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Abstract: A patient seller interacts with a sequence of myopic consumers. Each period, the seller
chooses the quality of his product, and a consumer decides whether to trust the seller after she observes
the seller’s actions in the last K periods (limited memory) and at least one previous consumer’s ac-
tion (observational learning). However, the consumer cannot observe the seller’s action in the current
period. With positive probability, the seller is a commitment type who plays his Stackelberg action in
every period. I show that under limited memory and observational learning, consumers are concerned
that the seller will not play his Stackelberg action when he has a positive reputation and will play his
Stackelberg action after he has lost his reputation. Such a concern leads to equilibria where the seller
receives a low payoff from building a reputation. I also show that my reputation failure result hinges
on consumers’ observational learning.
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1 Introduction

Economists have long recognized that individuals and firms can benefit from good reputations. This

idea was formalized by Fudenberg and Levine (1989), who show that a patient agent is guaranteed to

receive a high payoff if he builds a good reputation. The intuition behind their result is that when

other people observe the agent taking a particular action for a long time, they will be convinced that

he will take the same action in the future. An insight from their result is that reputation concerns

can significantly alleviate moral hazard problems, e.g., a seller may build a reputation for offering

high-quality goods even when quality is hard to observe at the time of purchase.

However, Fudenberg and Levine (1989)’s result relies on an unlimited record-keeping assumption:

the market can observe the entire history of the agent’s behaviors. This assumption does not fit
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applications where consumers cannot observe the seller’s records in the distant past. For example, in

many informal markets, consumers have limited access to the seller’s past records due to the lack of

record-keeping institutions. The Better Business Bureau only reports complaints from the last three

years, and some online platforms do not display reviews received by sellers in the distant past.

One may suspect that consumers’ limited memory will lower the seller’s returns from building

reputations, since each of the seller’s actions is only observed by a bounded number of consumers. I

show that the effects of limited memory on the seller’s reputational incentives are more subtle. In

particular, limited memory by themselves may not cause reputation effects to fail, but reputation

effects will fail under limited memory when consumers can also observe other consumers’ choices.

I study a repeated game between a patient seller and a sequence of myopic consumers, arriving one

in each period and each plays the game only once. Players’ stage-game payoffs satisfy a monotone-

supermodularity condition. A leading example that satisfies my condition is the product choice game:1

seller \ consumer Trust No Trust

High Effort 1, 2 −cN , 1

Low Effort 1 + cT ,−1 0, 0

where cN , cT > 0.

I use this example to illustrate my results throughout the introduction. The seller observes all past

actions, and is either a strategic type who maximizes his discounted average payoff or a commitment

type who plays his Stackelberg action (in the example, it would be high effort) in every period.

My modeling innovation is in the monitoring structure. I assume that each consumer can only

observe a bounded number of the seller’s actions and can also observe her immediate predecessor’s

action. This assumption describes situations where consumers can learn about the seller’s previous

actions via word-of-mouth communication and can also learn about other consumers’ choices via

observational learning. I only require that each consumer can observe her immediate predecessor’s

action and can talk to at most a bounded number of other consumers before making her decision.

My main result shows that when the prior probability of commitment type is below some cutoff,

there are equilibria where the patient seller receives his minmax payoff 0. This implies that even when

the seller exerts high effort in every period, consumers may not trust him for a long time, causing

inefficiencies in equilibrium. My result stands in contrast to Fudenberg and Levine (1989)’s result,

which shows that when consumers can observe the entire history of the seller’s actions, the patient

seller receives at least his Stackelberg payoff 1 in all equilibria. My model also stands in contrast to

1Following Mailath and Samuelson (2015, page 168), I interpret “Trust” as purchasing a premium product or a
customized product and “No Trust” as purchasing a standardized product. Under this interpretation, future consumers
may observe the seller’s effort even when the current-period consumer does not trust the seller.
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Liu and Skrzypacz (2014) and existing reputation models with limited memory, which assume that

consumers cannot observe other consumers’ choices.

My reputation failure result is not obvious for two reasons. First, the strategic-type seller cannot

exert low effort in every period in any low-payoff equilibrium. This is because, otherwise, consumers’

posterior beliefs will assign probability one to the commitment type after they observe high effort, in

which case the strategic type can obtain his Stackelberg payoff if he exerts high effort in every period.

This suggests that the strategic type needs to exert high effort with high enough probability to slow

down consumers’ learning, though the equilibrium probability with which he exerts high effort cannot

be too high, since that will provide consumers a strict incentive to play T .

Second, my reputation failure result is not a direct consequence of limited memory. As a coun-

terexample, I show that the seller receives at least his Stackelberg payoff in all equilibria when the

seller’s effort and consumers’ trust are strategic complements (i.e., cN > cT > 0), and each consumer

can only observe the seller’s action in the period before but cannot observe other consumers’ choices.

This implies that consumers’ observational learning is not redundant for my reputation failure result.

I argue in two steps that my reputation failure result is driven by consumers’ concern that the

seller will exert low effort when he has a positive reputation (i.e., he will milk his reputation), and that

after he loses his reputation, he will exert high effort until he has a positive reputation again (i.e., he

will rebuild his reputation). Such a concern prompts consumers not to trust the seller even when they

observe no low effort, and the seller receives his minmax payoff even if he always exerts high effort.

First, consumers have no such concern when they can observe the entire history of the seller’s

actions. This is because the seller loses his reputation forever after he exerts low effort, in which case

he does not have the ability to rebuild his reputation. Consumers also have no such concern when they

can only observe the seller’s action in the period before, in which case the seller’s incentive depends

only on his action in the period before and the current-period consumer’s action. This is because

consumers trust the seller with higher probability when the seller exerted high effort in the period

before and the seller’s effort and consumers’ trust are strategic complements. Hence, the seller has a

stronger incentive to exert high effort in the current period if he exerted high effort in the period before.

Therefore, it is never optimal for the seller to milk his reputation and then rebuild his reputation.

Next, when each consumer can observe her immediate predecessor’s action in addition to a bounded

number of the seller’s actions, I construct equilibria where (i) it is optimal for the seller to milk his

reputation and then rebuild it, (ii) consumers may not trust the seller even when they observe no low

effort, and (iii) the seller receives his minmax payoff. Such a construction is feasible since unlike the

case without observational learning, each consumer’s behavior depends not only on the seller’s action
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in the period before, but also on her predecessor’s action, so it is not necessarily true that consumers

trust the seller with higher probability when the seller exerted high effort in the period before.

In the equilibrium I construct, the first consumer does not trust the seller. Each consumer imitates

her predecessor with probability close to one, and with complementary probability, she trusts the seller

when effort was high in the period before and vice versa. The strategic type exerts high effort when

(H,T ) was played in the period before. Otherwise, he plays a mixed action so that the unconditional

probability of high effort is a half. The seller receives his minmax payoff when he exerts high effort in

every period, since the first consumer does not trust him and each consumer imitates her predecessor

with probability close to one. Consumers have an incentive to play N when (H,N) was played in

the period before, since (i) the strategic type exerts low effort with positive probability, and (ii) the

posterior probability of the commitment type is bounded above. This upper bound follows from the

observation that in my equilibrium, the seller exerts high effort with probability at least a half in each

period, and each consumer only observes a limited number of the seller’s actions.

My low-payoff equilibrium has two properties: When the seller plays H in every period, consumers

never herd on action N and the seller receives a high undiscounted average payoff. These properties

apply to all equilibria. First, consumers never herd on action N in any equilibrium for any prior

belief and any discount factor. This stands in contrast to the canonical social learning results where

inefficiencies are caused by herding. Second, if each consumer observes all previous consumers’ choices

and the seller’s last K actions, then in all equilibria for any prior belief and any discount factor, the

seller’s undiscounted average payoff from exerting high effort in every period is at least K
K+1 times his

Stackelberg payoff plus 1
1+K times his minimal stage-game payoff. When this guaranteed undiscounted

average payoff is strictly greater than the seller’s minmax payoff 0, the seller can eventually secure

a positive payoff by building a reputation. This does not contradict my main result since the time

it takes for the seller to secure this positive payoff is endogenous. For example, in my low-payoff

equilibrium, it takes longer for a more patient seller to switch consumers’ actions from N to T . The

prolonged process of establishing a reputation wipes out the seller’s benefit from that reputation.

I also study an extension where each consumer can observe a private signal about the seller’s

current action in addition to what she can observe in the baseline model. I focus on the case where

each consumer observes all previous consumers’ choices, which is reminiscent of the social learning

models of Banerjee (1992), Bichandarni, Hirshleifer and Welsh (1992), and Smith and Sørensen (2000).

My reputation failure result extends to the case where the private signals are not very informative,

since the low-payoff equilibrium in the baseline model remains an equilibrium. However, if there is a

realization of the private signal that is much more likely to occur when the seller exerts high effort
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compared to the case where he exerts low effort (i.e., the signal is unboundedly informative), then

consumers have a strict incentive to trust the seller after they observe that signal realization. The

low-payoff equilibrium in my baseline model unravels, since consumers do not have an incentive to

imitate their immediate predecessors. I formalize this logic and show that the seller can secure his

Stackelberg payoff in all equilibria if and only if consumers’ signals are unboundedly informative.

2 Baseline Model

Time is indexed by t = 0, 1, 2, . . . A long-lived player 1 (e.g., a seller) interacts with an infinite sequence

of short-lived player 2s (e.g., consumers). Each player 2 plays the game only once. I use 2t to denote

the player 2 who plays in period t. Player 1 discounts future payoffs for two reasons. First, he exits

the game after every period with probability 1 − δ1, and the game ends after he exits. Second, he is

indifferent between receiving one unit of utility in period t and receiving δ2 unit of utility in period

t− 1. I assume that δ1, δ2 ∈ (0, 1), so that player 1 discounts future payoffs by δ ≡ δ1δ2 ∈ (0, 1).

In period t, player 1 chooses at ∈ A and player 2t chooses bt ∈ B. I assume that both A and B are

finite sets. Player i ∈ {1, 2}’s stage-game payoff is ui(at, bt). Let BR2(a) ⊂ B denote player 2’s best

reply to a. Player 1’s (pure) Stackelberg action is argmaxa∈A

{
minb∈BR2(a) u1(a, b)

}
.

Assumption 1. Player 1 has a unique best reply to every pure action b ∈ B. Player 2 has a

unique best reply to every pure action a ∈ A. Player 1 has a unique Stackelberg action.

Since A and B are finite sets, Assumption 1 is satisfied for generic (u1, u2). Let a∗ be player 1’s

Stackelberg action. I focus on games with monotone-supermodular payoffs, which have been studied

in the reputation literature by Phelan (2006), Ekmekci (2011), and Liu (2011).

Assumption 2. Players’ stage-game payoffs (u1, u2) are monotone-supermodular if there exist a

complete order on A, ≻A, and a complete order on B, ≻B, such that:

1. Player 1’s payoff function u1(a, b) is strictly decreasing in a and is strictly increasing in b.

2. Player 2’s payoff function u2(a, b) has strictly increasing differences in (a, b).

3. Player 1’s Stackelberg action a∗ is not the minimal element of A.

The product choice game in the introduction satisfies Assumption 2 once players’ actions are

ranked according to H ≻A L and T ≻B N . This is because consumers have stronger incentives to

trust the seller when the seller exerts higher effort, the seller prefers to exert low effort but benefits

from consumers’ trust, and the seller’s Stackelberg action H differs from his lowest-cost action L.
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Before choosing at, player 1 observes all past actions (a0, ..., at−1, b0, ..., bt−1) and his perfectly

persistent type ω ∈ {ωs, ωc}. Let ωc stand for a commitment type who plays a∗ in every period. Let ωs

stand for a strategic type who maximizes his discounted average payoff
∑∞

t=0(1− δ)δtu1(at, bt). That

is, player 1’s payoff is normalized so that the weight on his period-t payoff is (1− δ)δt and the sum of

the weights is 1. Let π0 ∈ (0, 1) be the prior probability of the commitment type.

My modeling innovation is on player 2’s information structure. I assume that there exist K ∈ N

and M ∈ N ∪ {+∞} such that for every t ∈ N, player 2t can observe player 1’s actions in the last

K periods (amax{0,t−K}, ..., at−1) and player 2’s actions in the last M periods (bmax{0,t−M}, ..., bt−1),

where M = +∞ means that every player 2 can observe the entire history of her predecessors’ choices.

1. I assume that K is finite. That is, every consumer observes a bounded number of the seller’s

actions. This stands in contrast to the reputation model of Fudenberg and Levine (1989) where

every consumer observes the entire history of the seller’s actions (i.e., K = +∞).

2. I assume that M ≥ 1. That is, every consumer can observe at least her immediate predecessor’s

action. This stands in contrast to existing reputation models with limited memory such as Liu

(2011) and Liu and Skzypacz (2014) where consumers cannot observe other consumers’ choices.

I also assume that player 2s cannot directly observe calendar time.2 This assumption fits when

consumers do not know when the game started, but may infer it from their observations. Since the

game ends after every period with probability 1 − δ1, the probability that the game does not end

before period t is δt1. This implies that for every t ∈ N, the probability player 2’s belief assigns to

calendar time being t + 1 equals δ1 times the probability her belief assigns to calendar time being t.

Therefore, player 2’s belief assigns probability
δt1∑+∞

s=0 δ
s
1

= (1− δ1)δ
t
1 to calendar time being t. A useful

property is that when δ is close to 1, δ1 is also close to 1. This implies that the game is likely to last

for a long time. As a result, player 2’s belief assigns probability close to 0 to any particular calendar

time. After observing (amax{0,t−K}, ..., at−1) and (bmax{0,t−M}, ..., bt−1), player 2t updates her belief

about calendar time according to Bayes rule. For example, player 2t can perfectly infer calendar time

if t ≤ max{K,M} − 1, but may not be able to do so if t ≥ max{K,M}.

Let Hi be the set of player i’s histories. A strategy of the strategic-type player 1 is σ1 : H1 → ∆(A)

and a strategy of player 2 is σ2 : H2 → ∆(B). The solution concept is Perfect Bayesian equilibrium.

2My theorems extend to the case where player 2 can directly observe calendar time. However, Proposition 1 requires
players 2 not being able to observe calendar time. I provide a counterexample in Online Appendix D.
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3 Main Result

Recall that a∗ is player 1’s Stackelberg action. Let b∗ ≡ BR2(a
∗). Player 1’s Stackelberg payoff is

u1(a
∗, b∗). Let a′ be the minimal element of A. Let b′ ≡ BR2(a

′). The first two parts of Assumption 2

imply that (a′, b′) is the unique stage-game Nash equilibrium and that u1(a
′, b′) is player 1’s minmax

payoff in the sense of Fudenberg, Kreps and Maskin (1990). The third part of Assumption 2 implies

that a∗ ̸= a′. This together with Assumption 1 implies that u1(a
′, b′) < u1(a

∗, b∗).

Theorem 1. For every memory length K ∈ N and every stage-game payoff (u1, u2) that satisfies

Assumptions 1 and 2, there is a cutoff discount factor δ ∈ (0, 1) and an upper bound on the prior

probability of the commitment type π0 > 0,3 such that for every π0 < π0 and δ > δ, there is a PBE in

which player 1’s discounted average payoff equals his minmax payoff u1(a
′, b′).

The proof is in Appendix A. According to Theorem 1, there exist equilibria in which the patient

seller receives his minmax payoff when the probability of commitment type is below some cutoff, each

consumer observes a limited number of the seller’s actions, and can observe other consumers’ choices.

The existence of low-payoff equilibria stands in contrast to the reputation result in Fudenberg

and Levine (1989), which shows that the patient seller receives at least his Stackelberg payoff in all

equilibria when each consumer observes the entire history of the seller’s actions (i.e., K = +∞). This

holds for all π0 and regardless of how many of their predecessors’ actions each consumer can observe.

My reputation failure result is not immediately obvious for two reasons. First, repeated play of

the stage-game Nash equilibrium (a′, b′) cannot lead to a low-payoff equilibrium in the reputation

game. This is because under such a strategy profile, player 2’s posterior belief assigns probability 1 to

the commitment type after observing a∗, which implies that player 1 can secure payoff approximately

u1(a
∗, b∗) by playing a∗ in every period. Hence, in every low-payoff equilibrium, the strategic type

needs to play a∗ with positive probability in order to slow down player 2’s learning, but he cannot

play a∗ with probability close to 1 since that will provide player 2 a strict incentive to play b∗. This

suggests the need to leverage more subtle forces in order to obtain a low-payoff equilibrium.

Second, Theorem 1 is not a direct consequence of limited memory. For a counterexample, take the

product choice game with an additional supermodularity assumption that 0 < cT < cN , I show that

the patient player receives at least his Stackelberg payoff in all equilibria when (K,M) = (1, 0). The

comparison between this example and Theorem 1 implies that the short-run players’ observational

learning is not redundant for my reputation failure result.

3Player 1’s discount factor needs to be above some cutoff δ, which ensures that the strategic type has an incentive
to play the Stackelberg action although doing so gives him a lower stage-game payoff. In the product choice game,
δ = max{ cT

cT+1
, cN
cN+1

}. By the end of Appendix A, I discuss how large δ needs to be in general.
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Proposition 1. Suppose 0 < cT < cN and (K,M) = (1, 0). For every π0 > 0, there exists

δ ∈ (0, 1), such that when δ > δ, player 1’s payoff is at least δ − (1− δ)cN in every equilibrium.

The proof is in Appendix B. Proposition 1 is related to Liu and Skrzypacz (2014), who study a

reputation model where consumers observe the seller’s last K actions but cannot observe previous

consumers’ choices and cannot observe calendar time. In contrast to Proposition 1, they assume

that the seller’s payoff is submodular, which translates into cT > cN > 0 in the product choice

game. They show that for every ε > 0 and π0 ∈ (0, 1), there exists K(ε, π0) ∈ N such that when

K > K(ε, π0), the patient seller’s payoff at every history of every stationary equilibrium is at least

(1− δK)u1(a
∗, b′) + δKu1(a

∗, b∗)− ε.4 That is, their reputation result requires a large K. This stands

in contrast to Proposition 1, which shows that the patient seller can secure his Stackelberg payoff in

all equilibria even when π0 is close to 0 and K = 1, provided that the seller’s payoff is supermodular.

Proof Sketch of Theorem 1: I explain how the proof of Theorem 1 works using the product choice

game. I focus on the case where (K,M) = (1, 1), π0 ≤ 1
9 , and δ ≥ max{ cT

cT+1 ,
cN

cN+1}. I construct a

class of equilibria called imitation equilibria where player 1’s discounted average payoff is 0.

In every imitation equilibrium, player 2t’s action depends only on (at−1, bt−1), and player 1’s action

in period t depends only on (at−1, bt−1) as well as his reputation πt, which is the probability player

2t’s belief assigns to the commitment type after observing (at−1, bt−1). Play consists of four phases:

1. Mistrust Phase: When t = 0 or (at−1, bt−1) = (L,N), player 2t plays N and the strategic-type

player 1 plays H with probability 1−2π0
2−2π0

if t = 0 and plays H with probability 1
2 if t ≥ 1.

2. Doubting Phase: When (at−1, bt−1) = (H,N), player 2t plays T with probability r1 ≡ 1−δ
δ cN

and the strategic-type player 1 plays H with probability pt ≡ 1−2πt
2−2πt

.

3. Testing Phase: When (at−1, bt−1) = (L, T ), player 2t plays T with probability r2 ≡ 1− 1−δ
δ cT

and the strategic-type player 1 plays H with probability 1
2 .

4. Trusting Phase: When (at−1, bt−1) = (H,T ), player 2t plays T and player 1 plays H.

I depict the phase transitions in Figure 1. My imitation equilibrium has two features. First,

consumers do not trust the seller in period 0, which is interpreted as saying that consumers do not

trust sellers who newly arrive and have no past record. Second, for every t ≥ 1, consumer t plays N

4A stationary equilibrium is a PBE in which player 1’s action in period t depends only on player 2t’s history. The
equilibria I construct in the proof of Theorem 1 are stationary equilibria. This is because player 1’s action in period t
depends only on (at−1, bt−1) and his reputation in period t, both of which are measurable with respect to player 2t’s
information. This implies that my reputation failure result is also true when we restrict attention to stationary equilibria.
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(at−1, bt−1) = (H,T )

(at−1, bt−1) = (L, T )

(at−1, bt−1) = (H,N)

(at−1, bt−1) = (L,N)

Figure 1: Phase transitions in imitation equilibria. Play starts from (L,N). The dashed lines denote
events that occur with probability proportional to 1− δ (i.e., close to 0). The solid lines denote events
that occur with probability bounded away from 0. The dotted line denotes an event that occurs with
zero probability in equilibrium but occurs with positive probability when the strategic seller deviates.
In every phase, play stays in the same phase with probability bounded away from 0, which I did not
draw explicitly. The seller’s continuation value is low in red cycles and is high in blue cycles.

with probability 1 or close to 1 when bt−1 = N , and plays T with probability 1 or close to 1 when

bt−1 = T . Hence, imitation equilibria describe situations where the first consumer does not trust the

seller and every consumer imitates her predecessor with high probability. If the seller plays H in every

period, then consumers first take action N and then switch to T at some random time. Since the

probability of switching is strictly positive conditional on the seller’s effort being high, the seller’s

asymptotic payoff equals his Stackelberg payoff 1. However, the probability with which each consumer

takes a different action compared to her immediate predecessor is close to 0, so switching from N to

T takes a long time in expectation. This explains why the seller’s discounted average payoff is 0.

Next, I check players’ incentive constraints. Every consumer best replies to the seller’s action at

every (at−1, bt−1). The seller’s continuation value depends only on (at−1, bt−1), which is denoted by

V (at−1, bt−1). The seller’s incentive constraints and promise-keeping constraints are satisfied when

V (H,T ) = 1, V (L,N) = 0, V (H,N) = 1−δ
δ cN , and V (L, T ) = 1− 1−δ

δ cT . To see this, note that

1. When t = 0 or (at−1, bt−1) = (L,N), the seller’s discounted average payoff from playing L is 0

and his discounted average payoff from playing H is (1− δ)(−cN ) + δV (H,N) = V (L,N) = 0.
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2. When (at−1, bt−1) = (H,N), the seller’s discounted average payoff from playing L is

(1− δ)u1(L, r1T + (1− r1)N) + δ{r1V (L, T ) + (1− r1)V (L,N)} =
1− δ

δ
cN = V (H,N),

and his discounted average payoff from playing H is

(1− δ)u1(H, r1T + (1− r1)N) + δ{r1V (H,T ) + (1− r1)V (H,N)} =
1− δ

δ
cN = V (H,N).

3. When (at−1, bt−1) = (L, T ), the seller’s discounted average payoff from playing L is

(1− δ)u1(L, r2T + (1− r2)N) + δ{r2V (L, T ) + (1− r2)V (L,N)} = 1− 1− δ

δ
cT = V (L, T ),

and his discounted average payoff from playing H is

(1− δ)u1(H, r2T + (1− r2)N) + δ{r2V (H,T ) + (1− r2)V (H,N)} = 1− 1− δ

δ
cT = V (L, T ).

4. When (at−1, bt−1) = (H,T ), the seller’s discounted average payoff from playing H is 1, and his

discounted average payoff from playing L is no more than 1.

Note that conditional on bt = T , the seller’s continuation value is 1 regardless of his action, and

conditional on bt = N , the seller’s continuation value is 0 regardless of his action.

I verify that when π0 ≤ 1
9 , pt is a well-defined probability for every t ∈ N. In Appendix A,

I use a fixed point argument to show that πt ≤ 1
3 whenever (at−1, bt−1) = (H,N),5 which implies

that pt ∈ [14 , 1]. Intuitively, this is because (i) observing at−1 = H only provides consumer t limited

information about the seller’s type given that the strategic-type seller mixes between high and low

effort, so consumer t’s posterior belief about the commitment type cannot increase by too much

compared to her prior; (ii) observing bt−1 = N lowers the seller’s reputation since N is more likely to

occur under the strategy of the strategic type compared to the strategy of the commitment type.

Discussions: I explain why my construction breaks down in cases where K = +∞ and (K,M) =

(1, 0). The comparison between these two cases and the case where (K,M) = (1, 1) highlights the

roles of limited memory and observational learning in my reputation failure result.

The above comparison also unveils the mechanism behind Theorem 1: When K is finite and

5My fixed point argument applies when calendar time is not observed and M is finite. When M = +∞ or when
player 2s can directly observe calendar time, I bound πt from above using an induction argument. See Appendix A.
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M ≥ 1, consumers have a justified concern that the seller will milk his reputation and then rebuild his

reputation after losing it. Such a concern prompts consumers not to trust the seller even when they do

not observe any low effort, causing reputation effects to fail. By contrast, the seller does not have the

ability to rebuild his reputation when K = +∞, and he has no incentive to milk his reputation and

then rebuild it when (K,M) = (1, 0) and players’ actions are strategic complements. In these cases,

the seller can secure his Stackelberg payoff in all equilibria since consumers are free of such concerns.

The Role of Bounded Memory: When K = +∞, the seller loses his reputation forever after he

exerts low effort, in which case consumers have no concerns about him rebuilding his reputation.

The imitation equilibria I constructed break down when K = +∞ since it is no longer rational

for consumers to imitate their immediate predecessors. To see this, note that for every t ∈ N, either

consumer t believes that at = H with probability more than 1
2 , in which case she has a strict incentive

to play T , or the probability consumer t+1 assigns to the commitment type after she observes at = H

is at least two times the probability consumer t assigns to the commitment type. When the strategic-

type seller deviates and plays H in every period, there can be at most a bounded number of consumers

who have incentives to imitate a predecessor who played N , which unravels my imitation equilibria.

By contrast, consumers’ imitation behaviors can be rationalized when each consumer observes only

a bounded number of the seller’s actions and the probability of the commitment type is low enough:

1. Consumers may not be convinced that H will be played in the future after observing H in at

most K periods. This is because even when consumer t believes that H will be played with

probability less than 1
2 , consumer t + 1’s posterior belief may not be greater than consumer t’s

since she cannot observe at−K . When the seller plays H in every period, consumers after period

K obtain the same information from the seller’s actions. Unlike the case where K = +∞, there

can be infinitely many consumers who are concerned that the seller will play L in the future.

2. Although consumers may learn from other consumers’ choices, the information each consumer

obtains from them never discourages her from imitating her immediate predecessor. Intuitively,

when the seller is the commitment type, consumers never play N after they have played T .

If bt−1 = N and consumer t’s posterior belief assigns positive probability to the commitment

type after observing (amax{0,t−K}, ..., at−1) and (bmax{0,t−M}, ..., bt−1), it must be the case that

(bmax{0,t−M}, ..., bt−1) = (N, ..., N). Since the probability with which previous consumers playing

N is greater when the seller is strategic, observing (bmax{0,t−M}, ..., bt−1) = (N, ..., N) lowers the

seller’s reputation, which encourages consumer t to imitate consumer t− 1.
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The Role of Observational Learning: When (K,M) = (1, 0), consumers’ strategies in imitation

equilibria are no longer feasible since consumer t cannot observe bt−1. Since consumers cannot observe

calendar time, consumer t’s probability of playing T depends only on at−1, which I denote by β(at−1) ∈

[0, 1]. The seller’s period-t continuation value depends only on at−1, which I denote by V (at−1) ∈ R.

The first observation is that β(H) > β(L) in all equilibria. This is because when β(H) ≤ β(L),

the strategic seller has no incentive to play H since playing H is costly in the stage game, does not

increase the probability of being trusted in the next period, and has no impact on consumers’ behavior

after two periods. Hence, each consumer’s posterior belief assigns probability 1 to the commitment

type after observing at−1 = H. As a result, 1 = β(H) ≤ β(L) = 1. However, consumer t strictly

prefers N when at−1 = L since the seller will play L in period t. This contradicts β(L) = 1.

Under a generic condition on the seller’s stage-game payoff function that cT ̸= cN , it is impos-

sible to keep the seller indifferent both when at−1 = H and when at−1 = L. This is because the

seller’s indifference requires both (1 − δ)u1(H,β(H)) + δV (H) = (1 − δ)u1(L, β(H)) + δV (L) and

(1− δ)u1(H,β(L)) + δV (H) = (1− δ)u1(L, β(L)) + δV (L), which together imply that

V (H)− V (L) =
1− δ

δ

(
u1(L, β(H))− u1(H,β(H))

)
=

1− δ

δ

(
u1(L, β(L))− u1(H,β(L))

)
. (3.1)

When cT ̸= cN , u1(L, β(H))− u1(H,β(H)) = u1(L, β(L))− u1(H,β(L)) if and only if β(H) = β(L).

Since I have shown that β(H) > β(L), the seller must have a strict incentive at some histories.

I use this observation to show Proposition 1 that when cN > cT > 0, the patient seller can secure

his Stackelberg payoff in all equilibria. Intuitively, since β(H) > β(L) and cN > cT > 0, the strategic

type has a stronger incentive to play H in period t when at−1 = H. This implies that either

� The seller has no incentive to milk his reputation when at−1 = H. In this case, as long as

at−1 = H, both types of the seller will play H in period t and consumer t will play T .

� Or the seller has no incentive to rebuild his reputation, i.e., the seller never plays H after playing

L. I show in Appendix B that if this is the case and δ is close to 1, consumer t prefers T

after observing at−1 = H. Intuitively, if the strategic-type seller has no incentive to rebuild his

reputation, then there is at most one period where he plays L given that he played H before.

Since the commitment type plays H in every period and consumers do not observe calendar time,

consumers’ posterior belief after observing at−1 = H assigns significantly higher probability to

the seller being the commitment type relative to the event that the seller will milk his reputation

in the current period. The last step uses the observation that consumers’ belief assigns probability
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close to 0 to any particular calendar time when δ → 1.6

By contrast, in the case with observational learning (for example, when (K,M) = (1, 1)), con-

sumers’ ability to observe their predecessors’ choices enriches their strategy space, under which it can

be optimal for the seller to milk his reputation and then rebuild his reputation. When a consumer is

concerned that the seller will behave in such a way, she has a rationale for not trusting the seller despite

not observing any low effort. This is because upon observing at−1 = H, consumers are not convinced

that the strategic seller will exert high effort in the current period due to the seller’s incentives to

milk his reputation. They are also not convinced that the seller is likely to be the commitment type

due to the seller’s incentives to rebuild his reputation. This is because when the strategic type has

an incentive to rebuild his reputation, there can be infinitely many periods where the strategic type

exerts low effort despite having exerted high effort in the period before. Unlike the case where the

strategic type has no incentive to rebuild his reputation, consumer t’s posterior belief after observing

at−1 = H can assign probability more than 1
2 to at = L, which provides her an incentive to play N .

My proof of Theorem 1 confirms this intuition by showing that consumers’ concerns about the sell-

er’s milking-and-then-rebuilding behavior can arise in equilibrium, and can provide them an incentive

to play N even when they do not observe any low effort. This is the case when every consumer imitates

her predecessor with probability close to 1 so that the seller is indifferent at every history. In the equi-

librium I construct, the seller milks his reputation with positive probability when (at−1, bt−1) = (H,N)

and rebuilds his reputation with positive probability when at−1 = L. This provides consumer t a ra-

tionale for not trusting the seller even when H was played in the last K periods. The seller receives

his minmax payoff when he plays H in every period, since play gets stuck at (H,N) for a long time.

Practical Relevance: My imitation equilibria have two qualitative features: (i) consumers do not

trust newly arrived sellers who have no past record, and (ii) consumers imitate their predecessors.

Both features are plausible and are supported by empirical evidence.

On consumer imitation, Cai, Chen and Fang (2009) find that consumers imitate each other in the

Chinese food market. Zhang (2010) finds that patients are more likely to refuse a kidney that has

been refused by earlier patients, even conditional on the objective quality of kidneys. Cai, De Janvry

and Sadoulet (2015) find that farmers in rural China are more likely to purchase weather insurance

6In Online Appendix D, I present a counterexample which shows that Proposition 1 fails when consumers can directly
observe calendar time. Intuitively, when consumers’ strategy can depend on calendar time, although at any given calendar
time, the seller either has no incentive to milk his reputation or has no incentive to rebuild his reputation, he may have
an incentive to milk his reputation at some calendar time and then rebuild his reputation at another calendar time. This
provides consumers a rationale for playing N even after they observe the seller played H in the period before.
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when they were told that other farmers had purchased the insurance.7

My no initial trust condition fits some informal markets in developing countries. For example,

Michelson et al. (2021) find that many farmers in Tanzania suspect the fertilizers sold in local markets

are adulterated and their pessimistic beliefs about the seller’s integrity persists over time. Such

persistent mistrust contributes to the under-adoption of fertilizers.

Although details about farmers’ information structures are not available, three characteristics of

this market make my model a plausible fit. First, farmers’ payoffs depend on the seller’s action:

namely, whether the seller has adulterated products currently sold on the market. Second, farmers

are myopic; that is, they won’t trust the seller if they believe that his products are adulterated and

won’t punish the seller if they believe that his products are authentic. Although some farmers may

buy multiple times, they are unlikely to sacrifice their current-period profits, since most of them have

low incomes and cannot afford to do so. Third, I require that every farmer observes the choice of

her predecessor and a limited number of the seller’s actions. This is plausible when farmers live close

to each other, so that it is easy to observe other farmers’ recent choices, and farmers have limited

memory about the seller’s actions. My result suggests a rationale for persistent mistrust when farmers

do not trust the seller in the beginning due to a pessimistic prior, and are unwilling to trust the seller

even after they observe him supplying authentic products in a bounded number of periods.

3.1 Connections with Canonical Social Learning Models

The imitation equilibria constructed in the proof of Theorem 1 are reminiscent of the canonical results

on social learning. In Banerjee (1992), Bichandarni, Hirshleifer and Welsh (1992), and Smith and

Sørensen (2000), a sequence of players choose their actions sequentially after observing all predecessors’

actions and a private signal of some exogenous state. Inefficiencies take the form of herding in the

sense that myopic players ignore their private signals and imitate their immediate predecessors.

My model is analogous once we view (amax{0,t−K}, ..., at−1) as player 2t’s private signal. The

conceptual difference is that in my model, the myopic players’ payoffs depend only on the patient

player’s endogenous actions not on the patient player’s exogenous type. The myopic players never

herd on action N in imitation equilibria since their actions are responsive to the seller’s action in the

period before. Proposition 2 shows that the no bad herd conclusion applies more generally. Formally, I

say that player 2s herd on action b at ht ≡ (as, bs)s≤t−1 if player 2s play b at ht and at every successor

7Cai, De Janvry and Sadoulet (2015) write on page 82 that “...when we told farmers about other villagers decisions,
these decisions strongly influenced their own take-up choices...”, and “...if information on other villagers decisions can
be revealed in complement to the performance of the network, it can have a large impact on adoption decisions...”
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of ht. Let π(ht) ∈ [0, 1] be the probability player 2t’s belief at h
t assigns to the commitment type.

Proposition 2. Suppose players’ payoffs satisfy Assumption 1. Then for every (δ, π0) ∈ (0, 1)2,

every b ̸= b∗, and every equilibrium, player 2s cannot herd on b at any history ht with π(ht) > 0.

The proof is in Online Appendix A, which considers separately the case where M is finite and M

is infinite. Proposition 2 implies that as long as player 1 imitates the commitment type, player 2s

can never herd on any action that does not best reply to a∗ regardless of player 1’s discount factor,

player 2’s prior belief, and the equilibrium we focus on. This implies that reputation failure cannot

be caused by myopic players herding on actions that give the patient player a low payoff.

For a heuristic explanation, once player 2s herd on action b ̸= b∗, the strategic-type player 1 cannot

affect player 2s’ future actions, so he has no intertemporal incentives. As a result, the strategic-type

player 1 will not play a∗ when a∗ is not a best reply to b in the stage game.8 This implies that player

2 will learn that player 1 is the commitment type upon observing a∗, and hence, will have a strict

incentive to play b∗. This contradicts the hypothesis that player 2s herd on action b ̸= b∗.

3.2 Connections with Canonical Reputation Models

Fudenberg and Levine (1992) show that a patient player can secure his Stackelberg payoff in all

equilibria if (i) with positive probability, he is a commitment type who plays his Stackelberg action

in every period, and (ii) every short-run player can observe the entire history of a noisy signal that

can statistically identify the patient player’s action. An elegant proof of their result is provided by

Gossner (2011). The key is to show that for any δ ∈ (0, 1) and any equilibrium (σ1, σ2),

E(a∗,σ2)
[ ∞∑
t=0

d
(
yt(·|a∗)

∣∣∣∣∣∣yt(·))] ≤ − log π0, (3.2)

where yt(·) is the equilibrium distribution of player 2’s signals about at, yt(·|a∗) is the distribution of

player 2’s signals about at conditional on player 1 being the commitment type, d(·||·) is the Kullback-

Leibler divergence between two distributions, and E(a∗,σ2)[·] is the expectation operator when player 1

plays a∗ in every period and player 2 plays σ2. When player 2s’ signals can identify player 1’s actions,

d
(
yt(·|a∗)

∣∣∣∣yt(·)) is bounded away from 0 whenever player 2t does not have a strict incentive to play

b∗. Inequality (3.2) implies that in expectation, there can be at most a bounded number of periods

in which player 2s do not have strict incentives to play b∗. Importantly, this upper bound does not

depend on δ. This explains why player 1’s equilibrium payoff is at least u1(a
∗, b∗) when δ → 1.

8In the case where a∗ is player 1’s myopic best reply to b, both types of player 1 play a∗ in equilibrium after player
2s herd on action b. When both types of player 1 play a∗, player 2 has a strict incentive to play b∗, which is not b.
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Fudenberg and Levine (1992)’s model is analogous to mine when M = +∞, i.e., every consumer

can observe the entire history of her predecessors’ actions. This is because each consumer’s action

can be viewed as an informative signal about the seller’s past actions, so observing the entire history

of consumers’ choices can be viewed as observing the entire history of some noisy signal about the

seller’s actions. Inequality (3.2) applies to imitation equilibria of my model once we take yt(·) as the

equilibrium distribution of bt+1 and yt(·|a∗) as the distribution of bt+1 conditional on player 1 being

the commitment type. Consumer t + 1’s action can statistically identify the seller’s action in period

t, so d
(
yt(·|a∗)

∣∣∣∣yt(·)) > 0 when player 2t does not have a strict incentive to play b∗.

However, the distribution of bt+1 in imitation equilibria is such that d
(
yt(·|a∗)

∣∣∣∣yt(·)) → 0 as δ → 1.

This stands in contrast to Fudenberg and Levine (1992)’s model in which d
(
yt(·|a∗)

∣∣∣∣yt(·)) is bounded

away from zero whenever player 2t does not have a strict incentive to play b∗. As a result, inequality

(3.2) cannot rule out situations where the expected number of periods in which player 2 has no incentive

to play b∗ grows without bound as δ → 1. This is indeed the case in imitation equilibria, where the

prolonged process of reputation building cancels out the positive effects of increased patience.

The above discussion unveils an interesting feature of imitation equilibria: Although the patient

player can eventually guarantee a high continuation value by exerting high effort in every period, his

discounted average payoff equals his minmax payoff. Intuitively, each action of player 2 is informative

about her observations of player 1’s past actions, and every player 2 can observe the entire history of

player 2s’ actions. As a result, either player 2t strictly prefers to play b∗, or all future player 2s learn

something about player 1’s type from bt. The arguments in Gossner (2011) imply that there exist at

most a finite number of periods where player 2 does not have a strict incentive to play b∗. Therefore,

the patient player 1 can eventually secure a high continuation value by playing a∗ in every period. This

logic generalizes to all equilibria when every consumer can observe all of her predecessors’ choices.

Proposition 3. Suppose M = +∞ and players’ payoffs satisfy Assumptions 1 and 2. For every

δ ∈ (0, 1), π0 ∈ (0, 1), and every strategy profile (σ1, σ2) that is part of a PBE, we have:9

lim inf
t→∞

1

t
E(a∗,σ2)

[ t−1∑
s=0

u1(as, bs)
]
≥ K

K + 1
u1(a

∗, b∗) +
1

K + 1
u1(a

∗, b′). (3.3)

When π0 is small and δ is large, there exists an equilibrium such that (3.3) holds with equality.

According to Proposition 3, player 1’s undiscounted average payoff from playing the Stackelberg

action is at least a fraction K
K+1 of his Stackelberg payoff plus a fraction 1

K+1 of some low payoff

9Online Appendix B.3 shows that Proposition 3 is not true when M is finite, in the sense that there exist equilibria
where player 1’s undiscounted average payoff from imitating the commitment type equals his minmax payoff u1(a

′, b′).
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u1(a
∗, b′). This is true in all equilibria for all discount factors and for all prior beliefs. This lower

bound is tight in the sense that it can be attained by some equilibria when π0 is small and δ is large.

When the right-hand-side of (3.3) is strictly greater than u1(a
′, b′), the patient player 1 can guar-

antee an asymptotic payoff that is strictly greater than his minmax payoff by playing a∗ in every

period. The only way to reconcile this conclusion and Theorem 1 is that when player 1 plays a∗ in

every period, it takes more time for him to secure this high asymptotic payoff when δ is larger. It is

exactly this prolonged process of reputation building that cancels out the direct effects of increased δ.

The proof of Proposition 3 is in Online Appendix B.1 and the proof for the tightness of my lower

bound is in Online Appendix B.2. For a heuristic explanation, Assumption 2 implies that a∗ is

suboptimal for player 1 in the stage game. Therefore, for every t ∈ N, either the strategic type has

no incentive to play a∗ in period t, or (bt+1, ..., bt+K) is informative about at. In the first case, players

2t+1 to 2t+K learn that player 1 is committed after observing at = a∗. By playing a∗ in every period,

player 1’s average payoff from period t to t + K is at least a fraction K
K+1 of his Stackelberg payoff

plus 1
K+1 times his minimal stage-game payoff. In the second case, all future player 2s observe an

informative signal about at since M = +∞. According to the arguments in Fudenberg and Levine

(1992) and Gossner (2011), player 2s’ posterior beliefs assign probability close to 1 to the commitment

type after a finite number of periods with learning. The two parts together imply that player 1’s

asymptotic payoff is no less than the right-hand-side of (3.3).

4 Extension: Reputation with Contemporaneous Information

Motivated by the social learning models of Banerjee (1992), Bichandarni, Hirshleifer and Welsh (1992),

and Smith and Sørensen (2000), I study an extension where each player 2 observes player 1’s actions in

the last K periods, the entire history of past player 2s’ actions (i.e., M = +∞), and a private signal st

about player 1’s current-period action at. Whether player 1 can observe st is irrelevant for my results.

Let st ∈ S where S is a countable set. Let f(st|at) be the probability of st when player 1’s action is at.

I restrict attention to signal distributions that satisfy a monotone likelihood ratio property (MLRP),

under which player 2 is more likely to observe a higher signal when player 1’s action is higher.

MLRP. The distribution of player 2’s private signal satisfies MLRP if there exists a complete

order on S, ≻S, such that f(s|a)f(s′|a′) ≥ f(s′|a)f(s|a′) for every a ≻A a′ and s ≻S s′.

I replace ≻A, ≻B, and ≻S with ≻. The imitation equilibrium I constructed in the proof of Theorem

1 remains an equilibrium when st is not very informative about player 1’s Stackelberg action a∗ and the
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prior probability of the commitment type is below some cutoff. Later on, I show that my reputation

failure result extends to this case. By contrast, if there exists a realization of st that is much more

likely to occur when at = a∗ compared to the case when at ̸= a∗, then regardless of previous short-

run players’ actions, the current-period short-run player will have a strict incentive to play b∗ after

observing that signal realization. This will unravel the imitation equilibrium, and the patient player

can potentially secure a high payoff by establishing a reputation.

My results in this section formalize the above intuition. I show that whether the patient player

can secure his Stackelberg payoff in all equilibria depends on whether the distribution of the short-run

players’ private signals satisfies the following unbounded informativeness condition:

Unbounded Informativeness. Player 2’s private signal is unboundedly informative about a∗ if

for every L > 0, there exists s ∈ S such that f(s|a∗) > Lf(s|a) for every a ̸= a∗.

My notion of unbounded informativeness is similar to that in Smith and Sørensen (2000).10 When

S is a finite set, unbounded informativeness requires the existence of an s∗ ∈ S such that f(s∗|a) > 0

if and only if a = a∗. When S is countably infinite, f(·|a) can have full support for every a ∈ A, as

long as there exists a sequence {sn}n∈N ⊂ S such that limn→+∞
f(sn|a∗)
f(sn|a) = +∞ for every a ̸= a∗.

For an interpretation of st and my unbounded informativeness condition, consider a regulator who

only has the budget to inspect a fraction ε of the sellers in each period and can issue certificates to

the ones that are inspected. The certificate can be taken as st, which the current-period consumer

can observe before deciding what to buy. MLRP implies that the seller is more likely to obtain a

good certificate when he exerts higher effort. If S is a finite set, then consumers’ private signal is

unboundedly informative about a∗ when the seller can obtain a good certificate only if he plays a∗.

This is the case, for example, when the regulator can observe the seller’s action after her inspection.

Theorem 2 shows that the patient player receives at least his Stackelberg payoff in all equilibria

when the short-run players’ private signals are unboundedly informative.

Theorem 2. Suppose players’ payoffs satisfy Assumptions 1 and 2, every player 2 can observe all

previous player 2s’ choices, player 2’s private signal satisfies MLRP, and is unboundedly informative

about a∗. Then for every prior belief π0 > 0 and constant ε > 0, there exists δ∗ ∈ (0, 1) such that

player 1’s payoff is at least u1(a
∗, b∗)− ε in all equilibria when δ > δ∗.

My next result establishes a partial converse of Theorem 2. For every a ̸= a∗, I say that a∗ is not

strongly separable from a if there exists ε > 0 such that f(s|a) ≥ εf(s|a∗) for every s ∈ S. If player

10First, when S is infinite, I allow for, but does not require, signal realizations that can perfectly rule out some of player
1’s actions, while Smith and Sørensen (2000) require the signal distribution to have full support conditional on every
state. Second, I restrict attention to S that is countable while Smith and Sørensen (2000) allow S to be uncountable.
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2’s private signal is unboundedly informative about a∗, then there exists no a ̸= a∗ such that a∗ is

not strongly separable from a. However, player 2’s private signal not being unboundedly informative

about a∗ does not imply that a∗ is not strongly separable from some a ̸= a∗.

Theorem 3. Suppose players’ payoffs satisfy Assumptions 1 and 2, every player 2 can observe all

previous player 2s’ choices, player 2’s private signal satisfies MLRP, and a∗ is not strongly separable

from a′. For every K ∈ N, there exists π0 ∈ (0, 1) such that for every π0 ∈ (0, π0) and δ large enough,

there exists an equilibrium where player 1’s payoff is u1(a
′, b′).

The proofs of these theorems are in Online Appendix C. Theorem 2 implies that the patient player

can guarantee his Stackelberg payoff in all equilibria when each of his opponents can observe the

entire history of their predecessors’ choices and an unboundedly informative private signal about his

current-period action.11 Theorem 3 extends the reputation failure result of Theorem 1 to situations

where K is finite, M is infinite, and player 2t observes a private signal about at before choosing bt.

When |A| = 2, every signal distribution satisfies MLRP. Since Assumption 2 requires that a∗ ̸= a′,

we have A = {a∗, a′}. The private signal is not unboundedly informative about a∗ if and only if a∗ is

not strongly separable from a′. Hence, the private signal being unboundedly informative about a∗ is

both necessary and sufficient for player 1 to secure his Stackelberg payoff in all equilibria.12

The conclusion of Theorem 2 is reminiscent of a well-known result in Bichandarni, Hirshleifer and

Welsh (1992) and Smith and Sørensen (2000). They show that in canonical social learning models

where there are two states, every myopic player has a finite number of actions, and all players share

the same payoff function, the myopic players’ actions are asymptotically efficient if and only if their

private signals are unboundedly informative about the payoff-relevant state.13

My model differs from Smith and Sørensen (2000), since the myopic players’ payoffs depend only

on the action profile but do not depend on the persistent state—which is player 1’s type in my model.

My analysis focuses on the patient player’s discounted average payoff instead of his asymptotic payoff

or the game’s asymptotic outcome. In fact, the myopic players asymptotically learning about the

persistent state is neither necessary nor sufficient for the patient player to receive a high discounted

average payoff. It is not necessary since player 2’s payoff depends only on the action profile but not

11Theorem 2 only establishes a common property of all equilibria but does not establish the existence of equilibrium.
When S is infinite, the existence of equilibrium does not follow from the canonical result of Fudenberg and Levine (1983).
I provide a constructive proof for the existence of equilibrium in Online Appendix C.2.

12When |A| ≥ 3, MLRP cannot be dropped and the condition in Theorem 3 cannot be replaced by “the private signal
not being unboundedly informative about a∗”, or “a∗ is not strongly separable from a† for some a† /∈ {a∗, a′}”.

13Lee (1993) shows that asymptotic efficiency can be achieved under boundedly informative signals when players have
a rich set of actions (e.g., a continuum). When the states, actions, and signals can be ordered such that players’ payoffs
satisfy single-crossing differences, Kartik, Lee and Rappoport (2021) show that asymptotic efficiency can be achieved as
long as the signal distribution satisfies directionally unbounded beliefs, which is weaker than unbounded informativeness.



4 EXTENSION: REPUTATION WITH CONTEMPORANEOUS INFORMATION 20

on player 1’s type. For example, suppose player 2s believe that the strategic-type player 1 plays a∗

in every period. They cannot learn player 1’s type, but player 1 can receive his Stackelberg payoff

u1(a
∗, b∗) by playing a∗ in every period. It is not sufficient since in imitation equilibria, player 1’s

asymptotic payoff is u1(a
∗, b∗) but his discounted average payoff is u1(a

′, b′).

In what follows, I sketch the proof of Theorem 2 in the case where S is finite, under which there

exists s∗ ∈ S such that f(s∗|a) > 0 if and only if a = a∗.14

A rough intuition is that player 2t observing an unboundedly informative private signal st about

at guarantees a positive lower bound on the informativeness of player 2t’s action bt about at. Unlike

imitation equilibria where the informativeness of bt about at−1 converges to 0 as δ goes to 1, the

informativeness of bt about at is bounded away from zero for all δ ∈ (0, 1). Since every player 2 can

observe all of her predecessors’ actions, the arguments in Fudenberg and Levine (1992) and Gossner

(2011) imply that the patient player receives at least his Stackelberg payoff in all equilibria.

A more detailed explanation proceeds in two steps, which highlights the role of unbounded infor-

mativeness and MLRP. First, I examine whether player 2t’s action is informative about her private

signal st. Intuitively, bt can be uninformative about st for two reasons: (i) player 2t is unwilling to

play b∗ no matter which st she observes, or (ii) player 2t is willing to play b∗ no matter which st she

observes. Since st is unboundedly informative about a∗, player 2 has a strict incentive to play b∗ when

she observes st = s∗. This rules out the first possibility. When player 2t is willing to play b∗ no matter

which st she observes, player 1’s stage-game payoff is u1(a
∗, b∗) when he plays a∗ in period t.

Second, I examine whether player 2t’s action is informative about player 1’s type. When player 1’s

action choice is binary, i.e. A ≡ {a∗, a′}, player 2t is willing to play b∗ if and only if f(st|a∗)
f(st|a′) is above

some cutoff. This implies that Pr(bt = b∗|at = a∗) − Pr(bt = b∗|at = a′) ≥ 0: since player 2t plays b
∗

after observing s∗, which occurs if and only if player 1 plays a∗, there exists c > 0 such that

Pr(bt = b∗|at = a∗)− Pr(bt = b∗|at = a′) ≥ c(1− Pr(bt = b∗|at = a∗)), (4.1)

i.e., the informativeness of bt about at is bounded below by some positive function of 1 − Pr(bt =

b∗|at = a∗). For every ν ∈ (0, 1), when Pr(bt = b∗|at = a∗) ≤ 1 − ν, the strategic type plays a∗ with

probability bounded away from 1, so the informativeness of bt about player 1’s type is bounded below

by a strictly positive function of ν.

When player 1 has three or more actions, player 2t’s incentive to play b∗ can no longer be summa-

14When S is infinite and the signal is unboundedly informative about a∗, there exists a nonempty subset S(π) ⊂ S for
every π ∈ (0, 1) such that when the prior probability of commitment type is at least π before player 2t observes st, she
has a strict incentive to play b∗ after observing any st ∈ S(π). See Online Appendix C.1 for details.
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rized by a likelihood ratio. As a result, player 2t’s action can be uninformative about player 1’s type

even when the private signal is unboundedly informative about a∗ and bt is informative about st. I

provide a counterexample in Section 4.1. Nevertheless, when the private signal satisfies MLRP, bt is

informative about player 1’s type in every period where Pr(bt = b∗|at = a∗) ̸= 1.

Formally, for every α ∈ ∆(A) and β : S → ∆(B), let γ(α, β) ∈ ∆(B) be the distribution of

b induced by (α, β). I show in Online Appendix C.1 that there exists c > 0 such that for every

ν ∈ (0, 1), every α ∈ ∆(A) such that a∗ belongs to the support of α, and every β that best replies

to α, if the probability of b∗ under γ(a∗, β) is less than 1 − ν, then the Kullback-Leibler divergence

between γ(α, β) and γ(a∗, β) is at least cν2. This implies that when player 1 imitates the commitment

type, either b∗ occurs with probability at least 1− ν under (a∗, β), or the informativeness of bt about

player 1’s type, measured by the Kullback-Leibler divergence between the distribution induced by the

equilibrium strategy and the distribution induced by the commitment type, is bounded away from 0.

Back to the discussion on the connections between my results and the canonical reputation results

in Section 3.2. Inequality (3.2) applies to my model with contemporaneous private signals as well once

we view yt(·) as the equilibrium distribution of bt and yt(·|a∗) as the distribution of bt conditional on

player 1 being the commitment type. The above discussion implies that when player 2’s private signal

is unboundedly informative about a∗ and satisfies MLRP, there exists a strictly increasing function

g : [0, 1] → R+ such that g(0) = 0 and d
(
yt(·|a∗)

∣∣∣∣yt(·)) > g(ν) when player 2t plays b
∗ with probability

less than 1 − ν. Inequality (3.2) implies that for every ν ∈ (0, 1), the expected number of periods

where Pr(bt = b∗|at = a∗) < 1 − ν is bounded above and this upper bound depends only on ν and

is independent of δ. Hence, for every ν > 0, there exists δ ∈ (0, 1) such that when δ > δ, player 1

receives at least a fraction 1− ν of u1(a
∗, b∗) when he plays a∗ in every period.

4.1 Conditions in Theorems 2 and 3

Bounded Informativeness: I provide an example in order to explain why “a∗ is not strongly

separable from a′” in Theorem 3 cannot be replaced by a weaker condition that “consumers’ private

signal st is not unboundedly informative about a∗”. Suppose players’ stage-game payoffs are

- b∗ b′

a 1, 4 −2, 0

a∗ 2, 1 −1, 0

a 3,−2 0, 0

Let S ≡ {s, s∗, s}, with f(s|a) = 2/3, f(s∗|a) = 1/3, f(s|a∗) = 1/3, f(s∗|a∗) = 2/3, and f(s|a) = 1.
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Players’ stage-game payoffs are monotone-supermodular when player 1’s actions are ranked according

to a ≻ a∗ ≻ a and player 2’s actions are ranked according to b∗ ≻ b′. When signal realizations

are ranked according to s ≻ s∗ ≻ s, the signal distribution satisfies MLRP, and is not unboundedly

informative about a∗. Player 1’s payoff is at least 2 in every equilibrium. This is because when he

plays a∗, player 2 observes either s∗ or s, and has a strict incentive to play b∗.

Not Strongly Separable from Other Actions: I use an example to explain why in Theorem 3,

“a∗ is not strongly separable from a′” cannot be replaced by “a∗ is not strongly separable from a† for

some a† /∈ {a∗, a′}”. Suppose player 1’s stage-game payoff is given by the following matrix:

- b∗ b† b′′ b′

a∗ 5 −2 −3 −4

a† 6 −1 −2 −3

a′′ 7 2 1 −1

a′ 8 3 2 0

Player 2’s stage-game payoff function is such that b∗ is a strict best reply to a∗, b† is a strict best reply

to a†, b′′ is a strict best reply to a′′, and b′ is a strict best reply to a′.

Suppose S ≡ {s∗, s′′, s′} such that f(s′|a′) = 1 and f(s′|a) = 0 for every a ̸= a′. For every

s ∈ {s∗, s′′} and a ∈ {a∗, a†, a′′}, we have f(s|a) > 0, and f(s∗|a)
f(s′′|a) is strictly increasing in a.

Players’ stage-game payoffs satisfy Assumptions 1 and 2 once we rank player 1’s actions according

to a∗ ≻ a† ≻ a′′ ≻ a′ and player 2’s actions according to b∗ ≻ b† ≻ b′′ ≻ b′. The signal distribution

satisfies MLRP once we rank the signal realizations according to s∗ ≻ s′′ ≻ s′. Player 1’s Stackelberg

action is a∗, which is not strongly separable from a†.

Player 1’s commitment payoff from a† is −1, which is strictly less than his minmax payoff 0. Hence,

there exists no equilibrium in which player 1’s payoff equals his commitment payoff from a†.

Next, I show there is no equilibrium where player 1’s payoff equals his minmax payoff 0. Since player

1 is the commitment type with positive probability, both s∗ and s′′ occur with positive probability

in period 0. Since both s∗ and s′′ occur on the equilibrium path, player 2’s action is supported in

{b∗, b†, b′′} after she observes s∗ or s′′. Suppose player 1 plays a′′ in period 0, and player 20 observes

either s∗ or s′′, so that her action is supported in {b∗, b†, b′′}. This implies that player 1’s stage-game

payoff in period 0 is at least 1 and his expected continuation value after playing a′′ is at least 0 in any

Perfect Bayesian equilibrium. Hence, player 1’s discounted average payoff is strictly greater than his

minmax payoff 0 in all Perfect Bayesian equilibria.
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One can obtain a higher payoff lower bound under the following refinement of PBE: For every

history ht, no matter whether it is on-path or off-path, player 2t’s posterior belief about at after

observing st is supported in A(st) ≡
{
a ∈ A

∣∣f(st|a) > 0
}
. In every PBE that satisfies this refinement,

suppose player 1 deviates and plays a′′ in every period. Then at every history, player 2 must be playing

some mixed action supported in {b∗, b†, b′′}. Hence, player 1’s discounted average payoff from playing

a′′ in every period is at least 1, so his equilibrium payoff in every refined PBE must be no less than 1.

MLRP: In order to demonstrate that the MLRP condition is not redundant, consider the game

in the following matrix. Let S ≡ {s, s∗, s}. The signal distribution is given by f(s∗|a∗) = 2/3,

f(s|a∗) = 1/3, f(s|a) = 1, f(s|a) = 1/3, and f(s|a) = 2/3.

- b∗ b′

a 1, 4 −2, 0

a∗ 2, 1 −1, 0

a 3,−2 0, 0

Players’ payoffs satisfy Assumptions 1 and 2 when player 1’s actions are ranked according to a ≻ a∗ ≻ a

and player 2’s actions are ranked according to b∗ ≻ b′. Player 1’s Stackelberg action is a∗, his

Stackelberg payoff is 2, and st is unboundedly informative about a∗. However, MLRP is violated.

I construct an equilibrium where player 1’s payoff is 1, which is bounded below his Stackelberg

payoff 2. The strategic-type player 1 plays a mixed action that depends only on player 2’s posterior

belief about his type. If player 2’s posterior belief assigns probability π to the commitment type, then

the strategic-type player 1 plays α(π) ∈ ∆(A) such that (1−π) ·α(π)+π ·a∗ = 0.5 ·a∗+0.25 ·a+0.25 ·a.

Player 2t plays b
∗ if st ∈ {s∗, s}, and plays b′ if st = s.

This strategy profile is an equilibrium since player 1’s expected stage-game payoff is 1 no matter

which action he plays, and his continuation value is independent of his current-period action. Player 2

has a strict incentive to play b∗ after observing s or s∗, and has an incentive to play b′ after observing

s. Regardless of player 1’s type, the probability with which player 2 plays b∗ in each period is 2/3.

In the above example, bt is uninformative about player 1’s type despite the probability of bt = b∗

being bounded away from 1. As a result, even when player 1 builds a reputation for playing a∗, player

2 can still play b′ with significant probability in an unbounded number of periods. This explains why

the patient player’s equilibrium payoff is bounded below his Stackelberg payoff in some equilibria.
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5 Concluding Remarks

This paper examines a patient seller’s returns from building a reputation when consumers have limited

access to his past records and can also learn from other consumers’ choices.

My main result shows that limited memory and observational learning lead to reputation failures.

This is because consumers’ abilities to observe their predecessors’ choices enrich their strategy space,

rationalizing a larger set of the seller’s behaviors. When consumers are concerned that the strategic

seller will milk his reputation and then rebuild his reputation, they have a rationale for not trusting

the seller despite having observed high effort in the previous period, or more generally, in the last

K periods. This is because (i) consumers are not convinced that the seller is the commitment type,

and (ii) they are also not convinced that the strategic-type seller will exert high effort. I construct

equilibria in which the above forces come into play and the patient seller receives his minmax payoff.

Consumers’ strategies in this equilibrium have a natural interpretation: the first consumer does not

trust the seller and every subsequent consumer imitates her predecessor with probability close to one.

By contrast, when consumers can observe the entire history of the seller’s actions, the seller cannot

rebuild his reputation after he loses it, in which case concerns about the seller rebuilding his reputation

are irrelevant. When each consumer only observes the seller’s action in the period before but cannot

observe other consumers’ choices and cannot observe calendar time, consumers’ strategy space is

more restricted. Under an additional assumption that players’ actions are strategic complements, the

restriction in consumers’ strategy space implies that the strategic seller either has no incentive to milk

his reputation or has no incentive to rebuild his reputation. When consumers are not concerned that

the seller will milk-and-then-rebuild his reputation, they have a strict incentive to trust the seller after

they observe high effort in the period before. As a result, the seller receives his Stackelberg payoff in all

equilibria. I conclude by reviewing the related literature on social learning and reputation formation.

Social Learning: The special case of my model where each consumer observes all previous con-

sumers’ choices is analogous to a social learning model: A sequence of myopic players observe their

predecessors’ choices as well as some private signals (e.g., the long-run player’s last K actions) in

order to predict the long-run player’s action in the current period. This stands in contrast to the so-

cial learning models in Banerjee (1992), Bichandarni, Hirshleifer and Welsh (1992), Lee (1993), Smith

and Sørensen (2000), Bose, Orosel, Ottaviani and Vesterlund (2006), and Kartik, Lee and Rappoport

(2021). In those models, a sequence of myopic players learn about an exogenous state instead of the

endogenous actions of a long-run player.
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Due to differences in the object to learn, the myopic players asymptotically learning about the

patient player’s type is neither sufficient nor necessary for the long-run player to receive a high dis-

counted average payoff, which I have explained earlier. The differences in the learning objective also

leads to different forms of inefficiencies. In canonical social learning models, inefficiencies arise when

the myopic players ignore their private signals and herd on some inefficient action. In contrast, the

myopic players can never herd on any action other than b∗ in any equilibrium of my baseline model.15

My main result examines the effects of observational learning on a patient player’s discounted

average payoff. This stands in contrast to existing results that focus on players’ asymptotic beliefs,

their asymptotic rates of learning (e.g., Gale and Kariv 2003, Hann-Caruthers, Martynov and Tamuz

2018, Harel, Mossel, Strack and Tamuz 2021), and their asymptotic payoffs (e.g., Rosenberg and

Vieille 2019).16 As demonstrated by the imitation equilibria in the constructive proof of Theorem 1,

the patient player’s discounted average payoff can be low even when his asymptotic payoff is high.

My paper is also related to social learning models with bounded memories. For example, Drakopou-

los, Ozdaglar and Tsitsiklis (2012) study a model where a sequence of myopic players learns about

an exogenous state. Each player observes a private signal and the actions of her last M predecessors.

They show that learning is possible when M ≥ 2 but not when M = 1. In contrast, the myopic players

in my model are learning about the endogenous behavior of a strategic long-run player instead of an

exogenous state. As a result, the informativeness of their private signal (which is the patient player’s

actions in the last K periods in my model) is also endogenous. In contrast to their conclusion which

highlights the distinction between the case where M = 1 and the case where M ≥ 2, the values of K

and M do not play an important role in my model as long as K is finite and M is at least one.

Reputation Failure: Theorem 1 is related to the literature on reputation failures. Schmidt (1993),

Cripps and Thomas (1997), and Chan (2000) assume that the uninformed player is forward-looking.

They show that reputation effects fail in the sense that there exist equilibria in which the informed

player receives a low payoff. The takeaway from their analysis is that the informed player’s patience

helps reputation building while the uninformed player’s patience hurts reputation building. In contrast,

my analysis highlights another effect: the informed player’s patience makes it hard for his opponents

15Logina, Lukyanov and Shamruk (2019) study a social learning model in which every myopic player observes a
private signal about a patient player’s action. They show that the patient player exerts high effort only when the myopic
players’ beliefs are intermediate. Their logic is similar to the one in Banerjee (1992) and Bichandarni, Hirshleifer and
Welsh (1992). Board and Meyer-ter-Vehn (2021) study a model of innovation adoption in which players learn about a
persistent exogenous state, and characterize the rate of learning under different network structures.

16In social learning models where a sequence of myopic players learn about an exogenous state, Rosenberg and Vieille
(2019) calculate the discounted sum of the myopic players’ payoffs, and Che and Hörner (2018) and Smith, Sørensen and
Tian (2021) design mechanisms that maximize the myopic players’ discounted average payoff.
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to distinguish between the commitment type and the strategic type. This effect does not affect the

patient player’s payoff when his opponents can observe his entire history, but plays an important role

when each of his opponents can only observe a bounded number of his actions. When each uninformed

player receives limited information, there is a rationale for her to imitate her immediate predecessor,

and her imitation behavior wipes out the seller’s returns from building reputations.

Ely and Välimäki (2003), Ely, Fudenberg and Levine (2008), and Deb, Mitchell and Pai (2022)

focus on participation games where the uninformed player(s) can take an action under which the

informed player receives his minmax payoff and future uninformed players cannot learn about his

current-period action.17 This lack-of-identification problem leads to an equilibrium in which the patient

player receives a low payoff. Pei (2020) and Deb and Ishii (2021) show that lack-of-identification occurs

when uninformed players’ signals cannot identify the state or the uninformed players do not know the

monitoring structure. In contrast, the uninformed players cannot shut down learning in my model

and consumers’ actions in imitation equilibria can statistically identify the seller’s past actions.

Bai (2021) assumes that the seller is either a low-cost type who may exert effort or a high-cost type

who never exerts effort. Every consumer observes a noisy signal of the seller’s effort and communicates

the realized signal to all future consumers. She shows that the low-cost type has no incentive to exert

effort when δ is low, when his initial reputation is low, and when the fixed cost of establishing a

reputation is high. In contrast, reputation effects fail in my model since consumers have limited

observations of the seller’s past actions and can also observe previous consumers’ choices.

Reputation Models with Limited Memory: Liu (2011) and Liu and Skrzypacz (2014) study

reputation models where the seller’s payoff is strictly submodular and each consumer can observe a

bounded number of the seller’s actions but cannot observe other consumers’ choices and cannot observe

calendar time.18 By contrast, I show that consumers’ ability to observe other consumers’ choices leads

to qualitatively different predictions. First, my reputation failure result requires consumers to observe

other consumers’ choices. Second, the reputation cycles described in Liu (2011) and Liu and Skrzypacz

(2014) cannot arise in my model due to consumers’ ability to observe other consumers’ choices.

Kaya and Roy (2022) study a model where a long-lived seller decides whether to sell to a myopic

consumer in each period. Their model has interdependent values since the seller has persistent private

17Levine (2021) studies a model where signals are less informative when the uninformed players do not participate.
18Heller and Mohlin (2018) study repeated games with anonymous random matching in which all players are long-

lived and each player only observes a finite sample of his opponent’s past play. Section 4 of Sperisen (2018) numerically
computes the seller’s equilibrium payoff set in the product choice game when cT = cN > 0. Bhaskar and Thomas (2019)
study a repeated trust game between a patient player who has no reputation concern and a sequence of short-run players,
each of them has a finite memory.
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information about his product quality, and quality affects both his production cost and consumers’

willingness to pay. When each consumer observes a bounded number of the seller’s past actions but

cannot observe previous consumers’ price offers, longer memories encourage the low-quality seller to

imitate the high-quality seller, making it harder for the market to screen the seller’s type. In contrast,

the consumers’ payoffs in my model do not directly depend on the seller’s type and each consumer

observes at least one other consumer’s action in addition to a bounded number of the seller’s actions.

My main result shows that bounded memories by themselves may not lower the seller’s returns from

building a good reputation, but bounded memories together with consumers’ ability to observe other

consumers’ choices can lower the seller’s returns from building a good reputation.

A Proof of Theorem 1

I show Theorem 1 both in the case where calendar time is directly observed and in the case where

calendar time is not directly observed. Since a∗ ̸= a′, a′ is player 1’s lowest action, and a∗ is the

unique Stackelberg action, we know that u1(a
′, b′) < u1(a

∗, b∗). I normalize player 1’s payoff function

by setting u1(a
′, b′) = 0 and u1(a

∗, b∗) = 1. Assumption 2 implies that u1(a, b
′) < 0 for every a ≻ a′

and u1(a, b
∗) > 1 for every a ≺ a∗.

Let πt be the probability player 2t’s posterior belief assigns to the commitment type after observing

(amax{0,t−K}, ..., at−1) and (bmax{0,t−M}, ..., bt−1). Note that when the short-run players do not directly

observe calendar time, πt does not depend on t when t ≥ max{M,K}. Let q be the largest q ∈ [0, 1]

such that b′ is not player 2’s strict best reply to mixed action qa∗+(1− q)a′. Let q be the smallest q ∈

[0, 1] such that b∗ is not player 2’s strict best reply to mixed action qa∗+(1−q)a′. Assumption 1 implies

that b∗ is a strict best reply to a∗ and b′ is a strict best reply to a′. Hence 0 < q < q < 1 and there

exist b∗∗ ̸= b′ and b′′ ̸= b∗ such that {b∗∗, b′} ⊂ BR2(qa
∗+(1−q)a′) and {b∗, b′′} ⊂ BR2(qa

∗+(1−q)a′).

Assumption 2 implies that b∗ ≻ b′′, b∗∗ ≻ b′, and b∗ ≻ b′. I consider the following three cases:

� Case 1: b∗ = b∗∗ and b′ = b′′.

� Case 2: b∗ ≻ b′′ ≻ b∗∗ ≻ b′.

� Case 3: b∗ ≻ b′′ = b∗∗ ≻ b′.

I construct equilibria in which (i) player 1’s ex ante payoff is 0, (ii) player 2t’s action depends only

on (at−1, bt−1), (iii) player 1’s action in period t depends only on (at−1, bt−1) and player 2’s posterior

belief about player 1’s type, (iv) player 1 plays either a∗ or a′ on the equilibrium path, and (v) if

at−1 /∈ {a′, a∗}, then the continuation play proceeds as if (at−1, bt−1) = (a′, bt−1). Since u1(a, b) is
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strictly in a and a′ is player 1’s lowest action, the strategic-type player 1 strictly prefers a′ to actions

other than a∗ and a′ at any private history. I comment on δ(u1, u2) by the end of this section.

Case 1: b∗ = b∗∗ and b′ = b′′ In this case, q = q ≡ q. The construction resembles that in the

product choice game after replacing H with a∗, L with a′, T with b∗, and N with b′.

1. When (at−1, bt−1) = (a′, b′) or ∅. Player 2 plays b′. The strategic type player 1 mixes between

a∗ and a′. His probability of playing a∗ is q−π0

1−π0
when t = 0, and is q when t ≥ 1.

2. When (at−1, bt−1) = (a∗, b′). Player 2 plays b∗ with probability −1−δ
δ u1(a

∗, b′) and plays b′ with

complementary probability. The strategic-type player 1 mixes between a∗ and a′. His probability

of playing a∗, denoted by pt, satisfies πt + (1− πt)pt = q.

3. When (at−1, bt−1) = (a′, b∗). Player 2 plays b∗ with probability 1−(1−δ)u1(a′,b∗)
δ and plays b′ with

complementary probability. The strategic type player 1 plays a∗ with probability q and plays a′

with complementary probability.

4. When (at−1, bt−1) = (a∗, b∗), player 2 plays b∗ and player 1 plays a∗.

Players’ incentive constraints are satisfied, and in particular, the strategic-type player 1 is indifferent

between a∗ and a′ at every history. In what follows, I show that when π0 is small enough such that

π0
1− π0

≤
( q

2− q

)K+1
, (A.1)

πt ≤ q
2 at every history where (at−1, bt−1) = (a∗, b′). This implies that the strategic-type’s mixed

strategy pt is a well-defined probability and that he plays a∗ with probability at least q
2 at every

history. This conclusion applies both when player 2s can and cannot observe calendar time.

If (at−1, bt−1) = (a∗, b′), then player 2t’s belief assigns positive probability to the commitmen-

t type only when (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗) and (bmax{0,t−M}, ..., bt−1) = (b′, b′, ..., b′). In

what follows, I bound player 2’s belief from above when (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗) and

(bmax{0,t−M}, ..., bt−1) = (b′, b′, ..., b′) by considering two cases separately.

First, I study cases where either player 2s can directly observe calendar time or M = +∞ (in which

case player 2s can perfectly infer calendar time). Let π∗
t be player 2’s belief about the commitment type

after observing (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗), (bmax{0,t−M}, ..., bt−1) = (b′, b′, ..., b′), and calendar

time. I show that π∗
t ≤ q

2 for every t ∈ N by induction on t ∈ N.

First, π∗
0 = π0 ≤ q

2 according to (A.1). Suppose π∗
s ≤ q

2 for every s ≤ t − 1. The induction

hypothesis implies that in every period before t, the probability that the strategic type plays a∗ is at
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least q
2 . Let Pωs(·) be the probability measure induced by the equilibrium strategy of the strategic

type. Let Pωc(·) be the probability measure induced by the commitment type. Let Et be the event

that (amax{0,t−K}, ..., at−1) = (a∗, ..., a∗). Let Ft be the event that (bmax{0,t−M}, ..., bt−1) = (b′, ..., b′).

According to Bayes rule,

π∗
t

1− π∗
t

/ π0
1− π0

=
Pωc(Et ∩ Ft)

Pωs(Et ∩ Ft)
=

Pωc(Et)

Pωs(Et)
· P

ωc(Ft|Et)

Pωs(Ft|Et)
. (A.2)

Since the strategic type plays a∗ with probability at least q
2 in every period before t, and b′ occurs

with lower probability under the strategy of type ωc compared to that under type ωs, we have

Pωc(Et)

Pωs(Et)
≤

(q
2

)−K
and

Pωc(Ft|Et)

Pωs(Ft|Et)
≤ 1. (A.3)

When π0 ≤ ( q2)
−K−1, (A.2) and (A.3) together imply that π∗

t ≤ q
2 .

Next, I study the case where M is finite and player 2s cannot directly observe calendar time. Let

T ≡ max{K,M}. Any player 2 who arrives before period T can perfectly infer calendar time, in

which case we can use the same induction argument to bound π∗
t from above by q

2 . Any player 2 who

arrives after period T cannot perfectly infer calendar time. Let π∗ be player 2t’s belief after observing

(at−K , ..., at−1) = (a∗, ..., a∗) and (bt−M , ..., bt−1) = (b′, b′, ..., b′) for t ≥ T .

One complication is that the strategic type’s probability of playing a∗ depends on π∗, and player

2’s posterior belief after observing (at−K , ..., at−1) = (a∗, ..., a∗) and (bt−M , ..., bt−1) = (b′, b′, ..., b′)

depends on the strategic type’s probability of playing a∗. This leads to a fixed point problem. I show

that there exists a fixed point π∗ that is less than q
2 when π0 satisfies (A.1).

Let Pωs,π∗
be the probability measure induced by the strategic type when he plays a∗ with proba-

bility q−π∗

1−π∗ when (at−K , ..., at−1) = (a∗, ..., a∗) and (bt−M , ..., bt−1) = (b′, b′, ..., b′). Recall Pωc , Et, and

Ft defined earlier in this proof. For every π∗ ∈ [0, q2 ], let Π(π
∗) be defined as:

Π(π∗)

1−Π(π∗)
=

π0
1− π0

·
∑+∞

t=T (1− δ1)δ
t
1P

ωc(Et)P
ωc(Ft|Et)∑+∞

t=T (1− δ1)δt1P
ωs,π∗(Et)Pωs,π∗(Ft|Et)

(A.4)

By definition, Π(π∗) is a continuous function of π∗ for every π∗ ∈ [0, q2 ]. When π∗ = 0, we have

Π(π∗) > 0 = π∗. The right-hand-side of (A.4) is no more than

π0
1− π0

·max
t≥T

{ Pωc(Et)P
ωc(Ft|Et)

Pωs,π∗(Et)Pωs,π∗(Ft|Et)

}
Under probability measure Pωs,π∗

, the strategic-type plays a∗ with probability at least q−π∗

1−π∗ at every
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history, which implies that

Pωc(Et)P
ωc(Ft|Et)

Pωs,π∗(Et)Pωs,π∗(Ft|Et)
≤

(q − π∗

1− π∗

)−K
.

When π∗ = q
2 ,

Π(π∗)

1−Π(π∗)
≤ π0

1− π0
·
(2− q

q

)K
≤ q

2− q
,

where the last inequality comes from (A.1). Since Π(π∗) > π∗ when π∗ = 0, Π(π∗) ≤ π∗ when π∗ = q
2 ,

and Π(π∗) is continuous, there exists a fixed point π∗ ∈ (0, q
∗

2 ] such that Π(π∗) = π∗.

Case 2: b∗ ≻ b′′ ≻ b∗∗ ≻ b′ Consider the following strategy profile, which is parameterized by

r(a∗, b′), r(a∗, b′′), r(a′, b∗), and r(a′, b∗∗), all of them belong to (0, 1) and will be specified later on.

Recall that πt is player 2t’s belief about the commitment type.

1. When (at−1, bt−1) = (a′, b′) or (a′, b′′) or ∅. Player 2 plays b′. The strategic type player 1 mixes

between a∗ and a′. He plays a∗ with probability pt such that πt + (1− πt)pt = q.

2. When (at−1, bt−1) = (a∗, b′). Player 2 plays b∗∗ with probability r(a∗, b′) and b′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′. He plays a∗ with

probability pt such that πt + (1− πt)pt = q.

3. When (at−1, bt−1) = (a∗, b′′). Player 2 plays b∗∗ with probability r(a∗, b′′) and b′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′. He plays a∗ with

probability pt such that πt + (1− πt)pt = q.

4. When (at−1, bt−1) = (a′, b∗). Player 2 plays b∗ with probability r(a′, b∗) and b′′ with comple-

mentary probability. The strategic type player 1 plays a∗ with probability q and plays a′ with

complementary probability.

5. When (at−1, bt−1) = (a′, b∗∗). Player 2 plays b∗ with probability r(a′, b∗∗) and b′′ with comple-

mentary probability. The strategic type player 1 plays a∗ with probability q and plays a′ with

complementary probability.

6. When (at−1, bt−1) = (a∗, b∗) or (a∗, b∗∗). Player 2 plays b∗ and player 1 plays a∗.

Player 2’s incentive constraint at every history is satisfied. Next, I compute player 1’s continuation

value in period t for every (at−1, bt−1), which I denote by V (at−1, bt−1). Then I verify player 1’s

incentive constraints. From the descriptions of players’ strategies from (1) to (6), we know that V (∅) =
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V (a′, b′) = V (a′, b′′) = 0 and V (a∗, b∗∗) = V (a∗, b∗) = 1. Player 1’s indifference at (at−1, bt−1) = (a′, b′)

implies that

V (a∗, b′) = −1− δ

δ
u1(a

∗, b′). (A.5)

Since (1 − δ)u1(a
∗, b′) + δV (a∗, b′) = (1 − δ)u1(a

′, b′) + δu1(a
′, b′) = 0, player 1 is indifferent when

(at−1, bt−1) ∈ {(a′, b′′), (a∗, b′), (a∗, b′′)} if and only if

(1− δ)u1(a
′, b∗∗) + δV (a′, b∗∗) = (1− δ)u1(a

∗, b∗∗) + δV (a∗, b∗∗) = (1− δ)u1(a
∗, b∗∗) + δ, (A.6)

which implies that

V (a′, b∗∗) = 1− 1− δ

δ

(
u1(a

′, b∗∗)− u1(a
∗, b∗∗)︸ ︷︷ ︸

>0

)
. (A.7)

Let V (a′, b∗) be such that player 1 is indifferent when (at−1, bt−1) = (a∗, b∗). This yields:

V (a′, b∗) =
1− (1− δ)u1(a

′, b∗)

δ
. (A.8)

According to (A.8), player 1 is indifferent when (at−1, bt−1) ∈ {(a∗, b∗∗), (a′, b∗), (a′, b∗∗)} if and only if

(1− δ)u1(a
∗, b′′) + δV (a∗, b′′) = (1− δ)u1(a

′, b′′) + δV (a′, b′′) = (1− δ)u1(a
′, b′′). (A.9)

This yields:

V (a∗, b′′) =
1− δ

δ

(
u1(a

′, b′′)− u1(a
∗, b′′)︸ ︷︷ ︸

>0

)
. (A.10)

Next, I pin down variables r(a∗, b′), r(a∗, b′′), r(a′, b∗), and r(a′, b∗∗).

1. r(a∗, b′) is pinned down by:

V (a∗, b′)︸ ︷︷ ︸
positive but close to 0

= r(a∗, b′)
(
(1− δ)u1(a

∗, b∗∗) + δ V (a∗, b∗∗)︸ ︷︷ ︸
=1

)
.

Such r ∈ [0, 1] exists since 0 < V (a∗, b′) < (1−δ)u1(a
∗, b∗∗)+ δV (a∗, b∗∗) when δ is large enough.

2. r(a∗, b′′) is pinned down by:

V (a∗, b′′)︸ ︷︷ ︸
positive but close to 0

= r(a∗, b′′)
(
(1− δ)u1(a

∗, b∗∗) + δV (a∗, b∗∗)
)
.

Such r ∈ [0, 1] exists since 0 < V (a∗, b′′) < (1−δ)u1(a
∗, b∗∗)+δV (a∗, b∗∗) when δ is large enough.
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3. r(a′, b∗) is pinned down by:

V (a′, b∗)︸ ︷︷ ︸
less than but close to 1

= r(a′, b∗) + (1− r(a′, b∗))
(
(1− δ)u1(a

∗, b′′) + δ V (a∗, b′′)︸ ︷︷ ︸
positive but close to 0

)
.

Such r ∈ [0, 1] exists since (1− δ)u1(a
∗, b′′) + δV (a∗, b′′) < V (a′, b∗) < 1 when δ is large enough.

4. r(a′, b∗∗) is pinned down by:

V (a′, b∗∗)︸ ︷︷ ︸
less than but close to 1

= r(a′, b∗∗) + (1− r(a′, b∗∗))
(
(1− δ)u1(a

∗, b′′) + δ V (a∗, b′′)︸ ︷︷ ︸
positive but close to 0

)
.

Such r ∈ [0, 1] exists since (1− δ)u1(a
∗, b′′) + δV (a∗, b′′) < V (a′, b∗) < 1 when δ is large enough.

When the prior probability of commitment type is less than π0 where π0 is given by

π0

1− π0
=

(q
2

)K+1
, (A.11)

one can show using the same argument as the first case that player 2’s posterior belief assigns proba-

bility less than q/2 to the commitment type at every history where (at−1, bt−1) /∈ {(a∗, b∗), (a∗, b∗∗)}.

This implies that the strategic type player 1 plays a∗ with probability at least q/2 at every history,

and that his mixed action at every history is well-defined.

Case 3: b∗ ≻ b′′ = b∗∗ ≻ b′ I write b′′ instead of b∗∗. Consider the following strategy profile,

parameterized by s(a∗, b′), s(a∗, b′′), s(a′, b∗), and s(a′, b∗∗).

1. When (at−1, bt−1) = (a′, b′) or ∅. Player 2 plays b′. If t = 0, the strategic type player 1 plays a∗

with probability
q−π0

1−π0
and plays a′ with complementary probability. If t ≥ 1, the strategic type

player 1 plays a∗ with probability q and plays a′ with complementary probability.

2. When (at−1, bt−1) = (a∗, b′). Player 2 plays b
′′
with probability s(a∗, b′) and b′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′. He plays a∗ with

probability pt such that πt + (1− πt)pt = q.

3. When (at−1, bt−1) = (a′, b′′). Player 2 plays b′′ with probability s(a′, b′′) and b′ with comple-

mentary probability. The strategic type player 1 plays a∗ with probability q and plays a′ with

complementary probability.
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4. When (at−1, bt−1) = (a∗, b′′). Player 2 plays b∗ with probability s(a∗, b′′) and b′′ with comple-

mentary probability. The strategic type player 1 mixes between a∗ and a′. He plays a∗ with

probability pt such that πt + (1− πt)pt = q.

5. When (at−1, bt−1) = (a′, b∗). Player 2 plays b∗ with probability s(a′, b∗∗) and b′′ with comple-

mentary probability. The strategic type player 1 plays a∗ with probability q and plays a′ with

complementary probability.

6. When (at−1, bt−1) = (a∗, b∗). Player 2 plays b∗ and player 1 plays a∗.

According to (1) and (6), V (∅) = V (a′, b′) = 0 and V (a∗, b∗) = 1. Player 1’s indifference at

(a′, b′) implies that V (a∗, b′) = −1−δ
δ u1(a

∗, b′). Let V (a′, b∗) = 1−(1−δ)u1(a′,b∗)
δ , under which player 1 is

indifferent between a∗ and a′ when (at−1, bt−1) = (a∗, b∗).

Since (1−δ)u1(a
∗, b′)+δV (a∗, b′) = (1−δ)u1(a

′, b′)+δV (a′, b′) and (1−δ)u1(a
∗, b∗)+δV (a∗, b∗) =

(1−δ)u1(a
′, b∗)+δV (a′, b∗) under these continuation values, the strategic type of player 1 is indifferent

at (a∗, b′), (a′, b′′), (a∗, b′′), and (a′, b∗) if and only if

(1− δ)u1(a
∗, b′′) + δV (a∗, b′′) = (1− δ)u1(a

′, b′′) + δV (a′, b′′). (A.12)

Assumption 2 implies that u1(a
′, b′′) > u1(a

∗, b′′), u1(a
∗, b′′) < u1(a

∗, b∗) and u1(a
′, b′′) > u1(a

′, b′).

Lemma A.1. There exists γ ∈ (0, 1) ∩ (u1(a
∗, b′′), u1(a

′, b′′)) such that

γ(1− u1(a
∗, b′′)) ≥ (1− γ)u1(a

′, b′′). (A.13)

Proof. Consider two cases separately. First, suppose u1(a
′, , b′′) ≤ 1. By setting γ = u1(a

′, b′′),

γ(1− u1(a
∗, b′′)) = u1(a

′, b′′)(1− u1(a
∗, b′′)) > u1(a

′, b′′)(1− u1(a
′, b′′)).

The intermediate value theorem implies that (A.13) holds for some γ that is strictly less than u1(a
′, b′′)

but is strictly greater than u1(a
∗, b′′). Second, suppose u1(a

′, b′′) > 1. By setting γ = 1, the left-hand-

side of (A.13) is strictly positive while the right-hand-side of (A.13) is 0. The intermediate value

theorem implies that (A.13) holds for some γ that is strictly less than 1 but is strictly greater than

u1(a
∗, b′′)

Pick γ ∈ (0, 1) ∩ (u1(a
∗, b′′), u1(a

′, b′′)) that satisfies (A.13) and set player 1’s continuation values
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at (a∗, b′′) and (a′, b′′) to be

V (a∗, b′′) =
1

δ

(
γ − (1− δ)u1(a

∗, b′′)
)

(A.14)

and

V (a′, b′′) =
1

δ

(
γ − (1− δ)u1(a

′, b′′)
)
. (A.15)

These continuation values satisfy player 1’s incentive constraint (A.12), and moreover,

V (a∗, b′′) > (1− δ)u1(a
∗, b′′) + δV (a∗, b′′) = γ = (1− δ)u1(a

′, b′′) + δV (a′, b′′) > V (a′, b′′).

When δ is close to 1, both V (a∗, b′′) and V (a′, b′′) are bounded away from 0 and 1, and moreover,

V (a′, b′′) < u1(a
′, b′′) and V (a∗, b′′) > u1(a

∗, b′′).

Next, I pin down the values of s(a∗, b′), s(a∗, b′′), s(a′, b∗), and s(a′, b′′) so that player 1 receives

these continuation values. Recall that V (a∗, b′) = −1−δ
δ u1(a

∗, b′) and V (a′, b∗) = 1−(1−δ)u1(a′,b∗)
δ , and

the values of V (a∗, b′′) and V (a′, b′′) are given by (A.14) and (A.15).

1. s(a∗, b′) is pinned down by:

V (a∗, b′)︸ ︷︷ ︸
positive but close to 0

= s(a∗, b′)
(
(1− δ)u1(a

∗, b′′) + δ V (a∗, b′′)︸ ︷︷ ︸
bounded away from 0

)
.

Such s ∈ [0, 1] exists since 0 < V (a∗, b′) < (1− δ)u1(a
∗, b′′) + δV (a∗, b

′′
) when δ is large enough.

2. s(a′, b′′) is pinned down by:

V (a′, b′′) = s(a′, b′′)
(
(1− δ)u1(a

′, b′′) + δV (a′, b′′)
)
.

Such s ∈ [0, 1] exists since 0 < V (a′, b′′) < (1− δ)u1(a
′, b′′) + δV (a′, b′′) when δ is large enough.

3. s(a∗, b′′) is pinned down by:

V (a∗, b′′) = s(a∗, b′′) + (1− s(a∗, b′′))
(
(1− δ)u1(a

∗, b′′) + δV (a∗, b′′)
)
.

Such s ∈ [0, 1] exists since (1− δ)u1(a
∗, b′′) + δV (a∗, b′′) < V (a∗, b′′) < 1 when δ is large enough.

4. s(a′, b∗) is pinned down by:

V (a′, b∗)︸ ︷︷ ︸
close to but less than 1

= s(a′, b∗) + (1− s(a′, b∗))
(
(1− δ)u1(a

∗, b′′) + δ V (a∗, b′′)︸ ︷︷ ︸
bounded away from 1

)
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Such s ∈ [0, 1] exists since (1− δ)u1(a
∗, b′′) + δV (a∗, b′′) < V (a′, b∗) < 1 when δ is large enough.

Next, I show that player 2’s posterior belief assigns probability less than q/2 to the commitment type

at every history where (at−1, bt−1) ̸= (a∗, b∗). The key step is Lemma A.2.

Lemma A.2. If γ satisfies (A.13), then s(a′, b′′) + s(a∗, b′′) ≥ 1.

Proof. According to the expressions of player 1’s continuation value, we have

s(a∗, b′′) =
V (a∗, b′′)− γ

1− γ
and s(a′, b′′) =

V (a′, b′′)

γ
. (A.16)

Therefore, s(a′, b′′) + s(a∗, b′′) ≥ 1 if and only if

V (a∗, b′′)− γ

1− γ
+

V (a′, b′′)

γ
≥ 1

which is equivalent to (1−γ)V (a′, b′′) ≥ γ(1−V (a∗, b′′)). Plugging in (A.14) and (A.15), this inequality

is equivalent to γ(1− u1(a
∗, b′′)) ≥ (1− γ)u1(a

′, b′′), which is (A.13).

Since player 2 plays b′′ with probability 1− s(a∗, b′′) when (at−1, bt−1) = (a∗, b′′) and plays b′′ with

probability s(a′, b′′) when (at−1, bt−1) = (a′, b′′), Lemma A.2 implies that

Pr(bt+1 = b′′|bt = b′′, at = a′) ≥ Pr(bt+1 = b′′|bt = b′′, at = a∗). (A.17)

Therefore, the likelihood ratio between the commitment type and the strategic type does not increase

when player 2 observes bt+1 = b′′ conditional on bt = b′′. Back to the proof of πt ≤ q/2 whenever

(at−1, bt−1) ̸= (a∗, b∗), we only need to consider histories such that at−1 = a∗. Assume π0 < π0 where

π0 is given by
π0

1− π0
=

(q
2

)K+1 q

2− q
. (A.18)

1. At histories where (at−1, bt−1) = (a∗, b′), then the same argument as that in the first case implies

that when π0 is no more than π0 defined in (A.18), player 2’s posterior belief assigns probability

less than q/2 at every such history.

2. At histories where (at−1, bt−1) = (a∗, b′′), then player 2’s posterior belief assigns strictly positive

probability to the commitment type only if (at−K , ..., at−1) = (a∗, ..., a∗) and there exists s ≤ t−1

such that bτ = b′ for every τ < s and bτ = b′′ for every t− 1 ≥ τ ≥ s.

I show this claim when M = +∞ or when player 2s can directly observe calendar time. The case
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where M being finite and player 2s cannot directly observe calendar time can be shown using a

fixed point argument similar to the one in Case 1, which I omit in order to avoid repetition.

Let Et be the event that (at−K , ..., at−1) = (a∗, ..., a∗), let Fs,t be the event that (b0, ..., bt−1) =

(b′, ..., b′, b′′, b′′, ..., b′′) where the first b′′ occurs in period s. Let π∗
s,t be the posterior probability

of commitment type conditional on Et ∩ Ft. According to Bayes rule,

π∗
s,t

1− π∗
s,t

/ π0
1− π0

=
Pωc(Et ∩ Ft)

Pωs(Et ∩ Ft)
=

Pωc(Et)

Pωs(Et)
· P

ωc(Ft|Et)

Pωs(Ft|Et)
. (A.19)

The first term on the right-hand-side of (A.19) is no more than (q/2)−K . For every n < s, let

ln ≡ Pωc(an = a′|Et, (b0, ..., bn−1) = (b′, ..., b′))

Pωs(an = a′|Et, (b0, ..., bn−1) = (b′, ..., b′))
(A.20)

and for every n ≥ s, let

ln ≡ Pωc(an = a′′|Et, (b0, ..., bn−1) = (b′, ..., b′))

Pωs(an = a′′|Et, (b0, ..., bn−1) = (b′, ..., b′))
(A.21)

According to Bayes rule, the second term on the right-hand-side of (A.19) equals Πt−1
i=0li. Ac-

cording to Lemma A.2, ln ≤ 1 for every n ̸= s. Since π0 ≤ π0, we have π
∗
s,t ≤ q/2 for every t ≤ s.

Since πt ≤ maxs≤t π
∗
s,t, we have πt ≤ q/2 for every t ≤ s. Since the unconditional probability

with which player 1 plays a∗ is at least q in every period and π∗
s,s ≤ q/2, we have ls ≤ (q/2)−1.

This implies that πt ≤ q/2 for every t ∈ N, which concludes the proof.

Remark: I provide sufficient conditions for the cutoff discount factor δ(u1, u2). Recall we adopt the

normalization that u1(a
∗, b∗) = 1 and u1(a

′, b′) = 0. In Case 1, the cutoff discount factor is:

δ(u1, u2) = max
{ −u1(a

∗, b′)

1− u1(a∗, b′)
, 1− 1

u1(a′, b∗)

}
.

In Case 2, the cutoff discount factor is pinned down by V (a∗, b′) ≤ (1− δ)u1(a
∗, b∗∗) + δ, V (a∗, b′′) ≤

(1 − δ)u1(a
∗, b∗∗) + δ, (1 − δ)u1(a

∗, b′′) + δV (a∗, b′′) ≤ V (a′, b∗), and (1 − δ)u1(a
∗, b′′) + δV (a∗, b′′) ≤

V (a′, b∗), where V (a∗, b′), V (a′, b∗∗), V (a′, b∗) and V (a∗, b′′) are given by (A.5), (A.7), (A.8), and

(A.10). In Case 3, the cutoff discount factor is pinned down by V (a∗, b′) ≤ (1 − δ)u1(a
∗, b′′) +

δV (a∗, b
′′
), V (a′, b′′) ≤ (1 − δ)u1(a

′, b′′) + δV (a′, b′′), (1 − δ)u1(a
∗, b′′) + δV (a∗, b′′) ≤ V (a∗, b′′), and

(1− δ)u1(a
∗, b′′)+ δV (a∗, b′′) ≤ V (a′, b∗), where V (a∗, b′) = −1−δ

δ u1(a
∗, b′), V (a′, b∗) = 1−(1−δ)u1(a′,b∗)

δ ,

and the values of V (a∗, b′′) and V (a′, b′′) are given by (A.14) and (A.15).
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B Proof of Proposition 1

Since (K,M) = (1, 0), consumers’ strategy is represented by a triple (r∅, rH , rL), where rx is the

probability with which she plays T when at−1 = x for x ∈ {∅, H, L}.

First, I show that rH > rL. Suppose by way of contradiction that rH ≤ rL, then the strategic-type

seller has no incentive to play H. After consumer t observes that at−1 = H, she infers that the seller

is the commitment type for sure and hence, she has a strict incentive to play T . This implies that

rH = 1. Since rH ≤ rL, we have rL = 1. However, since consumer t knows that the seller is the

strategic type after observing at−1 = L and the strategic-type seller has no incentive to play H, which

implies that rL = 0. This contradicts the previous conclusion that rL = 1.

Since consumer t’s strategy depends only on at−1, starting from period 1, the seller’s continuation

value depends only on whether at−1 = L or at−1 = H. Let V (L) and V (H) be these continuation

values, respectively. The strategic-type seller has an incentive to play H when at−1 = H if and only

if (1− δ)(rH + (1− rH)(−cN )) + δV (H)− (1− δ)(1 + cT )rH − δV (L) ≥ 0, or equivalently,

δ

1− δ
(V (H)− V (L)) ≥ cT rH + cN (1− rH). (B.1)

Similarly, the seller has an incentive to play H when at−1 = L if and only if

δ

1− δ
(V (H)− V (L)) ≥ cT rL + cN (1− rL). (B.2)

Since rH > rL and cN > cT , the right-hand-side of (B.2) is strictly greater than the right-hand-side of

(B.1), which implies that

� If the strategic-type seller is indifferent between H and L when at−1 = L, then the strategic-type

seller has a strict incentive to play H when at−1 = H.

� If the strategic-type seller is indifferent between H and L when at−1 = H, then the strategic-type

seller has a strict incentive to play L when at−1 = L.

I consider three cases. First, suppose the strategic-type seller has a strict incentive to play L when

at−1 = H, then he also has a strict incentive to play L when at−1 = L. Then after she observes

at−1 = H, consumer t believes that the seller is the commitment type for sure and hence, she has a

strict incentive to play T . This implies that rH = 1. As a result, the seller can guarantee discounted

average payoff at least δ − (1− δ)cN by playing H in every period.

Next, suppose the strategic-type seller has a strict incentive to play H when at−1 = H, then after
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consumer t observes that at−1 = H, she knows that the seller will play H regardless of his type and

therefore, she will have a strict incentive to play T . As a result, rH = 1, which implies that the seller

can guarantee discounted average payoff at least δ − (1− δ)cN by playing H in every period.

The above reasoning implies that in every equilibrium where the strategic-type seller receives a

payoff strictly less than δ− (1− δ)cN , the strategic-type seller must be indifferent when at−1 = H and

must strictly prefer to play L when at−1 = L, and moreover, rH < 1. I show that there is no such

equilibria when δ is close to 1. Let pt be the probability of the event:

Et ≡
{
The seller is the strategic type and plays H in period t

}
.

Since the strategic-type seller strictly prefers to play L in period t when at−1 = L, we have 1− π0 ≥

p0 ≥ p1 ≥ p2 ≥ ... Since consumers’ prior belief assigns probability π0 to the commitment type and

assigns probability δt1(1−δ1) to the calendar time being t, she prefers N to T after observing at−1 = H

only if ∑+∞
t=1 (1− δ1)δ

t
1π0∑+∞

t=1 (1− δ1)δt1(pt−1 − pt)
≤ 1. (B.3)

Since
∑+∞

t=1 (1− δ1)δ
t
1π0 = δ1π0 and

∑+∞
t=1 (1− δ1)δ

t
1(pt−1 − pt) ≤ (1− δ1)

∑∞
t=1(pt−1 − pt) = 1− δ1, we

have ∑+∞
t=1 (1− δ1)δ

t
1π0∑+∞

t=1 (1− δ1)δt1(pt−1 − pt)
≥ δ1π0

1− δ1

the right-hand-side is strictly greater than 1 when δ1 is close to 1, in which case (B.3) cannot be true.

The above contradiction implies that the seller’s payoff is at least δ − (1− δ)cN in every equilibrium.
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