
Improved Approximation and Scalability for Fair
Max-Min Diversification
Raghavendra Addanki !

Manning College of Information & Computer Sciences,
University of Massachusetts Amherst, MA, USA

Andrew McGregor !

Manning College of Information & Computer Sciences,
University of Massachusetts Amherst, MA, USA

Alexandra Meliou !

Manning College of Information & Computer Sciences,
University of Massachusetts Amherst, MA, USA

Zafeiria Moumoulidou !

Manning College of Information & Computer Sciences,
University of Massachusetts Amherst, MA, USA

Abstract
Given an n-point metric space (X , d) where each point belongs to one of m = O(1) different categories
or groups and a set of integers k1, . . . , km, the fair Max-Min diversification problem is to select ki

points belonging to category i ∈ [m], such that the minimum pairwise distance between selected
points is maximized. The problem was introduced by Moumoulidou et al. [ICDT 2021] and is
motivated by the need to down-sample large data sets in various applications so that the derived
sample achieves a balance over diversity, i.e., the minimum distance between a pair of selected points,
and fairness, i.e., ensuring enough points of each category are included. We prove the following
results:

1. We first consider general metric spaces. We present a randomized polynomial time algorithm
that returns a factor 2-approximation to the diversity but only satisfies the fairness constraints
in expectation. Building upon this result, we present a 6-approximation that is guaranteed to
satisfy the fairness constraints up to a factor 1− ϵ for any constant ϵ. We also present a linear
time algorithm returning an m + 1 approximation with exact fairness. The best previous result
was a 3m− 1 approximation.

2. We then focus on Euclidean metrics. We first show that the problem can be solved exactly in
one dimension. For constant dimensions, categories and any constant ϵ > 0, we present a 1 + ϵ

approximation algorithm that runs in O(nk) + 2O(k) time where k = k1 + . . . + km. We can
improve the running time to O(nk) + poly(k) at the expense of only picking (1 − ϵ)ki points
from category i ∈ [m].

Finally, we present algorithms suitable to processing massive data sets including single-pass data
stream algorithms and composable coresets for the distributed processing.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases algorithmic fairness, diversity maximization, data selection, approximation
algorithms

Digital Object Identifier 10.4230/LIPIcs.ICDT.2022.7

Related Version Extended Version: https://arxiv.org/abs/2201.06678

Funding This work was supported by the NSF under grants CCF-1934846, CCF-1908849, CCF-
1637536, CCF-1763423, IIS-1943971, and an Adobe Research Grant.

© Raghavendra Addanki, Andrew McGregor, Alexandra Meliou, and Zafeiria Moumoulidou;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Database Theory (ICDT 2022).
Editors: Dan Olteanu and Nils Vortmeier; Article No. 7; pp. 7:1–7:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raddanki@cs.umass.edu
mailto:mcgregor@cs.umass.edu
https://orcid.org/0000-0002-2124-160X
mailto:ameli@cs.umass.edu
mailto:zmoumoulidou@cs.umass.edu
https://doi.org/10.4230/LIPIcs.ICDT.2022.7
https://arxiv.org/abs/2201.06678
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 Improved Approximation and Scalability for Fair Max-Min Diversification

1 Introduction

Given a universe of n elements X and a metric distance function d : X × X → R+
0 , the

Max-Min diversification problem seeks to select a k-sized subset S of X such that the
minimum distance between the points in S is maximized [23, 48]. Intuitively, the goal is to
maximize the dissimilarity across all the selected points while k is typically much smaller than
n. A considerable amount of work in the database community has addressed the diversity
maximization problem in the context of query result diversification [28, 32, 52], efficient
indexing schemes for result diversification [6, 29, 54], nearest neighbor search [1], ranking
schemes [8, 47], and recommendation systems [2, 15].

Recently, Moumoulidou et al. [46] introduced the fair variant of the Max-Min diversifica-
tion problem. Specifically, the assumption is that the universe of elements X is partitioned
into m = O(1) disjoint categories or groups. Then, the aim is to construct a diverse set of
points where each group is sufficiently represented. To this end, the input of the problem
includes non-negative integers k1, . . . , km and the goal now is to select a subset S using ki

representatives from each group such that the minimum distance across all points is maxi-
mized. As a concrete example, consider a query over a maps service for finding restaurants
around Manhattan at NYC. Then the goal is to present the user with a diversified set of
restaurant locations while representing different cuisines in the sample.

In this work, we improve currently known approximation results for fair Max-Min
diversification. This includes improving the approximation factor in the most general case
of the problem; significantly decreasing the approximation factor if we slightly relax the
fairness constraints; and reducing the approximation factors to arbitrarily close to 1 when
the underlying metric is Euclidean. Before presenting our results, we review related work.

1.1 Related Work
The problem of unconstrained diversity maximization, i.e., when the number of groups
m = 1, is well-studied in the context of facility location, information retrieval, web search and
recommendation systems [8, 16, 23, 32, 35, 37, 41, 45, 47, 48, 52]. We refer the interested
readers to the following surveys related to the diversification literature [30, 31].

Among popular diversification models are the distance-based models. In these models,
the diversity of a set of points is modeled via some function defined over pairwise distances.
Max-Sum (also known as remote-clique) and Max-Min (also known as remote-edge or p-
dispersion) are two of the most well-established distance-based diversification models [42].
In Max-Sum, diversity is defined as the sum of the pairwise distances of points selected in
a set, while in Max-Min the diversity of a set is equal to the minimum pairwise distance.
For both problems, there are known 2-approximation algorithms, which yield the best
approximation guarantee that can be achieved for both problems [12, 15, 48]. There are also
recent works on distance-based diversity maximization models in the streaming, distributed,
and sliding-window models [7, 13, 19, 42].

Contrary to unconstrained diversity maximization, the problem of fair diversity maxi-
mization is less studied. To the best of our knowledge, there is a known 2-approximation
local search algorithm for fair Max-Sum diversification [2, 14, 15] where fairness is modeled
via partition matroids [49]. Recent work also extends the local search approach to distances
of negative type [22]. Another recently studied objective called Sum-Min [12] is defined as
the sum of distances of all points to their closest point in the set. Bhaskara et al. [12] present
an 8-approximation algorithm for Sum-Min under partition matroid constraints.
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The most relevant result to our work is due to Moumoulidou et al. [46] that introduced the
fair variant for the Max-Min diversification problem that we also study. The proposed fairness
objectives have been widely studied by prior work [11, 20, 21, 24, 25, 34, 43, 44, 50, 53, 55,
56, 57], and are based on the definition of group fairness and statistical parity [33]. It is
worth noting that there are other definitions for fairness, like individual or causal fairness [36],
but these are not the focus of our work. Moumoulidou et al. [46] designed a polynomial time
algorithm that achieved a 3m− 1- approximation for fair Max-Min diversification. There
is also a recent line of work for designing (composable) coresets for various distance-based
diversification objectives in the fairness setting [17, 18]. Coresets are small subsets of the
original data that contain a good approximate solution and are typically used for speed
up purposes or designing streaming and distributed algorithms. Prior efforts leave as an
open question the construction of coresets for the fair variant of the Max-Min diversification
objective.

1.2 Our Results
We present results for both the cases of general metrics and Euclidean metrics.
1. General Metrics. In Section 3.1, we present a randomized polynomial time algorithm

that returns a factor 2-approximation to the diversity but only satisfies the fairness
constraints in expectation, i.e., for each i ∈ [m], the output is expected to include at least
ki points from Xi. In Section 3.2, we present a 6-approximation that is guaranteed to
include (1 − ϵ)ki points in each group i ∈ [m] assuming each ki = Ω(ϵ−2 log m). Both
these results are based on randomized rounding of a linear program. Finally, in Section 3.3
we present a linear time algorithm returning an m+1 approximation with perfect fairness.
This is an improvement over the previously known 3m− 1 approximation [46]. We also
present an example that shows that the analysis presented in Moumoulidou et al. [46]
cannot be improved to obtain a better approximation factor. In Section 3.4, we present a
hardness of approximation result arguing that we cannot get an approximation factor
better than 2, even allowing for multiplicative approximations in fairness constraints.

2. Euclidean Metrics. If the points can be embedded in low dimensional space RD

(e.g., if the points correspond to geographical locations) and the distances correspond to
Euclidean distances then we can significantly improve the approximation factors of our
algorithms. In Section 4.1, we show that the problem can be solved exactly for D = 1.
For constant dimensions, groups, we then present a 1 + ϵ approximation algorithm that
runs in O(nk) + 2O(k) time where k = k1 + k2 + . . . + km. In Section 4.3, we show how to
improve the running time to O(nk) + poly(k) at the expense of only picking (1 − ϵ)ki

points from group i ∈ [m]. All these results are based on a new coreset construction.

In Sections 5.1 and 5.2, we present algorithms suitable to processing massive data
sets including single-pass data stream algorithms and composable coresets for distributed
processing.

2 Background and Preliminaries

2.1 Fair Max-Min Diversification
We formally define the problem of fair Max-Min diversification recently introduced in [46].

▶ Definition 1 (Fair Max-Min). Let (X , d) be a metric space where X =
⋃m

i=1 Xi is a
universe of n elements partitioned into m non-overlapping groups and d : X × X → R+

0 is a
metric distance function. Then ∀u, v ∈ X , d satisfies the following properties: (1) d(u, v) = 0

ICDT 2022



7:4 Improved Approximation and Scalability for Fair Max-Min Diversification

iff u = v (identity), (2) d(u, v) = d(v, u) (symmetry), and (3) d(u, v) ≤ d(u, w) + d(w, v)
(triangle inequality). Further, let k1, k2, · · · , km be non-negative integers with ki ≤ |Xi|, ∀i ∈
[m]. The problem of fair Max-Min diversification is now defined as follows:

maximize
S ⊆ X

min
u,v∈S
u̸=v

d(u, v)

subject to |S ∩ Xi| = ki, ∀i ∈ [m] (fairness constraints)

The aim is to select a subset S ⊆ X of points that maximizes the minimum pairwise
distance across the points in S while being constrained to include ki points from group i.
Throughout the paper we refer to the diversity of a set S as div(S) = minu,v∈S,u ̸=v d(u, v).

Let S∗ =
⋃m

i=1 S∗
i be the set of points that obtains the optimal diversity score denoted

by div(S∗) = ℓ∗. We say a subset of points S is an α approximation if div(S) ≥ ℓ∗/α and
achieves β fairness if |S ∩ Xi| ≥ βki for all i ∈ [m]. When β = 1, we say subset achieves
perfect fairness.

Fair Max-Min is an NP-hard problem for which the best known polynomial time
algorithms are: a 4-approximation algorithm that only works for m = 2 groups and a
3m− 1-approximation algorithm that yields the best guarantees for any m ≥ 3 [46]. The best
approximation factor one can hope for in general metric spaces is a 2-approximation guarantee.
This claim easily follows since when m = 1, the problem is just the Max-Min diversification
problem where it is known that no polynomial time algorithm with an approximation factor
better than 2 exists if P ̸= NP [48]. We use poly(·) to describe polynomial time algorithms
using the context dependent parameters.

2.2 Low Doubling Dimension Spaces
Our results for low dimensional Euclidean metrics use the fact that such metrics have low
doubling dimension. Our work in this direction is inspired by work on diversity maximization
by Ceccarello et al. [17, 18, 19]. We define a ball of radius r centered at p ∈ X as the
set of all points in X within distance strictly less than r from p. We use the notation:
B(p, r) = {q ∈ X | d(p, q) < r}.

▶ Definition 2 (Doubling Dimension). Let (X , d) be a metric space. The doubling
dimension of X is the smallest integer λ such that any ball B(p, r) of radius r around a point
p ∈ X can be covered using at most (r/r′)λ balls of radius r′. The Euclidean metric on RD

has doubling dimension O(D) [10, 19, 40].

2.3 Coresets
Coresets are powerful theoretical tools for designing efficient optimization algorithms in the
presence of massive datasets in sequential, streaming or distributed environments [4, 42]. At
a high level, coresets are carefully chosen subsets of the original universe of elements that
contain an approximate solution to the optimal solution for the optimization problem at
hand. A coreset for fair Max-Min diversification is defined as follows:

▶ Definition 3 (Coreset for Fair Max-Min). A set T ⊆ X is an α-coreset if there exists
a subset T ′ ⊆ T with |T ′ ∩ Xi| = ki ∀i ∈ [m] and div(T ′) ≥ ℓ∗/α.

Note that optimally solving Fair Max-Min on T , a set typically much smaller in size
than X , yields an α-approximation factor. Further, the notion of coresets is useful for
designing algorithms in the distributed setting using the composability property. Composable
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coresets closely relate to the notion of mergeable summaries [5, 42] while the assumption is
that the universe of elements X is partitioned into L subsets (e.g., processing sites). Then
the goal is to process each subset independently and extract a local coreset such that in the
union of these local coresets, there is an approximate solution for the optimization problem
at hand. Specifically, for Fair Max-Min a composable coreset is defined as follows:

▶ Definition 4 (Composable coreset for Fair Max-Min). A function c(X ) that maps
a set of elements to a subset of these elements computes an α−composable coreset for some
α ≥ 1, if for any partitioning1 of X =

⋃
j Yj and T =

⋃
j c(Yj), there exists a set T ′ ⊆ T

with |T ′ ∩ Xi| = ki ∀i ∈ [m] such that div(T ′) ≥ ℓ∗/α.

3 General Metrics

In this section, we present algorithms for Fair Max-Min with an arbitrary metric. Our first
two algorithms are based on rounding a suitable linear program. In Section 3.3 we present a
linear time algorithm returning an m + 1 approximation with perfect fairness. Finally, in
Section 3.4, we give hardness of approximation results for Fair Max-Min.

3.1 2-Approx with Expected Fairness
In this section and others, we assume a guess γ on the optimal diversity value for Fair
Max-Min. Note there are at most

(
n
2
)

possible values for the optimal diversity corresponding
to the set of distances between pairs of points. Hence, trying all these guesses only increases
the running time by a factor O(n2). Assuming the ratio between the largest and smallest
distance is poly(n), this can be reduced to O(ϵ−1 log n) at the expense of introducing an
additional factor of 1 + ϵ in the approximation. This follows by the standard technique of
only considering guesses that are powers of (1 + ϵ) [39].

Fair Max-Min LP. Let X = {p1, . . . , pn}. For every point pj ∈ X , we have a variable xj .
We represent the fairness constraint for every group i ∈ [m] using constraint (1). Additionally,
for every point p ∈ X , we add the constraint (2) that includes at most one point in a ball of
radius γ/2 centered at p. This ensures that the selected points are separated by a distance of
at least γ/2. Using constraint (3), we allow xp to take any value between 0 and 1. If γ ≤ ℓ∗,
observe that the optimal solution for Fair Max-Min is a feasible solution for this LP.∑

pj∈Xi

xj ≥ ki ∀i ∈ [m]. (1)

∑
pℓ∈B(p,γ/2)

xℓ ≤ 1 ∀p ∈ X . (2)

xj ≥ 0 ∀j ∈ [n]. (3)

Let x∗
j denote the optimal solution of the linear program stated above. Let n′ = |{j : x∗

j > 0}|
and without loss of generality suppose x∗

j > 0 for all j ∈ [n′]. We obtain an integral solution
using a randomized rounding algorithm, in which we generate a random ordering based
on sampling without replacement, such that a point pj is selected as the next point in the
ordering with probability proportional to x∗

j . This allow us to show (see Lemma 5) that

1 The notion of composable coresets can also be extended when X is not divided into disjoint subsets but
this is not the focus of our work.

ICDT 2022



7:6 Improved Approximation and Scalability for Fair Max-Min Diversification

the rounding scheme returns a set S with at least ki points in expectation from each group
i ∈ [m] (satisfying constraint (1) in expectation). Further, our rounding scheme selects at
most one point from each ball of radius γ/2 (satisfying constraint (2)). Since for a γ ≤ ℓ∗

there is a set S that satisfies the properties discussed above, selecting the set S for the largest
guess γ results in a 2-approximation for the diversity score.

Randomized Rounding. We generate a random ordering σ of [n′] where σ(t) is randomly
chosen from Rt = [n′] \ {σ(1), . . . , σ(t− 1)} such that for j ∈ Rt, Pr[σ(t) = j] = x∗

j∑
ℓ∈Rt

x∗
ℓ

.

After generating the ordering σ, we construct the output set S by including the point pj

in S iff σ(j) ≤ σ(ℓ) for all pℓ ∈ B(pj , γ/2). Note that all points in the output are at least
distance γ/2 apart.

▶ Lemma 5. There is an algorithm that returns a set S, such that for all groups i ∈ [m], it
holds that E[|S ∩ Xi|] ≥ ki. Further all the points selected in S are at least γ/2 far apart.

Proof. Consider the randomized rounding algorithm described in this section. Now, let pj

be a point with x∗
j > 0. Define At to be the event d(pσ(t), pj) < γ/2 and d(pσ(t′), pj) ≥ γ/2

for all t′ < t. In other words, At is the event that the first point included in S from the ball
B(pj , γ/2) is the point from the t-th step (in the ordering σ). Then,

Pr[pj ∈ S] =
n′∑

t=1
Pr[σ(t) = j|At] Pr[At] =

n′∑
t=1

x∗
j∑

pℓ∈B(pj ,γ/2) x∗
ℓ

Pr[At]

=
x∗

j∑
pℓ∈B(pj ,γ/2) x∗

ℓ

n′∑
t=1

Pr[At]

=
x∗

j∑
pℓ∈B(pj ,γ/2) x∗

ℓ

≥ x∗
j

where the last equality follows because
∑n′

t=1 Pr[At] = 1 and the last inequality holds
because of constraint (2) in the Fair Max-Min LP. Then for i ∈ [m], we have E[|S ∩ Xi|] ≥∑

p∈Xi
x∗

p ≥ ki where the last inequality follows from constraint (1). ◀

3.2 6-Approx with (1 − ϵ) Fairness
We now present a more involved rounding scheme of the LP given in the previous section
that ensures that the selected points contain at least (1− ϵ)ki points in Xi for each i ∈ [m].
However, this guarantee comes at the expense of increasing the approximation factor for the
diversity score from 2 to 6.

The main idea behind the new rounding scheme stems from the observation that for any
pi, pj ∈ X , if B(pi, γ/2) and B(pj , γ/2) are disjoint, then, in the previous rounding scheme,
the event that pi is included in the returned solution is independent of the event that pj is
included. This follows because the relative ordering of the elements in {ℓ : pℓ ∈ B(pi, γ/2)}
in σ is independent of the ordering of the elements in {ℓ : pℓ ∈ B(pj , γ/2)} in σ. This
independence will ultimately allow us to use Chernoff bound to argue concentration of the
number of elements chosen from each group Xj ∀j ∈ [m].

3.2.1 Randomized Rounding with improved fairness guarantees
We solve the LP in Section 3.1 to get a feasible solution {x∗

j}j∈[n]. Next, we transform
{x∗

j}j∈[n] into a feasible solution {y∗
j }j∈[n] for the following set of constraints, some of which

are no longer linear:
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∑
pj∈Xi

yj ≥ ki ∀i ∈ [m]. (1’)

∑
pℓ∈B(p,γ/6)

yℓ ≤ 1 ∀p ∈ X . (2’)

yj ≥ 0 ∀j ∈ [n]. (3’)

(0 < yi and 0 < yj)⇒ d(pi, pj) ≥ γ

3 ∀pi, pj ∈ Xℓ,∀ℓ ∈ [m] (4’)

The constraint (2’) ensures that at most one point in a ball of radius γ/6 is selected
(instead of γ/2 used in Section 3.1) and results in an approximation factor of 6. The
constraint (4’) ensures that points from the same group with non-zero values are separated
by at least γ/3, which is used to argue (1− ϵ) fairness (see Theorem 7). The transformation
of x∗ to y∗ can be done by redistributing the values as follows:
(a) For each pj ∈ X with x∗

j > 0 satisfying pj ∈ Xi and y∗
j value not yet set, we set:

y∗
j ←

 ∑
pℓ∈B(pj ,γ/3)∩Xi

x∗
ℓ

 and y∗
ℓ ← 0 for all pℓ ∈ B(pj , γ/3) ∩ (Xi \ {pj}) .

(b) Finally, for all pj ∈ X with x∗
j = 0, we set y∗

j ← 0.

Informally, we are just moving weight to pj from points of the same group (as pj) that
are at a distance strictly less than γ/3 from pj .

▶ Lemma 6. {y∗
j }j∈[n] satisfies Constraints (1’-4’).

Proof. Observe that {y∗
j }j∈[n] satisfies the constraint (4’). If a point pj ∈ Xi satisfies y∗

j > 0,
then, it means that we set y∗

ℓ to 0 for every pl ∈ B(pj , γ/3) ∩ (Xi \ {pj}).
Constraint (2’) is satisfied because∑
pℓ∈B(pj ,γ/6)

y∗
ℓ ≤

∑
pℓ∈B(pj ,γ/6+γ/3)

x∗
ℓ =

∑
pℓ∈B(pj ,γ/2)

x∗
ℓ ≤ 1

since {x∗
ℓ}ℓ∈[n] satisfies constraint (2). Constraint (1’) is satisfied because

∑
pj∈Xi

y∗
j =∑

pj∈Xi
x∗

j and Constraint (3’) is trivially satisfied. ◀

We next pick a random permutation σ as in the previous Section 3.1, but now using the
values {y∗

ℓ }ℓ∈[n]. We add pj to the output S if σ(j) ≤ σ(ℓ) for all pℓ such that d(pℓ, pj) < γ/6.

Note that all points in S are therefore at least a distance of γ/6 apart.

▶ Theorem 7. Asssume ki ≥ 3ϵ−2 log(2m) for all i ∈ [m]. There is a poly(n, k, δ−1) time
algorithm that returns a subset of points with diversity ℓ∗/6 and includes (1− ϵ)ki points in
each group i ∈ [m] with probability at least 1− δ.

Proof. Let Yp = 1 if the point p ∈ X is included in the output S. Fix i ∈ [m]. The proof
of Lemma 5 applied to balls of radius γ/6 rather than balls of radius γ/2, ensures that
for each i ∈ [m], E[

∑
p∈Xi

Yp] ≥ ki. The fact {Yp}p∈Xi
are fully independent allows us to

apply the Chernoff bound and conclude Pr[
∑

p∈Xi
Yp ≤ (1− ϵ)ki] ≤ exp(−ϵ2ki/3) ≤ 1/(2m).

Hence, by an application of the union bound, we ensure that with probability at least 1/2,
|S ∩ Xi| ≥ (1− ϵ)ki for all i ∈ [m]. Repeating the process log δ−1 times ensures that at least
one of the trials succeeds with probability at least 1− δ. ◀

ICDT 2022
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Algorithm 1 Fair-Greedy-Flow.

Input: X =
m⋃

i=1
Xi: Universe of available elements.

k1, . . . , km ∈ Z+.
γ ∈ R+: A guess of the optimum fair diversity.

Output: ki points in Xi for i ∈ [m].
1: R ← X denote the set of remaining elements.
2: C ← ∅ denote a collection of subsets of points (called clusters).
3: while |R| > 0 (and) |C| ≤ km do
4: D ← ∅ denote the current cluster, and Dcol ← ∅ denote the groups of points in cluster D.
5: while an element p ∈ R ∩ Xi for some i ∈ {1, 2, · · · , m} \Dcol. exists do
6: if |D| = 0 (or) d(p, x) < γ

m+1 for some x ∈ D then
7: D ← D ∪ {p} and Dcol ← Dcol ∪ {i}.
8: end if
9: end while

10: R ← R \
⋃

p∈D
B(p, γ

m+1 ).
11: C ← C ∪ {D}.
12: R ← R \ Xi ∀i ∈ [m] if |{D | D ∈ C and D ∩ Xi ̸= ∅}| ≥ k.
13: end while

▷Construct flow graph :
14: Let C = {D1, D2, · · ·Dt}.
15: Construct directed graph G = (V, E) where

V = {a, u1, . . . , um, v1, . . . , vt, b}
E = {(a, ui) with capacity ki : i ∈ [m]}

∪ {(vj , b) with capacity 1 : j ∈ [t]}
∪ {(ui, vj) with capacity 1 : |Xi ∩Dj | ≥ 1}

16: Set S ← ∅. Compute maximum a-b flow in G using Ford-Fulkerson algorithm [26].
17: if flow size < k =

∑
i
ki then return ∅ ▷Abort

18: else ▷max flow is k
19: ∀(ui, vj) with flow equal to 1, add the point in Dj with group i to S.
20: end if
21: return S.

Note that Theorem 7 requires the ki values to be sufficiently large, and such conventions
have also been used in prior work [12]. For small ki values, i.e., ki = o(log n), the Fair-GMM
algorithm introduced in Moumoulidou et al. [46] obtains a 5-approximation guarantee in
polynomial time. Using an additive Chernoff bound, alternatively, we can find at least
ki −O(

√
ki log m) points from each group i ∈ [m], without the requirement of having large

ki’s.

3.3 (m + 1)-Approx with Perfect Fairness
We now describe Fair-Greedy-Flow (Algorithm 1), an m + 1-approximation algorithm
that ensures perfect fairness. This is an improvement over the previously known 3m − 1
approximation [46]. We also present an example that shows that the analysis presented in
Moumoulidou et al. [46] cannot be improved to obtain a better approximation factor. The
analysis for Fair-Greedy-Flow is presented in the extended version of the paper [3].

Overview of Fair-Greedy-Flow. We assume a guess γ for ℓ∗. The algorithm proceeds by
iteratively building clusters of close points of distinct groups. Our main idea is to select one
point from each cluster such that the fairness constraints are guaranteed. First, we describe
the procedure for building a cluster. Let D denote a cluster initialized with a point of group
i ∈ [m]. Among the available points R, we include a point p ∈ R, if it is within a distance of

γ
m+1 to some point x ∈ D, and no other point of the same group is already present in D.
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If there is no such point, the cluster D is complete, and we remove all points from R that
are within a distance of γ

m+1 from some point in D. Also, we discard all points of group i,
i.e., Xi from R, as soon as there are at least k distinct clusters in C containing points from
Xi. We continue this process of iteratively building clusters, until there are points from each
group that are part of at least k distinct clusters or if there are no remaining points.

Next, we use an approach similar to [46] and select at most one point from each cluster,
satisfying the fairness constraints. We construct a flow network with clusters D1, D2, · · · , Dt

in C represented by nodes v1, v2, · · · , vt and groups represented by nodes u1, u2, · · · , um. We
add an edge with capacity 1 between every pair ui and vj if there is a point of group i in
cluster Dj for some j ∈ [t]. We create a source node a and add edges with capacity ki between
a and ui ∀i ∈ [m]. We then create a sink node b and add edges with capacity 1 between b

and vj ∀j ∈ [t]. Finally, we find maximum flow using Ford-Fulkerson algorithm [26]. For
each edge (ui, vj) with flow equal to 1, we include the point of group i from cluster Dj in
our solution. We conclude with the following theorem:

▶ Theorem 8. Fair-Greedy-Flow Algorithm returns an (m + 1)(1 + ϵ)-approximation
and achieves perfect fairness for the Fair Max-Min problem using a running time of
O(nkm3ϵ−1 log n).

We now give a tight example for Fair-Flow in Moumoulidou et al. [46] and show how
Fair-Greedy-Flow yields a better approximation.

A tight example for Fair-Flow: a 3m − 1 approximation algorithm [46]. Suppose k = 3
and we have to select one white and two black points. Here, edges represent the distance
across two points, e.g., d(p1, p2) = 1/5. Note that the optimal solution in this example is the
set of points {p1, p3, p4} with diversity score equal to 1.

1 2 3 4
1/5 1 1

Fair-Flow for a guess γ = 1, for the black group selects both points since they are at
least d1 = mγ

3m−1 = 2/5 far apart from each other. Similarly for the white group. Now because
there is no pair of points with distance strictly less than d2 = γ

3m−1 = 1/5, Fair-Flow
constructs four connected components (each with a point). As a result, the points {p1, p2, p4}
will be selected by the max-flow algorithm and we obtain a set with diversity score equal
to 1/5. Note that for this example, Fair-Greedy-Flow returns the set {p1, p3, p4} as p1
and p2 are less than 1/3 distance apart. These two points will be in the same cluster and at
most one of them can be picked; thus, we guarantee an approximation ratio of 3.

3.4 Hardness of Approximation
In this section, we give a hardness of approximation result for the Fair Max-Min problem.
Our result is a generalization and improvement over the 2-approximation hardness shown
in [46], as we also allow for approximations in fairness constraints.

▶ Definition 9 (Gap-Cliqueρ). Given a constant ρ ≥ 1, a graph G, and an integer k, we
want to distinguish between the case where a clique exists of size k (the “yes” case) and the
case where no clique exists of size ≥ k/ρ (the “no” case).

It is known that Gap-Cliqueρ is NP-hard for every ρ ≥ 1 [9]. Now, via a reduction from
the Gap-Cliqueρ we argue that Fair Max-Min cannot be approximated to a factor better
than 2, even allowing for multiplicative approximations in fairness constraints.
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▶ Theorem 10. Let α < 2 and β > 0 be constants. Unless P = NP , there is no polynomial
time algorithm for the Fair Max-Min problem that obtains an α-approximation factor for
diversity score, and β fairness.

Proof. We present a reduction from Gap-Cliqueρ, where ρ = β. For every vertex of the
graph G, we create a new point, and set of points is denoted by X . For every edge (u, v) in
G, we set d(u, v) := 2. For all other pairs of vertices, we set the distances as 1. Every vertex
is assigned the same color, and the corresponding fairness constraint is |S ∩ X | ≥ k, where S
is the set of points whose diversity we are trying to maximize in Fair Max-Min.

Suppose there is a polynomial time algorithm that returns a set S, obtains an α-
approximation for the diversity score, and a β-approximation for the fairness constraints.
We first consider the ‘Yes’ instance in Gap-Cliqueβ , i.e., we assume there is a clique of
size k in G. This implies ℓ∗ = 2. As α < 2, we have that the set S returned has a diversity
score ≥ ℓ∗/α > 1. Therefore, S is a clique in G as all other pairwise distances are 1 (from
construction). As S is a β-approximation for the fairness constraint, we have that |S| ≥ k/β.
Let us now consider the ‘No’ instance, i.e., there is no clique of size ≥ k/β in G. Therefore,
|S ∩X | < k/β, as |S ∩X | is upper bounded by the maximum clique size in G. From the above
arguments, we have that using our algorithm, we can distinguish the ‘Yes’ and ‘No’ instances
of Gap-Cliqueβ , which is not possible unless P = NP [9]. Hence, the theorem. ◀

4 Euclidean Metrics

In this section, we assume that the metric space is Euclidean, i.e., we can associate a point
pi ∈ RD with the ith entry of X and d(pi, pj) = ∥pi − pj∥2 =

√∑
ℓ∈[D](pi(ℓ)− pj(ℓ))2 .

When D = 1 we show that the problem can be solved exactly in polynomial time via Dynamic
Programming. More generally, when D = O(1) we present a bi-criteria approximation that
uses an extension of the dynamic programming approach and properties of low dimensional
Euclidean spaces.

4.1 Exact Computation in One Dimension
In this section, we assume the points in the universe X =

⋃m
i=1 Xi can be embedded on

a line. Specifically, let X = {p1, . . . , pn} where each pi ∈ R and we order the points such
that p1 ≤ p2 ≤ . . . ≤ pn. We further assume a guess γ on the optimal diversity score for
Fair Max-Min and design the dynamic programming algorithm Fair-Line (Algorithm 2)
that computes an exact solution when γ = ℓ∗. See the previous section for a discussion on
guessing γ.

Dynamic Programming. Define the dynamic programming table
H ∈ {0, 1}(k1+1)×...×(km+1)×n indexed from 0. An entry H[k′

1, k′
2, · · · , k′

m, j] ∈ {0, 1} is 1 iff
there is a subset S ′ of the first j points on the line with diversity γ that contains k′

i points
from each group i ∈ [m]. To compute the entries of H, we process the points in their order
of appearance on the line.

Note that there is a set S ′ with k′
i points from each group i among the first j points if:

(1) there is such a set among the first j − 1 points, or (2) point j belongs to group i for some
i ∈ [m], and among the first j′ points there is a set with k′

1, · · · , k′
i − 1, · · · , k′

m points from
the corresponding groups where j′ < j is the largest value such that d(pj , p′

j) ≥ γ.
See Fair-Line (Algorithm 2) for the resulting algorithm. For simplicity, the algorithm is

written to only determine whether it is possible to pick a subset with diversity γ subject to
the required fairness constraints. However, the algorithm can be easily extended to construct
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Algorithm 2 Fair-Line: An exact algorithm for data on a line.

Input: X =
⋃m

i=1 Xi: Universe of available points.
k1, . . . , km ∈ Z+.
γ ∈ R+: A guess of the optimum fair diversity.

Output: ki points in Xi for i ∈ [m].
1: Let n← |

⋃m

i=1 Xi| and initialize H ∈ {0, 1}(k1+1)×...(km+1)×n to 0.
2: Set H[0, . . . , 0, 0]← 1, H[0, . . . , 0, 1]← 1, and if p1 ∈ Xℓ, H[0, . . . , 1︸︷︷︸

index ℓ

, . . . , 0, 1]← 1.

3: for j = 2 to n do
4: Let i ∈ [m] satisfy pj ∈ Xi.
5: Let j′ = max ({0} ∪ {j′ ∈ [n] : pj′ + γ ≤ pj}).
6: for k′

1 ∈ {0, . . . , k1}, . . . , k′
m ∈ {0, . . . , km} do

7: H[k′
1, · · · , k′

m, j]← H[k′
1, · · · , k′

m, j − 1].
8: If k′

i ≥ 1, H[k′
1, · · · , k′

m, j]← H[k′
1, · · · , k′

i − 1, . . . , k′
m, j′] ∨H[k′

1, · · · , k′
m, j − 1].

9: end for
10: end for
11: return H[k1, k2, · · · , km, n].

a subset of points for every non-zero entry in H by storing a pointer to the choice we made.
For an entry H[k′

1, k′
2, · · · , k′

m, j] = 1 that also satisfies H[k′
1, k′

2, · · · , k′
m, j − 1] = 1 we store

a pointer to that entry. In the second case, if H[k′
1, k′

2, · · · , k′
m, j′] = 1 for some j′, we store

a pointer to that entry. We construct the solution set using the stored pointers, starting at
H[k1, k2, · · · km, n] and backtracking, to indicate which points to add to the solution.

▶ Theorem 11. There is an algorithm that solves the Fair Max-Min problem exactly when
the points can be embedded on a line and requires a running time of O(n4 ∏m

i=1(ki + 1)).

Proof. We use Fair-Line to identify the exact solution. We observe that any optimal
solution can be expressed as a subset of the first j points for some j ∈ [n]. From the
construction, if the guess γ ≤ ℓ∗ there will always be at least ki points from group i for all
i ∈ [m] that are all γ far apart. Therefore, since the dynamic programming approach finds all
the subsets with ki points per group i for all j ∈ [n], at least one of the H[k1, k2, · · · , km, j]
entries will be equal to 1 as required. As discussed previously, we can backtrack and construct
the solution set.

Running Time. For a fixed guess γ, we need to compute
∏m

i=1(ki + 1) entries for every
point, as every k′

i for i ∈ [m] takes at most ki + 1 values. To compute an entry H[·, ·, · · · , ·, j]
using Fair-Line (Algorithm 2), we need to retrieve O(n) distances to find point j′ that is at
least γ far apart from point j. Thus, the total running is equal to O(n2 ∏m

i=1(ki + 1)) since
there are O(n

∏m
i=1(ki + 1)) entries in H and the computational cost to fill each entry is

O(n). As there are O(n2) distance values the guess γ can take, the total running time is
O(n4 ∏m

i=1(ki + 1)). ◀

4.2 Coresets for Constant Dimensions
In this section, we design efficient (1 + ϵ)-coresets for Fair Max-Min in metric spaces of
low doubling dimension (Definition 2). Let λ denote the doubling dimension of X . Our
approach generalizes prior work on constructing efficient coresets for unconstrained Max-Min
diversification [19] to the Fair Max-Min problem.

Specifically, we give the first algorithm for constructing coresets in metric spaces of
doubling dimension. The proposed approach uses the GMM algorithm that obtains a factor
2-approximation for the unconstrained Max-Min diversification problem [48, 51].
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GMM is a greedy algorithm and works as follows: it starts with an arbitrary point in a set
S and in every subsequent step selects the point that is the farthest away from the previously
selected points. In fact, readers familiar with the k-center clustering problem will recognize
that this is the same strategy used by [38]. If k is the size of the subset to be selected and n

is the size of the universe of points, it is known that GMM can be implemented in O(kn)
time [44, 54].

Coreset Construction. First, define ϵ′ = ϵ/(1 + ϵ) and note that ϵ/2 ≤ ϵ′ < 1 since ϵ ∈ (0, 1].
The Coreset Algorithm constructs coreset T as follows: we run GMM on each group
i ∈ [m] separately to retrieve a set Ti with O((4/ϵ′)λk) points. The coreset T is equal to the
union of the Ti sets for all i ∈ [m], namely: T ←

⋃m
i=1 Ti, where Ti ← GMM(Xi, (4/ϵ′)λk).

We will show that T contains a set T ′ with div(T ′) ≥ ℓ∗/(1 + ϵ) and ki points from each
group i. At a high level, the idea is that for each group i there are two cases: (1) either Ti

contains a sufficient number of points that are far apart such that even if we had to remove
points close to points selected from other groups, we would still have enough points to satisfy
fairness, or (2) the optimal points from group i are within small distance from their closest
point in Ti. In the analysis we show that in both cases we have enough points from each
group i to satisfy fairness while these points are at least ℓ∗/(1 + ϵ) far apart. We first prove
the following lemma, which we will use later.

▶ Lemma 12. Let S be a set of k
′ = (4/ϵ′)λk points that are all at least (ϵ′/2)γ far apart.

Then, there exists a subset S
′ ⊂ S of points that are all at least γ far apart and |S′ | ≥ k.

Proof. Let S′ = ∅. Add an arbitrary point x from S to S′ and remove all points in the ball
B(x, γ) from S. Consider a set of balls of radius (ϵ′/4)γ that cover the removed points. Each
of these balls cover at most one removed point since discarded points are at least (ϵ′/2)γ far
apart. Hence, the number of balls is at least the number of removed points. But because
the doubling dimension is λ we know there exists a set of (4/ϵ′)λ balls of radius (ϵ′/4)γ that
cover the removed points. Hence, the number of removed points is at most (4/ϵ′)λ. Since
there were k

′ = (4/ϵ′)λk points in S, we may continue in this way until we’ve added k points
to S′. All chosen points are at least γ apart as required. ◀

Our main theorem in this section is as follows:

▶ Theorem 13. There is an algorithm that returns a (1 + ϵ)-coreset of size O((8/ϵ)λkm) in
metrics of doubling dimension λ with a running time O((8/ϵ)λkmn).

Proof. We show that the set
⋃m

i=1 Ti constructed by the Coreset Algorithm is an (1 + ϵ)-
coreset by showing the existence of a set T ′ ⊆

⋃m
i=1 Ti with ki points from each group i and

div(T ′) ≥ ℓ∗/(1 + ϵ).
For every group i ∈ [m], we define T̂i to be the maximal prefix of the points added

by GMM to form Ti such div(T̂i) ≥ (ϵ′/2)ℓ∗. We first process all the groups for which
|T̂i| < (4/ϵ′)λk, which we call critical groups. For all critical groups, any point p ∈ Xi \ T̂i

is within distance (ϵ′/2)ℓ∗ from its closest point f(p) in T̂i, i.e., d(p, f(p)) < (ϵ′/2)ℓ∗. As a
result, for any pair of optimal points o1, o2 in critical groups we deduce:

d(f(o1), f(o2)) ≥ d(o1, o2)− d(o1, f(o1))− d(o2, f(o2))
> ℓ∗ − 2 · ϵ′ℓ∗/2 = ℓ∗/(1 + ϵ) .
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We initialize T ′ =
⋃

o∈∪i:criticalS∗
i

f(o) where S∗
i is the set of points in an optimal solution

belonging to group Xi. We now process all non-critical groups j ∈ [m] in an arbitrary order
and remove any point in T̂j that is less than ℓ∗ apart from some point in T ′ . Then we argue
that in the remaining points there is a set of points T

′

j with kj points that are at least ℓ∗ far
apart.

By the doubling dimension property and the fact that all the points in T̂j

are at least (ϵ′/2)ℓ∗ far apart, the removal step described above discards at most
(4/ϵ′)λ

∑
i:processed groups |T

′ ∩ Xi| points from T̂j . Consequently, regardless of the order
in which we process the non-critical groups, by the time we process T̂j for some j ∈ [m],
there will be at least (4/ϵ′)λk −

∑
i:processed groups(4/ϵ′)λki ≥ (4/ϵ′)λkj points that are at

least (ϵ′/2)ℓ∗ apart from each other.
Now by applying Lemma 12 on the points of T

′

j , we conclude that there are at least kj

points within ℓ∗ distance from all other points in T ′ . Then this set of points T
′

j can be
added to T ′ to satisfy fairness for group j. Thus, it holds that div(T ′) ≥ ℓ∗/(1 + ϵ) which
implies the claimed approximation factor for coreset T . As ϵ′ = ϵ/(1 + ϵ) ≥ ϵ/2, we have
|T | = O((8/ϵ)λkm). Since we use GMM to obtain T , the running time of the Coreset
algorithm is O((8/ϵ)λkmn). ◀

From the coreset T , we can obtain a (1 + ϵ)-approximation by enumerating over all
subsets of T and returning the subset with maximum diversity and perfect fairness. The
running time of this algorithm is O(2O(k) + nk), when m, λ are constants. In the next section,
we describe an algorithm that has a polynomial dependence on n and k, obtained at the cost
of (1− ϵ)-fairness.

4.3 (1 + ϵ) Approx with (1 − ϵ) Fairness
In this section, we describe Fair-Euclidean (Algorithm 4) which uses (1 + ϵ)-coresets
described in Section 4.2 and returns a subset of points with diversity at least ℓ∗/(1 + ϵ) and
has (1− ϵ)ki points from each group i ∈ [m].

First, we discuss Fair-DP (Algorithm 3), which is a dynamic programming subroutine
used in Fair-Euclidean. The subroutine will be applied to a collection of t disjoint subsets
of X : C = {C1, C2, . . . , Ct}. This collection will be well-separated in the sense that for all
i ̸= j and x ∈ Ci, y ∈ Cj then d(x, y) ≥ γ. Points in the same set can be arbitrarily close
together. We design Fair-DP (Algorithm 3): a dynamic programming algorithm to retrieve
a set F =

⋃m
i=1 Fi ⊆ C with ki points per group i and div(F) ≥ γ if such a set exists in C.

Dynamic Programming. Define the dynamic programming table
H ∈ {0, 1}(k1+1)×...×(km+1)×t indexed from 0. An entry H[k′

1, k′
2, · · · , k′

m, j] ∈ {0, 1} is 1
iff there is a subset F ′ among the first j clusters such that |F ′ ∩ Xi| ≥ k′

i ∀i ∈ [m] and
div(F ′) ≥ γ.

To compute the entries of H, we process the clusters in C using some fixed ordering. Note
that there is a set F ′ with k′

i points from each group i among the first j clusters if there is a
subset P ⊆ Cj with div(P ) ≥ γ and p′

i points from each group i; and, among the first j − 1
clusters, there is a set with k′

1 − p′
1, k′

2 − p′
2, · · · k′

i − p′
i · · · , k′

m − p′
m points from each group

i ∈ [m] that are at least γ far apart (the function f in Fair-DP (Algorithm 3) evaluates
where there is such a set P ). We enumerate over all possible subsets of Cj to identify the
subset P .
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Algorithm 3 Fair-DP: A dynamic programming subroutine.

Input: C1, C2, · · · , Ct: Family of disjoint subsets of X =
⋃m

i=1 Xi.
k1, . . . , km ∈ Z+.
γ ∈ R+: A guess of the optimum fair diversity.

Output: ki points in Xi for i ∈ [m].
1: Define boolean function f(p′

1, . . . , p′
m, j) that evaluates to 1 iff there exists P ⊆ Cj with

div(P ) ≥ γ and |P ∩ Xi| = p′
i for all i ∈ [n].

2: Initialize H ∈ {0, 1}(k1+1)×...(km+1)×t to 0.
3: Set H[p′

1, . . . p′
i, . . . , p′

m, 1]← f(p′
1, . . . , p′

m, 1).
4: for j = 1 to t do
5: For k′

i ∈ {0, · · · , ki} ∀i ∈ [m], update the entries in H as:

H[k′
1, · · · , k′

m, j]←
∨

p′
i≤k′

i
∀i∈[m]

H[k′
1 − p′

1, · · · , k′
m − p′

m, j − 1]f(p′
1, . . . , p′

m, j).

6: end for
7: return H[k1, k2, · · · , km, n].

See Fair-DP (Algorithm 3) for additional details and implementation. For simplicity, the
algorithm is written to only determine whether it is possible to pick a subset with diversity
γ subject to the required fairness constraints. Similar to Fair-Line, the algorithm can be
easily extended to construct a subset of points for every non-zero entry in H by storing a
pointer to the choice we made.

▶ Theorem 14. If γ = ℓ∗, then, Fair-DP (Algorithm 3) returns a set S that satisfies
div(S) ≥ ℓ∗ and |S ∩Xi| ≥ ki ∀i ∈ [m] and has a running time of O(

∏m
i=1(ki +1)22Rt) where

R = max{|C1|, |C2|, · · · , |Ct|}.

Proof. As γ = ℓ∗, the optimal set of points satisfy the fairness constraints. From the
construction in Fair-DP, we will return a set S that has diversity ℓ∗, and achieves perfect
fairness.

Running Time. Consider a value j ∈ [t]. There are
∏m

i=1(ki + 1) entries in the table H

corresponding to this value of j. For every k′
i ∈ {0, 1, · · · ki} and every subset R ⊆ Cj

where |R ∩ Xi| = p′
i ∀i ∈ [m], we check if there is a valid subset of points satisfying fairness

constraints using the condition mentioned in Fair-DP. Since there at most
∏m

i=1(ki +1) ways
to enumerate the p′

i values (because p′
i ≤ k′

i), the total time to compute entries corresponding
to this j value is O(

∏m
i=1(ki + 1)22R). Therefore, to compute all the entries in H we need

O(
∏m

i=1(ki + 1)22Rt) time. ◀

Now, we describe a 1 + ϵ approximation algorithm for Euclidean metrics called Fair-
Euclidean that achieves 1− ϵ fairness.

Overview of Fair-Euclidean. As part of the input, we construct a (1+ϵ)-coreset T =
⋃m

i=1 Ti

of size O((8/ϵ)λkm) using the Coreset algorithm described in Section 4.2. We further
assume a guess γ for the optimal diversity score ℓ∗. Note that the coreset T is only constructed
once and used for different guesses of ℓ∗.

For a fixed guess γ, for every group i ∈ [m], we select a maximal prefix of points T̂i ⊂ Ti

that are at least ϵγ/4 far apart and define T̂ =
⋃m

i=1 T̂i. Our main idea is to partition T̂
and obtain a collection of sets C = {C1, C2, · · · , Ct} separated by at least γ distance; thus
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Algorithm 4 Fair-Euclidean: A bi-criteria algorithm.

Input: X =
m⋃

i=1
Xi: points in RD with doubling dimension λ.

k1, . . . , km ∈ Z+.
T =

⋃m

i=1 Ti: A coreset for fair Max-Min.
γ ∈ R+: A guess of the optimum fair diversity.
ϵ ∈ [0, 1]: approximation error parameter.

Output: ki points in Xi for i ∈ [m].
1: T̂i ← a maximal prefix of points in Ti such that div(T̂i) ≥ ϵγ/4.
2: p← a point selected uniformly at random from [0, W ]D, where W = 2mDγ/ϵ.
3: Construct axis-aligned cubes C = {C1, C2, · · · , Ct} of side length W using p as one of the corners.
4: In each cube Ci, remove all the points that are within a distance of γ/2 from one of the

boundaries.
5: return S ← Fair-DP(C1, · · · , Ct, (1− ϵ)k1, · · · (1− ϵ)km, γ).

any pair of points x ∈ Ci and y ∈ Cj , ∀i, j such that i ̸= j, is separated by distance at
least γ. Then, we use Fair-DP on these sets C1, C2, · · · , Ct, and recover a solution S with
diversity γ.

To this end, we partition the points in T̂ into axis-aligned cubes C = {C1, C2, · · · , Ct}
of length W = 2mDγ/ϵ as follows: we select a point p uniformly at random from [0, W ]D.
Using p as one of the corners, we form axis-aligned cubes of length W until every point in
X is in one of the cubes. Then, from every cube Ci ∀i ∈ [t] we remove every point of T̂

that is within a distance of γ/2 from one of its boundaries. Notice that any point that was
not removed from a cube is at least γ far apart from any other point in a different cube.
However, points within the same cube can be arbitrarily close. It is now easy to see that
we can use Fair-DP (Algorithm 3) on C to retrieve a sufficient number of points from each
group in [m]. In the analysis below, we show that with probability at least 1/2, we are able
to find at least (1− ϵ)ki points from each group i ∈ [m] that are all γ far apart.

Analysis. Let S∗ =
⋃m

i=1 S∗
i ⊂ T denote the optimal solution for Fair Max-Min on the

coreset T =
⋃m

i=1 Ti with div(S∗) ≥ ℓ∗/(1 + ϵ). Note that the optimal solution in T is some
subset in T̂ (see Theorem 13).

As a first step, we bound the number of optimal points S∗
i from a group i ∈ [m] that are

removed by Fair-Euclidean because they are within a distance of γ/2 from one of the
boundaries of a cube.

▶ Lemma 15. Pr[∀i ∈ [m] : |
⋃

j∈[t] Cj ∩ S∗
i | ≥ (1− ϵ)ki] ≥ 1/2.

Proof. Let T ′
i =

⋃
j∈[t] Cj ∩ T̂i be the remaining points in T̂i that are not close to the

boundaries of any cube. Note that the Fair-Euclidean algorithm succeeds if after the
removal step there are least (1− ϵ)ki optimal points from each group i that can be selected
by Fair-DP at the final step of the algorithm while it fails otherwise. Below, we show that
the probability it succeeds is at least 1/2.

We compute the probability that a point q ∈ T̂i is not removed by Fair-Euclidean, i.e.,
q ∈ T ′

i . It is removed if it lies within a distance of γ/2 from its boundaries in each dimension.
Therefore, for q to remain in T ′

i , the point p selected randomly from [0, W ]D must not fall
within a range of total length γ, in each dimension, which gives us:

Pr[q ̸∈ T ′
i ] = 1− Pr[q ∈ T ′

i ] = 1−
(

W − γ

W

)D

≤ γD/W = ϵ/2m .
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Fix a specific optimum solution. Define Ai be the number of points removed from this
solution that are in group i. By Markov’s inequality, Pr[Ai ≥ kiϵ] ≤ E[Ai]

kiϵ ≤
kiϵ/(2m)

kiϵ = 1
2m .

Taking union bound over all groups i ∈ [m], we can bound the probability of discarding
more than kiϵ points from some group i, Pr[∃i ∈ [m] : Ai ≥ kiϵ] ≤

∑m
i=1 Pr[Ai ≥ kiϵ] < 1/2 ,

and the lemma follows. ◀

Fair-DP depends exponentially on the number of points remaining in each cube (see
Theorem 14). Now, we show that the total number of points remaining in each cube does
not depend on n or k, and depends only on m, D, ϵ.

▶ Lemma 16. |Cj | ≤ m · (8mD3/2/ϵ2)λ for all j ∈ [t].

Proof. Consider all points in Cj that belong to group i, i.e., Cj ∩ T̂i. From the construction
of T̂i ⊆ T , we have that every pair of points of the same group is separated by a distance at
least ϵγ/4. Therefore, each point can be represented by a ball of radius ϵγ/8, and we want
to count the maximum number of non-overlapping balls that can be packed inside the cube
Cj . Observe that the length of the diagonal of Cj is W

√
D, and the cube lies entirely in the

ball of radius W
√

D/2 with center at the middle of the diagonal. We call this cube ball. As
Euclidean metrics are doubling metrics, we can cover the cube ball with overlapping balls
of radius ϵγ/8 and the number of the balls required is

(
W

√
D/2

ϵγ/8

)λ

, where λ = O(D) is the
doubling dimension of RD.

We can observe that the total volume occupied by the overlapping balls is at least the
volume occupied by the non-overlapping balls corresponding to the points and having the
same radius. Therefore, we can upper bound the number of points using the total number of
non-overlapping balls used to cover the cube ball. As there are m groups, we have that the
total number of the points in Cj is: |Cj | ≤ m ·

(
W

√
D/2

ϵγ/8

)λ

= m ·
(
8mD3/2/ϵ2)λ

. ◀

We showed that for a fixed guess γ, the success probability of Fair-Euclidean is ≥ 1/2.
Note that the only randomization used by Fair-Euclidean is in selecting p. In order to
increase the probability of success to 1 − δ for some small δ ∈ (0, 1), we repeatedly select
η points uniformly at random from [0, W ]D as the corners. For each corner, we obtain a
solution using Fair-Euclidean, and we output the solution with the biggest diversity which
also satisfies the fairness constraints with a loss of (1− ϵ) multiplicative factor. The value of
η = log(1/δ) is selected such that the failure probability is (1/2)η < δ.

Note that the construction of the coreset T allows us to reduce the number of guesses
on ℓ∗ from O(n2) to O(|T |2) = O((8/ϵ)2λk2m2), which are all the pairwise distances in T .
Further, the number of clusters (i.e., cubes) in Fair-Euclidean is upper bounded by the
size of the coreset T , which does not depend on n. The running time of Fair-Euclidean
depends on the running time to construct the coreset, which is O((8/ϵ)λkmn), and the
running time of Fair-DP (Algorithm 3) on the cubes C. Since the number of points in each
cube is O(m · (8mD3/2/ϵ2)λ), we conclude with the following theorem:

▶ Theorem 17. If γ ≥ ℓ∗/(1 + ϵ), Fair-Euclidean Algorithm returns a set S such that
div(S) ≥ ℓ∗/(1 + ϵ) and |S ∩ Xi| ≥ ki(1 − ϵ) ∀i ∈ [m] with probability at least 1 − δ. The
running time of the algorithm is:

O(n · (8/ϵ)λkm +
m∏

i=1
(ki + 1)22m(8mD3/2/ϵ2)λ

(8/ϵ)λkm log |T | log(1/δ)).
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Proof. The running time of Fair-Euclidean (Algorithm 4) depends on: (1) the running
time of constructing the coreset T which is O(nkm(8/ϵ)λ), where λ is the doubling dimension,
and (2) the running time of Fair-DP (Algorithm 3) on the clusters for every guess γ.

From Theorem 14, we know that Fair-DP has a running time of O(
∏m

i=1(ki + 1)22Rt),
where t is the number of clusters and R is the maximum size across all t clusters. We upper
bound the number of clusters by the coreset size. So, t = O((8/ϵ)λkm). From Lemma 16, we
have R = O(m(8mD3/2/ϵ2)λ). Combining all the above, the final running time is:

O((8/ϵ)λkmn + log |T | log(1/δ)
m∏

i=1
(ki + 1)22m(8mD3/2/ϵ2)λ

(8/ϵ)λkm). ◀

We can observe that the running time depends doubly exponentially on the doubling
dimension, which is not uncommon for diversity maximization in doubling dimension met-
rics [17, 19].

5 Scalable Implementations

5.1 Data Stream Algorithms
In this section, we present single pass data stream algorithms that obtain the same approxi-
mation guarantees as that of sequential algorithms, while using low space. Missing details
from this section are presented in the extended version of the paper [3].

5.1.1 Extending Previous Algorithms
First, we describe an algorithm called τ -GMM that processes points sequentially, and includes
a point in the solution if it is at least the threshold τ apart from every point in the current
solution set. The set of points returned by τ -GMM are all separated by a distance of at
least τ . If m = 1, then, we can set τ = ℓ∗/2 (using guessing for ℓ∗), and τ -GMM returns a
solution set that is also a 2-approximation for the Fair Max-Min problem [27]. τ -GMM
allows us to extend it to data streaming setting, unlike the GMM algorithm which requires
identifying the maximum distance point in each iteration.

Using τ -GMM with τ = ℓ∗/2, we can obtain a 5-coreset for general metrics [46], and
(1+ϵ)-coreset for Euclidean metrics (Section 4.2). Then, on the coreset, we use the randomized
rounding algorithm from Section 3.2 and return the solution. This approach gives us the
following guarantees:

▶ Corollary 18. There is a O(ϵ−1km log n)-space data stream algorithm that returns a
30(1 + ϵ)-approximation with (1 − ϵ)-fairness for general metrics. For Euclidean metrics,
there is a O((8/ϵ)λkmϵ−1 log n) space data stream algorithm that returns a 1+ϵ-approximation
with (1− ϵ)-fairness where λ is the doubling dimension of X ⊂ RD.

5.1.2 Improved Result for m = 2
In [46], the authors describe an algorithm called Fair-Swap which returns a 4-approximation
to the Fair Max-Min problem when the number of groups is m = 2. The algorithm
can be directly extended to a 2-pass streaming algorithm using O(k) space with the same
4-approximation guarantee. Building upon their work, and using new ideas we obtain a single
pass algorithm Fair-Stream-2Groups which uses O(k) space, and obtains 4-approximation
to the Fair Max-Min problem.
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The algorithm maintains 3 sets S, S1, S2 using τ -GMM for all of them. In S, we include
points in a group-agnostic way (similar to Fair-Swap) ignoring the fairness constraints. In
S1, we include points only of group 1, and in S2, we include points only of group 2. By
setting τ = ℓ∗/2 we maintain the sets S, S1 and S2 such that all points are at least ℓ∗/2
distance apart in every one of them.

Without loss of generality, suppose X1 satisfies |S ∩X1| < k1. Our algorithm proceeds by
identifying k1 − |S ∩ X1| additional points from S1 denoted by Z1 by running τ -GMM with
τ = ℓ∗/4. This ensures that the final set of points from group 1, i.e., (S ∩ X1) ∪ Z1 are ℓ∗/4
apart. By discarding the nearest neighbors of newly added points (i.e., Z1), in S ∩ X2, we
argue that our algorithm obtains a 4-approximation. We obtain the following guarantees:

▶ Theorem 19. There is a one-pass streaming algorithm that returns a 4(1+ϵ)-approximation
for Fair Max-Min problem using O(kϵ−1 log n) space.

5.2 Composable Coresets
In this section, we design composable coresets for Fair Max-Min. We assume the points
X are partitioned into L disjoint sets. We discuss an algorithm for constructing (1 + ϵ)-
composable coresets for Euclidean metrics, and discuss extensions. Missing details are
presented in the extended version of the paper [3].

5.2.1 Constructing (1 + ϵ)-composable coresets
We assume the universe of points X is partitioned into a collection of L disjoint sets
Y1,Y2, · · · ,YL. As in Section 4.2, we define an ϵ′ > 0 value such that (1− ϵ′) = 1/(1 + ϵ).
We generalize the approach for constructing the coreset T as follows: let Yi

j denote the points
of group i present in Yj for i ∈ [m] and j ∈ [L]. Then on each partition j and group i, we
run GMM to retrieve a diverse set T j

i with O((4/ϵ′)λk), or equivalently O((8/ϵ)λk) points
since ϵ′ ≥ ϵ/2. The coreset T is defined as:
1. For j ∈ [L], construct Tj : Tj ←

⋃m
i=1 T i

j , where T i
j ← GMM(Yi

j , (4/ϵ′)λk)

2. T ←
L⋃

j=1
Tj

We obtain the following theorem:

▶ Theorem 20. T is a (1 + ϵ)-composable coreset for fair Max-Min diversification of size
O((8/ϵ)λkmL) in metrics of doubling dimension λ that can be obtained in O((8/ϵ)λkmnL)
time.

For general metrics, using a similar approach, we obtain a 5-composable coreset by
extending a recent construction of 5-coreset for the sequential setting [46]. In the extended
version of the paper, we also discuss two-pass distributed algorithms for constructing α-
composable coresets for Euclidean (α = 1 + ϵ) and general metrics (α = 5).

6 Conclusion

In this paper, we presented new approximation algorithms that substantially improve upon
currently known results for the Fair Max-Min problem both in general and Euclidean
metric spaces. There are several interesting directions for future work, including obtaining a
2-approximation for the problem in general metrics or improving the hardness result.
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Another direction is to generalize the fairness constraints to arbitrary matroid constraints
(the fairness constraints considered in this paper can be expressed via the special case of
a partition matroid). While there are results known for related diversity maximization
problems under matroid constraints [2, 12, 15], to the best of our knowledge, there are
currently no results for Max-Min diversification.
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