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Abstract

We describe UMA (Unified Model of Arithmetic), a theory of
children’s arithmetic implemented as a computational model.
UMA extends a theory of fraction arithmetic (Braithwaite et
al.,, 2017) to include arithmetic with whole numbers and
decimals. We evaluated UMA in the domain of decimal
arithmetic by training the model on problems from a math
textbook series, then testing it on decimal arithmetic problems
that were solved by 6th and 8th graders in a previous study.
UMA’s test performance closely matched that of children,
supporting three assumptions of the theory: (1) most errors
reflect small deviations from standard procedures, (2) between-
problem variations in error rates reflect the distribution of input
that learners receive, and (3) individual differences in strategy
use reflect underlying variation in learning parameters.

Keywords: mathematical cognition; fractions; decimals;
arithmetic; computational cognitive model; strategy choice

Introduction

Arithmetic involves combining numbers by addition,
subtraction, multiplication, and division. The simplicity of
this description belies the complexity of arithmetic, which is
apparent when one considers calculation with different types
of numbers. For example, one may add single digit whole
numbers (e.g., 4+2) by counting or retrieval from memory,
whereas adding fractions (e.g., 3/5+1/4) may require
conversion to a common denominator, and adding multidigit
whole numbers (e.g., 123+56) or decimals (e.g., 2.46+4.1)
may involve column addition algorithms based on place
value. Yet other skills are required for other types of
problems. Apparently, arithmetic is not one skill, but many.

Reflecting this complexity, previous models of arithmetic
skill have focused on only one or a few aspects of it, such as
arithmetic with small whole numbers (Aubin et al., 2017,
Campbell & Graham, 1985; Shrager & Siegler, 1998;
Verguts & Fias, 2005), multidigit whole numbers (Brown &
VanLehn, 1980), fractions (Braithwaite et al., 2017), or
decimals (Hiebert & Wearne, 1985). It is unclear how well
these models can explain children’s arithmetic outside the
domains for which they were created.

To address this challenge, we created UMA—a Unified
Model of Arithmetic. UMA is a theory of arithmetic learning
and performance implemented as a computational cognitive
model. UMA extends FARRA (Fraction Arithmetic Reflects
Rules and Associations; Braithwaite et al., 2017), a model of
children’s fraction arithmetic. Unlike FARRA, UMA
simulates arithmetic not only with fractions, but also with

single digit and multidigit whole numbers and decimals.

UMA'’s viability as a unified model ultimately depends on
its ability to explain performance in all of these domains of
arithmetic. Here, we take a first step toward such a
comprehensive test by applying the model to the domain of
decimal arithmetic.

First, we describe our theoretical assumptions, which are
shared by FARRA and UMA. These assumptions enabled
FARRA to account for phenomena in children’s fraction
arithmetic and to generate novel predictions about children’s
decimal arithmetic that were subsequently confirmed,
suggesting the feasibility of a unified theory including both
fraction and decimal arithmetic. Next, we describe how UMA
implements our theoretical assumptions in a computational
model. Last, we evaluate UMA in the domain of decimal
arithmetic by comparing its performance to that of children.

Theoretical Assumptions

We propose answers to three fundamental questions about
children’s arithmetic learning and performance: (1) Where do
incorrect answers come from? (2) Why are errors more
common for some problems than others? (3) What causes
individual differences in strategy use?

Where do incorrect answers come from?

We assume that incorrect answers in arithmetic mostly reflect
deviations from standard correct procedures. This
assumption implies that correct procedures are a good
starting point for understanding incorrect performance.

UMA posits two types of deviations: overgeneralization
and omission. Overgeneralization (Table 1) refers to using a
procedure that is not appropriate for the problem at hand but
would be appropriate for a different type of problem.
Overgeneralization encompasses errors that have previously
been attributed to “whole number bias” (Ni & Zhou, 2005;
Table 1, row 1) as well as many other types of errors (Table
1, other rows). Omission (Table 2) refers to executing some,
but not all, of the steps required by a procedure.

UMA assumes that overgeneralization is the main source
of error in both fraction and decimal arithmetic. The rationale
for this assumption is that, in these domains, procedures for
different arithmetic operations are easily confusable. Further,
instruction often emphasizes how to execute each procedure
but not how to choose which procedure should be used. This
approach opens the door to overgeneralization errors in
which procedures are used in inappropriate contexts.



Table 1: Examples of Overgeneralization Errors.

Error Procedure Procedure is
appropriate for ...
3 4 1 4 Apply operation Multiplying
574 9  tonumerators and fractions
denominators
4 9 3 _ 12 Apply operation Adding or
575 5 to numerators, subtracting fractions
keep common with equal
denominator denominators
12.3 Add decimal Multiplying
+5.6 digits of operands decimals
1.79 to place decimal
point in answer
2.4 Bring decimal Adding or
x 1.2 point down from  subtracting decimals
4.8 operands into
24.0 answer
28.8
Table 2: Examples of Omission Errors.
Error Omitted Step
3 4 1_3 N 1 _4 Conversion of numerators
5 4 20 20 20 when converting operands to a
common denominator
2.4 Shifting second partial product
x1.2 (“24”) one column to the left
4 (i.e., the “4” in “24” should be
24 under the “4,” rather than the
0.72 “8,” in “48”)

Consistent with the above assumption, 91% of fraction
arithmetic errors committed by sixth and eighth graders in
(Siegler & Pyke, 2013) involved incorrect strategies. FARRA
generated the large majority of these errors via
overgeneralization (Braithwaite et al., 2017).

Also consistent with the assumption, 70% of sixth and
eighth graders’ decimal arithmetic errors involved using a
strategy that would have been correct for a different type of
problem, as in the last two rows of Table 1 (Braithwaite et al.,
2021). The present study tests whether UMA can simulate
this latter result, as FARRA did the former.

Why are errors more common for some problems?

Variation in error rates among problems in part reflects
differences in the procedures required to solve the problems.
For example, conversion to a common denominator is
required for adding fractions with unequal denominators but
not ones with equal denominators. Thus, errors resulting from
incorrect conversion (e.g., Table 2, row 1) can only occur on
the former type of problem.

However, some between-problem differences in error rates
cannot be explained in this manner. For example, although

the same procedure applies when multiplying fractions with
equal or unequal denominators (e.g., 3/5x1/5 and 3/5x1/4),
children err more on the former type of problem than the
latter (e.g., 63% vs. 42% of trials in Siegler & Pyke, 2013).

Braithwaite et al. (2017) interpreted this phenomenon in
terms of the distribution of input that children receive, a
factor that has long been emphasized in research on language
learning (e.g., Saffran et al., 1999) but that has received less
attention in math cognition. Textbook analysis revealed that
multiplication problems involving equal denominator
fractions are very rare (Table 3), which Braithwaite et al.
(2017) argued explains why children often err on them. When
trained on problems from the textbooks, FARRA similarly
erred more often on the rarer types of problems.

Table 3: Percentage of Fraction Arithmetic Problems in
Textbooks with Different Operations and Operands (data
from Braithwaite et al., 2017).

Operand Denominators

Operation Equal Unequal
Addition 12 13
Subtraction 13 12
Multiplication 1 29
Division 1 19

Braithwaite and colleagues (2021; Tian et al.,, 2021)
predicted that decimal arithmetic would also reveal parallels
between problem distributions and error rates. They found
that in math textbooks, problems with a whole number and a
decimal operand (WD) are rarer than those with two decimal
operands (DD) for addition and subtraction, while the reverse
is true for multiplication and division (Table 4). Similarly,
children err more on addition with WD than DD operands,
but err more often multiplication with DD than WD operands.

Table 4: Percentage of Decimal Arithmetic Problems in
Textbooks Involving Different Operations and Operands
(Tian et al., 2021).

Operands
Operation Two decimals One decimal, one
whole number
Addition 14 1
Subtraction 14 1
Multiplication 15 21
Division 12 22

UMA, like FARRA, explains correspondences between
problem distributions and error rates by assuming that the
likelihood of using a procedure to solve a problem depends
on how often one has used that procedure to solve similar
problems in the past. This assumption is implemented via a
reinforcement learning mechanism that is described in more
detail below. The present study tests whether that mechanism
can generate the variations in decimal arithmetic error rates
described above.



What causes individual differences in strategy use?

As illustrated in Table 1, when doing arithmetic, children use
a variety of strategies—some correct, others not. Individuals
differ not only in speed or accuracy, but also in the strategies
they use. UMA assumes that such individual differences
reflect underlying parametric variation, which the theory
characterizes in terms of two parameters: decision
determinism (g) and error discount (d).

Decision determinism determines how strongly strategies
that have received more reinforcement are preferred. High g
reflects stronger preferences and therefore implies more
consistent behavior. Low g implies more random behavior.

Error discount governs the reduction in reinforcement that
occurs in response to negative feedback. Low d reflects
indifference to such feedback, such that mere use of strategies
leads to similar reinforcement regardless of the outcome.
High d reflects greater sensitivity to negative feedback.

Braithwaite et al. (2019) showed that different values of g
and d caused FARRA to generate different patterns of
strategy use. High g and d led to consistent use of correct
strategies. High g and low d led to consistent use of one
strategy, both when it was appropriate and when not. Low g
led to variable use of multiple strategies. These predicted
patterns were all found in children’s data and jointly
accounted for the performance of over 90% of children.

If parametric variation among individuals affects decimal
arithmetic strategy choices in a similar manner, then children
should display patterns of strategy use in decimal arithmetic
analogous to those found in fraction arithmetic. This
prediction was confirmed by Braithwaite et al. (2021). The
present study tests whether UMA can generate these patterns.

Computational Model

UMA is a production system model in the tradition of ACT-
R! (Anderson, 2013). Its main components are its production
rules, decision rule, and learning rule. The architecture is
similar to FARRA (Braithwaite et al., 2017) except as noted.

Production Rules

Each production rule is a condition-action pair representing
part of a procedure for solving problems. When presented a
problem, UMA selects a production rule whose conditions
are met and executes its action. Doing so causes conditions
of other rules to be met. UMA then selects and executes
another rule, continuing until an answer is obtained.
FARRA included rules representing algorithms for adding,
subtracting, multiplying, and dividing fractions. UMA
includes not only these rules, but also rules for adding,
subtracting, and multiplying multidigit whole numbers and
decimals®. Each algorithm is represented by multiple rules,
each of which encapsulates a small part of the algorithm.
Some rules, called strategy rules, have conditions that
enable UMA to select them when beginning a problem.

! However, UMA does not use an existing cognitive architecture.
2 The version of UMA tested here, like FARRA, performs single
digit arithmetic using “expert” rules that never generate errors. The

Strategy rules create goals for other rules to achieve. UMA’s
strategy rule for adding or subtracting decimals creates goals
to align the operands so their decimal points line up,
optionally add zeroes to equalize decimal digits in the
operands, operate (e.g., add) as with multidigit whole
numbers, then bring the decimal from the operands into the
answer. UMA’s strategy rule for multiplying decimals
creates goals to align the operands so their rightmost digits
line up, operate as with multidigit whole numbers, then place
the decimal in the answer according to the sum of the
numbers of decimal digits in the operands.

Unlike FARRA, UMA’s rules can generate sub-problems.
For example, the two decimal arithmetic strategy rules just
described each cause UMA to create a sub-problem involving
multidigit whole numbers, which UMA would then solve
using its rules for multidigit whole number arithmetic.

Like FARRA, UMA includes not only rules representing
correct procedures but also mal-rules, which generate errors.
Reflecting the assumption that errors reflect deviations from
correct procedures, mal-rules were created by modifying
correct rules via overgeneralization or omission.

Overgeneralization was implemented by removing part of
a correct rule’s condition, thus allowing the rule to be used in
situations for which it was not appropriate. UMA includes an
overgeneralized version of the decimal addition/subtraction
strategy that can be used on multiplication problems, leading
to errors like the one in Table 1, row 4. UMA also includes
an overgeneralized version of the multiplication strategy that
can be used when adding or subtracting, as in Table 1, row 3.

Omission was implemented by removing part of a correct
rule’s action, enabling UMA to skip a step of an otherwise
correct procedure. For example, one rule specifies that when
using a column algorithm to multiply multidigit whole
numbers, each partial product after the first must be shifted
one column to the left. Omission enables UMA to skip this
step, resulting in errors like the one in Table 2, last row.

Decision Rule

When the conditions of multiple production rules are met,
UMA chooses among them according to Equations 1 and 2:

A(Tj|C) = Yxjec Wij/ Bxiec 1 €))
P(rj|C) = 94010 /3, e9ACKIO) (2)

Equation 1 states that the activation of rule 7; in the context
of problem C'is the average of the weights w;; associating rule
r; with features x; in C. The problem context C indicates the
features that are present in the problem UMA is currently
working on. For example, if UMA is working on 2.4x1.2, the
problem context would include features “multiplication” and
“DD” (i.e., “two decimal operands”). When UMA creates a
sub-problem, the problem context changes to the sub-

full version of UMA includes rules that solve single digit arithmetic
problems by counting or retrieval and can generate errors.



problem until it is solved, then reverts to the original problem.
Equation 2 states that probability of selecting rule 7; given
C is a softmax function of the activation in C of that rule and
all other rules 7+ whose conditions are met. The decision
determinism parameter g determines how strongly the
probability of selecting a rule depends on its activation.

Learning Rule

The weights in Equation 1 are initially set to 0. Each time
UMA solves a problem while in learning mode, UMA adjusts
the weights w;; according to Equation 3:

Aw;; =1—err=*d 3)

Here err represents error feedback (0 = correct, 1 = incorrect)
and d is the error discount, which determines how much less
rule weights are reinforced after errors than after correct
answers. Reinforcement after errors is positive if d < 1 and
negative if d > 1.

Equation 3 is used to adjust the weight w;; connecting every
rule 7; that was used to solve the problem with every feature
x; that was in the context at the time that »; was used. These
adjustments to rule weights will affect subsequent rule
choices on other problems that have similar features. UMA
tends to associate correct rules most strongly with the
problem features that it encounters most often.

Simulations

Method

To evaluate UMA, we (1) created multiple instances of the
model; (2) trained each instance on a learning set; (3) tested
each instance on a test set, which differed from the learning
set; and (4) compared UMA’s performance on the test set to
that of children.

Creating Multiple Instances of the Model. We simulated a
cohort of students by creating 450 instances of UMA,
including 10 instances for each combination of 9 values for g
(.01, .02, .03, .04, .05, .06, .07, .08, .09) and 5 values for d
(.5,.75, 1.0, 1.25, 1.5). These parameter ranges were chosen
because they yielded reasonable results in initial testing,
although systematic parameter fitting was not conducted.

Training the Model. The learning set was extracted from the
grade 1-6 volumes of GO MATH! (Dixon et al., 2015), a
math textbook series that was used in the schools where
children’s data (described below) were collected. The set
consisted of 2510 whole number problems and 307 decimal
problems involving addition, subtraction, or multiplication®
with two operands. Such problems were included in the

3 Whole number problems were included in the learning set,
although the test did not include such problems, because practice
with whole numbers affects subsequent performance with decimals
for UMA and, presumably, children. Similarly, subtraction
problems were included in the learning set, although the test set did

learning set if they were in symbolic form (not story
problems) and required an exact answer (not an estimate) in
open answer format (not multiple choice).

As in the textbooks analyzed by Tian et al. (2021), in the
learning set, decimal addition and subtraction problems
involved DD operands much more often than WD operands
(118 wvs. 4), whereas decimal multiplication problems
involved WD operands more often than DD (107 vs 78).

Each instance of UMA was trained by running it once, in
learning mode, on each problem in the learning set in the
same order as in the textbook. The model received feedback
(correct or incorrect) and updated rule weights after solving
each problem before beginning the next problem.

Testing the Model. After training, the model instance was
run once on each problem in a test set comprising six addition
problems (24.45+0.34, 12.3+5.6, 2.46+4.1, 0.826+0.12,
5.61+23, 0.415+52) and six multiplication problems
(0.41x0.31, 2.4x1.2, 2.3x0.13, 0.31x2.1, 31x3.2, 14x0.21).
The problems for each arithmetic operation included four DD
problems, of which equally many involved decimals with
equal or unequal numbers of decimal digits, and two WD
problems. The model did not receive feedback or update its
rule weights during the test.

Comparison to Children’s Data. The model’s performance
on the test set was compared to that of participants in a
previous study of children’s decimal arithmetic (Authors,
2021a). This sample consisted of 92 children, 57 sixth graders
and 35 eighth graders, who solved the set of problems that
served as UMA’s test set. The problems were presented in
one of four sequences, which were counterbalanced among
participants. Children solved the problems in paper-and-
pencil format. They were asked to show their work and to
think aloud while working. Further details regarding
children’s data are provided by Braithwaite et al. (2021).

Results

Mean percent correct on the test set was 64% (addition: 79%,
multiplication: 49%) for children and 74% (addition: 85%,
multiplication: 62%) for UMA. Thus, UMA’s accuracy was
comparable to, though slightly higher than, that of children.

Errors Committed. Answers generated by children and
UMA on a subset of test problems are shown in Table 5. On
56% of trials that children answered incorrectly, their
answers were generated by UMA, and on 94% of trials that
UMA answered incorrectly, its answers were generated by
children. Children’s errors that were not generated by UMA
mostly reflected a “long tail” of strategies used by only a few
children, such as multiplying decimals by multiplying each
column of digits (e.g., 2.4x1.2 = 2.8) as in column addition.

not include such problems, because algorithms for subtraction
partially overlap with those for addition, so subtraction practice
affects addition performance. Division was excluded from the
learning set because this version of UMA cannot perform long
division.



Table 5: Answers Generated by Children and UMA.

% Trials on Which Answer
Was Generated by

Problem Answer Children UMA
12.3+5.6 17.9 * 94 88
1.79 2 12
2.46+4.1 6.56 89 91
0.287 3 5
2.87 1 4
5.61+23 28.61 * 70 79
5.84 26 21
2.4x1.2 2.88 * 63 55
28.8 14 34
7.2 8 7
2.8 5 0
0.72 1 3
0.32x2.1 0.672 * 42 55
6.72 18 31
0.96 6 2
67.2 6 3
0.32 3 0
1.05 0 4
31x3.2 99.2 * 61 74
9.92 10 9
15.5 6
992 4 8

Note. * denotes correct answers. All answers generated on
>39% of trials by either children or UMA are shown.

For all problems, the incorrect answer generated most often
by children was also generated by UMA. UMA generated
these common errors via overgeneralization, either by using
a multiplication strategy on an addition problem (as in
12.3+5.6 = 1.79; see Table 1, row 3) or by using an addition
strategy on a multiplication problem (as in 2.4x1.2 = 28.8;
see Table 1, row 4). Many of children’s less common errors
were also generated by UMA, either via omission (as in
2.4x1.2 = 0.72; see Table 2, row 2) or a combination of
overgeneralization and omission.

Error Rates. As shown in Figure 1, when adding, children
erred more often on WD than DD addition problems (e.g.,
5.61+23 vs. 2.46+4.1), but erred more often on DD than WD
multiplication problems (e.g., 0.32x2.1 vs. 31x3.2). UMA
displayed a very similar pattern of error rates. These patterns
in children’s and UMA’s error rates paralleled the
distributions of decimal arithmetic problems in math
textbooks, including the textbook from which UMA’s
learning set was drawn, in which WD operands appeared less
often than DD operands on addition problems, whereas DD
operands appeared less often than WD operands on
multiplication problems.

60
| DD O wD
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40
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20

10

Add Mul Add Mul
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Figure 1: Percent Errors for Different Problem Types.
“Add” = addition, “Mul” = multiplication, “DD” = two
decimal operands, and “WD” = one whole number and one
decimal operand. Error bars represent standard errors.

Individual Differences. Braithwaite et al. (2021) coded
children’s solution to each problem (based on written work)
as consistent with an addition strategy, a multiplication
strategy, both, or neither. Correct solutions were coded as
displaying the strategy appropriate to the arithmetic operation
on that trial. Incorrect solutions were coded as displaying an
addition strategy if the operands were aligned at the decimal
point and/or the decimal point was brought down from the
operands into the answer (as in Table 1, row 4), or as
displaying a multiplication strategy if the operands were
aligned at the rightmost digit and/or the decimal point was
placed in the answer according to the sum of numbers of
decimal digits in the operands (as in Table 1, row 3).

Next, children were classified as consistently using correct
strategies—addition  strategies =~ when adding and
multiplication strategies when multiplying—if they did so on
>75% of trials. If not, children were classified as relying on
one flawed strategy if they displayed that strategy on >75%
of trials. Remaining children were classified as using varied
strategies if they displayed each strategy at least once on both
addition and multiplication problems. Table 6 shows the
percentage of children receiving each classification.

Table 6: Percentage of Children and Instances of UMA
That Displayed Each Pattern of Strategy Use.

Children UMA
Consistent correct strategies 47 68
Reliance on one flawed strategy
Addition 25 12
Multiplication 4 0.4
Using varied strategies 21 19
None of the above 3 0

The 450 instances of UMA were classified in the same
way, except that UMA’s strategies were determined by
examining the production rules used on each the trial. As



shown in Table 6, UMA generated all patterns of strategy use
that were observed among children, and no others.

To understand the origins of differences in UMA’s strategy
use, we examined the values of UMA’s parameters within
each group (Table 7). Consistent correct strategies were
associated with moderate g and high d. Persistent reliance on
an addition strategy was associated with high g and low d.
Persistent reliance on a multiplication strategy, and using
varied strategies, were associated with low g and moderate d.

Table 7: Mean (SD) Values of UMA’s Free Parameters
Among Instances Classified Into Each Strategy Pattern.

g d
Consistent correct strategies .05(.03) 1.1(0.3)
Reliance on one flawed strategy
Addition .07 (02) 0.7(0.2)
Multiplication .02 (.01) 1.1(0.5)
Using varied strategies .03(02) 0.9(0.3)

Discussion

Origins of Errors

The results demonstrate the explanatory power of UMA’s
error-generating mechanisms, that is, overgeneralization and
omission. Using these mechanisms, UMA generated all of the
most common errors, and over half of all errors, observed in
children’s decimal arithmetic. These results dovetail with
Braithwaite et al.’s (2017) demonstration that the same
mechanisms could account for a majority of children’s errors
in fraction arithmetic. Together, these findings support the
assumption that most errors in rational number arithmetic
reflect small deviations from standard correct procedures.

In fact, overgeneralization alone enabled UMA to generate
all of children’s most common decimal arithmetic errors
(Table 5). Similarly, FARRA generated children’s most
common fraction arithmetic errors via overgeneralization
alone (Siegler & Pyke, 2013). Although overgeneralization
appears to be the main source of error in rational number
arithmetic, the same may not be true in whole number
arithmetic. For example, many single digit addition errors
among young children are thought to reflect counting
mistakes, resulting in answers slightly larger or smaller than
the correct answer (e.g., Siegler & Shrager, 1984). We
speculate that most such errors can be simulated via
omission, but this remains to be tested.

Variation in Error Rates

A second theoretical assumption supported by the present
results is that children are sensitive to distributional
characteristics of the problems that they receive. UMA
models this sensitivity using (1) a decision rule in which the
likelihood of choosing a rule when solving a problem
depends on the association between the rule and the
problem’s features, and (2) a learning rule by which that
association depends largely on how often the rule has been

used on problems with similar features in the past. Together,
these mechanisms cause correct rules to be used more often
on frequently encountered types of problems than on rare
ones. These mechanisms thereby enabled UMA to simulate
correspondences between error rates and textbook problem
distributions in decimal arithmetic, and enabled FARRA to
do the same for fraction arithmetic (Braithwaite et al., 2017).

However, the textbook analysis shown in Table 2 suggests
that children receive more opportunities to practice decimal
multiplication than decimal addition, whereas children are
more accurate on the latter than the former. UMA suggests
that the reason involves differences in the intrinsic difficulty
of the procedures required to add and multiply decimals.
Specifically, the possibility of strategy over-generalization
exists for both addition and multiplication, but another
common source of error for multiplication—failing to left-
shift partial products (Table 2, last row) has no analogue in
addition.

In sum, explaining between-problem variation in error
rates requires considering both learning experience and
intrinsic difficulty. By doing so, UMA goes beyond a prior
theory of decimal arithmetic (Hiebert & Wearne, 1985),
which considered only intrinsic difficulty.

Individual Differences in Strategy Use

UMA generated four patterns of strategy use, which matched
those previously observed in children’s decimal arithmetic
(Braithwaite et al., 2021). The patterns were analogous to
ones generated by FARRA and observed in children’s
fraction arithmetic (Braithwaite et al., 2019).

UMA’s generation of these patterns depended on the
assumption that learners vary along two dimensions:
consistency of rule use and sensitivity to error feedback,
represented by g and d. The results suggest that consistent use
of correct strategies depends on both dimensions.
Consistency of rule use without sensitivity to error feedback
(high g, low d) may lead to the strategy that is studied first
(i.e., addition) continuing to be used even when it yields
errors (e.g., on multiplication problems). Learners with low
consistency (low g) may select strategies randomly, as in the
varied strategies pattern, or occasionally, may converge on
persistently using the strategy that is appropriate for the
largest number of practice problems (i.e., multiplication).

The fact that varying g and d generated differences among
runs in strategy use matching differences among children
provides preliminary evidence for the above assumption.
Obtaining direct evidence for individual differences in g and
d, and relating such differences to other measurable
competencies, are important goals for future research.

Conclusion

Despite large differences in the specific procedures involved
in fraction and decimal arithmetic, the same theoretical
assumptions can explain empirical phenomena observed in
both domains. Future research should test how well these
assumptions can explain children’s whole number arithmetic,
which forms a foundation for fraction and decimal arithmetic.
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