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Abstract
We establish the long time existence of complete non-compact weakly convex and smooth
hypersurfaces �t evolving by the Qk-flow. We show that the maximum existence time T
depends on the dimension dW of the vector space W :={w ∈ R

n+1 : supX∈�0
|〈X , w〉| =

+∞}which contains each direction inwhich our initial data�0 is infinite. IfdW = dim(W ) ≥
n−k+1, then the solution�t exists for all time t ∈ (0,+∞); if dW = dim(W ) ≤ n−k, then
the solution �t exsist up to some finite time T < +∞. In the latter case, the trace at infinity
�t of the solution �t is a closed convex viscosity solution of the (n − dW )-dimensional Qk

flow on t ∈ (0, T ).

1 Introduction

In this his work we study the long time existence of a family of complete non-compact strictly
convex hypersurfaces�t embedded inRn+1 which evolve by the Qk-flow. Given a complete
and convex hypersurface �0 embedded in R

n+1, we assume that F0 : Mn → R
n+1 is an

immersion with F0(Mn) = �0. We say that the one-parameter family of immersions

F : Mn × (0, T ) → R
n+1

is a solution of the Qk-flow (1 ≤ k ≤ n), if F(Mn, t) = �t are complete convex hypersur-
faces for all t ∈ (0, T ) and F(·, t) satisfies

⎧
⎨

⎩

∂

∂t
F(p, t) = Qk(p, t)	n(p, t)

lim
t→0

F(p, t) = F0(p).
(∗nk )
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where 	n(p, t) is the unit normal vector pointing inside the convex hull of �t . The speed

Qk(p, t):= Sk(p, t)

Sk−1(p, t)

is the quotient of the elementary successive polynomials of the principal curvatures
{λ1(p, t), · · · , λn(p, t)} of �t at F(p, t), given by

S0(p, t) = 1, Sk(p, t) =
∑

1≤i1<···<ik≤n

λi1(p, t) · · · λik (p, t) for 1 ≤ k ≤ n.

In [1], B. Andrews showed the existence of strictly convex closed solutions of a class of
nonlinear flow which includes the Qk-flow. S. Diater extended the results to closed convex
solutions with the positive Sk−1 curvature in [9]. Moreover, Caputo, Daskalopoulos, and
Sesum showed the existence of compact convex C1,1 viscosity solutions with flat sides in [3]
and in [4]. Closed non-convex solutions of the Q2-flow inR3, theHarmonic mean curvature
flow, were considered byDaskalopoulos andHamilton in [6] and byDaskalopoulos,Hamilton
and Sesum in [8].

The equation (∗nk ) is fully-nonlinear except from the case of k = 1 which is the flow by
Mean curvature. The evolution of entire graphs by the Mean curvature flow was studied by
Ecker and G. Huisken in [10,11]. Sáez and Schnürer [12] showed the existence of complete
solutions of the Mean curvature flow for an initial hypersurface which is a graph �0 =
{(x, u0(x)) : x ∈ �0} over a bounded domain �0, and u0(x) → +∞ as x → ∂�0.

The Ecker and Huisken result in [11] shows that in some sense the Mean curvature flow
behaves better than the heat equation on R

n , namely an entire graph solution exists for all
time independently from the growth of the initial surface at infinity. The initial entire graph is
assumed to be only locally Lipschitz. This result is based on a local gradient estimate which
is then combined with the evolution of the norm of the second fundamental form |A|2 to
give a local bound on |A|2, which is independent from the behavior of the solution at spatial
infinity. The latter is achieved by adopting the well known technique of Caffarelli, Nirenberg
and Spruck in [2] in this geometric setting.

An open question between the experts in the field is whether the techniques of Ecker
and Huisken in [10,11] can be extended to the fully-nonlinear setting. Recently in [5], the
authors jointly with L. Kim and K.-A. Lee, established the all time existence for complete
non-compact and convex solutions to the flow by positive powers of the Gauss curvature.
In addition, L. Xiao [17] obtained the existence of admissible solutions to a certain class of
fully nonlinear flows.

In this work wewill show the existence of complete non-compact solutions of the Qk-flow
under the assumption of weak convexity. Let �0 denote our initial surface. We will assume
that �0 is a smooth weakly convex graph �0 = {(x, u0(x)) : x ∈ �} with the positive Qk

curvature defined by a function u0 : � → R on an open convex domain � ⊂ R
n such that:

(i) if �0 �= R
n , then for all x0 ∈ ∂�0, lim

x→x0
u0(x) = +∞ holds;

(ii) if �0 is unbounded, then lim|x |→+∞ u0(x) = +∞ holds.

Let W denote the vector space

W = {w ∈ R
n+1 : sup

X∈�0

|〈X , w〉| = +∞}

which contains each direction in which �0 is infinite. Then, sup
X∈�0

sup
w∈W⊥

|〈X , w〉| is bounded
by some constant R. Namely,�0 is contained in a cylinder B

n+1−dW
R ×R

dW where Bn+1−dW
R
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Fig. 1 Examples of the initial hypersurface �0

is a (n + 1 − dW )-dimensional ball of radius R. Moreover, the convexity of �0 implies that
the trace at infinity �0 of �0 is a (n − dW )-dimensional closed convex hypersurface such
that

lim|F0|→+∞ �0 = �0 × R
dW . (1)

For example, if dW = 1 then �0 is a graph over a bounded domain � and �0 = ∂�. In
particular, if n = dW then �0 consists of two points, namely �0 is contained two parallel
hyperplanes.

We will see in this work that the time of existence T for a solution �t of (∗nk ) depends on
the dimension dw:=dim(W ). If dW ≥ n − k + 1, then the solution �t will exist for all time
t ∈ (0,+∞). However, if dW = dim(W ) ≤ n − k, then the solution �t will exist only up to
some finite time T . In the latter case, we will show that the time of existence T also depends
on the trace at infinity �0 of �0. In fact, we will show that if �t is the trace at infinity of the
solution �t , namely if

lim|Ft |→+∞ �t = �t × R
dW (2)

then �t is an (n − dW )-dimensional closed convex hypersurface which also evolves by the
Qk-flow (∗nk ). Note that for this we need that k ≤ n−dW which is equivalent to dW ≤ n− k.

Our main result in this work states as follows:

Theorem 1.1 Assume that �0 = {(x, u0(x)) : x ∈ �} is a smooth weakly convex graph with
the positive Qk curvature defined by a function u0 : � → R such that the conditions (i)-(ii)
above hold. Let W denote the vector space W = {w ∈ R

n+1 : supX∈�0
|〈X , w〉| = +∞}

which contains each direction in which �0 is infinite. Then, given a smooth immersion F0 of
F0(Mn) = �0, the following holds:

• if dW = dim(W ) ≥ n − k + 1, then there is a complete convex solution �t of (∗nk ) with
initial data �0 existing for all time t ∈ (0,+∞);

• if dW = dim(W ) ≤ n−k, then there exists a complete convex smooth solution�t of (∗nk )
with initial data�0 which is defined on t ∈ (0, T ), for some finite T < ∞. Moreover, the
trace at infinity �t of the solution �t , defined by (2), is a closed convex viscosity solution
of the (n − dW )-dimensional Qk flow (∗nk ) on t ∈ (0, T ).

Remark 1.2 (Different cases in Theorem 1.1) In the case dW ≤ n − k, the trace at infinity �t

is a continuous solution of the (n − dW )-dimensional Qk flow (∗nk ) which is defined in the
viscosity sense (c.f. [4]). Since �t is a closed hypersurface, it develops singularity at some
finite time T̂ . However, �t may possibly develop a singularity or become flat at time T < T̂ .
In this paper, we only consider the maximum existence time rather than its limit profile.
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In the case k = 1, the result in [12] shows that if a convex complete solution�t to themean
curvature flow is a family of graphs on an evolving bounded domain �t , then the boundary
∂�t is also a solution to the mean curvature flow. In this case, in our Theorem 1.1, �t = ∂�t .

In the case k = n, Theorem 1.1 shows that strictly convex non-compact complete solutions
exist for all time, which is the same result to the Gauss curvature flow in [5]. Although the σn
curvature is different from the Gauss curvature, they go to zero at the infinity, which yields
the all time existence.

Remark 1.3 (General initial data) A complete and strictly convex hypersurface in R
n+1 can

be expressed as the graph of a function sich that conditions (i)-(ii), see in [16]. Thus, Theorem
1.1 shows the existence of a complete convex solution �t of (∗nk ) for any complete smooth
strictly convex hypersurface �0.

Discussion of the proof of Theorem 1.1: The proof of Theorem 1.1 mainly relies on three
a’priori local estimates: the local gradient bound shown in Theorem 2.4, the local speed
estimate given in Theorem 3.1 and a local bound from above on the second fundamental
form |A|2 given in Theorem 4.2. The gradient and the speed estimates use the well known
technique by Caffarelli, Nirenberg and Spruck in [2] also used by Esker and Huisken in
the context of the Mean curvature flow in [11]. Then, by using the concavity of the Qk(λ)

function, we derive a local bound on |A|2 by modifying the elliptic estimate by W. Sheng, J.
Urbas and X.-J. Wang in [13] to the parabolic setting. The long time existence is shown by
approximation with compact hypersurfaces and applying the local a priori estimates.

Notation 1.4 We summarize the following notation, which will be frequently used in this
paper.

(i) We recall the second fundamental form hi j :=〈∇i∇ j F, 	n〉 and the metric gi j :=〈Fi , Fj 〉,
where Fi :=∇i F.

(ii) We denote by ū : Mn → R the height function ū(p, t):=〈F(p, t), 	en+1〉. Also, given a
constant M ∈ R, we define a cut-off function ψ by

ψ(p, t):=(M − ū(p, t))+ = max(M − ū, 0).

(iii) υ:=〈	n, 	en+1〉−1 denote the gradient function (as in [11]).
(iv) We denote by L the linearized operator,

L:=∂Qk

∂hi j
∇i∇ j .

In addition, 〈 , 〉L denotes the inner product 〈∇ f ,∇g〉L = ∂Qk

∂hi j
∇i f ∇ j g, where f , g

are differentiable functions on Mn, and ‖ · ‖L denotes the L-norm given by the inner
product 〈 , 〉L.

(v) For the principal curvatures {λ1, · · · , λn}, we denote by λmax the largest principal cur-
vature λmax:=max{λ1, · · · , λn}. Also, denote the following functions of the principal
curvatures

Sk;i (λ):=∂Sk+1(λ)

∂λi
, |A|2k(λ):=

n∑

i=1

∂Qk(λ)

∂λi
λ2i , Di Qk = ∂Qk(λ)

∂λi
, Di j Qk = ∂2Qk(λ)

∂λt∂λ j
.
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2 Preliminaries

In this section, we will review some properties of the symmetric function Qk(λ) of λ, and we
will derive some basic evolution equations under the Qk-flow. We will also establish a local
gradient estimate and a local lower bound on the speed, as straightforward consequence of
the evolution equations.

Proposition 2.1 Assume that � is a convex smooth hypersurface in R
n+1 with the positive

Qk curvature and F : Mn → R
n+1 is a smooth immersion satisfying F(Mn) = �. Let us

choose an orthonormal frame at some point F(p) satisfying gi j (p) = δi j , hi j (p) = δi jλi (p).
Then, the following holds at F(p) for each m ∈ {1, · · · , n}

∑

i, j,p,q

∂2Qk

∂hi j∂h pq
∇mhi j∇mh pq ≤ 2

∑

i< j

Di Qk − Dj Qk

λi − λ j
∇mhi j∇mhi j .

Proof We recall the following identity which holds on homogeneous of degree one functions
of matrices, given in [1] (see also in [4]):

∑

i, j,p,q

∂2Qk

∂hi j ∂h pq
∇mhi j∇mh pq =

∑

i, j

Di j Qk∇mhii∇mh j j +
∑

i �= j

Di Qk − Dj Qk

λi −λ j
∇mhi j∇mh ji .

By the concavity of Qk(λ)wehave
∑

i, j

Di j Qk∇mhii∇mh j j ≤ 0, hence the desired inequality

follows. ��

Proposition 2.2 If Qk(λ1, · · · , λn) > 0 and λi ≥ 0 for all i ∈ {1, · · · , n}, then the following
hold

n−2Q2
k λ−2

max ≤ Di Qk ≤ 1 (2.1)

Di Qk ≤ λ−2
i Q2

k (2.2)

k

n − k + 1
Q2

k ≤ |A|2k ≤ nQ2
k (2.3)

Proof The case k = 1 is obvious. We assume that k ≥ 2 and λ1 = λmax. we begin my
recalling the following from the proof of Lemma 3.6 in [9]

n

k(n − k + 1)

S2k−1;i
S2k−1

≤ ∂Qk

∂λi
= S2k−1;i − Sk;i Sk−2;i

S2k−1

≤ S2k−1;i
S2k−1

. (2.4)

Hence, we have the right hand side inequality of (2.1). For the left hand side inequality, we
observe that λi ≤ λ1 implies λi Sk−1;i ≤ λ1Sk−1;1. Therefore, we obtain

nλ1Sk−1;1 ≥
n∑

i=1

λi Sk−1;i = n
(n−1
k−1

)

(n
k

) Sk = kSk .

Also, Sk−1;i ≥ Sk−1;1 and combining the above yields

∂Qk

∂λi
≥ n

k(n − k + 1)

S2k−1;1
S2k−1

≥ 1

kλ21

λ21S
2
k−1;1

S2k−1

≥ k

n2λ21

S2k
S2k−1

≥ 1

n2
Q2

k

λ21
.

123
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Next, to show (2.2), we employ (2.4) again to obtain

∂Qk

∂λi
≤ S2k−1;i

S2k−1

= 1

λ2i

λ2i S
2
k−1;i

S2k−1

≤ 1

λ2i

S2k
S2k−1

= Q2
k

λ2i
.

The left hand side of (2.3) is proven in Lemma 3.7 in [9]. The right hand side inequality

readily follows by (2.2), since |A|2k :=
n∑

i=1

λ2i Di Qk ≤ nQ2
k . ��

Proposition 2.3 Assume �0 and �0 satisfy the assumptions in Theorem 1.1 . Let �t be a
convex complete smooth graph solution of (∗nk ) with the positive Qk curvature. Then, the
following hold

∂tψ = Lψ (2.5)

∂t gi j = −2Qkhi j (2.6)

∂t g
i j = 2Qkh

i j (2.7)

∂t 	n = −(∇ j Qk)F
j (2.8)

∂t hi j = L hi j + ∂2Qk

∂h pq∂hrs
∇i h pq∇ j hrs − 2Qkhilh

l
j + |A|2k hi j (2.9)

∂t Qk = L Qk + |A|2k Qk (2.10)

∂tυ
2 = L υ2 − 6‖∇υ‖2L − 2|A|2k υ2 (2.11)

Proof (2.6) - (2.10) are given in [1] (see also in [9]). Equation (2.5) readily follows from the
definition ψ :=(M − ū)+, where ū:=〈F, 	en+1〉 and

L ū = L 〈F, 	en+1〉 = 〈∂Qk

∂hi j
∇i∇ j F, 	en+1〉 = 〈∂Qk

∂hi j
hi j 	n, 	en+1〉 = 〈Qk 	n, 	en+1〉

= 〈∂t F, 	en+1〉 = ∂t ū.

To show (2.11), we derive from υ:=〈	n, 	en+1〉−1 that ∇iυ = −〈∇i 	n, 	en+1〉 υ2 =
〈hi j F j , 	en+1〉 υ2. Hence,

L υ =∂Qk

∂hi j
∇i∇ jυ = ∂Qk

∂hi j
∇i

(〈h jm F
m, 	en+1〉 υ2)

=〈(∂Qk

∂hi j
∇i h jm

)
Fm, 	en+1〉 υ2 + 〈∂Qk

∂hi j
hmi h jm 	n, 	en+1〉 υ2

+ 2
∂Qk

∂hi j
〈h jm F

m, 	en+1〉〈hil Fl , 	en+1〉 υ3

=〈(∇mQk)F
m, 	en+1〉 υ2 + |A|2kυ + 2υ−1‖∇υ‖2L.

On the other hand, (2.8) gives ∂tυ = 〈(∇ j Qk)F j , 	en+1〉 υ2. Therefore,

∂tυ
2 = 2υ∂tυ = 2υ(〈(∇mQk)F

m, 	en+1〉 υ2)

= 2υL υ − 4‖∇υ‖2L − 2|A|2kυ2 = L υ2 − 6‖∇υ‖2L − 2|A|2kυ2.

��
If ψ :=(M − ū)+, for a given M > 0, then we have the following two estimates.
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Theorem 2.4 (Gradient estimate) Assume�0 and�0 satisfy the assumptions inTheorem 1.1.
Let �t be a convex complete smooth graph solution of (∗nk ) with the positive Qk curvature
defined on Mn × [0, T ], for some T > 0. Then

ψ(p, t)υ(p, t) ≤ sup
p∈Mn

ψ(p, 0)υ(p, 0).

Proof By combining (2.5) and (2.11), we have

∂t (υ
2ψ2) = L(υ2ψ2) − 〈6ψ∇υ + 2υ∇ψ,∇(υψ)〉L − 2|A|2kυ2ψ2.

Since the conditions (ii), (iii) in Theorem 1.1 mean that ψ is compactly supported, it follows
by the maximum principle that sup

p∈Mn
υ(p, t)ψ(p, t) ≤ sup

p∈Mn
υ(p, 0)ψ(p, 0), which yields

the desired result. ��
Theorem 2.5 (Lower bound of speed) Assume�0 and�0 satisfy the assumptions inTheorem
1.1. Let�t be a convex complete smooth graph solution of (∗nk ) with the positive Qk curvature
defined on Mn × [0, T ], for some T > 0. Then,

ψ(p, t)−1Qk(p, t) ≥ inf
p∈Mn

ψ(p, 0)−1Qk(p, 0).

Proof From (2.5), (2.10), we derive

∂t (ψQ−1
k ) = L(ψQ−1

k ) − 2Qk〈∇(ψQ−1
k ),∇Q−1

k 〉L − |A|2k Q−1
k ψ.

Thus, the maximum principle gives the desired result. ��

3 Speed estimate

In this section we will obtain a local upper bound on the speed Qk . We will use the gradient
function υ to localize our estimate in the spirit of the well known Caffarelli, Nirenberg, and
Spruck estimate in [2]. A similar techniquewas used by Ecker andHuisken [11] in the context
of the Mean curvature flow to obtain a local bound on |A|2. Our proof is similar to that in
[11].

Theorem 3.1 (Speed estimate) Assume �0 and �0 satisfy the assumptions in Theorem 1.1.
Let �t be a convex complete smooth graph solution of (∗nk ) with the positive Qk curvature
defined on Mn × [0, T ). Given a constant M, we have

(ψQk)
2(p, t) ≤ max

{

10n2 sup
QM

υ4(·, t), 2 sup
QM

υ2(·, t) sup
p∈Mn

(Qkψ)2(·, 0)
}

where QM = {(p, s) ∈ Mn × [0, t] : ū(p, s) ≤ M}.
Proof Given a time T0 ∈ [0, T ), we define the set QM = {(p, s) ∈ Mn ×[0, T0] : ū(p, s) ≤
M} and we will prove that

(ψQk)
2(p, T0) ≤ max

{

10n2 sup
QM

υ4(·, t), 2 sup
QM

υ2(·, t) sup
p∈Mn

(Qkψ)2(·, 0)
}

.

Let K := supQM
υ2 and define the function ϕ depending on υ2 by

ϕ(υ2) = υ2

2K − υ2 .

123



73 Page 8 of 19 K. Choi, P. Daskalopoulos

The evolution equation of υ2 in (2.11) yields

∂

∂t
ϕ(υ2)=ϕ′(L υ2−6‖∇υ‖2L − 2|A|2kυ2) = Lϕ−ϕ′′‖∇υ2‖2L − ϕ′(6‖∇υ‖2L + 2|A|2kυ2)

which combined with (2.10) yields

∂

∂t
(Q2

kϕ) = L(Q2
kϕ) − 2〈∇ϕ,∇Q2

k〉L − 2ϕ‖∇Qk‖2L
− (4ϕ′′υ2 + 6ϕ′)Q2

k‖∇υ‖2L + 2|A|2k Q2
k (ϕ − ϕ′υ2).

Observe the following

−2〈∇ϕ,∇Q2
k〉L = − 2Qk〈∇ϕ,∇Qk〉L + ϕ−1Q2

k ‖∇ϕ‖2L − ϕ−1〈∇ϕ,∇(ϕQ2
k)〉L

≤ 2ϕ‖∇Qk‖2L + 3

2
ϕ−1Q2

k‖∇ϕ‖2L − ϕ−1〈∇ϕ,∇(ϕQ2
k)〉L.

Hence, the following inequality holds

∂

∂t
(Q2

kϕ) ≤L(Q2
kϕ) − ϕ−1〈∇ϕ,∇(Q2

kϕ)〉L
− (4ϕ′′υ2 + 6ϕ′ − 6ϕ−1ϕ′2υ2)Q2

k‖∇υ‖2L + 2|A|2k Q2
k (ϕ − ϕ′υ2). (3.1)

On the other hand, a direct computation gives the following identities

ϕ−ϕ′υ2=−ϕ2, ϕ−1∇ϕ=4Kϕυ−3∇υ, 4ϕ′′υ2 + 6ϕ′ − 6ϕ−1ϕ′2υ2 = 4K
(2K − υ2)2

ϕ.

Setting f :=Q2
kϕ(υ2) in (3.1) and applying the identities above and also Q2

k ≤ n|A|2k (see in
(2.3) ) gives

∂

∂t
f ≤ L f − 4Kϕυ−3〈∇υ,∇ f 〉L − 4K

(2K − υ2)2
‖∇υ‖2L f − 2|A|2kϕ f .

We will next consider the evolution of f ψ2 for our given cut off function φ. We have
seen in (2.5) that ∂tψ

2 = Lψ2 − 2‖∇ψ‖2L, on the support of ψ . Combining this with the
evolution of f yields

∂

∂t
( f ψ2) ≤L( f ψ2) − 2〈∇ψ2,∇ f 〉L − 2 f ‖∇ψ‖2L

− 4Kϕυ−3ψ2〈∇υ,∇ f 〉L − 4K
(2K − υ2)2

f ψ2‖∇υ‖2L − 2

n
f 2ψ2

We compute the following

− 4Kϕυ−3ψ2〈∇υ,∇ f 〉L = −4Kϕυ−3〈∇υ,∇( f ψ2)〉L + 8Kϕυ−3 f ψ〈∇υ,∇ψ〉L
≤ −4Kϕυ−3〈∇υ,∇( f ψ2)〉L + 4K f ψ2‖∇υ‖2L

(1 − Kυ2)2
+ 4Kϕ2 (1 − Kυ2)2

υ6 f ‖∇ψ‖2L

= −4Kϕυ−3〈∇υ,∇( f ψ2)〉L + 4K
(1 − Kυ2)2

f ψ2‖∇υ‖2L + 4Kυ−2 f ‖∇ψ‖2L.

In addition, we know

−2〈∇ψ2,∇ f 〉L = −4ψ−1〈∇ψ,∇( f ψ2)〉L + 8 f ‖∇ψ‖2L.

123
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Therefore, by using the equations above, we can reduce the evolution equation of f ψ2 to

∂

∂t
( f ψ2) ≤ L( f ψ2) − 〈4ψ−1∇ψ + 4Kϕυ−3∇υ,∇( f ψ2)〉L + (6 + 4Kυ−2) f ‖∇ψ‖2L

− 2

n
f 2ψ2.

Applying the inequality Di Qk ≤ 1 shown in (2.1) yields

‖∇ψ‖2L =‖〈∇F, 	en+1〉‖2L ≤
n+1∑

m=1

‖∇〈F, 	em〉‖2L =
n+1∑

m=1

∂Qk

∂hi j
∇i 〈F, 	em〉∇ j 〈F, 	em〉

=∂Qk

∂hi j

n+1∑

m=1

〈Fi , 	em〉〈Fj , 	em〉 = ∂Qk

∂hi j
〈Fi , Fj 〉 = ∂Qk

∂hi j
gi j =

n∑

i=1

Di Qk ≤ n.

Hence, by the definition of K and υ ≥ 1, we have

(6 + 4Kυ−2) f ‖∇ψ‖2L ≤ 10nKυ−2 f ≤ 10nK f

Combining the above inequalities we finally obtain

∂

∂t
( f ψ2) ≤L( f ψ2) − 〈4ψ−1∇ψ + 4Kϕυ−3∇υ,∇( f ψ2)〉L + 10nK f − 2

n
f 2ψ2.

Since ψ is compactly supported by the conditions (ii), (iii) in Theorem 1.1, f ψ2 attains its
maximumM on Mn × [0, T0] at some (p0, t0). If t0 > 0, then at (p0, t0), we obtain

2

n
M f = 2

n
f 2ψ2 ≤ 10nK f .

Since f ψ2 = ϕ(υ2)Q2
kψ

2 ≤ (Qkψ)2, the following holds

M ≤ max

{

5n2K, sup
p∈Mn

f ψ2(·, 0)
}

≤ max

{

5n2K, sup
p∈M

(Qkψ)2(·, 0)
}

.

Finally, (Qkψ)2 ≤ υ2Q2
kψ

2 ≤ 2Kϕ(υ2)Q2
kψ

2 = 2K f ψ2 and f ψ2(p, T0) ≤ M imply

(Qkψ)2(p, T0) ≤ max

{

10n2 sup
QM

υ4(·, t), 2 sup
QM

υ2(·, t) sup
p∈Mn

(Qkψ)2(·, 0)
}

.

��

4 Curvature estimate

In this section we will derive a local upper bound on the largest principal curvature λmax of
Mt . We will employ a Pogorelov type computation with respect to hii using a technique that
was introduced by Sheng, Urbas, and Wang in [13] for the elliptic setting. The following
known formula and will be used in the proof.

Proposition 4.1 (TheEuler’s formula)Let� be a smooth hypersurface, and F : Mn → R
n+1

be a smooth immersion with F(Mn) = �. Then, for all p ∈ Mn and i ∈ {1, · · · , n}, the
following holds

hii (p)

gii (p)
≤ λmax(p).
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Proof Assume {E1(p), · · · , En(p)} is an orthonormal basis of T�F(p) satisfying L(E j (p))
= λ j (p)E j (p), where L is the Weingarten map. Let ∇i F :=Fi = ai j E j . Then, gii =
n∑

j=1

(ai j )
2. Thus,

hii = 〈L(Fi ), Fi 〉 =
n∑

j=1

(ai j )
2λ j ≤

n∑

j=1

(ai j )
2λmax = giiλmax.

��
Theorem 4.2 (Curvature estimate) Assume �0 and �0 satisfy the assumptions in Theorem
1.1. Let�t be a convex complete smooth graph solution of (∗nk ) with the positive Qk curvature
defined on Mn × [0, T ). Then, for any given a constant M, we have

(ψ2λmax)(p, t) ≤ exp(2nt sup
QM

Q2
k)max

{

5M, sup
p∈Mn

(ψ2λmax)(p, 0)

}

where QM = {(p, s) ∈ Mn × [0, t] : ū(p, s) ≤ M}.
Proof Given T0 ∈ [0, T ), we define QM = {(p, s) ∈ Mn × [0, T0] : ū(p, s) ≤ M} and we
will prove that

(ψ2λmax)(p, T0) ≤ exp(2nT0 sup
QM

Q2
k)max

{

5M, sup
p∈Mn

(ψ2λmax)(p, 0)

}

.

We set A = supQM
Q2

k . By the conditions (ii), (iii) in Theorem (∗nk ), exp(−2ntA)ψ2λmax

attains its maximum in Mn × [0, T0] at some point (p0, t0). If t0 = 0, we obtain the desired
result. So, we may assume t0 > 0. First we choose a chart (U , ϕ) with p0 ∈ ϕ(U ) ⊂ Mn

such that the covariant derivatives {∇i F(p0, t0) : i = 1, ·, n} form an orthonormal basis of
(T�t0) satisfying

gi j (p0, t0) = δi j , hi j (p0, t0) = δi jλi (p0, t0), λ1(p0, t0) = λmax(p0, t0).

Then, h11(p0, t0) = λmax(p0, t0), g11(p0, t0) = 1 hold. Next, we define the function w :
U × [0, T0] → R by

w:= exp(−2nt A)ψ2 h11
g11

.

Notice that if t �= t0, the covariant derivatives {∇i F(p0, t)}i=1,··· ,n may fail to form an
orthonormal basis of (T�)F(p0,t). However, Proposition 4.1 applies for every chart and
immersion. So, for all points (p, t) ∈ ϕ(U ) × [0, T0], we have

w(p, t) ≤ exp(−2ntA)ψ2λmax(p, t) ≤ exp(−2nt0A)ψ2λmax(p0, t0) = w(p0, t0)

implying that w attains its maximum at (p0, t0). Since ∇g11 = 0, the following holds on the
support of ψ

∇iw

w
= 2

∇iψ

ψ
+ ∇i h11

h11
. (4.1)

Differentiating the equation above we obtain

∇i∇ jw

w
− ∇iw∇ jw

w2 = 2
∇i∇ jψ

ψ
− 2

∇iψ∇ jψ

ψ2 + ∇i∇ j h11
h11

− ∇i h11∇ j h11
(h11)2

.
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Multipling by
∂Qk

∂hi j
and summing over all i, j yields

Lw

w
− ‖∇w‖2L

w2 = 2
Lψ

ψ
− 2

‖∇ψ‖2L
ψ2 + L h11

h11
− ‖∇h11‖2L

(h11)2
.

On the other hand, on the support of ψ , the following holds

∂tw

w
= −2nA + 2

∂tψ

ψ
+ ∂t h11

h11
− ∂t g11

g11
.

Recall that ∂tψ = Lψ by , by (2.5), ∂t g11 = −2Qkh11 by (2.6), and also that

∂t h11 = L h11 + ∂2Qk

∂hi j∂hml
∇1hi j∇1hml − 2Qkh1i h

i
1 + |A|2kh11

by in (2.9). Combining the equations above yields

Lw

w
− ‖∇w‖2L

w2 − ∂tw

w
= − 2

‖∇ψ‖2L
ψ2 − ‖∇h11‖2L

(h11)2
− 1

h11

∂2Qk

∂hi j∂hml
∇1hi j∇1hml

+ 2nA + 2Qkh1i hi1
h11

− |A|2k − 2Qk
h11
g11

. (4.2)

Observe next that |A|2k ≤ nQ2
k ≤ nA by (2.3). Also, at (p0, t0),

2Qkh1i hi1
h11

− 2Qk
h11
g11

= 0

holds. Moreover, Proposition 2.1 implies that

− 1

h11

∂2Qk

∂hi j∂hml
∇1hi j∇1hml ≥ 2

n∑

i=2

−D1Qk − Di Qk

λ1(λ1 − λi )
|∇1h1i |2

holds at the point (p0, t0). Furthermore, by the definition of the operator L, at the point
(p0, t0) we have

‖∇w‖2L
w2 ≥ 0,

‖∇ψ‖2L
ψ2 =

n∑

i=1

∂Qk

∂λi

|∇iψ |2
ψ2 ,

‖∇h11‖2L
(h11)2

=
n∑

i=1

∂Qk

∂λi

|∇i h11|2
λ21

.

We conclude from (4.2) that at the maximum point (p0, t0) of w, the following holds

nA ≤ 2
n∑

i=1

∂Qk

∂λi

|∇iψ |2
ψ2 +

n∑

i=1

∂Qk

∂λi

|∇i h11|2
λ21

+
n∑

i=2

2(D1Qk − Di Qk)

λ1(λ1 − λi )
|∇i h11|2 (4.3)

Next, we define the following sets

I = {i ∈ (1, · · · , n) : ∂Qk

∂λi
< 4

∂Qk

∂λ1
} and J = { j ∈ (1, · · · , n) : ∂Qk

∂λ j
≥ 4

∂Qk

∂λ1
}.

Since w attains its maximum at (p0, t0), ∇w(p0, t0) = 0 holds. Thus, by (4.1)

2
n∑

i=1

∂Qk

∂λi

|∇iψ |2
ψ2 = 2

∑

i∈I

∂Qk

∂λi

|∇iψ |2
ψ2 + 2

∑

j∈J

∂Qk

∂λ j

|∇ jψ |2
ψ2 = 2

∑

i∈I

∂Qk

∂λi

|∇iψ |2
ψ2

+ 1

2

∑

j∈J

∂Qk

∂λ j

|∇ j h11|2
h211
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and
n∑

i=1

∂Qk

∂λi

|∇i h11|2
(h11)2

=
∑

i∈I

∂Qk

∂λi

|∇i h11|2
(h11)2

+
∑

j∈J

∂Qk

∂λ j

|∇ j h11|2
(h11)2

= 4
∑

i∈I

∂Qk

∂λi

|∇iψ |2
ψ2

+
∑

j∈J

∂Qk

∂λ j

|∇ j h11|2
h211

and by adding the two equations above we obtain

2
n∑

i=1

∂Qk

∂λi

|∇iψ |2
ψ2 +

n∑

i=1

∂Qk

∂λi

|∇i h11|2
λ21

= 6
∑

i∈I

∂Qk

∂λi

|∇iψ |2
ψ2 + 3

2

∑

j∈J

∂Qk

∂λ j

|∇ j h11|2
λ21

.

However, we know 1 /∈ J and λ1 �= λ j . Hence, for j ∈ J , the definition of J leads to

∂Qk

∂λ1
− ∂Qk

∂λ j
≤ −3

4

∂Qk

∂λ j
.

On the other hand λ1(λ1 − λ j ) ≤ (λ1)
2 holds. Hence, for j ∈ J , we obtain

2(D1Qk − Dj Qk)

λ1(λ1 − λ j )
|∇ j h11|2 ≤ −3

2

∂Qk

∂λ j

|∇ j h11|2
λ21

.

Thus, (4.3) can be reduced to

nA ≤ 6
∑

i∈I

∂Qk

∂λi

|∇iψ |2
ψ2 .

Applying |∇iψ |2 = |〈Fi , 	en+1〉|2 ≤ |Fi |2 = gii = 1 and the definition of I , we obtain

nA ≤ 6
∑

i∈I

∂Qk

∂λi

|∇iψ |2
ψ2 ≤ 24

∑

i∈I

∂Qk

∂λ1

1

ψ2 ≤ 24n
∂Qk

∂λ1
ψ−2.

Using that D1λ ≤ Q2
kλ

−2
1 = Q2

kλ
−2
max by (2.2),ψ ≤ M , and Q2

k ≤ A, in the inequality above
yields

Aψ4λ2max ≤ 24 Q2
kψ

2 ≤ 24AM2

implying that ψ2λmax(p0, t0) ≤ 5M holds. In conclusion,

w(p, t) ≤ w(p0, t0):= exp(−2nt0 A)ψ2λmax(p0, t0) ≤ ψ2λmax(p0, t0) ≤ 5M

which finishes the proof of our estimate. ��

5 Long time existence

In this final section, we will establish the long time existence of the Qk-flow (∗nk ), as stated in
our main Theorem 1.1. Our proof will be based on the a’priori estimates in Sect. 2–4. Before
we present the proof of Theorem 1.1, we will introduce some extra notation and preliminary
results.
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Notation 5.1 We have:

(i) Given a set A ∈ R
n+1, we denote by Conv(A) its convex hull {t x + (1 − t)y : x, y ∈

A, t ∈ [0, 1]}.
(ii) Let � be a convex complete (or closed) hypersurface. If a set V is a subset of Conv(�),

we say V is enclosed by � and use the notation

V � �.

In particular, if V
⋂

� = ∅ and V � �, we use V ≺ �.
(iii) For a constant r > 0 and a point (x0, t0) ∈ R

n×(0,+∞), Qr ((x0, t0)=:Br (x0)×(t0−
r2, t0] denotes the parabolic cube centered at (x0, t0). Also, for a constant α ∈ (0, 1),
Cα,α/2
x,t (Qr ) denotes the standard Hölder space with respect to the parabolic distance.

(iv) Bn+1
R (Y ):={X ∈ R

n+1 : |X − Y | < R} denotes the (n + 1)-ball of radius R centered
at Y ∈ R

n+1.
(v) For a convex hypsersurface � and η > 0, we denote by �η the η-envelope of �.

�η = {
Y ∈ R

n+1 : d(Y , �) = η, Y /∈ Conv(�)
}

where d is the distance function.
(vi) For a convex closed hypersurface �, we define the support function S : Sn → R by

S(v) = max
Y∈�

〈v, Y 〉.

(vii) For a convex C2 hypersurface � and a point X ∈ �, we denote by λmin(�)(X) the
smallest principal curvature. Also, for any convex hypersurface � and a point X ∈ �,
we define

λmin(�)(X) = sup
{
λmin(�)(X) : � complete (or closed) C2hypersurface,

� � �, X ∈ �
}

and also

λlocmin(�)(X) = lim inf
r→0

{
λmin(�)(Y ) : Y ∈ �

⋂
Bn+1
r (X)

}
.

Proposition 5.2 (C2,α estimate) Let u : Qr → R be a convex function whose graph is a
solution of (∗nk ) with the positive Qk curvature and Qr=:Qr ((x0, t0)). Then, there are some
constant α ∈ (0, 1) such that for all θ ∈ (0, 1) the following holds

‖D2u‖
Cα,α/2
x,t (Qθr )

≤ C(r , θ, α, n, sup
Qr

υ, sup
Qr

λmax, inf
Qr

Qk)

Proof The function u(x, t) satisfies the following parabolic equation

∂t u = (1 + |Du|2) 1
2 Qk(D

2u, Du),

where Qk(D2u, Du) denotes the Qk curvature of the graph of u. We consider the immersion
F(x, t) = (x, u(x, t)) with the corresponding image �t = F(Br (0), t). Then, we have

gi j = δi j + uiu j , gi j = δi j − uiu j

1 + |Du|2 , 	n = (−Du, 1)

(1 + |Du|2) 1
2

, hi j = ui j

(1 + |Du|2) 1
2

.
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73 Page 14 of 19 K. Choi, P. Daskalopoulos

The concavity of Qk(λ) in (λ1, · · · , λn) implies the concavity of Qk(D2u, Du) in D2u as
follows

∂2Qk

∂ui j∂ukl
Ni j Nkl = ∂2Qk

∂hi j∂hkl
Ni j Nkl(1 + |Du|2)−1 ≤ 0,

where Ni j ∈ R
n×n is a matrix.

Now, we let {E1, · · · , En} be an orthonormal basis of (T�t )F(x,t) with the corresponding
diagonalized second fundamental form hoi j = diag[λ1, · · · , λn]. Also, we let ci j be thematrix

satisfying Fi = ci j E j . Then,
∂Qk
∂hi j

Fi ⊗ Fj = ∂Qk
∂hoab

Ea ⊗ Eb gives

(1 + |Du|2) 1
2
∂Qk

∂ui j
= ∂Qk

∂hi j
= ∂Qk

∂hoab
〈Ea, F

i 〉〈Eb, F
j 〉 =

n∑

a=1

∂Qk(λ)

∂λa
cai caj .

Recall (2.1) , n−2λ−2
maxQ

2
k ≤ ∂aQk ≤ 1. Then, gi j = 〈Fi , F j 〉 = ciacaj leads to

Q2
kn

−2λ−2
maxg

i j = Q2
kn

−2λ−2
maxcai caj ≤

n∑

a=1

∂aQkcai caj ≤ cai caj = gi j .

Hence, the elliptic coefficients of (1 + |Du|2) 1
2 Qk(D2u, Du) are bounded by n, supQr

υ,

supQr
λmax, infQr Qk . In conclusion, we can employ the C2,α estimate in [14] which yields

the desired result. ��
Since we will approximate the initial hypersurface �0 by its envelopes (�0)

η, which are
of class C1,1, in order to regularized them, we introduce the convolution on the sphere.

Proposition 5.3 (Convolution on Sn) For ε ∈ (0, 1), let ϕε : Sn × Sn → R be a smooth
function satisfying

(i) ϕε(v,w) = ηε(〈v,w〉) for a non-negative function ηε : [−1, 1] → [0,+∞),
(ii) ηε(r) = 0 for all r ∈ [−1, 1 − ε]
(iii)

∫

Sn ϕε(v)ds = 1, where ds denotes the surface measure on Sn

and define the convolution f ∗ ϕε with a function f : Sn → R by

f ∗ ϕε(v) =
∫

Sn
f (w)ϕε(v,w)dsw.

Assume that f is of class Cm(U ) on an open subset U ⊂ Sn, then f ∗ϕε uniformly converge
to f in Cm(K ) on any compact subset K of U.

Proof The proof is standard but we include it here for completeness. Since ε ∈ (0, 1), for
each v ∈ Sn , the support of ϕε(v, ·) is compactly embedded in the hemisphere centered at
v. We choose a rotation matrix Q ∈ O(n) satisfying Q(−	en+1) = v. We define a chart
ξ : Rn → Sn and a differential operator ∇̃ : C1(Rn) → (

C0(Rn)
)n by

ξ(x) = Q
(
(x,−1)(1 + |x |2)− 1

2
)

and ∇̃i h(y) = ∂i h(y) + yi

n∑

j=1

y j∂ j h(y)

where h ∈ C1(Rn). Then, by direct computation, we have

∇̃(
( f ∗ ϕε) ◦ ξ

)
(x) =

∫

Rn
∇̃( f ◦ ξ)(y) ϕε(ξ(x), ξ(y)) (1 + |y|2)− n+1

2 dy (5.1)

which gives the desired result. ��
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Let ϕε be as in Proposition 5.3 and let � be a strictly convex closed hypersurface. We
will next show how to regularize � by convolving the support function of its η-envelope �η

(which is a C1,1 hypersurface) with the function ϕε . This is a standard argument which we
include here for the reader’s convenience.

Proposition 5.4 Let �η denote the η-envelope of a convex closed hypersurface � with a
uniform lower bound for λmin(�)(X). and let S denote the support function of �η. Assume
� encloses the origin. Then, there is a small constant α(η,�) > 0 such that for each
ε ∈ (0, α), S ∗ϕε is the support function of a strictly convex smooth closed hypersurface�

η
ε .

In addition, S ∗ ϕε → S, as ε → 0, uniformly on C1(Sn), and the following holds

lim inf
ε→0

λmin(�
η
ε )(Xε) ≥ λlocmin(�

η)(X)

where {Xε} is a set of points Xε ∈ �
η
ε converging to X ∈ �η as ε → 0.

Proof Let ḡi j denote the standard metric on Sn and let ∇̄ be the connection on Sn defined by
ḡi j . Notice that for a function f : Sn → R

+, if ∇̄i ∇̄ j f + f ḡi j is a positive definite matrix
with respect to the metric ḡi j , then f is the support function of a strictly convex hypersurface,
and the eigenvalues of ∇̄i ∇̄ j f + f ḡi j are the principal radii of curvature of the hypersurface
(c.f. [15]).

Since �η is a uniformly convex hypersurface of class C1,1, its support function S is of
class C1,1(Sn), namely ∇̄∇̄ exists almost everywhere. In addition, since the principal radii
of curvature of the η-envelope are bounded from below by η, we have

η ḡi j ≤ ∇̄i ∇̄ j S + Sḡi j ≤ sup
X∈�η

λmin(�
η)−1(X)ḡi j = (

η + sup
X∈�

λmin(�)−1(X)
)
ḡi j (5.2)

at points where ∇̄∇̄S exists.
Recall the chart ξ and the differential operator ∇̃ in Proposition 5.3. Then, direct compu-

tations yield

∂i = ∇̃i − xi x j ∇̃ j

1 + |x |2 , ∂i ∂ j =∇̃i ∇̃ j − x2i
1 + |x |2 ∇̃i ∇̃ j −

x2j
1 + |x |2 ∇̃i ∇̃ j + xi x j xk xl

(1 + |x |2)2 ∇̃k ∇̃l

− xi x j xk
(1 + |x |2)2 ∇̃k − (δi j − xi )xk

1 + |x |2 ∇̃k − x j
1 + |x |2 ∇̃i . (5.3)

Since (∇̄i ∇̄ j f ) ◦ ξ = ∂i∂ j ( f ◦ ξ) − �k
i j∂k( f ◦ ξ) holds for f C2(Sn), we have a linear map

Lx satisfying

(∇̄i ∇̄ j f ) ◦ ξ(x) + ḡi j f ◦ ξ(x) = Lx (∇̃∇̃( f ◦ ξ)(x), ∇̃( f ◦ ξ)(x), f ◦ ξ(x)).

For convenience, we denote f ◦ξ and Lx (∇̃∇̃ f , ∇̃ f , f ) by f and Lx ( f ), respectively. Then,
since S is a.e. second order differentiable, (5.1) gives

(∇̄i ∇̄ j S ∗ ϕε + ḡi j S ∗ ϕε)(x) = Lx (S ∗ ϕε(x)) =
∫

Rn
Lx (S(y))ϕε(x, y)

dy

(1 + |y|2) n+1
2

=
∫

Rn
(∇̄i ∇̄ j S + ḡi j S)(y)

ϕε(x, y)dy

(1 + |y|2) n+1
2

+
∫

Rn

(
Lx (S(y)) − Ly(S(y))

) ϕε(x, y)dy

(1 + |y|2) n+1
2

≥ η ḡi j − |Lx (S(y)) − Ly(S(y))|ḡi j . (5.4)
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Notice that S ∗ ϕε → S uniformly on C1(Sn) by Proposition 5.3, and |∂2S| is bounded by
(5.2) and (5.3). Also, we have Lx → Ly as x → y by (5.3). Hence, |Lx (S(y)) − Ly(S(y))|
converges to zero. Hence,

lim inf
ε→0

(∇̄i ∇̄ j S ∗ ϕε + ḡi j S ∗ ϕε)(x) ≥ η ḡi j .

So, there exist some α such that for each ε ∈ (0, α), there is a strictly convex hypersurface
�ε

ε whose the support function is S ∗ ϕε . Similarly, we can derive from (5.4) that

lim sup
ε→0

(∇̄i ∇̄ j S ∗ ϕε + ḡi j S ∗ ϕε)(xε) ≤ (
λlocmin(�

η)(X)
)−1

ḡi j

where xε converge to a point x such that ξ(x) is the outer normal vector of �η at X . ��
We will now give the proof of our long time existence result, Theorem 1.1.

Proof of Theorem 1.1 Let u0, �0 and �0 be as in the statement of the theorem and assume
without loss of generality that inf

�
u0 = 0. We will obtain a solution �t :={(x, u(·, t)) : x ∈

�t ⊂ R
n} as a limit

�t := lim
j→+∞ �

j
t

where � j denotes the lower half of a strictly convex closed hypersurface Nt which is sym-
metric with respect to the hyperplane {xn+1 = j} and also evolves by the Qk-flow (∗nk ).
The symmetry guarantees that �

j
t :=N j

t ∩ { xn+1 ≤ j} is a graph. Thus, our local a’priori
estimates shown in Sects. 2–4 on compact subsets of Rn+1, give us the uniform C∞ bounds
on �

j
t necessary to pass to the limit.

Now, given the initial data u0, �0, and �0, we define �t as follows.
Step 1 : The construction of the approximating sequence of closed hypersurfaces N j

t . Let
u0, �0 and �0 be as in Theorem 1.1 and assume that inf

�
u0 = u0(0) = 0. Since �0 is

not necessarily strictly convex we consider the strictly convex rotationally symmetric non-
negative entire function ϕ(x) = R

n → R
+
0 of class C∞(Rn) defined by

ϕ(x) =
∫ |x |

0
arctan r dr

and for each j ∈ N, we define the approximate strictly convex smooth function ũ j
0 : �0 → R

with the corresponding graph Ñ j
0 by

ũ j
0(x) = u0(x) + ϕ(x)/ j , �̃

j
0 = {(x, ũ j

0(x)) : x ∈ �0}.
Then, we reflect �̃ j

0

⋂ (
R
n×[0, j]) over the j-level hyperplaneRn×{ j}:={(x, j) : x ∈ R

n}
to obtain a strictly convex closed hypersurface Ñ j

0 defined by

Ñ j
0 = {

(x, h) ∈ R
n+1 : x ∈ �0, ũ j

0(x) ≤ j, h ∈ {ũ j
0(x), 2 j − ũ j

0(x)}
}
.

Since Ñ j
0 fails to be smooth at its intersection with the hyperplane R

n × { j}, we again

approximate Ñ j
0 by a strictly convex closedC

1,1 hypersurface N j
0 which is the (1/ j)-envelope

of Ñ j
0 , namely N̄ j

0 :=(Ñ j
0 )1/ j .

Given N̄ j
0 , we consider (0, j) as the origin and let S j denote the support function of N̄ j

0

with respect to out new origin (0, j). We define S j
ε by the convolution S j

ε = S j ∗ϕε with the
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mollifierϕε given in Proposition 5.3. ByProposition 5.4, for a small enough ε j ≤ 1
2ε j−1 � 1,

there is a strictly convex smooth closed hypersurface N j
0 whose support function is S j

ε j .

Then, we denote by N j
t the unique closed strictly convex solution of the Qk-flow (∗nk )

defined for t ∈ [0, Tj ), where Tj is its maximal existing time (c.f. in [1]). Finally, we set

�
j
t :=N j

t ∩ { xn+1 ≤ j}
and

�t :=∂
{ ⋃

j∈N
Conv(N j

t )
}
, T = lim inf

j∈N Tj .

Step 2 : Passing �
j
t to the limit �t . We apply the estimates in Sects. 2–4 for the solution �

j
t .

We choose any constant M0 > 0, and for each large enough j � M0 + 2 satisfying

sup
ū≤M0

υ(�
j
0 ) ≤ sup

ū≤M0+1
2 υ(�0), sup

ū≤M0

λmax(�
j
0 ) ≤ sup

ū≤M0+1
2 λmax(�0),

inf
ū≤M0

Qk(�
j
0 ) ≥ inf

ū≤M0+1

1

2
Qk(�0).

We apply the estimates in Sects. 2–4 in the following order

(i) Theorem 2.4 and Theorem 2.5 for �
j
t with M = M0.

(ii) Theorem 3.1 for �
j
t with M = M0 − 1.

(iii) Theorem 4.2 for �
j
t with M = M0 − 2.

Thus, we obtain uniform bounds for supυ, inf Qk , and sup λmax of�
j
t in {xn+1 ≤ M0−2} ⊂

R
n+1.
Next, we consider the functions u(·, t) and u j (·, t) whose graphs are �t and the lower

part of �
j
t , respectively. Given a point (x0, t0) satisfying 0 < t0 < T and (x0, u(x0, t0)) ∈

�t0 , we set M0 = u(x0, t0) + 4. There exists a sequence of sufficiently large j such that
u j (x0, t0) ≤ M0 − 3. Also, there exists a small constant r < t0 depending on sup υ and
sup λmax such that u j (x, t0) ≤ M0 − 2 holds in Br (x0). Then, we can apply Proposition 5.2
to u j in Qr , which yields uniform interior C2,α estimates. Hence, by passing j to the limit,
we have the uniform interior C2,α estimates for u(x, t), and therefore �t is a solution to the
Qk-flow. The standard regularity theory yields the smoothness of u and �t .
Step 3 : All time existence in the case dW ≥ n − k + 1. We recall the unique type II closed
ancient solution�t to the curve shorteningflow in [7],which exists for t ∈ (−∞, 0). Then,we
obtain a family of strictly convex closed hypersurfaces�t inRn+1 with O(k)×O(n+1−k)
symmetry by rotating the curve �t about its long axis and the space in R

k+1 and next by
rotating the k-dimensional surface of revolution about its short axis in Rn+1.

The O(k) × O(n + 1 − k) symmetric surfaces �t have two principal curvatures κ(·, t)
and λ(·, t), where κ is the curvature of �t . Since λ ≤ Cκ for some universal constant C ,
the Qk curvature of �t satisfies Qk ≤ Cκ for some positive constant C depending on n, k.
Hence, the family �Ct shrinks with the normal direction speed larger than Qk .

For arbitrary large T̃ > 0, there exists a point Y ∈ R
n+1 such that �0 encloses �−T̃ + Y

because of the condition dW ≥ n+1−k. So, for sufficiently large j , the closed solution�
j
0 in

Step 1 encloses�−T̃+Y .Namely,� j
t encloses�−T̃+Ct+Y ,which implies T ≥ Tj ≥ C−1T̃ .

Therefore, the maximal existence time T is the infinity.
Step 4 : The maximal existence time in the case dW ≤ n − k. Without loss of generality, we
assume sup |〈F0, ei 〉| = +∞ for each n + 2− dW ≤ i ≤ n + 1. We recall the closed convex
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viscosity solution �t in R
n+1−dW such that �0 converges to �0 × R

dW as |F0| → ∞. We
denote by T� < +∞ the maximal existence time of �t .

We first show T ≤ T� . Since �t is a viscosity solution, there are strictly convex closed
smooth solutions �

j
t to the Qk-flow in R

n+1−dW such that �
j
t encloses �

j+1
t , �

j
t → �t ,

and T� j → T� , where T� j is the maximal existence time of �
j
t . Since �

j
0 × R

dW encloses

�0 × ×R
dW , which encloses �0. Hence, �

j
0 × R

dW encloses the closed hypersurface �
j
0 in

Step 1. Therefore, the complete solution �
j
0 × R

dW encloses the closed solution �
j
t . Thus,

we have T� j ≥ Tj . Namely, T� ≥ T .

Next, we show T ≥ T� . From now on, we denote by �
j
t strictly convex closed smooth

solutions to the Qk-flow in Rn+1−dW such that � j+1
t encloses �

j
t , �

j
t → �t , and T� j → T� .

Then,� j
0×R

dW satisfyλ ≤ Qk, H ≤ � for some constantsλ,� > 0. So, for each j there are

strictly convex closed smooth hypersurfaces �
j,i
0 in R

n+1 with symmetry over {xn+1 = 0}
and points Y j,i ∈ R

n+1 such that �
j,i
0 → �

j
0 × R

dW , �
j,i+1
0 encloses �

j,i
0 , �0 encloses

�
j,i
0 + Y j,i , and �

j,i
0 satisfy 1

2λ ≤ Qk, H ≤ 2�. Now, we denote by �
j,i
t the solutions

to the Qk-flow, and denote by T� j,i their maximal existence time. Then, we can show that

�
j,i
t converges to the solution �

j
t × R

dW in C∞
loc topology. Thus, we have T� j,i → T� j . So,

T ≥ Tj,i implies T ≥ Tj . Namely, T ≥ T� . ��
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