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Abstract

We establish the long time existence of complete non-compact weakly convex and smooth
hypersurfaces X, evolving by the Qj-flow. We show that the maximum existence time T
depends on the dimension dy of the vector space W:={w € R+ Supyes, (X, w)| =
400} which contains each direction in which our initial data X is infinite. If dy = dim(W) >
n—k+ 1, then the solution X; exists forall time ¢ € (0, +00);if dwy = dim(W) < n—k, then
the solution ¥; exsist up to some finite time 7 < +o0. In the latter case, the trace at infinity
I'; of the solution % is a closed convex viscosity solution of the (n — dw)-dimensional Qx
flowont € (0, 7).

1 Introduction

In this his work we study the long time existence of a family of complete non-compact strictly
convex hypersurfaces ; embedded in R"*! which evolve by the Q;-flow. Given a complete
and convex hypersurface ¥ embedded in R"*!, we assume that Fy : M" — R"*! is an
immersion with Fo(M") = Xo. We say that the one-parameter family of immersions

F:M" x(0,T) — R**!

is a solution of the Qr-flow (1 < k < n), if F(M",t) = X, are complete convex hypersur-
faces for all t € (0, T) and F (-, t) satisfies

a >
EF(PJ) Qk(p7l)n(pvt)

) (%)
}gr(l)F(p,t) = Fo(p).
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where 71(p, t) is the unit normal vector pointing inside the convex hull of %;. The speed

Sk(p, 1)
Or(p, t)=0——+
Sk—1(p, 1)
is the quotient of the elementary successive polynomials of the principal curvatures
{AM(p. 1), -, Au(p, )} of Z; at F(p, t), given by

Sop.hy=1,  Sk(p.ty= > diy(p.t)- Ay (p.t)  forl <k <n.

I1<i|<--<ig<n

In [1], B. Andrews showed the existence of strictly convex closed solutions of a class of
nonlinear flow which includes the Qy-flow. S. Diater extended the results to closed convex
solutions with the positive Siy_1 curvature in [9]. Moreover, Caputo, Daskalopoulos, and
Sesum showed the existence of compact convex C L1 viscosity solutions with flat sides in [3]
and in [4]. Closed non-convex solutions of the Q»-flow in R3, the Harmonic mean curvature
flow, were considered by Daskalopoulos and Hamilton in [6] and by Daskalopoulos, Hamilton
and Sesum in [8].

The equation (x}) is fully-nonlinear except from the case of k = 1 which is the flow by
Mean curvature. The evolution of entire graphs by the Mean curvature flow was studied by
Ecker and G. Huisken in [10,11]. Sdez and Schniirer [12] showed the existence of complete
solutions of the Mean curvature flow for an initial hypersurface which is a graph X9 =
{(x,up(x)) : x € o} over a bounded domain 2, and ug(x) — +00 as x — 9.

The Ecker and Huisken result in [11] shows that in some sense the Mean curvature flow
behaves better than the heat equation on R”, namely an entire graph solution exists for all
time independently from the growth of the initial surface at infinity. The initial entire graph is
assumed to be only locally Lipschitz. This result is based on a local gradient estimate which
is then combined with the evolution of the norm of the second fundamental form |A|? to
give a local bound on |A |2, which is independent from the behavior of the solution at spatial
infinity. The latter is achieved by adopting the well known technique of Caffarelli, Nirenberg
and Spruck in [2] in this geometric setting.

An open question between the experts in the field is whether the techniques of Ecker
and Huisken in [10,11] can be extended to the fully-nonlinear setting. Recently in [5], the
authors jointly with L. Kim and K.-A. Lee, established the all time existence for complete
non-compact and convex solutions to the flow by positive powers of the Gauss curvature.
In addition, L. Xiao [17] obtained the existence of admissible solutions to a certain class of
fully nonlinear flows.

In this work we will show the existence of complete non-compact solutions of the Q-flow
under the assumption of weak convexity. Let Xy denote our initial surface. We will assume
that X is a smooth weakly convex graph o = {(x, ug(x)) : x € Q} with the positive Qy.
curvature defined by a function ug : 2 — R on an open convex domain 2 C R” such that:

(i) if Qo # R”, then for all xo € 029, lim ug(x) = +o0 holds;
xX— X0

(i1) if Qg is unbounded, then lim ug(x) = 400 holds.
|x|—4o00

Let W denote the vector space

W= {weR"™": sup (X, w)| = +o0}
Xe¥y

which contains each direction in which X is infinite. Then, sup sup [(X, w)]|is bounded
XeXowewt

by some constant R. Namely, X is contained in a cylinder BZH*dW x R where BZJFFdW
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Fig. 1 Examples of the initial hypersurface %

isa (n + 1 — dw)-dimensional ball of radius R. Moreover, the convexity of X implies that
the trace at infinity I'g of X is a (n — dw)-dimensional closed convex hypersurface such
that

lim ¢ =TI x R, )

|Fo|—+00

For example, if dw = 1 then X is a graph over a bounded domain 2 and 'y = 9. In
particular, if n = dw then I'g consists of two points, namely Xy is contained two parallel
hyperplanes.

We will see in this work that the time of existence 7" for a solution X, of (x}) depends on
the dimension dy,:=dim(W). If dw > n — k + 1, then the solution X; will exist for all time
t € (0, +00). However, if dy = dim(W) < n — k, then the solution ¥; will exist only up to
some finite time T . In the latter case, we will show that the time of existence 7" also depends
on the trace at infinity I'g of X¢. In fact, we will show that if I'; is the trace at infinity of the
solution ¥;, namely if

lim X, =T, x R )
| Fi|—+00
then I'; is an (n — dw)-dimensional closed convex hypersurface which also evolves by the
QOr-flow (). Note that for this we need that k < n — dy which is equivalent to dw < n —k.
Our main result in this work states as follows:

Theorem 1.1 Assume that o = {(x, ug(x)) : x € Q} is a smooth weakly convex graph with
the positive Qy curvature defined by a function ug : 2 — R such that the conditions (i)-(ii)
above hold. Let W denote the vector space W = {w € R+ Supxex, (X, w)| = 400}
which contains each direction in which X is infinite. Then, given a smooth immersion Fy of
Fo(M"™) = X, the following holds:

o ifdw = dim(W) > n — k + 1, then there is a complete convex solution ¥, of(*}(’) with
initial data X existing for all time t € (0, +00);

o ifdw = dim(W) < n—k, then there exists a complete convex smooth solution L of (*})
with initial data %o which is defined ont € (0, T), for some finite T < 0o. Moreover, the
trace at infinity I'; of the solution Z;, defined by (2), is a closed convex viscosity solution
of the (n — dw)-dimensional Qy flow (x}) ont € (0, T).

Remark 1.2 (Different cases in Theorem 1.1) In the case dw < n — k, the trace at infinity I';
is a continuous solution of the (n — dy )-dimensional Q; flow (*Z) which is defined in the
viscosity sense (c.f. [4]). Since I'; is a closed hypersurface, it develops singularity at some
finite time 7'. However, %, may possibly develop a singularity or become flat at time 7 < T.
In this paper, we only consider the maximum existence time rather than its limit profile.
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Inthe case k = 1, the resultin [12] shows that if a convex complete solution ¥; to the mean
curvature flow is a family of graphs on an evolving bounded domain €2;, then the boundary
0€2; 1s also a solution to the mean curvature flow. In this case, in our Theorem 1.1, I'; = 082;.

Inthe case k = n, Theorem 1.1 shows that strictly convex non-compact complete solutions
exist for all time, which is the same result to the Gauss curvature flow in [5]. Although the o,
curvature is different from the Gauss curvature, they go to zero at the infinity, which yields
the all time existence.

Remark 1.3 (General initial data) A complete and strictly convex hypersurface in R"*! can
be expressed as the graph of a function sich that conditions (i)-(ii), see in [16]. Thus, Theorem
1.1 shows the existence of a complete convex solution X, of (x}) for any complete smooth
strictly convex hypersurface X.

Discussion of the proof of Theorem 1.1: The proof of Theorem 1.1 mainly relies on three
a’priori local estimates: the local gradient bound shown in Theorem 2.4, the local speed
estimate given in Theorem 3.1 and a local bound from above on the second fundamental
form |A|* given in Theorem 4.2. The gradient and the speed estimates use the well known
technique by Caffarelli, Nirenberg and Spruck in [2] also used by Esker and Huisken in
the context of the Mean curvature flow in [11]. Then, by using the concavity of the Qx(})
function, we derive a local bound on |A|?> by modifying the elliptic estimate by W. Sheng, J.
Urbas and X.-J. Wang in [13] to the parabolic setting. The long time existence is shown by
approximation with compact hypersurfaces and applying the local a priori estimates.

Notation 1.4 We summarize the following notation, which will be frequently used in this
paper.

(i) We recall the second fundamental form h;j:=(V;V; F, 1) and the metric gij:=(F;, Fj),
where F;:=V; F.

(ii) We denote by it : M"™ — R the height function u(p, t):=(F(p, 1), €,+1). Also, given a
constant M € R, we define a cut-off function r by

Y(p,t):=(M —ii(p,t)); = max(M — i, 0).

(iii) v:=(ii, éu41)" " denote the gradient function (as in [11]).
(iv) We denote by L the linearized operator,

90k
Li=—-V;V;.
ohi; !
. . 90k
In addition, (, ) s denotes the inner product (V f,Vg)r = infng, where f, g
ij
are differentiable functions on M", and || - || ¢ denotes the L-norm given by the inner
product (, ) r.

(v) For the principal curvatures {\1, - - - , Ay}, we denote by Amax the largest principal cur-
vature Amax:=max{ri, - - - , Ay }. Also, denote the following functions of the principal
curvatures

08kt 1 (M) o — 00k(1) o 9Qk(2) 8% Qi)
Si-i(A)i=————=, |A|I7(V):= AS, Dy =—— D =—".
i (0= = JAROY= D ==y DiGk= == DijQic=

i=1
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2 Preliminaries

In this section, we will review some properties of the symmetric function Q (1) of A, and we
will derive some basic evolution equations under the Q-flow. We will also establish a local
gradient estimate and a local lower bound on the speed, as straightforward consequence of
the evolution equations.

Proposition 2.1 Assume that S is a convex smooth hypersurface in R"1 with the positive
Oy curvature and F : M" — R"*! is a smooth immersion satisfying F(M™) = X. Let us
choose an orthonormal frame at some point F (p) satisfying gij(p) = 8;j, hij(p) = 8;jAi(p).
Then, the following holds at F (p) for eachm € {1, --- , n}

3% 0 D;Qr — D; Qx

V™"h;iiVihpy <2
qah,-jahpq VoM = Z )»,'—)\j

i<j

V'”hijvmh,»j.
i,j,p,

Proof We recall the following identity which holds on homogeneous of degree one functions
of matrices, given in [1] (see also in [4]):

320y D;Qr — DOk
P> Tgihpg | Ve = 2 Dij k" it Vnhjit 3 == Sy il
LJ.Pq i,] i#j
By the concavity of Ok (1) we have Z D;jQrV"h;iVyhj; < 0,hence the desired inequality
iJ

follows. ]

Proposition 2.2 If Qx (A1, -+, Xy) > 0andX; > 0 foralli € {1, --- , n}, then the following
hold

n208 Ay < DiQr <1 2.1)

D;iQr < 4;70% (2.2)

k 2 2 2
n—k+1 Oy <|Aly =nQy (2.3)
Proof The case k = 1 is obvious. We assume that k > 2 and A1 = Amax. We begin my

recalling the following from the proof of Lemma 3.6 in [9]

n St 290k _ Skt — Skii Sk—2:i - St_1.i 2.4)
k(n—k+1) S7_, — oh S?, TSP '

Hence, we have the right hand side inequality of (2.1). For the left hand side inequality, we
observe that A; < A1 implies A; Sx—1.; < A1Sk—1.1. Therefore, we obtain

” i)
niSk—1;1 = Z)»isk—l;i = —— Sk =kS.

= ()
Also, Sk—1.; = Sk—1;1 and combining the above yields

0k _ n St 1 - LA%S,&];I .k S - in
i —k(n—k+1) S Tk S, T a2l si, T on?adl
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Next, to show (2.2), we employ (2.4) again to obtain

2252 . 52 2
90k _ kll_l P _ 1 S O

= 02 2 =322 T L2
oA Sk_1 A7 Sy A Sy Aj

The left hand side of (2.3) is proven in Lemma 3.7 in [9]. The right hand side inequality
n

readily follows by (2.2), since |A[g:= Y~ A7D; Ok < nQ;. O
i=1

Proposition 2.3 Assume Qo and X satisfy the assumptions in Theorem 1.1 . Let ¥; be a
convex complete smooth graph solution of (x]) with the positive Qy curvature. Then, the
following hold

Wy =Ly (2.5)

0:8ij = —20xhij (2.6)

g =20n" Q2.7

it =—(V; Q) F/ 2.8)
3% Qy ! )

Oihij = Lhij + o —VihpgV jhrs = 20chith; + 1Al hij (2.9)
pqOhs

9 Qr =L Ok +|A[; Ok (2.10)

dv? = Lv? —6||Vu|F —2|Aff V? 2.11)

Proof (2.6) - (2.10) are given in [1] (see also in [9]). Equation (2.5) readily follows from the
definition ¥:=(M — i), where i:=(F, e,41) and

. 5 90k 00k, - - .
Lu=L(F,ent1) = (Vi V F, en—H) (— hijl’l, en+1) = (Qk 1, ent1)
ohi; ohi;

= (8;F, En+l> = 811/_{.

To show (2.11), we derive from v:=(7i, &,.1)~! that Vv = —(Viii, épq1)V? =
(hijF7, éy41) v2. Hence,
90k 90k - 2
Lv= ahu —V;Vju = Wijvi(<hijm»en+l>U )
9 Qk ~ 3 O -
((ah V; h]m)Fm en+1) V2 + <8hij hi'hjm R, enq1) v
3Qk - -
+2 <hijmy€I1+l><hilFlaen+l>U
ohi;

=((Vm QO F", én11) v + |Aljv + 20| VUl 7.
On the other hand, (2.8) gives 0,v = ((V; O FI, eut1) v2. Therefore,

v =209V = 20(((V Q) F™, &ns1) V7)
=20Lv —4|Vu|} = 2|A[}v? = Lv? — 6]V — 2|Afv?

If Y:=(M — i)+, for a given M > 0, then we have the following two estimates.
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Theorem 2.4 (Gradient estimate) Assume Q2 and X satisfy the assumptions in Theorem 1. 1.
Let %; be a convex complete smooth graph solution of (x) with the positive Qy. curvature
defined on M" x [0, T], for some T > 0. Then

Y (p.Dv(p.1) < sup ¥ (p,0)v(p,0).
peM”

Proof By combining (2.5) and (2.11), we have
O (WPY?) = LOMY?) — (6¥ Vu + 20V, V(uy)) £ — 2| Alfu Y2,

Since the conditions (ii), (iii) in Theorem 1.1 mean that ¥ is compactly supported, it follows

by the maximum principle that sup v(p, )Y (p,t) < sup v(p,0)¥(p,0), which yields
peM”" peM”
the desired result. o

Theorem 2.5 (Lower bound of speed) Assume Q2 and X satisfy the assumptions in Theorem
1.1. Let ; be a convex complete smooth graph solution of (x ) with the positive Qy curvature
defined on M" x [0, T], for some T > 0. Then,

(p, ) Qk(p, 1) = inf Y(p,0)' Ox(p,0).
peM”

Proof From (2.5), (2.10), we derive
dWOH =LWOorH - 20V o H, Vo — 1A O .

Thus, the maximum principle gives the desired result. O

3 Speed estimate

In this section we will obtain a local upper bound on the speed Q. We will use the gradient
function v to localize our estimate in the spirit of the well known Caffarelli, Nirenberg, and
Spruck estimate in [2]. A similar technique was used by Ecker and Huisken [11] in the context
of the Mean curvature flow to obtain a local bound on |A|2. Our proof is similar to that in

[11].

Theorem 3.1 (Speed estimate) Assume Q2 and X satisfy the assumptions in Theorem 1.1.
Let 3 be a convex complete smooth graph solution of (}) with the positive Qi curvature
defined on M" x [0, T). Given a constant M, we have

(¥ Q1) (p, 1) < max { 10n? sup v*(-, 1), 2sup V> (-, 1) sup (Qe¥)* (-, 0)}
peM”

Om Om

where Qp = {(p,s) € M" x [0,¢t] : u(p,s) < M}.

Proof Given atime Ty € [0, T), we define the set Qy = {(p, s) € M" x [0, Tp] : iu(p,s) <
M} and we will prove that

(¥ Q) (p, To) < max {mnz supvt (-, 1), 2sup v?(, 1) sup (Q¥)? (., 0)}.
Om Om peM”

Let K:=sup,,, v? and define the function ¢ depending on v? by

v2

2y
gD(U)_Z‘K—vz'
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The evolution equation of vZin (2.11) yields

d

W(UZ):(/(L V2—6|Vul% = 2|1A[v?) = Lo—¢" VU5 — ¢/ (6IVV]% + 2| AlFv?)
which combined with (2.10) yields

%(Q%w) = L(Q79) —2(Vo. VO £ — 29[V Ok}
— (49" v* + 69) QF | VI + 2|AIRQF (9 — ¢'v?).
Observe the following
—2(Ve,VOi)r =—20i(Ve. VOi) £+ ¢ ' QL IVel: — ¢ " (Ve, V(e 0D) £

R _
~o ORIVl — o (Ve V(e 0D) £

< 20[IVOil% + 5

Hence, the following inequality holds

(rim L(QF9) — ¢~ Vo, V(Qi9)) £
— @¢"v? + 69" — 69~ 97 QR VUIZ + 214 QY (0 — ¢'v?).  GB.D)
On the other hand, a direct computation gives the following identities
p—@'VP=—¢%, ¢ 'Ve=4Kpv3Vu, 4¢"v>+6¢ —6¢p ¢ V? = K ®.
QK —v?)?

Setting f::Q,%go(vz) in (3.1) and applying the identities above and also Qi < nlAII% (see in
(2.3) ) gives

] -3 4K 2 2
5] = LT = 4Kgu V0.V 1o = G IV f = 2140 £

We will next consider the evolution of fv2 for our given cut off function ¢. We have
seen in (2.5) that 3;1//2 = L1//2 — 2||V1p||2£, on the support of . Combining this with the
evolution of f yields

0
g(fxﬁ) <LUfY?) —2VYA Vi —2fIVYI;

4K 2
z)szznwni - =y

We compute the following
— 4Kpu Y (Vu, V )z = —4Kev > (Vu, V(f§?)) £ + 8Kpv™> f§(Vu, Vi)

47(f1/f2||Vv||£

1
q—soe 4K 2(7f||w||£

< —4Kpv = (Vu, V(fyH))r +

4%
= —4Kov(Vu, V(f YD) 2 + mﬂﬁnwni +AKV 2 fIVYII

In addition, we know

—2VYL V)= =4 VY, V(YD) + 8L IVYI.

@ Springer



The Qi flow on complete... Page9of19 73

Therefore, by using the equations above, we can reduce the evolution equation of f1/2 to

0
5(1%) < LUfYD) — @y VY +4Kou Vo, V(YD) + (6 +4Kv D FIIVY

2
- =
n
Applying the inequality D; Qx < 1 shown in (2.1) yields
n+1 n+1 8Qk
IVUIZ =V F, eIz = D0 IVIF, En)lIz = 3 5=VilF, &n) V(F, &n)
m=1 m=1 2
_ 90k %(F en)(Fj. & y = 2Ok ppy = an ZD Or <n.
_ahl] P is€m m] = a]’l” i» 'j k

Hence, by the definition of K and v > 1, we have
(6 +4Kv ™) fIVY T < 10nKv 2 f < 10nK f

Combining the above inequalities we finally obtain
G _ _ 2
Py Y LY — @Y VY +4Keu Vo, V(YD) £ + 10nK f — ;fzwz.

Since v is compactly supported by the conditions (ii), (iii) in Theorem 1.1, fv? attains its
maximum M on M" x [0, Tp] at some (po, to). If to > 0, then at (po, t9), we obtain

fo f ¥? < 10nK f.

Since f¥? = oL} QY2 < (Qr)?, the following holds

M < max iSnZ(K, sup fl/f2(~, O)} < max iSnZ(K, sup (Qk1/f)2(~, 0)}.
peM” peM

Finally, (Qx¥)* < v? Q7Y < 2Ke(v*) Qpy* = 2K fy* and f¢*(p, To) < Mimply

(Qx¥)*(p, Tp) < max {IOn2 sup vt (-, 1), 2sup v* (-, 1) sup (Qr¥)?(., 0)}.

Om Om peM™

4 Curvature estimate

In this section we will derive a local upper bound on the largest principal curvature Amax of
M;. We will employ a Pogorelov type computation with respect to /;; using a technique that
was introduced by Sheng, Urbas, and Wang in [13] for the elliptic setting. The following
known formula and will be used in the proof.

Proposition 4.1 (The Euler’s formula) Let & be a smooth hypersurface, and F - M" — R"*!
be a smooth immersion with F(M") = X. Then, for all p € M" andi € {1, --- ,n}, the
following holds

hii (p)

gi(p) ~

< Amax(P)-
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73 Page100f 19 K. Choi, P. Daskalopoulos

Proof Assume {E|(p),--- , E,(p)} is an orthonormal basis of T X () satisfying L(E;(p))
= Aj(p)E;(p), where L is the Weingarten map. Let V; F:=F; = a;;E;. Then, g; =
n

Z(a,’j)z. Thus,
j=1
n n
hii = (L(Fy), Fi) = Y (@A j < Y (@) Amax = giikmax-
j=1 j=1
m}

Theorem 4.2 (Curvature estimate) Assume 2y and X satisfy the assumptions in Theorem
1.1. Let % be a convex complete smooth graph solution of (x}.) with the positive Qy curvature
defined on M" x [0, T). Then, for any given a constant M, we have

(¥ Amax) (P, 1) < exp(2nt sup OF) max {SM, sup (V2 Amax) (P, 0)]
om peEM”

where Qp = {(p,s) € M" x [0,t] : u(p,s) < M}.

Proof Given Ty € [0, T), we define Qy = {(p,s) € M" x [0, Tp] : u(p,s) < M} and we
will prove that

(¥ hmax) (P, To) < exp(2nTy sup QF) max {SM, sup (¥ Amax) (P, 0)}.
Om peM”
We set A = supyy,, Q%. By the conditions (ii), (iii) in Theorem (x}), exp(—2ntﬂ)w2)\max
attains its maximum in M" x [0, Tp] at some point (po, fo). If fo = 0, we obtain the desired
result. So, we may assume #y > 0. First we choose a chart (U, ¢) with pg € p(U) C M"
such that the covariant derivatives {V; F (po, t9) : i = 1, -, n} form an orthonormal basis of
(T Z4,) satisfying

gij(po, o) = &ij. hij(po, to) = 8ijXi (po, to), A (po, 10) = Amax(Po, to)-

Then, h11(po, t0) = Amax(Po, f0), &11(po, to) = 1 hold. Next, we define the function w :
U x [0, To] — R by

h
w:=-exp(—2nt ﬂ)l/le.
811

Notice that if t # o, the covariant derivatives {V; F(po, t)}i=1,...., may fail to form an
orthonormal basis of (T X)r(p,.r). However, Proposition 4.1 applies for every chart and
immersion. So, for all points (p, 1) € ¢(U) x [0, Tp], we have

w(p, 1) < exp(—=2nt )Y hanax (P, 1) < exp(=2n10A) Y *Amax (Po, 10) = w(po, 10)
implying that w attains its maximum at (po, #p). Since Vg1 = 0, the following holds on the
support of
Viw _ 2Vi¢ n Vihll.

w 14 hi
Differentiating the equation above we obtain
ViViw B ViwVw _ 2ViVj1ﬁ _2V,‘WVJ'10 n ViVihn B Vih11Vhy
w w? ¥ Y2 hi (h11)?

4.1)
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a
Multipling by 8%?
ij

and summing over all i, j yields

Lw [IVw|% ZLl_2||VW||2£+Lh11_||Vh11|IZL

w w? 14 v hii (h11)?
On the other hand, on the support of 1, the following holds
hw _ o ﬂ+23z1ﬂ dhir 3t811.
w hi g
Recall that 9,y = Ly by, by (2.5), 9,g11 = —2Qxh11 by (2.6), and also that
9% Qx ;
dchiy = Lhy + ———VihijjVihy —20h1h + |71y
Ohijohm
by in (2.9). Combining the equations above yields
Lw IVwl}  duw IVyl%  IVAul%: 1 920
— S === 5= — 7 — VihijVihy
w w w ¥ (h11) hi1 0hijohy,
h h
oty 22N 20,21 (42)
11
20phyihy h
Observe next that |A|,% < nQ,% < nAby (2.3). Also, at (po, tp), Ql;lill — 2Qki =0
11 811
holds. Moreover, Proposition 2.1 implies that
I 8%k —~ D10k — Di Ok >
———V1hijVihpy =2y ————|Vihy]
i i § MO = i) ’

holds at the point (po, fo). Furthermore, by the definition of the operator £, at the point
(po, to) we have

||Vw||3;>0 IVUIZ e~ 00k IVivl? IV, &S 80k [Viku
w2 T v e vt N I TV

We conclude from (4.2) that at the maximum point (po, fp) of w, the following holds

90k |w| 30k IVih1|* |~ 2(D1 Qx — D; Q) )
nA<2 Vih 4.3
Z 21 THRS 2 TS R
Next, we define the following sets
. 90k 00k 90k 3Qk
I={iedd,---,n: <4— d J={je,- T — >4
i m s 52 <45 an (et im: = = a5,

Since w attains its maximum at (po, ty), Vw(po, fo) = 0 holds. Thus, by (4.1)

2ian|viw|2_2 30k |Viy|? 5 a&w,wz_z 0k [Viv|?

. 2 = } 2 ; 2 } 2
18)”’ v iel Ai ¥ jelJ hj v iel i ¥

I 90k |Vihii)?
. 2
242y m,
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and
0Qk Vi * _ -~ Q% Vil 90k Vil _ - 90k [Viv 2
— Ok (h)* S an (hn)? ey O C(hn)? & on Y
30k IVjhi1]?
jeJWj h%l

and by adding the two equations above we obtain

90k IViy | ”an|Vihu|2_6 IQk Vi[> | 3~ 00k IVjhnl?

. 2 ; 2 T . 2 . 2
. oA Y = A A7 Pyt oA ¥ 2],6] ;A

However, we know 1 ¢ J and A| # A ;. Hence, for j € J, the definition of J leads to
0k 90k _ 390k

A OAj T 49
On the other hand A1 (A1 — 1) < ()»1)2 holds. Hence, for j € J, we obtain

2(D1 Qx — D;j Q) 5 330k |Vihnl?
=W s
A —Aj) 2 9 A7

Thus, (4.3) can be reduced to

Applying |V;¥r|* = |(Fj, éx41)|* < |Fi|* = gi; = 1 and the definition of 7, we obtain

nA < 628Q"|V‘“ 2422?";25 aa%w,
1 1

iel

Using that DA < Q]%)\fz = Q%A;éx by (2.2), ¥ < M, and Qi < A, in the inequality above
yields

AYE . <24 07y% < 24 AM?
implying that wzkmax( Do, t0) < 5M holds. In conclusion,
w(p, 1) < w(po, 10):=exp(—2nto FVY> hmax (Po, 10) < ¥ Amax(po, fo) < 5SM

which finishes the proof of our estimate. O

5 Long time existence

In this final section, we will establish the long time existence of the Qk-flow (* ), as stated in
our main Theorem 1.1. Our proof will be based on the a’priori estimates in Sect 2—-4. Before
we present the proof of Theorem 1.1, we will introduce some extra notation and preliminary
results.

@ Springer



The Qi flow on complete... Page 130f19 73

Notation 5.1 We have:

(i) Given a set A € R we denote by Conv(A) its convex hull {tx + (1 —f)y : x, y €
A,t €0, 1]}

(ii) Let X be a convex complete (or closed) hypersurface. If a set V is a subset of Conv(X),
we say V is enclosed by ¥ and use the notation

V<z.

In particular, if V(X =@ and V < E, weuse V < Z.

(iii) Foraconstantr > 0 and a point (xq, tg) € R" x (0, +00), O, ((x0, to)=:B,(x0) X (to —
r2, 1o] denotes the parabolic cube centered at (xo, ty). Also, for a constant o € (0, 1),
Cgfl / 2(Q,) denotes the standard Hélder space with respect to the parabolic distance.

(iv) B}EH(Y)::{X e R"! : |X — Y| < R} denotes the (n + 1)-ball of radius R centered
atY e R**1,

(v) For a convex hypsersurface ¥ and n > 0, we denote by %! the n-envelope of Z.

2 ={y eR":d(Y,2) =1, Y ¢ Conv(2)}

where d is the distance function.
(vi) For a convex closed hypersurface X, we define the support function S : S — R by

S(w) = I;’la%( (v,Y).

S

(vii) For a convex Cc? hypersurface ¥ and a point X € X, we denote by Anpin(X)(X) the
smallest principal curvature. Also, for any convex hypersurface ¥ and a point X € %,
we define

Amin(2)(X) = sup {Xmin(QD)(X) : © complete (or closed) Czhypersurface,
DEX D @

and also

M (E)(X) = lim inf {Amin(E)(Y) Yex() B;’“(X)}.

min

Proposition 5.2 (C>* estimate) Let u : Q, — R be a convex function whose graph is a
solution of (}}) with the positive Qy curvature and Q,=:Q,((xo, t0)). Then, there are some
constant a € (0, 1) such that for all 8 € (0, 1) the following holds

> .
D u||C;1f;¥/2(Q9r) <C(,0,a,n, supv, sup Amax, lgrf 0Or)

r r

Proof The function u(x, t) satisfies the following parabolic equation
du = (1 + | Dul’)? Qu(D*u, Du),

where Qy(D?u, Du) denotes the Qy, curvature of the graph of u. We consider the immersion

F(x,t) = (x, u(x, t)) with the corresponding image X, = F(B,(0), t). Then, we have
P Ui j o (—Du, 1) Uijj

gii = 06ij +uju;j, g11=5»-—7, n=———————— =

v YT 14 Dup? A+pupyr (A +Dup)?
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The concavity of Q (%) in (A, --- , A,) implies the concavity of Ok (D*u, Du) in D?u as
follows

3% 0 3% Q0

NijNy = ——N;i Ny (1 D <0,
ijiVkl = 3/1,]3/1 ij k(1 + | Lt|)

Ou;joug

where N;; € R"*" is a matrix.
Now, we let {EY, - - - , E,,} be an orthonormal basis of (T 1) F(x,r) With the corresponding
diagonalized second fundamental form h" = diag[M .-+, Anl. Also, we let ¢;; be the matrix

satisfying F' = ¢;; E;. Then, 92 i Fi ®F = a]() LE, ® Ej gives

190k _ 80k _ 90k : N 00k ()
1 Du 2 = = E,, F')(Ep, F/) = E ——CuiCai-
(I'+] | ) S 0 8hij 3/1217( a» F')(Ep, ) Oy CaiCaj

a=1

Recall (2.1), n_zkmaka < 9,0 < 1.Then, gV = (F!, Fl) = CiaCqj leads to
n
Q _zkmaxg” = I%n_z)‘rggxcaicaj =< Zaa chaicaj =< CqiCaj = g”-

a=1

Hence, the elliptic coefficients of (1 + |Du|2)% O (D?u, Du) are bounded by n, supg, v,
SUpP g, Amax. inf g, Q. In conclusion, we can employ the C 2.@ egtimate in [14] which yields
the desired result. O

Since we will approximate the initial hypersurface Xg by its envelopes ()", which are
of class C"!, in order to regularized them, we introduce the convolution on the sphere.

Proposition 5.3 (Convolution on S") For € € (0, 1), let ¢ : S" x §" — R be a smooth
function satisfying

(1) @e(v, w) = ne((v, w)) for a non-negative function n¢ : [—1, 1] — [0, +00),

(i) ne(r) =0forallr € [—1,1 — €]
(iii) f on @e(V)ds = 1, where ds denotes the surface measure on S"

and define the convolution f * ¢ with a function f : S* — R by
I * @e(v) :/ J (W)ge (v, w)dsy.
Sn

Assume that f is of class C" (U) on an open subset U C S", then f % ¢ uniformly converge
to f in C"™(K) on any compact subset K of U.

Proof The proof is standard but we include it here for completeness. Since € € (0, 1), for
each v € §”, the support of ¢ (v, -) is compactly embedded in the hemisphere centered at
v. We choose a rotation matrix Q € O(n) satlsfylng O(—en+1) = v. We define a chart
& : R" — §" and a differential operator v:c! R") — (CO(R”))

§0) = (e, =D+ x)73)  and  Tih(y) = %ih(y) + 31 Y vjdh(y)
j=1

where h € C! (R™). Then, by direct computation, we have
V((f %¢e) 0 &) (x) = /R V(f 0 )1 @e G0 £ (1 + [y F dy (5.1)

which gives the desired result. O
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Let ¢ be as in Proposition 5.3 and let ¥ be a strictly convex closed hypersurface. We
will next show how to regularize X by convolving the support function of its n-envelope X,
(which is a C!! hypersurface) with the function .. This is a standard argument which we
include here for the reader’s convenience.

Proposition 5.4 Let X7 denote the n-envelope of a convex closed hypersurface ¥ with a
uniform lower bound for Amin(X)(X). and let S denote the support function of £". Assume
Y encloses the origin. Then, there is a small constant a(n, £) > 0 such that for each
€ € (0, @), S* @ is the support function of a strictly convex smooth closed hypersurface ..
In addition, S % gc — S, as € — 0, uniformly on C'(S"), and the following holds

min

lim inf Amin (57)(X) > 226 (57)(X)
e—0
where {X.} is a set of points X, € % convergingto X € £" as € — 0.

Proof Let g;; denote the standard metric on S” and let V be the connection on §” defined by
gij- Notice that for a function f : §" — R*,if V;V ;i f + fgij is a positive definite matrix
with respect to the metric g;;, then f is the support function of a strictly convex hypersurface,
and the eigenvalues of V; V j f + f&ij are the principal radii of curvature of the hypersurface
(c.f. [15]).

Since %7 is a uniformly convex hypersurface of class C!!, its support function S is of
class C11($"), namely V'V exists almost everywhere. In addition, since the principal radii
of curvature of the n-envelope are bounded from below by 7, we have

n&i; < ViViS+Sgi; < sup Amin(ED) ' (X0)gij = (14 sup Amin (D)7 (X))g; (5.2)
Xexn XeXx
at points where VV S exists.

Recall the chart £ and the differential operator Vin Proposition 5.3. Then, direct compu-
tations yield

~ 2 2

~ xinVj ~ o~ X; ~ o~ Xj ~ ~ XiXjXRX] ~ ~
9=V — . 80, =V;V; — ViV — ViVi+ — LWV,
SR P T T R Y T i e Y T a2 kY

XiXjXk (Bij — xi)xXk ~ Xj =
— k k — Vi-
(1+ |x]?)2 1+ |x? 1+ |x)2

(5.3)

Since (V;V; f) o0& = 8;0,(f 0 &) — Ff‘/.ak(f o &) holds for £C?(S™), we have a linear map
L, satisfying '
(ViVif)o&() + &ij f o) = Ly (VV(f 0 £)(x), V(f 0 &)(x), f 0 £(x)).

For convenience, we denote fo& and Ly (%% f, v f, f)by fand L, (f),respectively. Then,
since S is a.e. second order differentiable, (5.1) gives

o d
(V5978 % 0 + 7S + 9 (0) = L (S # 9e(x) = / LSO, ) — 2
e 1+ [y
- = '3 5 d € s d
- / (V598 + i 5) () LLEDD f (Le(S() — Ly(S(y) L2
R a+pp e A+ 1P
> 0@y — 1L(SON) — Ly(SON)i. (5.4)
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Notice that § % ¢ — S uniformly on C'(S8") by Proposition 5.3, and |92S| is bounded by
(5.2) and (5.3). Also, we have Ly — Ly as x — y by (5.3). Hence, |L(S(y)) — L,(S(y))]
converges to zero. Hence,

1igljgf(@i@_/s * Qe+ gijS * 0)(x) > 1 gij.

So, there exist some « such that for each € € (0, «), there is a strictly convex hypersurface
¢ whose the support function is S * ¢.. Similarly, we can derive from (5.4) that

. R - —1 -
Hmsup(V; VS % e + 2i; S * 9e) (xe) < (Mo, (EN(X)) ™ &ij
e—0

where x. converge to a point x such that &£(x) is the outer normal vector of X7 at X. ]
We will now give the proof of our long time existence result, Theorem 1.1.

Proof of Theorem 1.1 Let ug, Xo and 2 be as in the statement of the theorem and assume
without loss of generality that igf ug = 0. We will obtain a solution X;:={(x, u(-, 1)) : x €

Q; C R"} as a limit

Y= lim 2’

j—>+oo
where =7 denotes the lower half of a strictly convex closed hypersurface N; which is sym-
metric with respect to the hyperplane {x,;1 = j} and also evolves by the Qx-flow (x}).

The symmetry guarantees that %/ :=N;/ N {x,41 < j} is a graph. Thus, our local a’priori
estimates shown in Sects. 2—4 on compact subsets of R"*!, give us the uniform C> bounds
on %] necessary to pass to the limit.

Now, given the initial data ug, Xo, and 2o, we define %; as follows.
Step 1 : The construction of the approximating sequence of closed hypersurfaces N . Let
ug, o and ¢ be as in Theorem 1.1 and assume that i?zf ug = uog(0) = 0. Since X is

not necessarily strictly convex we consider the strictly convex rotationally symmetric non-
negative entire function ¢(x) = R" — R(‘)" of class C*°(R") defined by

|x|
ga(x):/ arctanr dr
0

and for each j € N, we define the approximate strictly convex smooth function ﬁé Qo — R
with the corresponding graph ﬁ({ by
A = uo(x) + 9@)/j, S ={(x, @)(x)) : x € Q).
Then, we reflect fé N (]R” x [0, ]]) over the j-level hyperplane R” x {j}:={(x, j) : x € R"}
to obtain a strictly convex closed hypersurface Ny N/ defined by
N = {0, ) e R s x e Qo () < j, h e (@)(x), 2 — i)}

Since NJ fails to be smooth at its intersection with the hyperplane R"” x {j}, we again
approxnnate N0 by astrictly convex closed C ! hypersurface NO whichis the (1/j)-envelope
of N0 s namely N0 —(No)l/f

Given No , we consider (0, ) as the origin and let S/ denote the support function of No
with respect to out new origin (0, j). We define Se by the convolution SE = §7 % @, with the
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mollifier g given in Proposition 5.3. By Proposition 5.4, fora small enough€; < %6‘,'_1 < 1,
there is a strictly convex smooth closed hypersurface N({ whose support function is ng.

Then, we denote by th the unique closed strictly convex solution of the Qg-flow (x})
defined for t € [0, T;), where T is its maximal existing time (c.f. in [1]). Finally, we set

E{Z:th N{xps1 < j}
and

ze=3{ | J Conv(N)}, T = lim inf 7;.
jeN

Step 2 : Passing E;i to the limit ;. We apply the estimates in Sects. 2—4 for the solution Z,j .
We choose any constant My > 0, and for each large enough j > Mj + 2 satisfying

sup U(Eé) < sup 2v(Zp), sup kmax(z(j)) < sup 2Amax(Xo),
<My u<Mo+1 <My u<Mo+1

; 1
inf =y > inf = 0k(Zo).
Lt Or(Zy) z o 2Qk( 0)

<
We apply the estimates in Sects. 2—4 in the following order

(i) Theorem 2.4 and Theorem 2.5 for Etj with M = M.
(i) Theorem 3.1 for £/ with M = My — 1.
(iii) Theorem 4.2 for &/ with M = My — 2.

Thus, we obtain uniform bounds for sup v, inf Qy, and sup Apax of Z,J in{x,+1 < Myg—2} C
R”'H .

Next, we consider the functions u(-, 7) and u/ (-, r) whose graphs are X, and the lower

part of 2,1 , respectively. Given a point (xg, fp) satisfying 0 < f9 < T and (xg, u(xg, tp)) €
. we set Mo = u(xg, to) + 4. There exists a sequence of sufficiently large j such that
u! (xg, t0) < My — 3. Also, there exists a small constant r < fg depending on sup v and
sup Amax such that ul (x, t9) < Mo — 2 holds in B, (xg). Then, we can apply Proposition 5.2
to u/ in Q,, which yields uniform interior C>® estimates. Hence, by passing j to the limit,
we have the uniform interior C%¢ estimates for u(x, t), and therefore ¥, is a solution to the
Qx-flow. The standard regularity theory yields the smoothness of u and ;.
Step 3 : All time existence in the case dy > n — k + 1. We recall the unique type II closed
ancient solution ®; to the curve shortening flow in [ 7], which exists fort € (—oo, 0). Then, we
obtain a family of strictly convex closed hypersurfaces @, in R with O(k) x O(n+1—k)
symmetry by rotating the curve ®, about its long axis and the space in R¥*! and next by
rotating the k-dimensional surface of revolution about its short axis in R”*1.

The O(k) x O(n + 1 — k) symmetric surfaces ®, have two principal curvatures « (-, t)
and A(-, t), where « is the curvature of ®,. Since A < Ck for some universal constant C,
the Qy curvature of @, satisfies Qx < C« for some positive constant C depending on n, k.
Hence, the family ®¢; shrinks with the normal direction speed larger than Qy.

For arbitrary large T > 0, there exists a point ¥ € R"*! such that % encloses Eff +Y
because of the condition dy > n+1—k. So, for sufficiently large j, the closed solution Eé in
Step 1 encloses @ _7+Y.Namely, =/ encloses 67T+Ct+Y’ whichimplies7 > 7; > C~! T.
Therefore, the maximal existence time 7 is the infinity.

Step 4 : The maximal existence time in the case dw < n — k. Without loss of generality, we
assume sup |(Fp, ¢;)| = +oo foreachn +2 —dwy <i < n+ 1. We recall the closed convex
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viscosity solution I'; in R"*+1=dw guch that =g converges to g X R as |Fy| — oo. We
denote by Tt < 400 the maximal existence time of I';.

We first show T < Tr. Since ['; is a viscosity solution, there are strictly convex closed
smooth solutions F,j to the Qg-flow in R*H1=dw gych that F,j encloses F{+1, l"tj — Iy,
and Ir;, — Tr, where Tt : is the maximal existence time of Ff . Since F'Oi x R4 encloses
o x xR4  which encloses . Hence, Fé x R4 encloses the closed hypersurface Zé in

Step 1. Therefore, the complete solution F({ x R encloses the closed solution Z,] . Thus,
we have Tr > Tj. Namely, Tt > T.

Next, we show T > Tr. From now on, we denote by 1"] strlctly convex closed smooth
solutions to the Qx-flow in R*t1=4W such that F’+ encloses Fl], F’ — Iy and Tr; — Tr.
Then, FO x RAw satisfy A < Q, H < A forsome constants A, A > 0. So, for each j there are
strictly convex closed smooth hypersurfaces Zé'i in R"*! with symmetry over {x, | = 0}
and points Y;; € R"*! such that Eé’i — Fé x RIw 2(’)""“ encloses Eé’i, Yo encloses
Ej’ +7Y;,;, and E” satisfy %A < Qi, H < 2A. Now, we denote by Zj’i the solutions
to the Qr-flow, and denote by T, ; their maximal existence time. Then, we can show that

E,’ . converges to the solution Ft/ R in C. topology. Thus, we have Tr;, — Tr;. So,
T > T;,;implies T > T;. Namely, T > Tr. ]
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