op‖(Z/
√
N)Û−1

λ ‖2
op‖f/

√
n‖2

2

=od,P (κ>m) ·Od,P (κ−1
>m) ·Od,P (‖f∗‖2

L2) = ‖f∗‖2
L2 · od,P (1).

(103)

As a result, combining Eqs. (102) and (103) leaves us with

T2 = ‖P≤mf∗‖2
L2 + od,P (1) · (‖f∗‖2

L2 + ‖P>mf∗‖2
L2+η). (104)

Step 5. Terms T3, T4 and T5.
Let us start with the term T3. Decompose U = φ≤mD

2
≤mφ

T
≤m + U>m:

Eε[T3]/σ2
ε =tr(ZÛ

−1
λ UÛ

−1
λ ZT)/N2

=tr(ZÛ
−1
λ φ≤mD

2
≤mφ

T
≤mÛ

−1
λ ZT)/N2 + tr(ZÛ

−1
λ U>mÛ

−1
λ ZT)/N2.

By Eq. (96) in Proposition 7.(a), and since m ≤ n1−δ0 by Assumption 2.(a), we get

tr(ZÛ
−1
λ φ≤mD

2
≤mφ

T
≤mÛ

−1
λ ZT)/N2 ≤m · ‖ZÛ

−1
λ φ≤mD≤m/N‖2

op = m
n

·Od,P (1) = od,P (1).

By Eq. (97) in Proposition 7.(a) as well as Proposition 7.(b), the second term is bounded by

tr(ZÛ
−1
λ U>mÛ

−1
λ ZT)/N2 ≤‖(n/N)U>m‖op‖ZÛ

−2
λ ZT/N‖op/n

=od,P (κ>m) ·Od,P (κ−1
>m) · n−1 = od,P (1).

Combining these two bounds and using Markov’s inequality, we get

T3 = od,P (1) · σ2
ε . (105)

Let us consider term T4. Recall that we can decompose V = φ≤mD≤mf̂≤m + V >m, so

Eε[T 2
4 ]/σ2

ε =tr(ZÛ
−1
λ V V TÛ

−1
λ ZT)/N2

=V TÛ
−1
λ ZTZÛ

−1
λ V /N2

≤2(‖ZÛ
−1
λ V ≤m/N‖2

2 + ‖ZÛ
−1
λ V >m/N‖2

2).

We have by Eq. (96) in Proposition 7.(a),

‖ZÛ
−1
λ V ≤m/N‖2 ≤‖ZÛ

−1
λ φ≤mD≤m/N‖op‖f̂≤m‖2 = ‖P≤mf∗‖L2 · od,P (1),

and by Proposition 7.(d),

‖ZÛ
−1
λ V >m/N‖2 ≤‖ZÛ

−1
λ /

√
N‖2‖V >m/

√
N‖2

=Od,P (κ−1/2
>m ) · od,P (κ1/2

>m‖P>mf∗‖L2n−1/2) = ‖P>mf∗‖L2 · od,P (1).
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Combining the two above bounds, we get by Markov’s inequality

T4 = od,P (1) · σε‖f∗‖L2 = od,P (1) · (σ2
ε + ‖f∗‖2

L2). (106)

Let us consider the last term T5:

Eε[T 2
5 ]/σ2

ε =tr(ZÛ
−1
λ UÛ

−1
λ ZTffTZÛ

−1
λ UÛ

−1
λ ZT)/N4

=‖ZÛ
−1
λ UÛ

−1
λ ZTf/N2‖2

2 ≤ ‖ZÛ
−1
λ UÛ

−1
λ ZT√n/N2‖2

op‖f/
√
n‖2

2.

By Eq. (95) in Proposition 7.(a), and Proposition 7.(b),

‖ZÛ
−1
λ UÛ

−1
λ ZT√n/N2‖op ≤

√
n · ‖ZÛ

−1
λ φ≤mD≤m/N‖2

op + ‖
√
n/N2U>m‖op‖ZÛ

−2
λ ZT/N‖op

=od,P (1).

Hence, by Proposition 7.(c),

Eε[T 2
5 ]/σ2

ε = od,P (1) · ‖f/
√
n‖2

2 = ‖f∗‖2
2 · od,P (1),

which gives by Markov’s inequality:

T5 = σε‖f∗‖L2 · od,P (1) = (σ2
ε + ‖f∗‖2

L2) · od,P (1). (107)

Step 6. Finish the proof.
Combining Eqs. (101), (104), (105), (106) and (107), we have

RRF(f∗,X,W ,λ) =‖f∗‖2
L2 − 2T1 + T2 + T3 − 2T4 + 2T5

=‖f∗‖2
L2 − 2‖P≤mf∗‖2

L2 + ‖P≤mf∗‖2
L2 + od,P (1) · (‖f∗‖2

L2 + ‖P>mf∗‖2
L2+η + σ2

ε)
=‖P>mf∗‖2

L2 + od,P (1) · (‖f∗‖2
L2 + ‖P>mf∗‖2

L2+η + σ2
ε),

which concludes the proof.

B.2. Proof of Proposition 6: structure of the feature matrix Z

Recall the definition Z = (σd(xi; θj))i∈[n],j∈[N ]. Recall the decomposition Z = Z≤m + Z>m into a low-
and high- degree parts, as per Eq. (88). For convenience, we will consider the normalized quantities

Z̃ = Z/
√
N, Z̃≤m = Z≤m/

√
N, Z̃>m = Z>m/

√
N,

φ̃≤m = φ≤m/
√
N, ψ̃≤m = ψ≤m/

√
n, D̃≤m =

√
nD≤m.

In particular, notice that Ûλ = Z̃
T
Z̃ + λIN and Z̃≤m = ψ̃≤mD̃≤mφ̃

T
≤m.

By Proposition 3 applied to φ̃≤m and ψ̃≤m (with assumptions satisfied by Assumption 1.(a) and As-
sumption 2.(a)), we get

φ̃
T
≤mφ̃≤m = Im + ∆1, ψ̃

T
≤mψ̃≤m = Im + ∆2, (108)

with ‖∆i‖op = od,P (1) for i = 1, 2. Furthermore, by Proposition 8 (stated in Section B.4), we have

Z̃>mZ̃
T
>m = κ>m · (In + ∆Z), ‖Z̃>mφ̃≤m‖op = κ1/2

>m · od,P (1), (109)
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with ‖∆Z‖op = od,P (1) and where we recall κ>m = Tr(Hd,>m). Furthermore, Assumption 2.(a) implies that

σmin(D̃≤m) = min
k≤m

{
√
n|λd,k|} = ωd(1) · κ1/2

>m. (110)

Hence, we expect Z̃ = Z̃≤m + Z̃>m to have m large singular values ωd(1) · κ1/2
>m associated to Z̃≤m with 

left and right singular vectors spanned approximately by ψ̃≤m and φ̃≤m, and n − m small singular values 
approximately equal to κ1/2

>m associated to Z̃>m.

Proof of Proposition 6. Claim (a). Bound on the singular values.
Using Eqs. (108) and (110), we have

Z̃≤mZ̃
T
≤m = ψ̃≤mD̃≤mφ̃

T
≤mφ̃≤mD̃≤mψ̃

T
≤m

= ψ̃≤mD̃≤m(Im + ∆)D̃≤mψ̃
T
≤m

8 Ωd,P (1) · ψ̃≤mD̃
2
≤mψ̃

T
≤m

8 κ>m · ωd(1) · ψ̃≤mψ̃
T
≤m.

Furthermore, by ψ̃
T
≤mψ̃≤m = Im + ∆2, we deduce that the singular values of Z̃≤m are lower bounded as 

follows

min
i∈[m]

σi(Z̃≤m) = κ>m · ωd,P (1). (111)

By Lemma 8 stated below in Section B.2.1, we have for i ∈ [n],

|σi(Z̃) − σi(Z̃≤m)| ≤ ‖Z̃>m‖op. (112)

Recalling Eq. (109), ‖Z̃>m‖op = Od,P (1) · κ1/2
>m. Hence the first m singular values obey:

σi(Z̃) ≥ σi(Z̃≤m) − κ1/2
>m ·Od,P (1). (113)

Using Eq. (111) implies σmin(Λ1) = mini∈[m] σi(Z̃) = κ1/2
>m · ωd,P (1). This proves Eq. (90).

Using again Eq. (112), the n − m smallest singular values obey:

max
i=m+1,...,n

σi(Z̃) ≤ κ1/2
>m · (1 + od,P (1)). (114)

In order to lower bound the n − m smallest singular values, we lower bound the eigenvalues of Z̃Z̃
T. We 

decompose

Z̃Z̃
T = Z̃≤mZ̃

T
≤m + Z̃>mZ̃

T
≤m + Z̃≤mZ̃

T
>m + Z̃>mZ̃

T
>m.

Recalling Eq. (108) and Eq. (109), we have

Z̃≤mZ̃
T
≤m = ψ̃≤mD̃≤m(φ̃T

≤mφ̃≤m)D̃≤mψ̃
T
≤m = ψ̃≤mD̃≤m(Im + ∆1)D̃≤mψ̃≤m,

Z̃>mZ̃
T
>m = κ>m · (In + ∆Z),

where ‖∆Z‖op = od,P (1).
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Denote L = ψ̃≤mD̃≤m(Im +∆1)1/2 and T = Z̃>mφ̃≤m(Im +∆1)−1/2. By Eq. (109), we have ‖TT T‖op =
κ>m · od,P (1). Combining these remarks leads to the lower bound

Z̃Z̃
T = LLT + TLT + LT T + TT T − TT T + Z̃>mZ̃

T
>m

= (L + T )(L + T )T + κ>m · (In + ∆′)
8 κ>m · (In + ∆′),

where ‖∆′‖op = od,P (1). We deduce that

σmin(Z̃) = min
i∈[n]

σi(Z̃) ≥ κ1/2
>m · (1 + od,P (1)),

which combined with Eq. (114) yields Eq. (91).

Part (b). Left and right singular vectors.
Let us prove ‖φ̃T

≤mQ2‖op = od,P (1). The proof for ψ̃T
≤mP 2 follows from the same argument by replacing 

Z̃ by Z̃
T and using the bound ‖Z̃>mφ̃≤m‖op = κ1/2

>m · od,P (1), cf. Eq. (109).
Let us consider a sequence u ∈ Rn−m (where we keep the dependency on d implicit) such that ‖u‖2 = 1

and ‖φ̃T
≤mQ2u‖2 = ‖φ̃T

≤mQ2‖op. For convenience, denote ũ = φ̃
T
≤mQ2u. We have

uTΛ2
2u = uTQT

2 Z̃
T
Z̃Q2u

= uTQT
2 (Z̃T

≤mZ̃≤m + Z̃
T
>mZ̃≤m + Z̃

T
≤mZ̃

T
>m + Z̃

T
>mZ̃>m)Q2u

= ũTD̃≤m(Im + ∆2)D̃≤mũ + 2ũTD̃≤m(ψ̃T
≤mZ̃>mu) + ‖Z̃>mQ2u‖2

2.

(115)

From step 1, we know uTΛ2
2u = κ>m ·Od,P (1). Furthermore,

ũTD̃≤m(Im + ∆2)D̃≤mũ = Ωd,P (1) · ‖D̃≤mũ‖2
2,

ũTD̃≤m(ψ̃T
≤mZ̃>mu) ≥− ‖D̃≤mũ‖2‖ψ̃

T
≤mZ̃>m‖op,

‖ψ̃T
≤mZ̃>m‖op ≤ ‖ψ̃≤m‖op‖Z̃>m‖op = κ1/2

>m ·Od,P (1).

(116)

Therefore, using the bounds (116) in Eq. (115), we get

Ωd,P (1) · ‖D̃≤mũ‖2
2 − 2‖D̃≤mũ‖2‖ψ̃

T
≤mZ̃>m‖op ≤ κ>m ·Od,P (1).

Hence,

‖D̃≤mũ‖2 = Od,P

(
max

(
κ1/2
>m, ‖ψ̃

T
≤mZ̃>m‖op

))
= κ1/2

>m ·Od,P (1). (117)

Using the bound ‖D̃≤mũ‖2 = κ1/2
>m · ωd(1) · ‖ũ‖2 = κ1/2

>m · ωd(1) · ‖QT
2 φ̃≤m‖op in Eq. (117), we deduce that 

‖QT
2 φ̃≤m‖op = od,P (1). This concludes the proof of Proposition 6.(b).

Part (c). Cross-term bound.
This is a direct application of Lemma 9 (stated below in Section B.2.1) with matrix κ−1/2

>m Z̃ = κ−1/2
>m Z̃≤m+

κ−1/2
>m Z̃>m. Indeed, Eq. (111) implies that σmin(κ−1/2

>m Z̃≤m) = ωd,P (1) and Eq. (109) gives ‖κ−1
>mZ̃>mZ̃

T
>m−

In‖op = od,P (1). Furthermore, the right singular vectors V 0 of Z̃≤m are spanned by the left singular vectors 
of φ̃≤m. From Eq. (109), we have ‖Z̃>mφ̃≤m‖op = κ1/2

>m ·od,P (1). Combined with ‖φ̃T
≤mφ̃≤m−Im‖op = od,P (1), 

we get ‖κ−1/2
>m Z̃>mV 0‖op = od,P (1). !
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B.2.1. Auxiliary lemmas
We recall the following classical perturbation theory result, which we quote from [44, Page 102, Section 3].

Theorem 8 (Sin(Θ) theorem for rectangular matrices [44]). Let A0 be a n ×N -matrix with singular value 
decomposition

A0 = U0Σ0V
T
0 ,

where U0 ∈ Rn×m, V 0 ∈ RN×m verify m ≤ min(n, N) and UT
0U0 = V T

0V 0 = Im, and we denoted Σ0 =
diag((σi(A0))i∈[m])= the singular values. Let M be a perturbation n ×N -matrix and consider B = A0 +M

with singular value decomposition

B = PΣQ = [P 1,P 2]diag(Λ1,Λ2)[Q1,Q2]T,

where P 1 ∈ Rn×m, Q1 ∈ RN×m, P 2 ∈ Rn×(n−m), Q2 ∈ RN×(n−m). Assume that σmin(Λ1) > 0. Then

max(‖(In −U0U
T
0 )P 1‖op, ‖(IN − V 0V

T
0 )Q1‖op) ≤ max(‖MQ1‖op, ‖MTP 1‖op)

σmin(Λ1)
. (118)

Lemma 8 (Weyl’s inequality). Consider A0, M ∈ Rn×N and define B = A0 + M . Then for any i ∈
[min(n, N)], we have

|σi(B) − σi(A0)| ≤ ‖M‖op. (119)

The next lemma implies that the projection of the noise matrix M on the top left singular vectors of the 
full matrix is approximately in the space orthogonal to the right singular vectors.

Lemma 9 (Null space of right singular vectors). Let {N(d)}d≥1, {n(d)}d≥1 and {m(d)}d≥1 be three sequences 
of integers. For convenience, we denote N = N(d), n = n(d) and m = m(d). Assume that N ≥ n + m and 
n ≥ m. Consider the following sequence of random spiked matrices:

B := B(d) = A0 + M = U0Σ0V
T
0 + M ∈ Rn×N ,

where U0Σ0V
T
0 is the singular value decomposition of the rank m matrix A0 with U0 ∈ Rn×m, V 0 ∈ RN×m

and UT
0U0 = V T

0V 0 = Im, and Σ0 = diag((σ0,i(A0))i∈[m]) ∈ Rm×m are the singular values. Further assume 
that

(a) σmin(A0) = mini∈[m] σ0,i(A0) = ωd,P (1),
(b) ‖MV 0‖op = od,P (1),
(c) ‖MMT − In‖op = od,P (1).

Denote B = PΛQT = [P 1, P 2]diag(Λ1, Λ2)[Q1, Q2]T the singular value decomposition of B where 
P 1 ∈ Rn×m and Q1 ∈ RN×m correspond to the left and right singular vectors associated to the first m
singular values Λ1, while P 2 ∈ Rn×(n−m) and Q2 ∈ RN×(n−m) correspond to the left and right singular 
vectors associated to the last (n − m) singular values Λ2.

Then we have

‖P T
1MQ‖op = od,P (1). (120)
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Proof of Lemma 9. Step 1. Simplification of the problem.
Without loss of generality, we can choose an orthonormal basis in RN so that, in that basis

V 0 =
[

Im
0N−m,m

]
, M = [M1 M2 0n,N−(n+m) ] , (121)

where M1 ∈ Rn×m and M2 ∈ Rn×n. Because the space corresponding to the last N − (n + m) coordinates 
of the row is in the right null space of both A0 and M , we can forget about them and consider –without 
loss of generality– M = [M1, M2] ∈ Rn×(n+m), N = n + m.

From the assumption ‖MV 0‖op = od,P (1), we have

‖M1‖op = od,P (1). (122)

Furthermore, from the assumption ‖MMT − In‖op = od,P (1),

‖M2M
T
2 − In‖op = od,P (1). (123)

Step 2. There exists an orthogonal matrix R ∈ Rm×m such that ‖P 1 −U0R‖op = od,P (1).
Recall that Λ1 = diag((σ1,i(B))i∈[m]). By Lemma 8, we have for any i ∈ [m],

|σ1,i(B) − σ0,i(A0)| ≤ ‖M‖op.

Using the assumption (a) that σmin(A0) = ωd,P (1) and assumption (c) ‖M‖op = Od,P (1), we deduce that

σmin(Λ1) = ωd,P (1). (124)

Furthermore ‖MQ1‖op ≤ ‖M‖op = Od,P (1) and similarly ‖MTP 1‖op = Od,P (1). We can therefore apply 
Theorem 8 which gives

‖(In −U0U
T
0 )P 1‖op = od,P (1).

Denote by U0,⊥ ∈ Rn×(n−m) a matrix such that [U0, U0,⊥] is orthogonal. The last equation implies that 
‖UT

0,⊥P 1‖op = od,P (1). Further,

P T
1U0U

T
0P 1 = Im − P T

1 (In −U0U
T
0 )P 1,

which shows that ‖P T
1U0U

T
0P 1 − Im‖op = od,P (1). This implies UT

0P 1 is an approximately orthogonal 
matrix. Namely, let its singular value decomposition be UT

0P 1 = R1SR
T
2 . Then, by defining the orthogonal 

matrix R := R1R
T
2 ∈ Rm×m, we have ‖P 1 −U0R‖op = od,P (1).

Step 3. The null space of the right eigenvectors Q.
Let us explicitly describe the null space of Q ∈ R(n+m)×n (recall that we removed the N − (n + m) last 

coordinates of the columns). Consider N1 ∈ Rm×m a rank m matrix and write N2 ∈ Rn×m as a function 

of N1 such that ker(Q) is spanned by the columns of the matrix N =
[
N1
N2

]
∈ R(n+m)×m, i.e., BN = 0, 

that is

[U0Σ0 + M1 M2 ]
[
N1
N2

]
= (U0Σ0 + M1)N1 + M2N2 = 0 .

Projecting on the two orthogonal subspaces U0 and U0,⊥, this is equivalent to
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N1 = −(Σ0 + UT
0M1)−1UT

0M2N2, UT
0,⊥M1N1 = −UT

0,⊥M2N2. (125)

Let us do the following reparametrization N2 = M−1
2 Ñ2 and fix N1 = −(Σ0 +UT

0M1)−1. Then Eq. (125)
gives

UT
0 Ñ2 = Im, UT

0,⊥Ñ2 = UT
0,⊥M1(Σ0 + UT

0M1)−1,

which gives Ñ2 = U0 + U0,⊥U
T
0,⊥M1(Σ0 + UT

0M1)−1, and

N1 = − (Σ0 + UT
0M1)−1,

N2 = M−1
2 U0 + M−1

2 U0,⊥U
T
0,⊥M1(Σ0 + UT

0M1)−1.

By the assumption λmin(Σ0) = ωd,P (1) and Eq. (122), we have ‖(Σ0+UT
0M1)−1‖op = od,P (1). Furthermore, 

from Eq. (123), we have ‖M−1
2 −MT

2 ‖op = od,P (1). We deduce that

‖NT −
[
0n,m UT

0M2
]
‖op = od,P (1). (126)

Step 4. Concluding the proof.
By construction, NTQ = 0 and using Eq. (126), we get

‖NTQ−
[
0n,m UT

0M2
]
Q‖op = ‖

[
0n,m UT

0M2
]
Q‖op = od,P (1). (127)

Furthermore using step 2 and recalling that ‖M1‖op = od,P (1),

‖P T
1M −

[
0n,m RTUT

0M2
]
‖op = od,P (1). (128)

Combining Eqs. (127) and (128) yield

‖RP T
1MQ−

[
0n,m UT

0M2
]
Q‖op = od,P (1),

and ‖P T
1MQ‖op = ‖RP T

1MQ‖op = od,P (1), which concludes the proof. !

B.3. Proof of Proposition 7: technical bounds in the overparametrized regime

We prove the claims of this proposition in a different order than stated.

B.3.1. Proof of claim (c)
First, notice that E[‖f‖2

2] = n‖f∗‖2
L2 . Hence, by Markov’s inequality, ‖f‖2

2 = n‖f∗‖2
L2 ·Od,P (1).
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Let us now consider ψT
≤mf>m/n. For any η > 0,

E
[
‖ψT

≤mf>m‖2
2

]
/n2 =Ex

[( ∑

u≥m+1
f̂uψ

T
u

)
ψ≤mψ

T
≤m

( ∑

v≥m+1
f̂vψv

)]
/n2

=
∑

u,v≥m+1

m∑

s=0

∑

i,j∈[n]

{
E
[
ψu(xi)ψs(xi)ψs(xj)ψv(xj)

]
/n2

}
f̂uf̂v

=
∑

u,v≥m+1

m∑

s=0

∑

i∈[n]

{
E
[
ψu(xi)ψs(xi)ψs(xi)ψv(xi)

]
/n2

}
f̂uf̂v

= 1
n

m∑

s=0
Ex

[(
P>mf∗(x)

)2
ψs(x)2

]
≤ 1

n

m∑

s=0
‖P>mf∗‖2

L2+η‖ψs‖2
L(4+2η)/η

≤ C̃(η)m
n
‖P>mf∗‖2

L2+η ,

where the last inequality uses the hypercontractivity assumption of Assumption 1.(a):

‖ψs‖2
L(4+2η)/η = Ex[ψs(x)2·

2+η
η ]

2η
4+2η ≤ C((2 + η)/η)Ex[ψs(x)2] = C((2 + η)/η),

and C̃(η) = C((2 + η)/η). By Markov’s inequality (using m ≤ n1−δ0 in Assumption 2.(a) for some fixed 
δ0 > 0), we get

‖ψT
≤mf>m/n‖2 = od,P (1) · ‖P>mf∗‖L2+η .

B.3.2. Proof of Proposition 7.(a)
Throughout the proof, we will generically denote ∆ any matrix with ‖∆‖op = od,P (1). In particular, ∆

can change from line to line. For convenience, we will use the notations introduced in Section B.2.

Step 0. Bound ‖Z̃Û
−1
λ ‖op = κ−1/2

>m ·Od,P (1).
Recall the definition Ûλ = Z̃

T
Z̃ + λIN and the singular value decomposition Z̃ = PΛQT. Hence, we 

can rewrite

Z̃Û
−1
λ = P

Λ
Λ2 + λ

QT,

where we denoted by a slight abuse of notation Λ/(Λ2 + λ) := diag((Λi/(Λ2
i + λ))i∈[n]). From Proposi-

tion 6.(a), σmin(Λ) = κ1/2
>m · (1 + od,P (1)). We deduce that

‖Z̃Û
−1
λ ‖op = κ−1/2

>m ·Od,P (1).

Step 1. Bound ‖ψ̃T
≤mZ̃Û

−1
λ φ̃≤mD̃≤m − Im‖op = od,P (1).

First notice that φ̃≤mD̃≤m = Z̃
T
≤m(ψ̃T

≤m)† = (Z̃ − Z̃>m)T(ψ̃T
≤m)†. Furthermore, by Eq. (108), we have 

(ψ̃T
≤m)† = ψ̃≤m + ∆. Hence,

ψ̃
T
≤mZ̃Û

−1
λ φ̃≤mD̃≤m = ψ̃

T
≤mZ̃Û

−1
λ Z̃

T(ψ̃T
≤m)† − ψ̃

T
≤mZ̃Û

−1
λ Z̃

T
>m(ψ̃T

≤m)†. (129)

Let us decompose the first term along the large singular values Λ1 and small singular values Λ2:
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ψ̃
T
≤mZ̃Û

−1
λ Z̃

T(ψ̃T
≤m)† = ψ̃

T
≤mP

Λ2

Λ2 + λ
P T(ψ̃T

≤m)†

= ψ̃
T
≤mP 1

Λ2
1

Λ2
1 + λ

P T
1 (ψ̃T

≤m)† + ψ̃
T
≤mP 2

Λ2
2

Λ2
2 + λ

P T
2 (ψ̃T

≤m)†.

From Eqs. (90) and (92) in Proposition 6 and the assumption in the theorem λ = Od(1) · κ>m, we have

∥∥∥
Λ2

1
Λ2

1 + λ
− Im

∥∥∥
op

= od,P (1), ‖ψ̃T
≤mP 2‖op = od,P (1).

Hence,

∥∥∥ψ̃
T
≤mP 2

Λ2
2

Λ2
2 + λ

P T
2 (ψ̃T

≤m)†
∥∥∥

op
≤ ‖ψ̃T

≤mP 2‖op‖(ψ̃
T
≤m)†‖op = od,P (1),

and

ψ̃
T
≤mP 1

Λ2
1

Λ2
1 + λ

P T
1 (ψ̃T

≤m)† = ψ̃
T
≤mP 1P

T
1 (ψ̃T

≤m)† + ∆ = ψ̃
T
≤mPP T(ψ̃T

≤m)† + ∆′ = Im + ∆′,

where ‖∆‖op, ‖∆′‖op = od,P (1). We deduce
∥∥∥ψ̃

T
≤mZ̃Û

−1
λ Z̃

T(ψ̃T
≤m)† − Im

∥∥∥
op

= od,P (1). (130)

Consider the second term in Eq. (129):

ψ̃
T
≤mZ̃Û

−1
λ Z̃

T
>m(ψ̃T

≤m)† = ψ̃
T
≤mP 1

Λ1
Λ2

1 + λ
QT

1 Z̃
T
>m(ψ̃T

≤m)† + ψ̃
T
≤mP 2

Λ2
Λ2

2 + λ
QT

2 Z̃
T
>m(ψ̃T

≤m)†.

Using Eq. (90) in Proposition 6, we have σmin(Λ1) = κ1/2
>m · ωd,P (1). Then, recalling that ‖Z̃>m‖op =

κ1/2
>m ·Od,P (1), we obtain

∥∥∥ψ̃
T
≤mP 1

Λ1
Λ2

1 + λ
QT

1 Z̃
T
>m(ψ̃T

≤m)†
∥∥∥

op
≤ ‖ψ̃T

≤m‖op‖Λ1/(Λ2
1 + λ)‖op‖Z̃>m‖op‖ψ̃≤m + ∆‖op

= Od,P (1) · od,P (κ−1/2
>m ) ·Od,P (κ1/2

>m) ·Od,P (1) = od,P (1).

By Eqs. (91) and (92) in Proposition 6, we get
∥∥∥ψ̃

T
≤mP 2

Λ2
Λ2

2 + λ
QT

2 Z̃
T
>m(ψ̃T

≤m)†
∥∥∥

op
≤ ‖ψ̃T

≤mP 2‖op‖Λ2/(Λ2
2 + λ)‖op‖Z̃>m‖op‖ψ̃≤m + ∆‖op

= od,P (1) ·Od,P (κ−1/2
>m ) ·Od,P (κ1/2

>m) ·Od,P (1) = od,P (1).

We deduce that

‖ψ̃T
≤mZ̃Û

−1
λ Z̃

T
>m(ψ̃T

≤m)†‖op = od,P (1). (131)

Combining Eqs. (130) and (131) into Eq. (129) yields

ψ̃
T
≤mZ̃Û

−1
λ φ̃≤mD̃≤m = Im + ∆,

where ‖∆‖op = od,P (1).
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Step 2. Bound ‖D̃≤mφ̃
T
≤mÛ

−1
λ Z̃

T
f>m/

√
n‖2 = ‖P>mf∗‖L2+η · od,P (1).

Let us denote f̃>m = f>m/
√
n for convenience. Let us use again that φ̃≤mD̃≤m = (Z̃ − Z̃>m)T(ψ̃T

≤m)†:

D̃≤mφ̃
T
≤mÛ

−1
λ Z̃

T
f̃>m = (ψ̃≤m)†Z̃Û

−1
λ Z̃

T
f̃>m − (ψ̃≤m)†Z̃>mÛ

−1
λ Z̃

T
f̃>m. (132)

First notice that because ‖ψ̃T
≤mψ̃≤m − Im‖op = od,P (1), we have ‖ψ̃T

≤mP 2‖op = od,P (1) in Proposition 6.(b)
that implies ‖(ψ̃≤m)†P 2‖op = od,P (1) (for example by looking at the singular value decomposition of ψ̃≤m). 
Similarly ‖ψ̃T

≤mf̃>m‖2 = ‖P>mf∗‖L2+η · od,P (1) (Proposition 7.(c)) implies ‖(ψ̃≤m)†f̃>m‖2 = ‖P>mf∗‖L2+η ·
od,P (1). Using the same argument as in the proof of Eq. (130), we have

‖(ψ̃≤m)†Z̃Û
−1
λ Z̃

T
f̃>m‖2

=
∥∥∥(ψ̃≤m)†P Λ2

Λ2 + λ
P Tf̃>m

∥∥∥
2

≤ ‖(ψ̃≤m)†f̃>m‖2 + od,P (1) · ‖(ψ̃≤m)†‖op‖f̃>m‖2 + ‖P>mf∗‖L2 ·Od,P (1) · ‖(ψ̃≤m)†P 2‖op

= ‖P>mf∗‖L2+η · od,P (1).

(133)

The second term (132) can be decomposed as

(ψ̃≤m)†Z̃>mÛ
−1
λ Z̃

T
f̃>m = (ψ̃≤m)†Z̃>mQ1

Λ1
Λ2

1 + λ
P T

1 f̃>m + (ψ̃≤m)†Z̃>mQ2
Λ2

Λ2
2 + λ

P T
2 f̃>m.

Using that σmin(Λ1) = κ1/2
>m · ωd,P (1) and ‖Z̃>m‖op = κ1/2

>m ·Od,P (1) yields
∥∥∥(ψ̃≤m)†Z̃>mQ1

Λ1
Λ2

1 + λ
P T

1 f̃>m

∥∥∥
op

≤ ‖(ψ̃≤m)†Z̃>mQ1‖op‖Λ1/(Λ2
1 + λ)‖op‖P T

1 f̃>m‖op

= Od,P (κ1/2
>m) · od,P (κ−1/2

>m ) ·Od,P (‖P>mf∗‖L2)
= ‖P>mf∗‖L2 · od,P (1).

(134)

For the second term, recall that (ψ̃≤m)† = ψ̃
T
≤m + ∆ and introduce PP T = P 1P

T
1 + P 2P

T
2 = In:

∥∥∥(ψ̃≤m)†Z̃>mQ2
Λ2

Λ2
2 + λ

P T
2 f̃>m

∥∥∥
op

=
∥∥∥(ψ̃≤m)†[P 1P

T
1 + P 2P

T
2 ]Z̃>mQ2

Λ2
Λ2

2 + λ
P T

2 f̃>m

∥∥∥
op

≤ ‖(ψ̃≤m)†P 1‖op‖P T
1 Z̃>mQ2‖op‖Λ2/(Λ2

2 + λ)‖op‖P T
2 f̃>m‖op

+ ‖(ψ̃≤m)†P 2‖op‖P T
2 Z̃>mQ2‖op‖Λ2/(Λ2

2 + λ)
∥∥∥

op
‖P T

2 f̃>m‖op

= od,P (κ1/2
>m) ·Od,P (κ1/2

>m) · ‖P>mf∗‖L2

= ‖P>mf∗‖L2 · od,P (1),

(135)

where we used Eq. (93) in Proposition 6, and σmin(Λ2) = κ−1/2
>m · Ωd,P (1) to obtain the second to last line. 

Combining Eqs. (133), (134) and (135) yields the result.

Step 3. Bound 
√
n‖ZÛ

−1
λ φ≤mD≤m/N‖op = Od,P (1).

First notice that ‖Z̃>mφ̃≤m‖op = κ1/2
>m · od,P (1) implies ‖Z̃>m(φ̃T

≤m)†‖op = κ1/2
>m · od,P (1), where we used 

that ‖φ̃T
≤mφ̃≤m − Im‖op = od,P (1).
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Using φ̃≤mD̃≤m = (Z̃ − Z̃>m)(φ̃T
≤m)†, we have

‖Z̃Û
−1
λ φ̃≤mD̃≤m‖op ≤ ‖Z̃Û

−1
λ Z̃(φ̃T

≤m)†‖op + ‖Z̃Û
−1
λ Z̃>m(φ̃T

≤m)†‖op

≤ ‖Λ2/(Λ2 + λ)‖op‖(φ̃
T
≤m)†‖op + ‖Z̃Û

−1
λ ‖op‖Z̃>m(φ̃T

≤m)†‖op

= Od,P (1) + Od,P (κ−1/2
>m ) · od,P (κ1/2

>m)
= Od,P (1),

which concludes the proof of the claims in Proposition 7.(a).

B.3.3. Proof of Proposition 7.(b)
Denote

Dm:M =diag(λd,m+1,λd,m+2, . . . ,λd,M) ∈ R(M−m)×(M−m),

φm:M =(φk(θi))i∈[N ],k=m+1,...,M ∈ RN×(M−m).

Applying Theorem 7 to U>m (where the assumptions are satisfied by Assumptions 1.(a) and (b) and 
Assumption 2.(a)), we get with Assumption 1.(d),

U>m = φm:MD2
m:MφT

m:M + κ>M(IN + ∆),

where ‖∆‖op = od,P (1) and κ>M = Tr(Hd,>M). By assumption, we have N ≥ n1+δ0 for some fixed δ0 > 0
and therefore

n

N
‖κ>M(IN + ∆)‖op = κ>M · od,P (1). (136)

By Proposition 3 (assumptions satisfied by Assumptions 1.(a) and 2.(a)), we get

‖φT
m:Mφm:M/N − IM−m‖op = od,P (1).

Furthermore, by Assumption 2.(a), we have n1+δ0 · ‖Hd,>m‖op = Od(1) · κ>m for a fixed δ0 > 0. Therefore 
n‖D2

m:M‖op = κ>m · od(1). Hence,

n

N
‖φm:MD2

m:MφT
m:M‖op ≤ ‖φm:M/

√
N‖2

op‖nD2
m:M‖op = κ>m · od,P (1). (137)

Combining Eqs. (136) and (137) yields

n

N
‖U>m‖op = κ>m · od,P (1).

B.3.4. Proof of Proposition 7.(d)
Recall

V >m =
∞∑

k=m+1
f̂d,kλd,kφk.

Taking the expectation over (θ1, . . . , θN ), we get

n

N
E[‖V >m‖2

2] = n
∑

k≥m+1
λ2
d,kf̂

2
d,k ≤ n · ‖Hd,>m‖op · ‖P>mf∗‖2

L2 .
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From condition (19) in Assumption 2.(a), we have n1+δ0‖Hd,>m‖op = Od(1) · κ>m, and we conclude, via 
Markov’s inequality, that

√
n

N
‖V >m‖2 = √

κ>m‖P>mf∗‖L2 · od,P (1).

B.3.5. Bounds in the underparametrized regime
In the underparametrized case, we further prove the following lemma.

Lemma 10. Follow the assumptions of Theorem 1 in the underparametrized case as well as the notations in 
Section B.1. Then, we have

‖ZT
>Mf>M/n‖2 = κ1/2

>M · ‖P>Mf∗‖L2+η · od,P (1), (138)

‖Û
−1
λ ZTf/n‖op = κ−1/2

>M · od,P (1) · (‖f∗‖L2 + ‖P>Mf∗‖L2+η). (139)

Proof of Lemma 10. Step 1. Bound ‖ZT
>Mf>M/n‖2 = κ1/2

>M · ‖P>Mf∗‖L2+η · od,P (1).
Recall the decomposition of Z>M in the eigenbasis of functions:

Z>M =
∞∑

k=M+1
λd,kψkφ

T
k .

Consider the expected square norm (with respect to Θ = (θj)j∈[N ])

EΘ
[
‖ZT

>Mf>M‖2
2
]

=
∞∑

k,!=M+1
λd,kλd,!EΘ[fT

>Mψd,kφ
T
d,kφd,!ψd,!f>M]

= N
∞∑

k=M+1
λ2
d,k(fT

>Mψd,k)2 ,

where we used that EΘ[φT
d,kφd,!] = Nδk,! by orthonormality of {φd,k}k≥1. Expanding with respect to the 

xi’s, we get

EΘ
[
‖ZT

>Mf>M‖2
2
]

= N
∑

i∈[n]

{
Hd,>M:m(xi,xi)[P>Mf∗(xi)]2 + Hd,>m(xi,xi)[P>Mf∗(xi)]2

}

+ N
∑

i0=j∈[n]

∞∑

k=M+1
λ2
d,kψd,k(xi)P>Mf∗(xi) · ψd,k(xj)P>Mf∗(xj),

where we recall

Hd,M:u(xi,xi) =
u∑

k=M+1
λ2
d,kψd,k(xi)2,

Hd,>u(xi,xi) =
∞∑

k=u+1
λ2
d,kψd,k(xi)2.

Consider the first term depending on Hd,M:m. Using the same computation as in the proof of Proposi-
tion 7.(c) and Lemma 6 (with the hypercontractivity assumption up to u ≥ m of Assumption 1.(a)), by 
Hölder’s inequality we have for the q
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E
[
Hd,M:m(x,x)[P>Mf∗(x)]2

]
≤ ‖Hd,M:m‖L1+2/η‖P>Mf∗‖2

L2+η

≤ C(1 + 2/η)2 · Ex[Hd,M:m(x,x)] · ‖P>Mf∗‖2
L2+η .

We deduce by Markov’s inequality that the first term is bounded by
∑

i∈[n]
Hd,M:m(xi,xi)[P>Mf∗(xi)]2 = Od,P (1) · n · Tr(Hd,M:m) · ‖P>Mf∗‖2

L2+η . (140)

For the second term, recall that by Assumption 1.(d), we have

max
xi∈[n]

Hd,>m(xi,xi) = Od,P (1) · Tr(Hd,>m).

Hence
∑

i∈[n]
Hd,>m(xi,xi)[P>Mf∗(xi)]2 = Od,P (1) · Tr(Hd,>m) ·

∑

i∈[n]
[P>Mf∗(xi)]2,

and by Markov’s inequality
∑

i∈[n]
Hd,>m(xi,xi)[P>Mf∗(xi)]2 = Od,P (1) · n · Tr(Hd,>m) · ‖P>Mf∗‖2

L2 . (141)

Taking the expectation of the third term gives

n(n− 1)
∞∑

k=M+1
λ2
d,kE

[
ψd,k(x)[P>Mf∗(x)]

]2 = n(n− 1)
∞∑

k=M+1
λ2
d,kf̂

2
d,k

≤ n(n− 1)‖Hd,>u‖op‖P>Mf∗‖2
L2 .

(142)

Merging Eqs. (140), (141) and (142), we get

EΘ
[
‖ZT

>Mf>M/n‖2
2
]
≤ N

n
·Od,P (1) · Tr(Hd,>M) · ‖P>Mf∗‖2

L2+η + N‖Hd,>u‖op · ‖P>Mf∗‖2
L2

= od(1) · Tr(Hd,>M) · ‖P>Mf∗‖2
L2+η ,

where we used Assumption 2.(b) (N · ‖Hd,>u‖op = Od,P (N−δ0)Tr(Hd,>u) as well as n ≥ N1+δ0 for a fixed 
δ0 > 0). Using Markov’s inequality proves Eq. (138).

Step 2. Bound on ‖Û
−1
λ ZTf/n‖2.

By Proposition 6.(a) in the underparametrized case, we have

Û
−1
λ ZTf/n = Q1

Λ1
Λ2

1 + λ
P T

1f/
√
n + Q2

Λ2
Λ2

2 + λ
P T

2f/
√
n, (143)

where σmin(Λ1) = ωd,P (1) · κ1/2
>M and σmin(Λ2) = κ1/2

>M · (1 + od,P (1)). In particular, this shows that

∥∥∥Q1
Λ1

Λ2
1 + λ

P T
1f/

√
n
∥∥∥

2
≤ σmin(Λ1)−1‖f/

√
n‖2 ≤ od,P (1) · κ−1/2

>M · ‖f∗‖L2 . (144)

For the second term (143), decompose f = f≤M + f>M. Recall f≤M = ψ≤Mf̂≤M. By Proposition 6.(b), 
we have ‖P T

2ψ≤m/
√
n‖op = od,P (1). Furthermore, using Eq. (138), namely ‖ZT

>Mf>M/n‖2 = κ1/2
>M ·

‖P>Mf∗‖L2+η · od,P (1), we get ‖P T
2f>M/

√
n‖op = ‖P>Mf∗‖L2+η · od,P (1). We deduce
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∥∥∥Q2
Λ2

Λ2
2 + λ

P T
2f/

√
n
∥∥∥

2
≤ σmin(Λ2)−1(‖P T

2f≤M/
√
n‖2 + ‖P T

2f>M/
√
n‖2)

= Od,P (κ−1/2
>M ) · od,P (1) · (‖f∗‖L2 + ‖P>Mf∗‖L2+η)

= κ−1/2
>M (‖f∗‖L2 + ‖P>Mf∗‖L2+η) · od,P (1).

(145)

Combining Eqs. (144) and (145) yields Eq. (139). !

B.4. Concentration of the random feature kernel matrix ZTZ

We recall the following standard result on concentration of random matrices with independent rows:

Lemma 11 ([42] Theorem 5.45). Let A be a p × q matrix whose rows ai are independent random vectors in 
Rq with common second moment matrix Σ = E[ai ⊗ ai]. Let Γ := E[maxi∈[p] ‖ai‖2

2]. Then

E
[
‖ATA/p− Σ‖op

]
≤ max(‖Σ‖1/2

op η, η2),

where η = C
√

Γ log(min(p,q))
p and C is an absolute constant.

We will also use the following corollary for asymmetric matrices:

Corollary 1. Let A be a n ×N matrix whose rows ai are independent random vectors in RN with common 
second moment matrix Σa = E[ai ⊗ ai]. Let B be a n × m matrix whose rows bi are independent random 
vectors in Rm with common second moment matrix Σb = E[bi ⊗ bi]. Let Γa := E[maxi∈[n] ‖ai‖2

2] and 
Γb := E[maxi∈[n] ‖bi‖2

2]. Denote Σab = E[ai ⊗ bi]. Then,

E
[
‖ATB/n− Σab‖op

]
≤ max

(
(‖Σa‖op + ‖Σb‖op)1/2η, η2), (146)

where η = C
√

(Γa+Γb) log(min(n,N,m))
n and C is an absolute constant.

Proof of Corollary 1. Define C = [A, B] ∈ Rn×(N+m) whose rows ci = [ai, bi] are independent random 

vectors in RN+m with common second matrix Σc =
[

Σa Σab
Σba Σb

]
. By Lemma 11, we have

E
[
‖CTC/n− Σc‖op

]
≤ max(‖Σc‖1/2

op η, η2),

where η = C
√

Γ log(min(n,N+m))
n with

Γ = E[max
i∈[n]

‖ci‖2
2] ≤ E[max

i∈[n]
‖ai‖2

2] + E[max
i∈[n]

‖bi‖2
2] ≤ Γa + Γb.

Notice that ‖Σc‖op ≤ C(‖Σa‖op + ‖Σb‖op), and

‖ATB/n− Σab‖op ≤ ‖CTC/n− Σc‖op.

Combining these bounds yields Eq. (146). !

Consider the feature matrix Z = (σd(xi; θj))i∈[n],j∈[N ]. We recall the decomposition Z = Z≤m + Z>m
into a low and high degree parts:
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Z≤m = ψ≤mD≤mφ
T
≤m, Z>m =

∑

k≥m+1
λd,kψkφ

T
k .

We prove the following concentration result on Z>m.

Proposition 8 (Concentration of ZTZ matrix). Consider the overparametrized case N(d) ≥ n(d)1+δ0 for 
some fixed δ0 > 0. Let {σd}d≥1 be a sequence of activation functions satisfying the feature map concentration 
(Assumption 1) and the spectral gap (Assumption 2) at level {(N(d), M(d), n(d), m(d))}d≥1. Then, we have

Z>mZ
T
>m

N
= κ>m · (In + ∆Z), (147)

where κ>m = Tr(Hd,>m) and ‖∆Z‖op = od,P (1). Furthermore,

∥∥∥
Z>mφ≤m

N

∥∥∥
op

= κ1/2
>m · od,P (1). (148)

Proof of Proposition 8. For convenience, we will drop the subscript d.

Step 1. Bound on ‖Z>mZ
T
>m/N − κ>mIn‖op.

Denote AT = Z>m = [a1, . . . , aN ] ∈ Rn×N with ai = (σ>m(x1; θi), . . . , σ>m(xn; θi)) ∈ Rn. Conditioned 
on (x1, . . . , xn), the rows ai are independent with common second moment matrix

Ex[ai ⊗ ai] = H>m,

where H>m = (H>m,ij)1≤i,j≤N with H>m,ij = Eθ[σ>m(xi; θ)σ>m(xj ; θ)]. By applying Theorem 7 to the 
kernel matrix H>m (assumptions satisfied by Assumptions 1 and 2), we have H>m = κ>m · (In + ∆H)
where ‖∆H‖op = od,P (1). Therefore it is sufficient to show that

∥∥∥
Z>mZ

T
>m

N
−H>m

∥∥∥
op

= od,P (1).

Let us decompose σ>m into a low- and high- degree parts σ>m = σm:u + σ>u (recall that u(d) > m(d)):

σm:u(x;θ) =
u∑

k=m+1
λd,kψk(x)φk(θ),

σ>u(x;θ) =
∞∑

k=u+1
λd,kψk(x)φk(θ).

Let ai = (σm:u(x1; θi), . . . , σm:u(xn; θi)) ∈ Rn and ai = (σ>u(x1; θi), . . . , σ>u(xn; θi)) ∈ Rn, ai = ai + ai. 
Then

Γ = Eθ[max
i∈[N ]

‖ai‖2
2] ≤ 2Eθ[max

i∈[N ]
‖ai‖2

2] + 2Eθ[max
i∈[N ]

‖ai‖2
2].

Let q > 0 be an integer as in Assumption 1.(c). We have

Eθ

[
max
i∈[N ]

‖ai‖2
2

]
≤ Eθ

[
max
i∈[N ]

‖ai‖q2
]1/q

≤N1/qEθ[‖ai‖
2q
2 ]1/q.

By Jensen’s inequality and Assumption 1.(c), there exists a fixed δ0 > 0 such that
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Ex,θ

[
‖ai‖

2q
2

]
= Ex,θ

[( ∑

j∈[n]
σ>u(xj ;θ)2

)q]

≤ nq−1Ex,θ

[ ∑

j∈[n]
σ>u(xj ;θ)2q

]

≤ nqEx,θ[σ>u(xj ;θ)2q] = Od(1) · nq(1+2δ0) · κq
>u,

where κ>u = Tr(H>u) =
∑∞

k=u+1 λ
2
k. Hence, by Markov’s inequality, we get

Eθ[max
i∈[N ]

‖ai‖2
2] = Od,P (1) ·N1/qn1+2δ0 · κ>u. (149)

Similarly, by the hypercontractivity assumption (Assumption 1.(a)), we obtain

Ex

[
Eθ

[
max
i∈[N ]

‖ai‖2
2

]]
≤ CqN

1/qEx,θ

[
‖ai‖2

2
]

= CqN
1/qn · κm:u,

where κm:u =
∑u

k=m+1 λ
2
k. Hence, by Markov’s inequality,

Eθ

[
max
i∈[N ]

‖ai‖2
2

]
= Od,P (1) ·N1/qn · κm:u. (150)

Combining Eqs. (149) and (150) yields

Γa = Od,P (1) ·N1/qn1+2δ0κ>m.

We can therefore apply Lemma 11. Recalling ‖H>m‖op = Od,P (1) · κ>m, we have

Eθ

[∥∥Z>mZ
T
>m/N −H>m

∥∥
op

]
≤ Od,P (1) · max(κ1/2

>mη, η
2),

with η =
(
κ>mN1/q−1n1+2δ0 log(N)

)1/2 = κ1/2
>m ·od,P (1) by the choice of q in Assumption 1.(c). We conclude

∥∥Z>mZ
T
>m/N −H>m

∥∥
op = κ>m · od,P (1).

Step 2. Bound on ‖Z>mφ≤m/N‖op.
Consider B = κ1/2

>mφ≤m = [b1, . . . , bN ]TRN×m where bi = κ1/2
>m[φ1(θi), . . . , φm(θi)] ∈ Rm are independent 

rows with second moment matrix Σb = E[bi ⊗ bi] = κ>mIm. Furthermore, by the hypercontractivity 
assumption (Assumption 1.(a)), we have

Γb = Eθ

[
max
i∈[N ]

‖bi‖2
2

]
≤ CqN

1/qEθ

[
‖bi‖2

2

]
= CqN

1/qm · κ>m.

Notice that E[ai ⊗ bi] = 0. Furthermore, recalling the previous step, we have ‖Σa‖op = ‖H>m‖op =
Od,P (1) · κ>m and

‖Σa‖op + ‖Σb‖op =Od,P (1) · κ>m,

Γa + Γb =Od,P (1) ·N1/qn1+2δ0 · κ>m.

Then by Corollary 1 applied to ATB/N and recalling the assumption on q in Assumption 1.(c),

Eθ[‖Zmφ≤m/N‖op] = od,P (1) · κ1/2
>m,

which concludes the proof by Markov’s inequality. !
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Appendix C. Generalization error of kernel ridge regression: Proof of Theorem 5

In this section, we prove Theorem 5. We will then prove a different version of the same theorem in 
Section C.2, under somewhat different assumptions. Namely, we will relax Assumption 4.(c) and instead 
impose a gap condition on the eigenvalues of the kernel.

C.1. Proof of Theorem 5

In this section, we prove Theorem 9. Throughout the proof, we will denote ∆ any matrix with ‖∆‖op =
od,P (1). In particular, ∆ can change from one line to line. We defer the proofs of some more technical results 
to Section C.1.1.

Step 1. Expressing the risk in terms of empirical kernel matrix.
Recall that the KRR estimator is given by

f̂λ(x) = yT(H + λIN )−1h(x),

where y = (y1, . . . , yn) and H = (H(xi, xj))i,j∈[n], h(x) = (Hd(x, x1), . . . , Hd(x, xn)) ∈ Rn. The resulting 
test error is

RKR(f∗,X,λ) ≡ Ex

[(
f∗(x) − yT(H + λIn)−1h(x)

)2]

= Ex[f∗(x)2] − 2yT(H + λIn)−1E + yT(H + λIn)−1M(H + λIn)−1y,

where E = (E1, . . . , En)T, M = (Mij)ij∈[n] and H = (Hij)ij∈[n] are defined by

Ei = Ex[f∗(x)Hd(x,xi)],
Mij = Ex[Hd(xi,x)Hd(xj ,x)],
Hij = Hd(xi,xj).

We recall that the eigendecomposition of Hd is given by

Hd(x,y) =
∞∑

k=1
λ2
d,kψk(x)ψk(y).

We write the orthogonal decomposition of f∗ in the basis {ψk}k≥1 as

f∗(x) =
∞∑

k=1
f̂d,kψk(x).

Define

ψk = (ψk(x1), . . . ,ψk(xn))T ∈ Rn,

D≤m = diag(λd,1,λd,2, . . . ,λd,m) ∈ Rm×m,

Ψ≤m = (ψk(xi))i∈[n],k∈[m] ∈ Rn×m,

f̂≤m = (f̂d,1, f̂d,2, . . . , f̂d,m)T ∈ Rm.
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We decompose the vectors and matrices f , E, H , and M in terms of orthogonal basis

f = f≤m + f>m, f≤m = Ψ≤mf̂≤m, f>m =
∞∑

k=m+1
f̂d,kψk,

E = E≤m + E>m, E≤m = Ψ≤mD
2
≤mf̂≤m, E>m =

∞∑

k=m+1
λ2
d,kf̂d,kψk,

H = H≤m + H>m, H≤m = Ψ≤mD
2
≤mΨT

≤m, H>m

∞∑

k=m+1
λ2
d,kψkψ

T
k ,

M = M≤m + M>m, M≤m = Ψ≤mD
4
≤mΨT

≤m, M>m =
∞∑

k=m+1
λ4
d,kψkψ

T
k .

(151)

Applying Theorem 7 with respect to the operator Hd and H2
d where the assumptions are satisfied by 

Assumptions 4.(a), 4.(b), cf. Eqs. (43) and (45), and 5.(a), cf. Eq. (49), and using Assumption 4.(c), the 
kernel matrices H and M can be rewritten as

H = Ψ≤mD
2
≤mΨT

≤m + κH(I + ∆H),
M = Ψ≤mD

4
≤mΨT

≤m + κM (I + ∆M ),
(152)

where

κH = Tr(Hd,>m) =
∑

k≥m+1
λ2
d,k,

κM = Tr(H2
d,>m) =

∑

k≥m+1
λ4
d,k,

and

max{‖∆M‖op, ‖∆H‖op} = od,P (1). (153)

Let us introduce the shrinkage matrix

S≤m =
(
Im + κH + λ

n
D−2

≤m

)−1
= diag((sj)j∈[m]) where sj =

λ2
d,j

λ2
d,j + κH+λ

n

. (154)

Step 2. Decompose the risk
Recalling y = f + ε, we decompose the risk as follows

RKR(f∗,X,λ) = ‖f∗‖2
L2 − 2T1 + T2 + T3 − 2T4 + 2T5,

where

T1 = fT(H + λIn)−1E,

T2 = fT(H + λIn)−1M(H + λIn)−1f ,

T3 = εT(H + λIn)−1M(H + λIn)−1ε,

T4 = εT(H + λIn)−1E,

T5 = εT(H + λIn)−1M(H + λIn)−1f .
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Step 3. Term T2
Note we have

T2 = T21 + T22 + T23,

where

T21 = fT
≤m(H + λIn)−1M(H + λIn)−1f≤m,

T22 = 2fT
≤m(H + λIn)−1M(H + λIn)−1f>m,

T23 = fT
>m(H + λIn)−1M(H + λIn)−1f>m.

(155)

By Lemma 12 which is stated in Section C.1.1 below, we have

‖n(H + λIn)−1M(H + λIn)−1 − Ψ≤mS
2
≤mΨT

≤m/n‖op = od,P (1), (156)

hence

T21 = f̂
T
≤mΨT

≤m(H + λIn)−1M(H + λIn)−1Ψ≤mf̂≤m

= f̂
T
≤mΨT

≤mΨT
≤mS

2
≤mΨ≤mΨ≤mf̂≤m/n

2 + [‖Ψ≤mf̂≤m‖2
2/n] · od,P (1).

By Assumption 4.(a), the conditions of Theorem 7.(b) are satisfied, and we have (with ‖∆‖op = od,P (1))

f̂
T
≤mΨT

≤mΨ≤mS
2
≤mΨT

≤mΨ≤mf̂≤m/n
2 = f̂

T
≤m(I + ∆)S2

≤m(I + ∆)f̂≤m = ‖S≤mf̂≤m‖2
2 + od,P (1) · ‖f̂≤m‖2

2.

Moreover,

‖Ψ≤mf̂≤m‖2
2/n = f̂

T
≤m(I + ∆)f̂≤m = ‖f̂≤m‖2

2(1 + od,P (1)).

As a result, we obtain

T21 = ‖S≤mf̂≤m‖2
2 + od,P (1) · ‖f̂≤m‖2

2 = ‖S≤mf̂≤m‖2
2 + od,P (1) · ‖P≤mf∗‖2

L2 . (157)

By Eq. (156) again, we simplify

T23 =
( ∑

k≥m+1
f̂kψ

T
k

)
(H + λIn)−1M(H + λIn)−1

( ∑

k≥m+1
ψkf̂k

)

=
( ∑

k≥m+1
f̂kψ

T
k

)
Ψ≤mS

2
≤mΨT

≤m

( ∑

k≥m+1
ψkf̂k

)
/n2 +

[∥∥∥
∑

k≥m+1
ψkf̂k

∥∥∥
2

2
/n

]
· od,P (1).

Note that S≤m 9 Im and we have
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E
[( ∑

k≥m+1
f̂kψ

T
k

)
Ψ≤mS

2
≤mΨT

≤m

( ∑

k≥m+1
ψkf̂k

)]
/n2

≤ E
[( ∑

k≥m+1
f̂kψ

T
k

)
Ψ≤mΨT

≤m

( ∑

k≥m+1
ψkf̂k

)]
/n2

=
∑

u,v≥m+1

m∑

s=1

∑

i,j∈[n]

{
E
[
ψu(xi)ψs(xi)ψs(xj)ψv(xj)

]
/n2

}
f̂v f̂u

=
∑

u,v≥m+1

m∑

s=1

∑

i∈[n]

{
E
[
ψu(xi)ψs(xi)ψs(xi)ψv(xi)

]
/n2

}
f̂v f̂u

= 1
n

m∑

s=1
Ex

[(
P>mf∗(x)

)2
ψs(x)2

]
≤ 1

n

m∑

s=1
‖P>mf∗‖2

L2+η‖ψs‖2
L(4+2η)/η

≤ C(η)m
n
‖P>mf∗‖2

L2+η ,

where the last inequality used the hypercontractivity assumption as in Assumption 4.(a). Moreover

E
[ 1
n

∥∥∥
∑

k≥m+1
ψkf̂k

∥∥∥
2

2

]
=

∞∑

k=m+1
f̂2
k = ‖P>mf∗‖2

L2 .

Using the last two displays, and the fact that m(d) ≤ n(d)1−δ by Assumption 5.(b),

T23 = od,P (1) · ‖P>mf∗‖2
L2+η . (158)

Using Cauchy-Schwarz inequality with term T22, we get

T22 ≤ 2(T21T23)1/2 = od,P (1) · ‖P≤mf∗‖L2‖P>mf∗‖L2+η . (159)

As a result, combining Eqs. (157), (158) and (159) leads to

T2 = ‖S≤mf̂≤m‖2
2 + od,P (1) · (‖f∗‖2

L2 + ‖P>Mf∗‖2
L2+η). (160)

Step 4. Term T1.
We decompose

T1 = T11 + T12 + T13,

where

T11 = fT
≤m(H + λIn)−1E≤m,

T12 = fT
>m(H + λIn)−1E≤m,

T13 = fT(H + λIn)−1E>m.

By Lemma 13 stated in Section C.1.1 below, we have

‖ΨT
≤m(H + λIn)−1Ψ≤mD

2
≤m − S≤m‖op = od,P (1),

so that
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T11 = f̂
T
≤mΨT

≤m(H + λIn)−1Ψ≤mD
2
≤mf̂≤m

= ‖S1/2
≤mf̂≤m‖2

2 + od,P (1) · ‖f̂≤m‖2
2 = ‖S1/2

≤mf̂≤m‖2
2 + od,P (1) · ‖P≤mf∗‖2

2. (161)

Applying Cauchy-Schwarz inequality to T12, and by the expression M = Ψ≤mD
4
≤mΨT

≤m+κM (IM +∆M ), 
cf. Eq. (152), we get with high probability

|T12| =
∣∣∣

∞∑

k=m+1
f̂kψ

T
k (H + λIn)−1Ψ≤mD

2
≤mf̂≤m

∣∣∣

(a)
≤

∥∥∥
∞∑

k=m+1
f̂kψ

T
k (H + λIn)−1Ψ≤mD

2
≤m

∥∥∥
2
‖f̂≤m‖2

(b)=
[( ∞∑

k=m+1
f̂kψ

T
k

)
(H + λIn)−1Ψ≤mD

4
≤mΨT

≤m(H + λIn)−1
( ∞∑

k=m+1
f̂kψk

)]1/2
‖f̂≤m‖2

(c)
≤

[( ∞∑

k=m+1
f̂kψ

T
k

)
(H + λIn)−1M(H + λIn)−1

( ∞∑

k=m+1
f̂kψk

)]1/2
‖f̂≤m‖2

(d)= T 1/2
23 ‖f̂≤m‖2

(e)= od,P (1) · ‖P≤mf∗‖L2‖P>mf∗‖L2+η .

(162)

Here (a) follows by Cauchy-Schwarz; (b) by the definition of norm; (c) because M 8 Ψ≤mD
4
≤mΨT

≤m +
κM (I + ∆M ) 8 Ψ≤mD

4
≤mΨT

≤m; (d) by the definition of T23 as in Eq. (155); (e) by Eq. (158).
For term T13, we have

|T13| = |fT(H + λIn)−1E>m| ≤ ‖f‖2‖(H + λIn)−1‖op‖E>m‖2.

Note that we have E[‖f‖2
2] = n‖f∗‖2

L2 . Further by Eq. (152), we have ‖(H + λIn)−1‖op ≤ 2/(κH + λ) with 
high probability. Finally,

E[‖E>m‖2
2] = n

∞∑

k=m+1
λ4
d,kf̂

2
k ≤ n

[
max

k≥m+1
λ4
d,k

]
‖P>mf∗‖2

L2 .

As a result, we obtain

|T13| ≤ Od,P (1) · ‖P>mf∗‖L2‖f∗‖L2

[
n2 max

k≥m+1
λ4
d,k

]1/2
/(κH + λ)

= Od,P (1) · ‖P>mf∗‖L2‖f∗‖L2

[
n max

k≥m+1
λ2
d,k

]
/
( ∑

k≥m+1
λ2
d,k + λ

)

= od,P (1) · ‖P>mf∗‖L2‖f∗‖L2 ,

(163)

where the last equality used Eq. (49) in Assumption 5.(a) and the fact that λ ∈ [0, Tr(Hd,>m)]. Combining 
Eqs. (161), (162) and (163) yields

T1 = ‖S1/2
≤mf̂≤m‖2

2 + od,P (1) · (‖f∗‖2
L2 + ‖P>Mf∗‖2

L2+η ). (164)

Step 5. Terms T3.
Again, by Lemma 12,

1
σ2
ε

Eε[T3] = Tr((H + λIn)−1M(H + λIn)−1) = Tr(Ψ≤mS
2
≤mΨT

≤m/n
2) + od,P (1).
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Hence, using Proposition 3 and noting that S≤m 9 Im, we obtain

1
n2 Tr(Ψ≤mS

2
≤mΨT

≤m) ≤ 1
n2 Tr(Ψ≤mΨT

≤m) = 1
n2 Tr(ΨT

≤mΨ≤m) = 1
n2nm

(
1 + od,P (1)

)
= od,P (1).

We conclude

T3 = od,P (1) · σ2
ε . (165)

Step 6. Terms T4.
Note that

1
σ2
ε

Eε[T 2
4 ] = 1

σ2
ε

Eε[εT(H + λIn)−1EET(H + λIn)−1ε]

= ET(H + λIn)−2E.

Notice that M 8 Ψ≤LD
4
≤LΨT

≤L for any L ∈ N, by the decomposition of Eq. (151). Therefore:

‖D2
≤LΨT

≤L(H + λIn)−2Ψ≤LD
2
≤L‖op = ‖(H + λIn)−1Ψ≤LD

4
≤LΨT

≤L(H + λIn)−1‖op

≤ ‖(H + λIn)−1M(H + λIn)−1‖op.
(166)

Further notice that, using Lemma 12 (stated below) followed by Proposition 3, we get

‖(H + λIn)−1M(H + λIn)−1‖op =‖Ψ≤mS
2
≤mΨT

≤m/n‖op/n + od,P (1/n)
≤‖Ψ≤mΨT

≤m/n‖op/n + od,P (1) = od,P (1) .
(167)

Hence,

ET(H + λIn)−2E
(a)= lim

L→∞
ET

≤L(H + λIn)−2E≤L

(b)= lim
L→∞

f̂
T
≤L[D2

≤LΨT
≤L(H + λIn)−2Ψ≤LD

2
≤L]f̂≤L

(c)
≤ lim sup

L→∞
‖D2

≤LΨT
≤L(H + λIn)−2Ψ≤LD

2
≤L‖op · lim

L→∞
‖f̂≤L‖2

2

(d)
≤ ‖(H + λIn)−1M(H + λIn)−1‖op · ‖f∗‖2

L2

(e)
≤ od,P (1) · ‖f∗‖2

L2 ,

where the limits for L → ∞ exist with high probability. In particular, (a) holds with high probability since 
‖ET

≤L −E‖2 → 0 as L → ∞, and ‖(H + λIn)−2‖op ≤ 1/λmin(H)2 ≤ (2/κH)2, by the decomposition (152), 
together with the fact that ‖∆H‖op = od,P (1), cf. Eq. (153). Further, (b) is by definition of E≤L; (c) by 
definition of operator norm; (d) by Eq. (166); (e) by Eq. (167).

We thus obtain

T4 = od,P (1) · σε · ‖f∗‖L2 = od,P (1) · (σ2
ε + ‖f∗‖2

L2). (168)

Step 7. Terms T5.
We decompose T5 using f = f≤m + f>m,

T5 = T51 + T52,
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where

T51 = εT(H + λIn)−1M(H + λIn)−1f≤m,

T52 = εT(H + λIn)−1M(H + λIn)−1f>m.

First notice that, by Eq. (167),

‖M1/2(H + λIn)−2M1/2‖op = ‖(H + λIn)−1M(H + λIn)−1‖op = od,P (1).

Then by Lemma 12,

1
σ2
ε

Eε[T 2
51] = 1

σ2
ε

Eε[εT(H + λIn)−1M(H + λIn)−1f≤mf
T
≤m(H + λIn)−1M(H + λIn)−1ε]

= fT
≤m[(H + λIn)−1M(H + λIn)−1]2f≤m

≤‖M1/2(H + λIn)−2M1/2‖op‖M1/2(H + λIn)−1f≤m‖2
2

= od,P (1) · T21

= od,P (1) · ‖P≤mf∗‖2
L2 ,

where the last equality follows by Eq. (157). Similarly, we get

Eε[T 2
52]/σ2

ε = od,P (1) · T23 = od,P (1) · ‖P>mf∗‖2
L2 .

By Markov’s inequality, we deduce that

T5 = od,P (1) · σε(‖P≤mf∗‖L2 + ‖P>mf∗‖L2) = od,P (1) · (σ2
ε + ‖f∗‖2

L2). (169)

Step 8. Finish the proof.
Combining Eqs. (160), (164), (165), (168) and (169), we have

RKR(f∗,X,λ) = ‖f∗‖2
L2 − 2T1 + T2 + T3 − 2T4 + 2T5

= ‖f̂≤m‖2
2 − 2‖S1/2

≤mf̂≤m‖2
2 + ‖S≤mf̂≤m‖2

2 + ‖P>mf∗‖2
L2

+ od,P (1) · (‖f∗‖2
L2 + ‖P>Mf∗‖2

L2+η + σ2
ε)

= ‖(I − S≤m)f̂≤m‖2
2 + ‖P>mf∗‖2

L2 + od,P (1) · (‖f∗‖2
L2 + ‖P>Mf∗‖2

L2+η + σ2
ε).

Recall the expression (55) of f̂ eff
γeff :

f̂ eff
γeff =

∞∑

j=1

λ2
d,j

λ2
d,j + γeff

n

f̂d,kψd,j ,

with γeff = λ + κH . From Assumption 5.(a), we have maxj>m λ2
d,j = od(1) · κH/n and we deduce

‖(I − S≤m)f̂≤m‖2
2 + ‖P>mf∗‖2

L2 = ‖f∗ − f̂ eff
γeff‖2

L2 + ‖f∗‖2
L2 · od,P (1).

We conclude

RKR(f∗,X,λ) = ‖f∗ − f̂ eff
γeff‖2

L2 + od,P (1) · (‖f∗‖2
L2 + ‖P>Mf∗‖2

L2+η + σ2
ε).
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Proceeding analogously (with f̂ eff
γeff replacing f∗) we obtain

‖f̂λ − f̂ eff
γeff‖2

L2 = od,P (1) · (‖f∗‖2
L2 + ‖P>Mf∗‖2

L2+η + σ2
ε).

C.1.1. Auxiliary lemmas

Lemma 12. Follow the assumptions and notations in the proof of Theorem 5. We have

‖n(H + λIn)−1M(H + λIn)−1 − Ψ≤mS
2
≤mΨT

≤m/n‖op = od,P (1),

where S≤m is the shrinkage matrix defined in Equation (154).

Proof of Lemma 12. We simplify the notations by defining ψk = (ψk(xi))i∈[n] ∈ Rn Ψ = ψ≤m ∈ Rn×m, 
D = D≤m = diag(λd,1, . . . , λd,m) ∈ Rm×m.

Then recalling Eq. (152), we have

H = ΨD2ΨT + κH(I + ∆H),
M = ΨD4ΨT + κM (I + ∆M ),

(170)

where κH = Tr(Hd,>m) and κM = Tr(H2
d,>m), and

max{‖∆M‖op, ‖∆H‖op} = od,P (1). (171)

As a result, we obtain the decomposition

n(H + λIn)−1M(H + λIn)−1 = T1 + T2,

where

T1 = nκM (H + λIn)−1(IM + ∆M )(H + λIn)−1,

T2 = n(H + λIn)−1ΨD4ΨT(H + λIn)−1.

Step 1. Bound term T1.
For T1, by Eqs. (170) and (171),

‖T1‖op ≤ nκM‖(H + λIn)−1‖2
op‖I + ∆M‖op = Od,P (1) · n[κM/κ2

H ]. (172)

By Eq. (49) in Assumption 5.(a), we have

κM

κ2
H

=
Tr(H2

d,>m)
Tr(Hd,>m)2 ≤ ‖Hd,>m‖op

Tr(Hd,>m) = Od(n−1−δ0).

We conclude that

‖T1‖op = od,P (1).

Step 2. Bound term T2.
For T2, setting ∆′

H = κH∆H/(λ +κH), the Sherman-Morrison-Woodbury formula produces the identity

T2 = n(I + ∆′
H)−1Ψ((κH + λ)D−2 + ΨT(I + ∆′

H)−1Ψ)−2ΨT(I + ∆′
H)−1

=EΨR2ΨTE/n,
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where

E = (I + ∆′
H)−1,

R = [(κH + λ)(nD2)−1 + ΨTEΨ/n]−1.

Denote S := S≤m = [Im + (κH + λ)(nD2)−1]−1. We get

‖T2 − ΨTS2Ψ/n‖op ≤ (1 + ‖E‖op)‖E − I‖op‖ΨR2ΨT/n‖ + ‖ΨR−2ΨT/n− ΨS2ΨT/n‖op

≤ (1 + ‖E‖op)‖E − I‖op‖ΨR2ΨT/n‖op + ‖ΨΨT/n‖op‖R2 − S2‖op.

Recalling Eq. (171), we have ‖E−I‖op = od,P (1) and by Theorem 7.(b), we have ‖ΨTΨ/n −I‖op = od,P (1). 
Furthermore

‖R2 − S2‖op = ‖R− S‖op(‖R‖op + ‖S‖op0 ≤ ‖R‖op‖S‖op(‖R‖op + ‖S‖op)‖R−1 − S−1‖op

and

‖R−1 − S−1‖op ≤ ‖ΨTEΨ/n− ΨTΨ/n‖op + ‖ΨTΨ/n− I‖op

≤ ‖ΨTΨ/n‖op‖E − I‖op + ‖ΨTΨ/n− I‖op = od,P (1).

Using that ‖S‖op ≤ 1, we obtain by the above computation that ‖R‖op ≤ 1 +od,P (1). Combining the above 
inequalities yields

‖T2 − ΨTS2Ψ/n‖op = od,P (1).

This gives

‖n(H + λIn)−1M(H + λIn)−1 − ΨS2ΨT/n‖op ≤ ‖T1‖op + ‖T2 − ΨS2ΨT/n‖op = od,P (1) ,

which completes the proof. !

Lemma 13. Follow the assumptions and notations in the proof of Theorem 5. We have

‖S≤m − ΨT
≤m(H + λIn)−1Ψ≤mD

2
≤m‖op = od,P (1),

where S≤m is the shrinkage matrix defined in Equation (154).

Proof of Lemma 13. We will follow the notations in the proof of Proposition 12. Applying Theorem 7 with 
respect to operator Hd and by Eq. (174) in Assumption 4.(c1),

H + λIn = ΨD2ΨT + κH(In + ∆H) + λIn = ΨD2ΨT + (κH + λ)(In + ∆′
H),

where ‖∆H‖op, ‖∆′
H‖op = od,P (1). The Sherman-Morrison-Woodbury formula gives the identity

ΨT[ΨD2ΨT + (κH + λ)(In + ∆′
H)]−1ΨD2 = ΨTE−1ΨR/n,

where E = In + ∆H and R = [(κH + λ)(nD2)−1 + ΨTE−1Ψ/n]−1. We obtain the inequality

‖S − ΨTE−1ΨR/n‖op ≤ ‖R‖op‖ΨTE−1Ψ/n− I‖op + ‖R− S‖op.

In the proof of Lemma 12, we already showed that ‖ΨTE−1Ψ/n − I‖op = od,P (1), ‖R − S‖op = od,P (1)
and ‖R‖op = Od,P (1). This concludes the proof. !
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C.2. Kernel ridge regression under relaxed assumptions on the diagonal

In this section, we state and prove a version of Theorem 5 that holds under weaker assumptions. Namely, 
instead of the concentration bound in Assumption 4.(c) we only require that the diagonal terms are upper 
bounded by a sub-polynomial factor times their expectation. Instead, we assume a spectral gap condition 
that was not required in the previous section.

We will first describe the modified assumption, then state the new version of the theorem. The proof is 
very similar to the one in the previous section. We will therefore use the same notations and only sketch 
the differences.

Assumption 8 (Relaxed kernel concentration at level {(n(d), m(d))}d≥1). We assume the kernel concentration 
property at level {(n(d), m(d))}d≥1, as stated in Assumption 4, with condition (c) replaced by the following

(c’) (Upper bound on the diagonal elements of the kernel) For (xi)i∈[n(d)] ∼iid νd and any δ > 0, we have

max
i∈[n(d)]

Ex∼u(d)
[
Hd,>u(d)(xi,x)2

]
= Od,P (n(d)δ) · Ex,x′∼νd

[
Hd,>u(d)(x,x′)2

]
, (173)

max
i∈[n(d)]

Hd,>u(d)(xi,xi) = Od,P (n(d)δ) · Ex∼νd [Hd,>u(d)(x,x)]. (174)

Assumption 9 (Eigenvalue condition at level {(n(d), m(d))}d≥1). We assume the eigenvalue condition As-
sumption 5 and, in addition, the following to hold

(c) There exists a fixed δ0 > 0, such that

n1−δ0 ≥ 1
λ2
d,m(d)

∑

k=m(d)+1
λ2
d,k .

Assumption 10 (Regularization and lower bound on diagonal elements). Consider the regularization param-
eter λ ∈ R≥0. We assume that one of the following holds:

(i) For (xi)i∈[n(d)] ∼iid νd and any δ > 0, we have

min
i∈[n(d)]

Ex∼νd [Hd,>m(d)(xi,x)2] =Ωd,P (n(d)−δ) · Ex,x′∼νd [Hd,>m(d)(x,x′)2], (175)

min
i∈[n(d)]

Hd,>m(d)(xi,xi) = Ωd,P (n(d)−δ) · Ex[Hd,>m(d)(x,x)], (176)

and λ = Od(1) · Tr(Hd,>m(d)) (in particular, taking λ = 0 is fine).
(ii) We have λ = Θd(1) · Tr(Hd,>m(d)).

Theorem 9. Let {f∗ ∈ Dd}d≥1 be a sequence of functions, (xi)i∈[n(d)] ∼ νd independently, {Hd}d≥1 be 
a sequence of kernel operators such that {(Hd, n(d), m(d))}d≥1 and the regularization parameter λ satisfy 
Assumptions 8, 9, and 10. Then for any fixed η > 0, we have

|RKR(f∗,X,Θ,λ) − ‖P>mf∗‖2
L2 | = od,P (1) · (‖f∗‖2

L2 + ‖P>mf∗‖2
L2+η + σ2

ε). (177)

C.2.1. Proof outline for Theorem 9
Throughout this section, we will denote δ0 > 0 a fixed constant and δ > 0 a constant that can be 

arbitrarily small. The value of δ0 is allowed to change from line to line.
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By the spectral gap condition (Assumption 9), the population estimator f̂ eff
γeff defined in Eq. (55) is 

approximately given by

‖f̂ eff
γeff − P≤mf∗‖2

L2 = od,P (1) · ‖f∗‖2
L2 .

Similarly, the shrinkage matrix defined in Eq. (154) verifies

‖S≤m − Im‖op = Od,P (n−δ0).

From Theorem 7 applied to the operator Hd and H2
d, the kernel matrices H and M can be rewritten as

H = Ψ≤mD
2
≤mΨT

≤m + κH(ΛH + ∆H),
M = Ψ≤mD

4
≤mΨT

≤m + κM (ΛM + ∆M ),
(178)

where

κH = Tr(Hd,>m) =
∑

k≥m+1
λ2
d,k,

κM = Tr(H2
d,>m) =

∑

k≥m+1
λ4
d,k,

and

ΛH =diag
({

Hd,>m(xi,xi)/κH

}
i∈[n]

)
,

ΛM =diag
({

Ex[Hd,>m(xi,x)2]/κM

}

i∈[n]

)
;

and there exists a fixed δ0 > 0 such that

max{‖∆M‖op, ‖∆H‖op} = Od,P (n−δ0). (179)

From Lemma 7 applied to ΛH and ΛM with Assumptions 4.(a) and 8.(c′), we have

ΛH 9Od,P (nδ) · In,
ΛM 9Od,P (nδ) · In.

(180)

Furthermore from Assumption 10 and Eq. (179), we have for any δ < δ′,

H + λIn 8 κH(ΛH + ∆H) + λIn 8 Ωd,P (n−δ) · κH · In. (181)

The handling of the bounds on T1, T2, T3, T4 and T5 follows from the same computation as Section C.1, 
where every od,P (1) is replaced by Od,P (n−δ0) for some fixed δ0 > 0 while every Od,P (1) is replaced by 
Od,P (nδ) with δ > 0 arbitrary small. In particular, bounds of the form Od,P (1) · od,P (1) should be replaced 
by Od,P (nδ) · Od,P (n−δ0), and taking δ > 0 sufficiently small yields a bound od,P (1) (see the proofs bellow 
for some examples).

Below we detail the proof of the updated auxiliary lemmas from Section C.1.1. Eq. (182) is used to bound 
the term T21, Eq. (183) is used to bound the term T23, while Eq. (184) is used to bound the term T3, T4
and T5.
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Lemma 14. Follow the assumptions of Theorem 9 and the same notations as in Section C.1. Define

G = n(H + λIn)−1M(H + λIn)−1.

Then, there exists a fixed δ0 > 0 such that for any δ > 0,

‖ψT
≤mGψ≤m/n− Im‖op = Od,P (n−δ0), (182)

fT
>mGf>m/n = Od,P (n−δ0) · ‖P>mf∗‖2

L2+η , (183)
‖G‖op ≤ Od,P (nδ). (184)

Proof of Lemma 14. Recall that we denote δ0 > 0 a fixed constant and δ > 0 a constant that can be 
arbitrarily small. The value of δ0 is allowed to change from line to line.

Following the notations as in the proof of Lemma 12, we have

H = ΨD2ΨT + κH(ΛH + ∆H),
M = ΨD4ΨT + κM (ΛM + ∆M ).

Consider the same decomposition G = T 1 + T 2 as in the proof of Lemma 12, where

T 1 = nκM (H + λIn)−1(ΛM + ∆M )(H + λIn)−1,

T 2 = n(H + λIn)−1ΨD4ΨT(H + λIn)−1.

Step 1. Bound term T 1.
For T 1, by Eqs. (180) and (181), we have for any δ > 0,

‖T 1‖op ≤ nκM‖(H + λIn)−1‖2
op‖(ΛM + ∆M )‖op

≤ Od,P (1) · nκM · n2δκ−2
H · n2δ

≤ Od,P (1) · n1+4δ κM

κ2
H

.

(185)

By Eq. (49) in Assumption 5.(a),

κM

κ2
H

=
Tr(H2

d,>m)
Tr(Hd,>m)2 ≤ ‖Hd,>m‖op

Tr(Hd,>m) = Od(n−1−δ0).

Hence, taking δ sufficiently small in Eq. (172) yields

‖T 1‖op = Od,P (n−δ0).

Step 2. Simplifying the term T 2.
Introduce A = ΛH + ∆ + (λ/κH) · In so that

H + λIn = ΨD2ΨT + κHA.

The Sherman-Morrison-Woodbury formula gives the identity

T 2 = A−1ψ
(
κH(nD2)−1 + ψTA−1ψ/n

)−2
ψTA−1/n.
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From Assumption 9.(b), we have κH(nD2)−1 9 Ωd,P (n−δ0) ·In. Furthermore, recalling that ‖ψTψ−Im‖op =
od,P (1) and A−1 8 Od,P (n−δ)In for any δ > 0, we deduce (for example from Lemma 8)

∥∥T 2 −A−1ψ
(
ψTA−1ψ/n

)−2
ψTA−1/n

∥∥
op = Od,P (n−δ0).

Denote S = ΛH + (λ/κH) · In the diagonal matrix such that we have ‖A − S‖op = Od,P (n−δ0). We have 
Ωd(n−δ) · In 9 S 9 Od(nδ) · In. Similarly to the previous line, we get

∥∥A−1ψ
(
ψTA−1ψ/n

)−2
ψTA−1/n− S−1ψ

(
ψTS−1ψ/n

)−2
ψTS−1/n

∥∥
op = Od,P (n−δ0).

Denote R = S−1ψ
(
ψTS−1ψ/n

)−2
ψTS−1/n.

Step 3. Proving the bounds.
First notice that because Ωd(n−δ) · In 9 S 9 Od(nδ) · In and ‖ψTψ − Im‖op = od,P (1),

‖G‖op ≤ ‖T 1‖op + ‖T 2 −R‖op + ‖R‖op = Od,P (nδ),

for any δ > 0, which proves Eq. (184). Similarly,

‖ψTGψ/n− Im‖op ≤ (‖T 1‖op + ‖T 2 −R‖op)‖ψ/
√
n‖2

op + ‖ψTRψ/n− Im‖op = Od,P (n−δ0),

which proves Eq. (182).
Notice that

R = S−1ψ
(
ψTS−1ψ/n

)−2
ψTS−1/n 9 Od,P (nδ) · .S−1ψψTS−1/n

Denote S = diag((si)i∈[n]) and recall the decomposition

f>m =
∞∑

k=m+1
f̂kψk.

We have

E
[
fT
>mS

−1ψψTS−1f>m

]
/n2 = E

[( ∑

k≥m+1
f̂kψ

T
k

)
S−1Ψ≤mΨT

≤mS
−1

( ∑

k≥m+1
ψkf̂k

)]
/n2

=
∑

u,v≥m+1

m∑

t=1

∑

i,j∈[n]

{
s−1
i s−1

j E
[
ψu(xi)ψt(xi)ψt(xj)ψv(xj)

]
/n2

}
f̂v f̂u

=
∑

u,v≥m+1

m∑

t=1

∑

i∈[n]
s−2
i

{
E
[
ψu(xi)ψt(xi)ψt(xi)ψv(xi)

]
/n2

}
f̂v f̂u

= Od(nδ) · 1
n

m∑

s=1
Ex

[(
P>mf∗(x)

)2
ψs(x)2

]

≤ Od(nδ) · 1
n

m∑

t=1
‖P>mf∗‖2

L2+η‖ψt‖2
L(4+2η)/η

≤ Od(nδ) · m
n
‖P>mf∗‖2

L2+eta = Od(n−δ0) · ‖P>mf∗‖2
L2+η .

By Markov’s inequality, we get
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|fT
>mRf>m/n| ≤ |fT

>mS
−1ψψTS−1f>m/n| = Od(n−δ0) · ‖P>mf∗‖2

L2+η .

We deduce that

|fT
>mGf>m| ≤ (‖T 1‖op + ‖T 2 −R‖op)‖f>m/

√
n‖2

2 + |fT
>mRf>m/n| = Od(n−δ0) · ‖P>mf∗‖2

L2+η ,

which concludes the proof. !

Lemma 15. Follow the assumptions of Theorem 9 and the same notations as in Section C.1. There exists a 
fixed δ0 > 0 such that

‖I≤m − ΨT
≤m(H + λIn)−1Ψ≤mD

2
≤m‖op = Od,P (n−δ0).

Proof of Lemma 15. We follow the same argument as in Lemma 13. We decompose

H + λIn = ΨD2ΨT + κH ·A,

where we denoted A = ΛH + ∆ + (λ/κH) · I. By the Sherman-Morrison-Woodbury formula, we have the 
identity

ΨT[ΨD2ΨT + A]−1ΨD2 = ΨTA−1Ψ[κH(nD2)−1 + ΨTA−1Ψ/n]−1/n.

Hence

‖Im − ΨTA−1Ψ[κH(nD2)−1 + ΨTA−1Ψ/n]−1/n‖op = ‖κH(nD2)−1(κH(nD2)−1 + ΨTA−1Ψ/n)−1‖op.

We know that by Assumption 9, nD2 8 Ωd(nδ0) · κH · Im. Furthermore, by Eq. (181), we have A−1 8
Ωd(n−δ) · κH · In. Using that ‖ΨTΨ − Im‖op = od,P (1), we deduce that for any δ > 0,

‖(κH(nD2)−1 + ΨTA−1Ψ/n)−1‖op = Od,P (nδ).

We obtain the bound

‖Im − ΨTA−1Ψ[κH(nD2)−1 + ΨTA−1Ψ/n]−1/n‖op = Od,P (n−δ0) ·Od,P (nδ).

Taking δ sufficiently small concludes the proof. !

Appendix D. Proof of Theorem 2: generalization error of RFRR on the sphere and hypercube

We check that Assumption 3 implies the assumptions of Theorem 1 on the sphere (Section D.1) and on 
the hypercube (Section D.2).

D.1. On the sphere

Proof of Theorem 2 on the sphere. Consider the spherical case θ, x ∼ Unif(Sd−1(
√
d)) and ds+δ0 ≤ n ≤

ds+1−δ0 and dS+δ0 ≤ N ≤ dS+1−δ0 . Take σd(x; θ) = σ̄d(〈x, θ〉/
√
d) for some activation function σ̄d : R → R

satisfying Assumption 3 at level (s, S) (see Section 2.4 in the main text).

Step 1. Diagonalization of the activation function and choosing m = m(d), M = M(d).
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By rotational invariance, we can decompose σ̄ in the basis of spherical harmonics (see Section E.1)

σd(x;θ) = σ̄d(〈x,θ〉/
√
d) =

∞∑

k=0
ξd,kB(Sd−1; k)Q(d)

k (〈x,θ〉) =
∞∑

k=0
ξd,k

∑

s∈[B(d,k)]
Yks(x)Yks(θ) ,

where the distinct eigenvalues are ξd,k with degeneracy

B(Sd−1; k) = d− 2 + 2k
d− 2

(
d− 3 + k

k

)
.

We have for fixed k, B(Sd−1; k) = Θd(dk). Furthermore, we have uniformly supk≥! B(Sd−1; k)−1 = Od(d−!)
(see Lemma 1 in [20]). Notice that by Assumption 3 (see for example Lemma 5 in [20]), there exists a 
constant C > 0 such that

‖σ̄d‖2
L2 =

∞∑

k=0
ξ2
d,kB(Sd−1; k) ≤ C, (186)

which implies that ξ2
d,k = Od(B(Sd−1; k)−1). In particular,

sup
k>s

ξ2
d,k = Od(d−s−1), (187)

sup
k>S

ξ2
d,k = Od(d−S−1). (188)

Furthermore, by noting that ξ2
d,k = B(Sd−1; k)−1‖Pkσ̄d(〈e, · 〉)‖2

L2 , conditions (26), (27) and (28) can be 
rewritten as follows in terms of the coefficients (ξd,k)k≥0:

min
k≤s

ξ2
d,k = Ωd(d−s), (189)

min
k≤S

ξ2
d,k = Ωd(d−S), (190)

∞∑

k=2 max(s,S)+2
ξ2
d,kB(Sd−1; k) = Ωd(1). (191)

Denote {λd,j}j≥1 the eigenvalues {ξd,k}k≥0 with their degeneracy in non increasing order of their absolute 
value. Set M and m to be the number of eigenvalues associated to spherical harmonics of degree less or equal 
to S and s respectively, i.e.,

M =
S∑

k=0
B(Sd−1; k) = Θd(dS) , m =

s∑

k=0
B(Sd−1; k) = Θd(ds) . (192)

Notice that Eqs. (187) and (189) imply that (λd,j)j≤m corresponds exactly to all the eigenvalues associated 
to spherical harmonics of degree less or equal to s. Similarly Eqs. (188) and (190) imply that (λd,j)j≤M
corresponds exactly to all the eigenvalues associated to spherical harmonics of degree less or equal to S.
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Notice that the diagonal elements of the truncated kernels are given by (for any x, θ ∈ Sd−1(
√
d))

Hd,>m(x,x) =
∞∑

k=s+1
ξ2
d,kB(Sd−1; k)Q(d)

k (〈x,x〉) =
∞∑

k=s+1
ξ2
d,kB(Sd−1; k) = ‖P>sσ̄d‖2

L2 = Tr(Hd,>m),

Ud,>M(θ,θ) =
∞∑

k=S+1
ξ2
d,kB(Sd−1; k)Q(d)

k (〈θ,θ〉) =
∞∑

k=S+1
ξ2
d,kB(Sd−1; k) = ‖P>Sσ̄d‖2

L2 = Tr(Ud,>M),

(193)
where we used that Q(d)

k (d) = 1.

Step 2. Checking the assumptions at level {(N(d), M(d), n(d), m(d))}d≥1.
We are now in position to verify the assumptions of Theorem 1. Choose u := u(d) to be the number 

of eigenvalues with absolute value Ωd(d−2 max(s,S)−2+δ) for some δ > 0 that will be chosen small enough, 
see Eq. (194). In particular, (λd,j)j∈[u] contains all the eigenvalues associated to the spherical harmonics of 
degree less or equal to max(S, s), and none of the eigenvalues associated to spherical harmonics of degree 
2 max(S, s) + 2 and bigger. We therefore must have u ≥ max(M(d), m(d)).

Let us verify the conditions of (N, M, n, m)-FMCP in Assumption 1 with the sequence of integers u(d):

(a) The hypercontractivity of the space of polynomials of degree less or equal 2 max(S, s) +1 is a consequence 
of a classical result due to Beckner [9] (see Section E.3).

(b) Let us lower bound the right-hand side of Eq. (18). We have

∞∑

j=u(d)+1
λ2
d,j ≥

∞∑

k=2 max(s,S)+2
ξ2
d,kB(Sd−1; k) = Ωd(1),

∞∑

j=u(d)+1
λ4
d,j ≤

{
sup
j>u

λ2
d,j

}
·

∞∑

j=u(d)+1
λ2
d,j = Od(d−2 max(s,S)−2+δ) ·

∞∑

j=u(d)+1
λ2
d,j .

Hence,

(∑∞
j=u(d)+1 λ

2
d,j

)2

∑∞
j=u(d)+1 λ

4
d,j

= Ωd(d2 max(s,S)+2−δ) ≥ max(n,N)2+δ, (194)

for δ > 0 small enough, where we recall that n ≤ ds+1−δ0 and N ≤ dS+1−δ0 for some fixed δ0 > 0.
(c) From Eq. (28) in Assumption 3, we only need to check that for q such that

min(n,N) max(N,n)1/q−1 log(max(N,n)) = od(1),

we have

Ex,θ

[
[P>uσ̄d](〈x,θ〉/

√
d)2q

]1/(2q) = Od(1).

Denote S the set of eigenvalues λd,j , with j > u, associated to spherical harmonics of degree less of 
equal to 2 max(s, S) + 1. By triangular inequality, we have

Ex,θ

[
[P>uσ̄d](〈x,θ〉/

√
d)2q

]1/(2q)

≤ Ex,θ

[
[PS σ̄d](〈x,θ〉/

√
d)2q

]1/(2q) + Ex,θ

[
[P>2 max(s,S)+1σ̄d](〈x,θ〉/

√
d)2q

]1/(2q) = Od(1),
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where we used that PSσ̄d is a polynomial of degree less or equal to 2 max(S, s) + 1 in each variable x
and θ and satisfies the hypercontractivity property (see Lemma 6), i.e.,

Ex,θ

[
[PS σ̄d](〈x,θ〉/

√
d)2q

]
= Od(1) · Ex

[
Hd,S(x,x)q

]
= Od(1) · Tr(Hd,S)q = Od(1),

while the bound on P>2 max(s,S)+1σ̄d follows from Assumption 3.(a) and Lemma 16 stated below.
(d) This is automatically verified because the diagonal elements are constant in this case (Eq. (193)).

Next, we check Assumption 2 at level (N, M, n, m). Consider the overparametrized case N(d) ≥ n(d), and 
therefore M ≥ m. The underparametrized case N(d) ≤ n(d) is treated analogously.

(i) The eigenvalue sums in Eq. (19) can be estimated as follows

1
λ2
d,m(d)

∞∑

k=m(d)+1
λ2
d,k = 1

ξ2
d,s

∞∑

k=s+1
ξ2
d,kB(Sd−1; k) = Od(ds) , (195)

1
λ2
d,m(d)+1

∞∑

k=m(d)+1
λ2
d,k = 1

ξ2
d,s+1

∞∑

k=s+1
ξ2
d,kB(Sd−1; k) ≥ B(Sd−1; s + 1) = Ωd(ds+1) . (196)

The last equality in (195) follows from Eq. (186) and the assumption (189). Hence condition (19)
in Assumption 2 is satisfied since, by the statement of Theorem 2, we assume ds+δ ≤ n ≤ ds+1−δ. 
Furthermore, by Eq. (192), we have m ≤ n1−δ for some δ > 0 chosen small enough.

(ii) The eigenvalue sum in Eq. (20) is

1
λ2
d,M(d)+1

∞∑

k=M(d)+1
λ2
d,k = 1

ξ2
d,S+1

∞∑

k=S+1
ξ2
d,kB(Sd−1; k) ≥ B(Sd−1; S + 1) = Ωd(dS+1) . (197)

Hence condition (20) in Assumption 2 is satisfied since, by the statement of Theorem 2, N ≤ dS+1−δ0 . 
By Eq. (192), we have M ≤ N1−δ for some δ > 0 chosen small enough. !

Lemma 16. Consider m, ( two fixed integers. Assume |σ̄d(x)| ≤ c0 exp(c1x2/(4m)) with c0 > 0 and c1 < 1. 
Then

Ex1∼τ1
d

[
σ̄d,>!(x1)2m

]
= Od(1),

where τ1
d is the marginal distribution of 〈e, x〉 with ‖e‖2 = 1 and x ∼ Unif(Sd−1(

√
d)), and we denoted 

σ̄d,>! = P>!σ̄d.

Proof of Lemma 16. Recall that

σ̄d,>!(x) = σ̄d(x) −
!∑

k=0
ξd,k(σ)B(Sd−1; k)Q(d)

k (
√
dx), (198)

where ξd,k(σ)2B(d, k) ≤ ‖σ̄d‖2
L2 ≤ C for some constant C > 0 (using |σ̄d(x)| ≤ c0 exp(c1x2/(4m))) and √

B(Sd−1; k)Q(d)
k is a degree-k polynomial that converges to the Hermite polynomial Hek/

√
k! (see Sec-

tion E.1.3). Therefore, σ̄d,>! is equal to σ̄d plus a polynomial of degree ( with bounded coefficients. In 
particular, from the assumption |σ̄d(x)| ≤ c0 exp(c1x2/(4m)), we deduce there exists c′0 > 0 such that 
|σ̄d,>!(x)| ≤ c′0 exp(c1x2/(4m)), whence:
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∣∣∣Ex1 [σ̄d,>!(x1)2m]
∣∣∣ ≤ (c′0)2mEx1 [exp(c1x2

1/2)]. (199)

Furthermore, recall that τ1
d (dx) = Cd(1 − x2/d)(d−3)/21x∈[−

√
d,
√
d]dx ≤ C exp(−x2/2)dx. We can therefore 

upper bound the right hand side of Eq. (199) and use dominated convergence, which concludes the proof. !

D.2. On the hypercube

The proof for the hypercube Qd follows from the same proof as for the sphere. We refer to [35] for 
background on Fourier analysis on Qd, and Section E.2 for notations that make the analogy with the 
sphere transparent. In particular, an analog of Lemma 16 follows by noticing that the law 〈1, x〉/

√
d is a 

standardized binomial, which can be in terms of the standard normal distribution, times polynomial factors. 
The only difference comes from the degeneracy

B(Qd; k) =
(
d

(

)
.

Hence Assumption 3.(a) only implies ξ2
d,d−! = Od(d−!) for the last coefficients, which is the reason for the 

further requirement Assumption 3.(c).
Let us check that Assumption 3.(c) holds for a class of smooth activation functions. We believe that 

indeed this assumption holds much more generally, but we leave such generalizations to future work.

Lemma 17. Consider ( a fixed integer. Assume there exist constants c0 > 0 and c1 < 1 such that |σ̄(!)(x)| ≤
c0 exp(c1x2/4) for all x ∈ R. Then, we have

max
k≤!

ξd,d−k(σ̄)2 = Od(d−!),

where ξd,d−k(σ̄) = 〈σ̄(〈e, · 〉), Qd−k(
√
d〈e, ·〉)〉L2(Qd), and Qk is the k-th hypercubic Gegenbauer polynomial 

(see Appendix E.2).

Proof of Lemma 17. By the mean value theorem, we have for any k ≤ (,

ξd−k,d(σ̄) =Ex[σ̄(〈1,x〉/
√
d)Q(d)

d−k(〈1,x〉)]

=Ex

[
x1 · · ·xd−kσ̄

(x1 + . . . + xd√
d

)]

=1
2Ex2,...,x3

[
x2 . . . xd−k

(
σ̄
(1 + x2 + . . . + xd√

d

)
− σ̄

(−1 + x2 + . . . + xd√
d

))]

= 1√
d
Ex2,...,xd

[
x2 . . . xd−kσ̄

(1)(ζ1(x2, . . . , xd))
]
,

where on the third line we integrated over the first coordinate x1 and on the last line |ζ1(x2, . . . , xd)) −
(x2 + . . . + xd)/

√
d| ≤ 1/

√
d. By iterating this computation ( times, we get

ξd−k,d(σ̄) = 1
d!/2

Ex"+1,...,xd

[
x!+1 . . . xd−kσ̄

(!)(ζ!(x!+1, . . . , xd))
]
,

where |ζ!(x!+1, . . . , xd) − (x!+1 + . . . + xd)/
√
d| ≤ (/

√
d. Hence,
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|ξd−k,d(σ̄)| ≤ 1
d!/2

Ex"+1,...,xd

[
|σ̄(!)(ζ!(x!+1, . . . , xd))|

]

≤ 1
d!/2

EX=(x"+1+...+xd)/
√
d[c0 exp(c1X2/2 + c1(

2/d)]

=Od(d−!/2),

where we used that X converges weakly to the standard normal distribution and dominated convergence. !

Appendix E. Technical background

E.1. Functions on the sphere

E.1.1. Functional spaces over the sphere
For d ≥ 3, we let Sd−1(r) = {x ∈ Rd : ‖x‖2 = r} denote the sphere with radius r in Rd. We will mostly 

work with the sphere of radius 
√
d, Sd−1(

√
d) and will denote by τd the uniform probability measure on 

Sd−1(
√
d). All functions in this section are assumed to be elements of L2(Sd−1(

√
d), τd), with scalar product 

and norm denoted as 〈 · , · 〉L2 and ‖ · ‖L2 :

〈f, g〉L2 ≡
∫

Sd−1(
√
d)

f(x) g(x) τd(dx) . (200)

For ( ∈ Z≥0, let Ṽd,! be the space of homogeneous harmonic polynomials of degree ( on Rd (i.e. homoge-
neous polynomials q(x) satisfying ∆q(x) = 0), and denote by Vd,! the linear space of functions obtained by 
restricting the polynomials in Ṽd,! to Sd−1(

√
d). With these definitions, we have the following orthogonal 

decomposition

L2(Sd−1(
√
d), τd) =

∞⊕

!=0
Vd,! . (201)

The dimension of each subspace is given by

dim(Vd,!) = B(Sd−1; () = 2( + d− 2
d− 2

(
( + d− 3

(

)
. (202)

For each ( ∈ Z≥0, the spherical harmonics {Y (d)
!,j }1≤j≤B(Sd−1;!) form an orthonormal basis of Vd,!:

〈Y (d)
ki , Y (d)

sj 〉L2 = δijδks.

Note that our convention is different from the more standard one, that defines the spherical harmonics as 
functions on Sd−1(1). It is immediate to pass from one convention to the other by a simple scaling. We will 
drop the superscript d and write Y!,j = Y (d)

!,j whenever clear from the context.
We denote by Pk the orthogonal projections to Vd,k in L2(Sd−1(

√
d), τd). This can be written in terms 

of spherical harmonics as

Pkf(x) ≡
B(Sd−1;k)∑

l=1
〈f, Ykl〉L2Ykl(x). (203)

We also define P≤! ≡
∑!

k=0 Pk, P>! ≡ I − P≤! =
∑∞

k=!+1 Pk, and P<! ≡ P≤!−1, P≥! ≡ P>!−1.
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E.1.2. Gegenbauer polynomials
The (-th Gegenbauer polynomial Q(d)

! is a polynomial of degree (. Consistently with our convention for 
spherical harmonics, we view Q(d)

! as a function Q(d)
! : [−d, d] → R. The set {Q(d)

! }!≥0 forms an orthogonal 
basis on L2([−d, d], ̃τ1

d ), where τ̃1
d is the distribution of 

√
d〈x, e1〉 when x ∼ τd, satisfying the normalization 

condition:

〈Q(d)
k (

√
d〈e1, ·〉), Q(d)

j (
√
d〈e1, ·〉)〉L2(Sd−1(

√
d)) = 1

B(Sd−1; k) δjk . (204)

In particular, these polynomials are normalized so that Q(d)
! (d) = 1. As above, we will omit the superscript 

(d) in Q(d)
! when clear from the context.

Gegenbauer polynomials are directly related to spherical harmonics as follows. Fix v ∈ Sd−1(
√
d) and 

consider the subspace of V! formed by all functions that are invariant under rotations in Rd that keep v
unchanged. It is not hard to see that this subspace has dimension one, and coincides with the span of the 
function Q(d)

! (〈v, · 〉).
We will use the following properties of Gegenbauer polynomials

1. For x, y ∈ Sd−1(
√
d)

〈Q(d)
j (〈x, ·〉), Q(d)

k (〈y, ·〉)〉L2 = 1
B(Sd−1; k)δjkQ

(d)
k (〈x,y〉). (205)

2. For x, y ∈ Sd−1(
√
d)

Q(d)
k (〈x,y〉) = 1

B(Sd−1; k)

B(Sd−1;k)∑

i=1
Y (d)
ki (x)Y (d)

ki (y). (206)

These properties imply that —up to a constant— Q(d)
k (〈x, y〉) is a representation of the projector onto the 

subspace of degree -k spherical harmonics

(Pkf)(x) = B(Sd−1; k)
∫

Sd−1(
√
d)

Q(d)
k (〈x,y〉) f(y) τd(dy) . (207)

For a function σ̄ ∈ L2([−
√
d, 
√
d], τ1

d ) (where τ1
d is the distribution of 〈e!, x〉 when x ∼iid Unif(Sd−1(

√
d))), 

denoting its spherical harmonics coefficients ξd,k(σ̄) to be

ξd,k(σ̄) =
∫

[−
√
d,
√
d]

σ̄(x)Q(d)
k (

√
dx)τ1

d (dx), (208)

then we have the following equation holds in L2([−
√
d, 
√
d], τ1

d−1) sense

σ̄(x) =
∞∑

k=0
ξd,k(σ̄)B(Sd−1; k)Q(d)

k (
√
dx).

To any rotationally invariant kernel Hd(x1, x2) = hd(〈x1, x2〉/d), with hd(
√
d · ) ∈ L2([−

√
d, 
√
d], τ1

d ), we 
can associate a self-adjoint operator Hd : L2(Sd−1(

√
d)) → L2(Sd−1(

√
d)) via
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Hdf(x) ≡
∫

Sd−1(
√
d)

hd(〈x,x1〉/d) f(x1) τd(dx1) . (209)

By rotational invariance, the space Vk of homogeneous polynomials of degree k is an eigenspace of Hd, and 
we will denote the corresponding eigenvalue by ξd,k(hd). In other words Hdf(x) ≡

∑∞
k=0 ξd,k(hd)Pkf . The 

eigenvalues can be computed via

ξd,k(hd) =
∫

[−
√
d,
√
d]

hd

(
x/

√
d
)
Q(d)

k (
√
dx)τ1

d−1(dx) . (210)

E.1.3. Hermite polynomials
The Hermite polynomials {Hek}k≥0 form an orthogonal basis of L2(R, γ), where γ(dx) = e−x2/2dx/

√
2π

is the standard Gaussian measure, and Hek has degree k. We will follow the classical normalization (here 
and below, expectation is with respect to G ∼ N(0, 1)):

E
{
Hej(G) Hek(G)

}
= k! δjk . (211)

As a consequence, for any function g ∈ L2(R, γ), we have the decomposition

g(x) =
∞∑

k=0

µk(g)
k! Hek(x) , µk(g) ≡ E

{
g(G) Hek(G)} . (212)

The Hermite polynomials can be obtained as high-dimensional limits of the Gegenbauer polynomials 
introduced in the previous section. Indeed, the Gegenbauer polynomials (up to a 

√
d scaling in domain) are 

constructed by Gram-Schmidt orthogonalization of the monomials {xk}k≥0 with respect to the measure τ̃1
d , 

while Hermite polynomial are obtained by Gram-Schmidt orthogonalization with respect to γ. Since τ̃1
d ⇒ γ

(here ⇒ denotes weak convergence), it is immediate to show that, for any fixed integer k,

lim
d→∞

Coeff{Q(d)
k (

√
dx)B(Sd−1; k)1/2} = Coeff

{ 1
(k!)1/2 Hek(x)

}
. (213)

Here and below, for P a polynomial, Coeff{P (x)} is the vector of the coefficients of P . As a consequence, 
for any fixed integer k, we have

µk(σ̄) = lim
d→∞

ξd,k(σ̄)(B(Sd−1; k)k!)1/2, (214)

where µk(σ̄) and ξd,k(σ̄) are given in Eq. (212) and (208).

E.2. Functions on the hypercube

Fourier analysis on the hypercube is a well studied subject [35]. The purpose of this section is to introduce 
some notations that make the correspondence with proofs on the sphere straightforward. For convenience, 
we will adopt the same notations as for their spherical case.

E.2.1. Fourier basis
Denote Qd = {−1, +1}d the hypercube in d dimension. Let us denote τd to be the uniform probability 

measure on Qd. All the functions will be assumed to be elements of L2(Qd, τd) (which contains all the 
bounded functions f : Qd → R), with scalar product and norm denoted as 〈·, ·〉L2 and ‖ · ‖L2 :
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〈f, g〉L2 ≡
∫

Qd

f(x)g(x)τd(dx) = 1
2n

∑

x∈Qd

f(x)g(x).

Notice that L2(Qd, τd) is a 2n dimensional linear space. By analogy with the spherical case we decompose 
L2(Qd, τd) as a direct sum of d + 1 linear spaces obtained from polynomials of degree ( = 0, . . . , d

L2(Qd, τd) =
d⊕

!=0
Vd,!.

For each ( ∈ {0, . . . , d}, consider the Fourier basis {Y (d)
!,S }S⊆[d],|S|=! of degree (, where for a set S ⊆ [d], 

the basis is given by

Y (d)
!,S (x) ≡ xS ≡

∏

i∈S

xi.

It is easy to verify that (notice that xk
i = xi if k is odd and xk

i = 1 if k is even)

〈Y (d)
!,S , Y (d)

k,S′〉L2 = E[xS × xS′ ] = δ!,kδS,S′ .

Hence {Y (d)
!,S }S⊆[d],|S|=! form an orthonormal basis of Vd,! and

dim(Vd,!) = B(Qd; () =
(
d

(

)
.

As above, we will omit the superscript (d) in Y (d)
!,S when clear from the context.

E.2.2. Hypercubic Gegenbauer
We consider the following family of polynomials {Q(d)

! }!=0,...,d that we will call hypercubic Gegenbauer, 
defined as

Q(d)
! (〈x,y〉) = 1

B(Qd; ()
∑

S⊆[d],|S|=!

Y (d)
!,S (x)Y (d)

!,S (y).

Notice that the right hand side only depends on 〈x, y〉 and therefore these polynomials are uniquely defined. 
In particular,

〈Q(d)
! (〈1, ·〉), Q(d)

k (〈1, ·〉)〉L2 = 1
B(Qd; k)δ!k.

Hence {Q(d)
! }!=0,...,d form an orthogonal basis of L2({−d, −d +2, . . . , d −2, d}, ̃τ1

d ) where τ̃1
d is the distribution 

of 〈1, x〉 when x ∼ τd, i.e., τ̃1
d ∼ 2Bin(d, 1/2) − d/2.

We have

〈Q(d)
! (〈x, ·〉), Q(d)

k (〈y, ·〉)〉L2 = 1
B(Qd; k)Qk(〈x,y〉)δ!k.

For a function σ̄(·/
√
d) ∈ L2({−d, −d + 2, . . . , d − 2, d}, ̃τ1

d ), denote its hypercubic Gegenbauer coefficients 
ξd,k(σ̄) to be

ξd,k(σ̄) =
∫

{−d,−d+2,...,d−2,d}

σ̄(x/
√
d)Q(d)

k (x)τ̃1
d (dx).
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Notice that by weak convergence of 〈1, x〉/
√
d to the normal distribution, we have also convergence of 

the (rescaled) hypercubic Gegenbauer polynomials to the Hermite polynomials, i.e., for any fixed k, we have

lim
d→∞

Coeff{Q(d)
k (

√
dx)B(Qd; k)1/2} = Coeff

{ 1
(k!)1/2 Hek(x)

}
. (215)

E.3. Hypercontractivity of Gaussian measure and uniform distributions on the sphere and the hypercube

By Holder’s inequality, we have ‖f‖Lp ≤ ‖f‖Lq for any f and any p ≤ q. The reverse inequality does not 
hold in general, even up to a constant. However, for some measures, the reverse inequality will hold for some 
sufficiently nice functions. These measures satisfy the celebrated hypercontractivity properties [22,13,8,9].

Lemma 18 (Hypercube hypercontractivity [8]). For any ( = {0, . . . , d} and f∗ ∈ L2(Qd) to be a degree (
polynomial, then for any integer q ≥ 2, we have

‖f∗‖2
Lq(Qd) ≤ (q − 1)! · ‖f∗‖2

L2(Qd).

Lemma 19 (Spherical hypercontractivity [9]). For any ( ∈ N and f∗ ∈ L2(Sd−1) to be a degree ( polynomial, 
for any q ≥ 2, we have

‖f∗‖2
Lq(Sd−1) ≤ (q − 1)! · ‖f∗‖2

L2(Sd−1).

Lemma 20 (Gaussian hypercontractivity). For any ( ∈ N and f ∈ L2(R, γ) to be a degree ( polynomial on 
R, where γ is the standard Gaussian distribution. Then for any q ≥ 2, we have

‖f‖2
Lq(R,γ) ≤ (q − 1)! · ‖f‖2

L2(R,γ).

The Gaussian hypercontractivity is a direct consequence of hypercube hypercontractivity.
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