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Abstract 

We describe UMA (Unified Model of Arithmetic), a theory of 
children’s arithmetic implemented as a computational model. 
UMA extends a theory of fraction arithmetic (Braithwaite et 
al., 2017) to include arithmetic with whole numbers and 
decimals. We evaluated UMA in the domain of decimal 
arithmetic by training the model on problems from a math 
textbook series, then testing it on decimal arithmetic problems 
that were solved by 6th and 8th graders in a previous study. 
UMA’s test performance closely matched that of children, 
supporting three assumptions of the theory: (1) most errors 
reflect small deviations from standard procedures, (2) between-
problem variations in error rates reflect the distribution of input 
that learners receive, and (3) individual differences in strategy 
use reflect underlying variation in learning parameters. 

Keywords: mathematical cognition; fractions; decimals; 
arithmetic; computational cognitive model; strategy choice 

Introduction 

Arithmetic involves combining numbers by addition, 

subtraction, multiplication, and division. The simplicity of 

this description belies the complexity of arithmetic, which is 

apparent when one considers calculation with different types 

of numbers. For example, one may add single digit whole 

numbers (e.g., 4+2) by counting or retrieval from memory, 

whereas adding fractions (e.g., 3/5+1/4) may require 

conversion to a common denominator, and adding multidigit 

whole numbers (e.g., 123+56) or decimals (e.g., 2.46+4.1) 

may involve column addition algorithms based on place 

value. Yet other skills are required for other types of 

problems. Apparently, arithmetic is not one skill, but many. 

Reflecting this complexity, previous models of arithmetic 

skill have focused on only one or a few aspects of it, such as 

arithmetic with small whole numbers (Aubin et al., 2017; 

Campbell & Graham, 1985; Shrager & Siegler, 1998; 

Verguts & Fias, 2005), multidigit whole numbers (Brown & 

VanLehn, 1980), fractions (Braithwaite et al., 2017), or 

decimals (Hiebert & Wearne, 1985). It is unclear how well 

these models can explain children’s arithmetic outside the 

domains for which they were created. 

To address this challenge, we created UMA—a Unified 

Model of Arithmetic. UMA is a theory of arithmetic learning 

and performance implemented as a computational cognitive 

model. UMA extends FARRA (Fraction Arithmetic Reflects 

Rules and Associations; Braithwaite et al., 2017), a model of 

children’s fraction arithmetic. Unlike FARRA, UMA 

simulates arithmetic not only with fractions, but also with 

single digit and multidigit whole numbers and decimals.  

UMA’s viability as a unified model ultimately depends on 

its ability to explain performance in all of these domains of 

arithmetic. Here, we take a first step toward such a 

comprehensive test by applying the model to the domain of 

decimal arithmetic. 

First, we describe our theoretical assumptions, which are 

shared by FARRA and UMA. These assumptions enabled 

FARRA to account for phenomena in children’s fraction 

arithmetic and to generate novel predictions about children’s 

decimal arithmetic that were subsequently confirmed, 

suggesting the feasibility of a unified theory including both 

fraction and decimal arithmetic. Next, we describe how UMA 

implements our theoretical assumptions in a computational 

model. Last, we evaluate UMA in the domain of decimal 

arithmetic by comparing its performance to that of children. 

Theoretical Assumptions 

We propose answers to three fundamental questions about 

children’s arithmetic learning and performance: (1) Where do 

incorrect answers come from? (2) Why are errors more 

common for some problems than others? (3) What causes 

individual differences in strategy use? 

Where do incorrect answers come from? 

We assume that incorrect answers in arithmetic mostly reflect 

deviations from standard correct procedures. This 

assumption implies that correct procedures are a good 

starting point for understanding incorrect performance.  

UMA posits two types of deviations: overgeneralization 

and omission. Overgeneralization (Table 1) refers to using a 

procedure that is not appropriate for the problem at hand but 

would be appropriate for a different type of problem. 

Overgeneralization encompasses errors that have previously 

been attributed to “whole number bias” (Ni & Zhou, 2005; 

Table 1, row 1) as well as many other types of errors (Table 

1, other rows). Omission (Table 2) refers to executing some, 

but not all, of the steps required by a procedure. 

UMA assumes that overgeneralization is the main source 

of error in both fraction and decimal arithmetic. The rationale 

for this assumption is that, in these domains, procedures for 

different arithmetic operations are easily confusable. Further, 

instruction often emphasizes how to execute each procedure 

but not how to choose which procedure should be used. This 

approach opens the door to overgeneralization errors in 

which procedures are used in inappropriate contexts. 



Table 1: Examples of Overgeneralization Errors. 

 

Error Procedure Procedure is 

appropriate for ... 

3

5
+
1

4
=
4

9
 

Apply operation 

to numerators and 

denominators 

Multiplying 

fractions 

4

5
×
3

5
=
12

5
 

Apply operation 

to numerators, 

keep common 

denominator 

Adding or 

subtracting fractions 

with equal 

denominators 

12.3 

+5.6 

1.79 

Add decimal 

digits of operands 

to place decimal 

point in answer 

Multiplying 

decimals 

2.4 

× 1.2 

4.8 

24.0 

28.8 

Bring decimal 

point down from 

operands into 

answer 

Adding or 

subtracting decimals 

 

Table 2: Examples of Omission Errors. 

 

Error Omitted Step 

3

5
+
1

4
=

3

20
+

1

20
=

4

20
 

Conversion of numerators 

when converting operands to a 

common denominator 

2.4 

× 1.2 

48 

24 

0.72 

Shifting second partial product 

(“24”) one column to the left 

(i.e., the “4” in “24” should be 

under the “4,” rather than the 

“8,” in “48”) 

 

Consistent with the above assumption, 91% of fraction 

arithmetic errors committed by sixth and eighth graders in 

(Siegler & Pyke, 2013) involved incorrect strategies. FARRA 

generated the large majority of these errors via 

overgeneralization (Braithwaite et al., 2017).  

Also consistent with the assumption, 70% of sixth and 

eighth graders’ decimal arithmetic errors involved using a 

strategy that would have been correct for a different type of 

problem, as in the last two rows of Table 1 (Braithwaite et al., 

2021). The present study tests whether UMA can simulate 

this latter result, as FARRA did the former. 

Why are errors more common for some problems? 

Variation in error rates among problems in part reflects 

differences in the procedures required to solve the problems. 

For example, conversion to a common denominator is 

required for adding fractions with unequal denominators but 

not ones with equal denominators. Thus, errors resulting from 

incorrect conversion (e.g., Table 2, row 1) can only occur on 

the former type of problem. 

However, some between-problem differences in error rates 

cannot be explained in this manner. For example, although 

the same procedure applies when multiplying fractions with 

equal or unequal denominators (e.g., 3/5×1/5 and 3/5×1/4), 

children err more on the former type of problem than the 

latter (e.g., 63% vs. 42% of trials in Siegler & Pyke, 2013). 

Braithwaite et al. (2017) interpreted this phenomenon in 

terms of the distribution of input that children receive, a 

factor that has long been emphasized in research on language 

learning (e.g., Saffran et al., 1999) but that has received less 

attention in math cognition. Textbook analysis revealed that 

multiplication problems involving equal denominator 

fractions are very rare (Table 3), which Braithwaite et al. 

(2017) argued explains why children often err on them. When 

trained on problems from the textbooks, FARRA similarly 

erred more often on the rarer types of problems. 

 

Table 3: Percentage of Fraction Arithmetic Problems in 

Textbooks with Different Operations and Operands (data 

from Braithwaite et al., 2017). 

 

 Operand Denominators 

Operation Equal Unequal 

Addition 12 13 

Subtraction 13 12 

Multiplication 1 29 

Division 1 19 

 

Braithwaite and colleagues (2021; Tian et al., 2021) 

predicted that decimal arithmetic would also reveal parallels 

between problem distributions and error rates. They found 

that in math textbooks, problems with a whole number and a 

decimal operand (WD) are rarer than those with two decimal 

operands (DD) for addition and subtraction, while the reverse 

is true for multiplication and division (Table 4). Similarly, 

children err more on addition with WD than DD operands, 

but err more often multiplication with DD than WD operands.  

 

Table 4: Percentage of Decimal Arithmetic Problems in 

Textbooks Involving Different Operations and Operands 

(Tian et al., 2021). 

 

 Operands 

Operation Two decimals One decimal, one 

whole number 

Addition 14 1 

Subtraction 14 1 

Multiplication 15 21 

Division 12 22 

 

UMA, like FARRA, explains correspondences between 

problem distributions and error rates by assuming that the 

likelihood of using a procedure to solve a problem depends 

on how often one has used that procedure to solve similar 

problems in the past. This assumption is implemented via a 

reinforcement learning mechanism that is described in more 

detail below. The present study tests whether that mechanism 

can generate the variations in decimal arithmetic error rates 

described above. 



What causes individual differences in strategy use? 

As illustrated in Table 1, when doing arithmetic, children use 

a variety of strategies—some correct, others not. Individuals 

differ not only in speed or accuracy, but also in the strategies 

they use. UMA assumes that such individual differences 

reflect underlying parametric variation, which the theory 

characterizes in terms of two parameters: decision 

determinism (g) and error discount (d). 

Decision determinism determines how strongly strategies 

that have received more reinforcement are preferred. High g 

reflects stronger preferences and therefore implies more 

consistent behavior. Low g implies more random behavior. 

Error discount governs the reduction in reinforcement that 

occurs in response to negative feedback. Low d reflects 

indifference to such feedback, such that mere use of strategies 

leads to similar reinforcement regardless of the outcome. 

High d reflects greater sensitivity to negative feedback. 

Braithwaite et al. (2019) showed that different values of g 

and d caused FARRA to generate different patterns of 

strategy use. High g and d led to consistent use of correct 

strategies. High g and low d led to consistent use of one 

strategy, both when it was appropriate and when not. Low g 

led to variable use of multiple strategies. These predicted 

patterns were all found in children’s data and jointly 

accounted for the performance of over 90% of children. 

If parametric variation among individuals affects decimal 

arithmetic strategy choices in a similar manner, then children 

should display patterns of strategy use in decimal arithmetic 

analogous to those found in fraction arithmetic. This 

prediction was confirmed by Braithwaite et al. (2021). The 

present study tests whether UMA can generate these patterns. 

Computational Model 

UMA is a production system model in the tradition of ACT-

R1 (Anderson, 2013). Its main components are its production 

rules, decision rule, and learning rule. The architecture is 

similar to FARRA (Braithwaite et al., 2017) except as noted. 

Production Rules 

Each production rule is a condition-action pair representing 

part of a procedure for solving problems. When presented a 

problem, UMA selects a production rule whose conditions 

are met and executes its action. Doing so causes conditions 

of other rules to be met. UMA then selects and executes 

another rule, continuing until an answer is obtained. 

FARRA included rules representing algorithms for adding, 

subtracting, multiplying, and dividing fractions. UMA 

includes not only these rules, but also rules for adding, 

subtracting, and multiplying multidigit whole numbers and 

decimals2. Each algorithm is represented by multiple rules, 

each of which encapsulates a small part of the algorithm. 

Some rules, called strategy rules, have conditions that 

enable UMA to select them when beginning a problem. 

 
1 However, UMA does not use an existing cognitive architecture. 
2 The version of UMA tested here, like FARRA, performs single 

digit arithmetic using “expert” rules that never generate errors. The 

Strategy rules create goals for other rules to achieve. UMA’s 

strategy rule for adding or subtracting decimals creates goals 

to align the operands so their decimal points line up, 

optionally add zeroes to equalize decimal digits in the 

operands, operate (e.g., add) as with multidigit whole 

numbers, then bring the decimal from the operands into the 

answer. UMA’s strategy rule for multiplying decimals 

creates goals to align the operands so their rightmost digits 

line up, operate as with multidigit whole numbers, then place 

the decimal in the answer according to the sum of the 

numbers of decimal digits in the operands. 

Unlike FARRA, UMA’s rules can generate sub-problems. 

For example, the two decimal arithmetic strategy rules just 

described each cause UMA to create a sub-problem involving 

multidigit whole numbers, which UMA would then solve 

using its rules for multidigit whole number arithmetic. 

 Like FARRA, UMA includes not only rules representing 

correct procedures but also mal-rules, which generate errors. 

Reflecting the assumption that errors reflect deviations from 

correct procedures, mal-rules were created by modifying 

correct rules via overgeneralization or omission. 

Overgeneralization was implemented by removing part of 

a correct rule’s condition, thus allowing the rule to be used in 

situations for which it was not appropriate. UMA includes an 

overgeneralized version of the decimal addition/subtraction 

strategy that can be used on multiplication problems, leading 

to errors like the one in Table 1, row 4. UMA also includes 

an overgeneralized version of the multiplication strategy that 

can be used when adding or subtracting, as in Table 1, row 3. 

Omission was implemented by removing part of a correct 

rule’s action, enabling UMA to skip a step of an otherwise 

correct procedure. For example, one rule specifies that when 

using a column algorithm to multiply multidigit whole 

numbers, each partial product after the first must be shifted 

one column to the left. Omission enables UMA to skip this 

step, resulting in errors like the one in Table 2, last row. 

Decision Rule 

When the conditions of multiple production rules are met, 

UMA chooses among them according to Equations 1 and 2: 

 

𝐴(𝑟𝑗|𝐶) = ∑ 𝑤𝑖𝑗𝑥𝑖∈𝐶
∑ 1𝑥𝑖∈𝐶

⁄  (1) 

 

𝑃(𝑟𝑗|𝐶) = 𝑒𝑔𝐴(𝑟𝑗|𝐶) ∑ 𝑒𝑔𝐴(𝑟𝑘|𝐶)𝑘⁄  (2) 

 

Equation 1 states that the activation of rule rj in the context 

of problem C is the average of the weights wij associating rule 

rj with features xi in C. The problem context C indicates the 

features that are present in the problem UMA is currently 

working on. For example, if UMA is working on 2.4×1.2, the 

problem context would include features “multiplication” and 

“DD” (i.e., “two decimal operands”). When UMA creates a 

sub-problem, the problem context changes to the sub-

full version of UMA includes rules that solve single digit arithmetic 

problems by counting or retrieval and can generate errors.  



problem until it is solved, then reverts to the original problem. 

Equation 2 states that probability of selecting rule rj given 

C is a softmax function of the activation in C of that rule and 

all other rules rk whose conditions are met. The decision 

determinism parameter g determines how strongly the 

probability of selecting a rule depends on its activation. 

Learning Rule 

The weights in Equation 1 are initially set to 0. Each time 

UMA solves a problem while in learning mode, UMA adjusts 

the weights wij according to Equation 3: 

 

∆𝑤𝑖𝑗 = 1 − 𝑒𝑟𝑟 ∗ 𝑑 (3) 

 

Here err represents error feedback (0 = correct, 1 = incorrect) 

and d is the error discount, which determines how much less 

rule weights are reinforced after errors than after correct 

answers. Reinforcement after errors is positive if d < 1 and 

negative if d > 1. 

Equation 3 is used to adjust the weight wij connecting every 

rule rj that was used to solve the problem with every feature 

xi that was in the context at the time that rj was used. These 

adjustments to rule weights will affect subsequent rule 

choices on other problems that have similar features. UMA 

tends to associate correct rules most strongly with the 

problem features that it encounters most often. 

Simulations 

Method 

To evaluate UMA, we (1) created multiple instances of the 

model; (2) trained each instance on a learning set; (3) tested 

each instance on a test set, which differed from the learning 

set; and (4) compared UMA’s performance on the test set to 

that of children. 

 

Creating Multiple Instances of the Model. We simulated a 

cohort of students by creating 450 instances of UMA, 

including 10 instances for each combination of 9 values for g 

(.01, .02, .03, .04, .05, .06, .07, .08, .09) and 5 values for d 

(.5, .75, 1.0, 1.25, 1.5). These parameter ranges were chosen 

because they yielded reasonable results in initial testing, 

although systematic parameter fitting was not conducted. 

 

Training the Model. The learning set was extracted from the 

grade 1-6 volumes of GO MATH! (Dixon et al., 2015), a 

math textbook series that was used in the schools where 

children’s data (described below) were collected. The set 

consisted of 2510 whole number problems and 307 decimal 

problems involving addition, subtraction, or multiplication3 

with two operands. Such problems were included in the 

 
3  Whole number problems were included in the learning set, 

although the test did not include such problems, because practice 

with whole numbers affects subsequent performance with decimals 

for UMA and, presumably, children. Similarly, subtraction 

problems were included in the learning set, although the test set did 

learning set if they were in symbolic form (not story 

problems) and required an exact answer (not an estimate) in 

open answer format (not multiple choice). 

As in the textbooks analyzed by Tian et al. (2021), in the 

learning set, decimal addition and subtraction problems 

involved DD operands much more often than WD operands 

(118 vs. 4), whereas decimal multiplication problems 

involved WD operands more often than DD (107 vs 78). 

Each instance of UMA was trained by running it once, in 

learning mode, on each problem in the learning set in the 

same order as in the textbook. The model received feedback 

(correct or incorrect) and updated rule weights after solving 

each problem before beginning the next problem. 

 

Testing the Model. After training, the model instance was 

run once on each problem in a test set comprising six addition 

problems (24.45+0.34, 12.3+5.6, 2.46+4.1, 0.826+0.12, 

5.61+23, 0.415+52) and six multiplication problems 

(0.41×0.31, 2.4×1.2, 2.3×0.13, 0.31×2.1, 31×3.2, 14×0.21). 

The problems for each arithmetic operation included four DD 

problems, of which equally many involved decimals with 

equal or unequal numbers of decimal digits, and two WD 

problems. The model did not receive feedback or update its 

rule weights during the test. 

 

Comparison to Children’s Data. The model’s performance 

on the test set was compared to that of participants in a 

previous study of children’s decimal arithmetic (Authors, 

2021a). This sample consisted of 92 children, 57 sixth graders 

and 35 eighth graders, who solved the set of problems that 

served as UMA’s test set. The problems were presented in 

one of four sequences, which were counterbalanced among 

participants. Children solved the problems in paper-and-

pencil format. They were asked to show their work and to 

think aloud while working. Further details regarding 

children’s data are provided by Braithwaite et al. (2021). 

Results 

Mean percent correct on the test set was 64% (addition: 79%, 

multiplication: 49%) for children and 74% (addition: 85%, 

multiplication: 62%) for UMA. Thus, UMA’s accuracy was 

comparable to, though slightly higher than, that of children. 

 

Errors Committed. Answers generated by children and 

UMA on a subset of test problems are shown in Table 5.  On 

56% of trials that children answered incorrectly, their 

answers were generated by UMA, and on 94% of trials that 

UMA answered incorrectly, its answers were generated by 

children. Children’s errors that were not generated by UMA 

mostly reflected a “long tail” of strategies used by only a few 

children, such as multiplying decimals by multiplying each 

column of digits (e.g., 2.4×1.2 = 2.8) as in column addition. 

not include such problems, because algorithms for subtraction 

partially overlap with those for addition, so subtraction practice 

affects addition performance. Division was excluded from the 

learning set because this version of UMA cannot perform long 

division. 



Table 5: Answers Generated by Children and UMA. 

 

  % Trials on Which Answer 

Was Generated by 

Problem Answer Children UMA 

12.3+5.6 17.9 * 94 88 

 1.79 2 12 

2.46+4.1 6.56 89 91 

 0.287 3 5 

 2.87 1 4 

5.61+23 28.61 * 70 79 

 5.84 26 21 

2.4×1.2 2.88 * 63 55 

 28.8 14 34 

 7.2 8 7 

 2.8 5 0 

 0.72 1 3 

0.32×2.1 0.672 * 42 55 

 6.72 18 31 

 0.96 6 2 

 67.2 6 3 

 0.32 3 0 

 1.05 0 4 

31×3.2 99.2 * 61 74 

 9.92 10 9 

 15.5 5 6 

 992 4 8 

 

Note. * denotes correct answers. All answers generated on 

≥3% of trials by either children or UMA are shown.  

 

For all problems, the incorrect answer generated most often 

by children was also generated by UMA. UMA generated 

these common errors via overgeneralization, either by using 

a multiplication strategy on an addition problem (as in 

12.3+5.6 = 1.79; see Table 1, row 3) or by using an addition 

strategy on a multiplication problem (as in 2.4×1.2 = 28.8; 

see Table 1, row 4). Many of children’s less common errors 

were also generated by UMA, either via omission (as in 

2.4×1.2 = 0.72; see Table 2, row 2) or a combination of 

overgeneralization and omission.  

 

Error Rates. As shown in Figure 1, when adding, children 

erred more often on WD than DD addition problems (e.g., 

5.61+23 vs. 2.46+4.1), but erred more often on DD than WD 

multiplication problems (e.g., 0.32×2.1 vs. 31×3.2). UMA 

displayed a very similar pattern of error rates. These patterns 

in children’s and UMA’s error rates paralleled the 

distributions of decimal arithmetic problems in math 

textbooks, including the textbook from which UMA’s 

learning set was drawn, in which WD operands appeared less 

often than DD operands on addition problems, whereas DD 

operands appeared less often than WD operands on 

multiplication problems. 

 

 
 

Figure 1: Percent Errors for Different Problem Types. 

“Add” = addition, “Mul” = multiplication, “DD” = two 

decimal operands, and “WD” = one whole number and one 

decimal operand. Error bars represent standard errors. 

 

Individual Differences. Braithwaite et al. (2021) coded 

children’s solution to each problem (based on written work) 

as consistent with an addition strategy, a multiplication 

strategy, both, or neither. Correct solutions were coded as 

displaying the strategy appropriate to the arithmetic operation 

on that trial. Incorrect solutions were coded as displaying an 

addition strategy if the operands were aligned at the decimal 

point and/or the decimal point was brought down from the 

operands into the answer (as in Table 1, row 4), or as 

displaying a multiplication strategy if the operands were 

aligned at the rightmost digit and/or the decimal point was 

placed in the answer according to the sum of numbers of 

decimal digits in the operands (as in Table 1, row 3). 

Next, children were classified as consistently using correct 

strategies—addition strategies when adding and 

multiplication strategies when multiplying—if they did so on 

≥75% of trials. If not, children were classified as relying on 

one flawed strategy if they displayed that strategy on ≥75% 

of trials. Remaining children were classified as using varied 

strategies if they displayed each strategy at least once on both 

addition and multiplication problems. Table 6 shows the 

percentage of children receiving each classification.  

 

Table 6: Percentage of Children and Instances of UMA 

That Displayed Each Pattern of Strategy Use. 

 

 Children UMA 

Consistent correct strategies 47 68 

Reliance on one flawed strategy   

    Addition 25 12 

    Multiplication 4 0.4 

Using varied strategies 21 19 

None of the above 3 0 

 

The 450 instances of UMA were classified in the same 

way, except that UMA’s strategies were determined by 

examining the production rules used on each the trial. As 



shown in Table 6, UMA generated all patterns of strategy use 

that were observed among children, and no others. 

To understand the origins of differences in UMA’s strategy 

use, we examined the values of UMA’s parameters within 

each group (Table 7). Consistent correct strategies were 

associated with moderate g and high d. Persistent reliance on 

an addition strategy was associated with high g and low d. 

Persistent reliance on a multiplication strategy, and using 

varied strategies, were associated with low g and moderate d. 

 

Table 7: Mean (SD) Values of UMA’s Free Parameters 

Among Instances Classified Into Each Strategy Pattern. 

 

 g d 

Consistent correct strategies .05 (.03) 1.1 (0.3) 

Reliance on one flawed strategy   

    Addition .07 (.02) 0.7 (0.2) 

    Multiplication .02 (.01) 1.1 (0.5) 

Using varied strategies .03 (.02) 0.9 (0.3) 

Discussion 

Origins of Errors 

The results demonstrate the explanatory power of UMA’s 

error-generating mechanisms, that is, overgeneralization and 

omission. Using these mechanisms, UMA generated all of the 

most common errors, and over half of all errors, observed in 

children’s decimal arithmetic. These results dovetail with 

Braithwaite et al.’s (2017) demonstration that the same 

mechanisms could account for a majority of children’s errors 

in fraction arithmetic. Together, these findings support the 

assumption that most errors in rational number arithmetic 

reflect small deviations from standard correct procedures. 

In fact, overgeneralization alone enabled UMA to generate 

all of children’s most common decimal arithmetic errors 

(Table 5). Similarly, FARRA generated children’s most 

common fraction arithmetic errors via overgeneralization 

alone (Siegler & Pyke, 2013). Although overgeneralization 

appears to be the main source of error in rational number 

arithmetic, the same may not be true in whole number 

arithmetic. For example, many single digit addition errors 

among young children are thought to reflect counting 

mistakes, resulting in answers slightly larger or smaller than 

the correct answer (e.g., Siegler & Shrager, 1984). We 

speculate that most such errors can be simulated via 

omission, but this remains to be tested. 

Variation in Error Rates 

A second theoretical assumption supported by the present 

results is that children are sensitive to distributional 

characteristics of the problems that they receive. UMA 

models this sensitivity using (1) a decision rule in which the 

likelihood of choosing a rule when solving a problem 

depends on the association between the rule and the 

problem’s features, and (2) a learning rule by which that 

association depends largely on how often the rule has been 

used on problems with similar features in the past. Together, 

these mechanisms cause correct rules to be used more often 

on frequently encountered types of problems than on rare 

ones. These mechanisms thereby enabled UMA to simulate 

correspondences between error rates and textbook problem 

distributions in decimal arithmetic, and enabled FARRA to 

do the same for fraction arithmetic (Braithwaite et al., 2017). 

However, the textbook analysis shown in Table 2 suggests 

that children receive more opportunities to practice decimal 

multiplication than decimal addition, whereas children are 

more accurate on the latter than the former. UMA suggests 

that the reason involves differences in the intrinsic difficulty 

of the procedures required to add and multiply decimals. 

Specifically, the possibility of strategy over-generalization 

exists for both addition and multiplication, but another 

common source of error for multiplication—failing to left-

shift partial products (Table 2, last row) has no analogue in 

addition. 

In sum, explaining between-problem variation in error 

rates requires considering both learning experience and 

intrinsic difficulty. By doing so, UMA goes beyond a prior 

theory of decimal arithmetic (Hiebert & Wearne, 1985), 

which considered only intrinsic difficulty. 

Individual Differences in Strategy Use 

UMA generated four patterns of strategy use, which matched 

those previously observed in children’s decimal arithmetic 

(Braithwaite et al., 2021). The patterns were analogous to 

ones generated by FARRA and observed in children’s 

fraction arithmetic (Braithwaite et al., 2019). 

UMA’s generation of these patterns depended on the 

assumption that learners vary along two dimensions: 

consistency of rule use and sensitivity to error feedback, 

represented by g and d. The results suggest that consistent use 

of correct strategies depends on both dimensions. 

Consistency of rule use without sensitivity to error feedback 

(high g, low d) may lead to the strategy that is studied first 

(i.e., addition) continuing to be used even when it yields 

errors (e.g., on multiplication problems). Learners with low 

consistency (low g) may select strategies randomly, as in the 

varied strategies pattern, or occasionally, may converge on 

persistently using the strategy that is appropriate for the 

largest number of practice problems (i.e., multiplication). 

The fact that varying g and d generated differences among 

runs in strategy use matching differences among children 

provides preliminary evidence for the above assumption. 

Obtaining direct evidence for individual differences in g and 

d, and relating such differences to other measurable 

competencies, are important goals for future research. 

Conclusion 

Despite large differences in the specific procedures involved 

in fraction and decimal arithmetic, the same theoretical 

assumptions can explain empirical phenomena observed in 

both domains. Future research should test how well these 

assumptions can explain children’s whole number arithmetic, 

which forms a foundation for fraction and decimal arithmetic. 



References  

Anderson, J. R. (2013). The Architecture of Cognition. 

Psychology Press. 

Aubin, S., Voelker, A. R., & Eliasmith, C. (2017). Improving 

with practice: A neural model of mathematical 

development. Topics in Cognitive Science, 9(1), 6–20. 

https://doi.org/10.1111/tops.12242 

Braithwaite, D. W., Leib, E. R., Siegler, R. S., & McMullen, 

J. (2019). Individual differences in fraction arithmetic 

learning. Cognitive Psychology, 112(April), 81–98. 

https://doi.org/10.1016/j.cogpsych.2019.04.002 

Braithwaite, D. W., Pyke, A. A., & Siegler, R. S. (2017). A 

computational model of fraction arithmetic. 

Psychological Review, 124(5), 603–625. 

https://doi.org/10.1037/rev0000072 

Braithwaite, D. W., Sprague, L., & Siegler, R. S. (2021). 

Toward a unified theory of rational number arithmetic. 

Journal of Experimental Psychology: Learning, 

Memory, and Cognition. 

https://doi.org/10.1037/xlm0001073 

Brown, J. S., & VanLehn, K. (1980). Repair theory: A 

generative theory of bugs in procedural skills. 

Cognitive Science, 4(4), 379–426. 

https://doi.org/10.1207/s15516709cog0404_3 

Campbell, J. I. D., & Graham, D. J. (1985). Mental 

multiplication skill: Structure, process, and acquisition. 

Canadian Journal of Psychology/Revue Canadienne de 

Psychologie, 39(2), 338–366. 

https://doi.org/10.1037/h0080065 

Dixon, J. K., Burger, E. B., Leinwand, S., Larson, M. R., & 

Sandoval-Martinez, M. E. (2015). GO MATH! 

Common Core Grades 1-5 (Student Ed). Houghton 

Mifflin Harcourt. 

Hiebert, J., & Wearne, D. (1985). A model of students’ 

decimal computation procedures. Cognition and 

Instruction, 2(3), 175–205. 

https://doi.org/10.1080/07370008.1985.9648916 

Ni, Y., & Zhou, Y.-D. (2005). Teaching and learning fraction 

and rational numbers: The origins and implications of 

whole number bias. Educational Psychologist, 40(1), 

27–52. https://doi.org/10.1207/s15326985ep4001_3 

Saffran, J., Johnson, E., Aslin, R., & Newport, E. (1999). 

Statistical learning of tone sequences by human infants 

and adults. Cognition. 

http://www.sciencedirect.com/science/article/pii/S001

0027798000754 

Shrager, J., & Siegler, R. S. (1998). SCADS: A model of 

children’s strategy choices and strategy discoveries. 

Psychological Science, 9(5), 405–410. 

https://doi.org/10.1111/1467-9280.00076 

Siegler, R. S., & Pyke, A. A. (2013). Developmental and 

individual differences in understanding of fractions. 

Developmental Psychology, 49(10), 1994–2004. 

https://doi.org/10.1037/a0031200 

Siegler, R. S., & Shrager, J. (1984). Strategy choices in 

addition and subtraction: How do children know what 

to do? In C. Sophian (Ed.), The origins of cognitive 

skills (pp. 229–293). Erlbaum. 

Tian, J., Braithwaite, D. W., & Siegler, R. S. (2021). 

Distributions of textbook problems predict student 

learning: Data from decimal arithmetic. Journal of 

Educational Psychology, 113(3), 516–529. 

https://doi.org/10.1037/edu0000618 

Verguts, T., & Fias, W. (2005). Interacting neighbors: A 

connectionist model of retrieval in single-digit 

multiplication. Memory & Cognition, 33(1), 1–16. 

https://doi.org/10.3758/BF03195293 

 

 


