
IsoBugView: Interactively Debugging Isolation Bugs in Database
Applications

Drew Ripberger

The Ohio State University

ripberger.8@osu.edu

Yifan Gan

The Ohio State University

gan.101@osu.edu

Xueyuan Ren

The Ohio State University

ren.450@osu.edu

Spyros Blanas

The Ohio State University

blanas.2@osu.edu

Yang Wang

The Ohio State University

wang.7564@osu.edu

ABSTRACT
Database applications frequently use weaker isolation levels, such

as Read Committed, for better performance, which may lead to

bugs that do not happen under Serializable. Although a number

of works have proposed methods to identify such isolation-related

bugs, the difficulty of analyzing reported bugs is often underesti-

mated, since these bugs often involve multiple complicated trans-

actions interleaved in a specific order and they often require users’

feedback to improve the accuracy of bug analysis.

This paper presents IsoBugView, a tool to visualize isolation

bugs and incorporate users’ feedback: to address the challenge

that a complicated bug may include much information and thus

is hard to present, IsoBugView displays a high-level overview of

the bug first and displays further information of individual pieces

if the developer needs further investigation. To incorporate users’

feedback, IsoBugView embeds hook functions into the backend

analysis tool to preprocess a dependency graph and postprocess

a found cycle and further allows a user to apply predefined hook

functions in its graphic user interface. Our experience shows that

IsoBugView has greatly improved our productivity of analyzing

isolation bugs.

PVLDB Reference Format:
Drew Ripberger, Yifan Gan, Xueyuan Ren, Spyros Blanas, and Yang Wang.

IsoBugView: Interactively Debugging Isolation Bugs in Database

Applications. PVLDB, 15(12): 3726 - 3729, 2022.

doi:10.14778/3554821.3554885

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/drewrip/isobugview.

1 INTRODUCTION
Database systems provide different isolation levels to regulate how

concurrent transactions may interleave. Among them, Serializ-

able, which means the database guarantees that concurrent ex-

ecution of multiple transactions is always equivalent to a serial

execution of them, provides strong correctness guarantees so that a

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.

doi:10.14778/3554821.3554885

database application developer does not need to reason about con-

currency. However, multiple studies have shown that, in practice,

many database applications are using weaker isolation levels, such

as Read Committed and Snapshot Isolation, probably to gain

better performance [2, 9]. As a trade-off, this may lead to anom-

alies (called isolation bugs in this paper) that do not happen under

Serializable, and even security issues [11].

A number of prior works have developed theories and algo-

rithms to identify isolation bugs [1, 3, 5–7, 10, 11]. Most of them

rely on the dependency graph theory, which models transactions

as vertices, models dependencies among transactions as edges, and

models isolation bugs as certain types of cycles in the graph. How-

ever, we observe the difficulty of analyzing the reported cycles is

often overlooked. First, real-world applications often have long

and complicated transactions and an isolation bug often involves

multiple transactions interleaved in a specific order. As a result, in

our experience, interpreting the text output of prior works usually

involves manually drawing the dependency graphs on a board and

frequently going back and forth between the graph and the original

SQL transactions. Second, such procedure often needs application-

specific knowledge from the developers to improve the accuracy of

bug finding, and we often need to modify the source code of corre-

sponding tools to incorporate such application-specific knowledge.

This paper presents IsoBugView, a tool to visualize isolation

bugs and incorporate developers’ knowledge. To address the chal-

lenge that a complicated bug may include much information and

thus is hard to visualize, IsoBugView displays a high-level overview

of the bug first and displays further information if the developer

needs further investigation. To incorporate developers’ knowledge,

IsoBugView has refactored the underlying analyzer tool so that it

can introduce users’ knowledge into the analysis without changing

its source code. We further integrate several types of mostly com-

monly used knowledge into IsoBugView’s graphic user interface.

We have applied IsoBugView to a number of database applica-

tions, and found it greatly improves our productivity of analyzing

reported bugs.

2 BACKGROUND AND RELATEDWORK
Suppose an online shopping application has provided a transaction

to purchase an item: it uses a select statement to read the item count,

checks the item count is positive, and then uses an update statement

to decrement the item count. Suppose two purchase transactions

are executed concurrently and the isolation level of the database is

set to Read Committed, which asks that read operations retrieve

https://doi.org/10.14778/3554821.3554885
https://github.com/drewrip/isobugview
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554885

a committed value. It is possible that both transactions execute

their “select” statements at the same time, confirm that the item

count is positive, and both decrement the item count, which means

that the final item count becomes negative. This will never happen

under Serializable, but is allowed by Read Committed since both

“select” statements indeed see committed values.

To identify such issues, the de facto theoretical foundation is the

definition of isolation levels by Adya et al. [1] which many other

works adopt to identify non-serializable executions [1, 3, 6, 7, 10, 11].

The Adya et al. definition models the execution of transactions as

a dependency graph, in which nodes are transactions and edges

represent dependencies across transactions; isolation levels are

defined based on whether they prevent different types of cycles in

the dependency graph.

Following this definition, prior works try to identify potential

non-serializable executions by searching for cycles that are not

allowed by Serializable but are allowed by the target isolation

level. For example, for Read Committed, we should search for

cycles with at least one read–write dependency edge; for Snapshot

Isolation, we should search for cycles with at least two consecutive

read–write dependency edges [3, 6].

3 DESIGN AND IMPLEMENTATION OF
ISOBUGVIEW

While the theoretical foundation of identifying non-serializable

executions is well studied, we find understanding the output of

existing tools is a challenging task due to the following reasons: to

understand a detected cycle, we often need to convert it from a text

format into a figure, usually by drawing it on a board. However, for

complicated transactions, we often need to go back and forth from

the figure to the original SQL statements to understand how the

cycle may be generated at application level. On top of this, not all

pertinent information regarding how a database is used in practice

can be deduced from its state or logs. For instance, an application

may enforce additional constraint (e.g., two customers cannot have

the same ID) to prevent non-serializable executions, and without

such application-specific knowledge, existing analysis often incurs

false positives. As a result, we often need to change the source code

of the tool in an application-specific manner to filter certain cycles.

All are affecting our productivity when analyzing isolation bugs.

To address these challenges, we have built IsoBugView, a tool to

visualize isolation bugs and incorporate users’ feedback.

3.1 Overview of IsoBugView
The IsoBugView system is comprised of two distinct parts: a back-

end that enumerates and checks cycles leveraging a modified ver-

sion of the IsoDiff tool [5] (Section 3.2), and a novel frontend GUI,

that presents tools to assist developers in understanding and de-

bugging the cycles found in the backend (Section 3.3).

All that must be provided to IsoBugView is an SQL log file of

running the target application and a corresponding schema CSV

file that outlines the structure of the database that was operated on.

The user needs to submit these two files through the IsoBugView

GUI, which will transfer these files to the IsoBugView backend.

On submission the IsoBugView backend will perform the analy-

sis in the background while the user is brought to the main status

page that encompasses the majority of IsoBugView’s functionality.

Until the search is complete there will be no cycles present and

there will be a loading screen shown. On completion of the graph

search, the developer will be able to view all cycles and perform

detailed examination of each cycle through its frontend GUI.

When examining a certain cycle, if the user finds it is a false

positive, s/he can provide feedback to IsoBugView. For example,

s/he could indicate that a certain dependency edge will not exist

because of an application constraint, or a certain transaction does

not need to be analyzed because it is always executed serially, etc.

The IsoBugView GUI will submit such feedback to the backend,

which will re-run the analysis with the additional information.

3.2 IsoBugView Backend
We implement IsoBugView backend based on IsoDiff [5], but with

major modifications to support the functions of IsoBugView.

IsoDiff takes the logs and schema files provided by the DBMS as

the input, and can develop a dependency graph of the transactions

that were executed in the log. Using the dependency graph, IsoDiff

can begin to enumerate cycles that represent potentially problem-

atic executions by the application, that are not serializable but are

allowed by the database’s weaker isolation level (Read Committed

and Snapshot Isolation are currently supported).

To facilitate the building of the IsoBugView GUI, we have modi-

fied the implementation of IsoDiff to enrich its output. To be con-

crete, IsoDiff and similar tools model complicated SQL statements as

lists of READ/WRITE operations and output found non-serializable

executions as a list of involved READ/WRITE operations together

with the dependencies or partial orders among these operations.

To help a developer better understand a non-serializable execution,

IsoBugView needs to map such READ/WRITE operations back to

their original SQL statements. To accomplish this goal, we have

modified IsoDiff to connect READ/WRITE operations to original

SQL statements when parsing these statements and to carry such

connection throughout the analysis to the final output.

To incorporate a user’s application-specific feedback, we have

modified IsoDiff to add two hook functions: The first hook func-

tion is executed after a dependency graph is generated but before

cycle search is performed. This hook function can manipulate the

generated dependency graph to add/delete nodes, edges, etc. The

second hook function is executed after a cycle is found to determine

whether the cycle should be filtered out. By providing an implemen-

tation of these two hook functions to IsoDiff, a user can provide

feedback to IsoDiff without changing the source code of IsoDiff.

We have provided some predefined hooks through the IsoBugView

GUI. In practice, we expect a common user should be able to use

the predefined hooks in most of the cases and an experienced user

could implement his/her own hooks when necessary.

3.3 IsoBugView GUI
We implement IsoBugView GUI as a web service. After an analysis

is complete, IsoBugView will show a web page like Figure 1. A

sidebar on the left is populated with a list of isolation bugs, each

named by the transactions they contain (1○). Looking at the entry of

the list in Figure 1 are a few buttons that serve to help a user notate

the analysis and build their knowledge of the graph: the middle

Show experiment info
(left) and rerun the
analysis with
interactions (right)

9

6

7

1

delete option
appears when right
clicking an edge

3
A row represents
a transaction

4
A node is a
Read/Write op

The respective SQL statements
for the source and destination
operations of the selected edge

8
Dropdown
list of user
changes

List of found
cycles

2

5An edge indicates a
dependency between
nodes.

User can add a
 tag to a cycle

Timing Order

Figure 1: An example analysis of a TPC-C Read Commited execution using IsoBugView

"tag" button allows a user to add a tag or short note underneath the

cycle in case it is of specific interest, an example of which can be

seen in the 2○ entry of the list; the right star button gives a user

the ability to favorite a cycle so they may quickly recognize it later;

the leftmost "eyeball" button generates the graph visualization of

the cycle in the graph area to the right.

Bug visualization. The bug visualization is the main tool that

empowers a developer to diagnose the problematic ways their ap-

plication is interacting with the database. On clicking the view

button, a graph is drawn, with nodes ordered from left to right

following their timing order during the execution. To compute the

order, IsoBugView GUI performs a topological sort based on the or-

der of operations within a transaction and the dependencies among

different operations.

In the figure, nodes on the same row are from the same transac-

tion, whose name is shown on the left side of the row. For example,

the nodes shown by 3○ is a part of the "StockLevel" transaction.

Every nodemaps to either a read or write operation on a specific col-

umn in one of the tables of the database (e.g., 4○). The directed edges

that connect the nodes correspond to a dependency between the

operations (e.g., 5○). The destination of an edge has a dependency

on the source node. IsoBugView GUI colors a dependency edge

based on its type: a solid black line indicates a normal dependency

edge that is part of the cycle in the transaction dependency graph;

a yellow line indicates a correlated edge, which always happens

together with a normal edge [5]; a dotted line indicates a shadow

edge, which should not be used during cycle detection but should

be used during correlation analysis [4]. Note that an edge can be

both correlated and shadow (e.g., 5○).

The figure may be further dissected by clicking different ele-

ments of the graph. Selecting any one of the nodes generates a list,

just below the visualization, of all of the SQL statements that make

up the transaction the node is a part of and puts the statement the

operation originates from in bold. References to the columns of

interest are also highlighted in yellow in the statement. In addition

to the nodes the edges of the graph can also reveal more informa-

tion. By selecting any one of the edges, the SQL statements that

contain the corresponding source and destination operations will

be listed underneath the visualization (e.g., 6○), and the referenced

columns will be highlighted in yellow (e.g., d_next_o_id in 6○).

Providing the raw SQL code that corresponds to the dependencies

and operations of interest let developers map the executions that

IsoBugView generates directly back to their own application code.

They can observe the statements and functions that have poten-

tially worrisome executions, then begin to determine if they need

to write safer code that is in line with the isolation level used by

their application’s database.

Incorporate users’ feedback. In addition, as discussed above,

IsoBugView has predefined a few commonly used hooks and allows

a user to use these predefined hooks through the IsoBugView GUI.

To be concrete, a user can “delete” an edge in the graph, maybe

because a certain application-level constraint prevents the corre-

sponding dependency edge from happening in practice; a user can

also “delete” a transaction in the graph, maybe because that trans-

action can tolerate non-serializable result. We plan to expand the

list of predefined hooks in the future.

To give a concrete example, by right clicking on an edge, as

shown in 7○, a user can remove the edge from the analysis. The

Figure 2: A potential isolation bug reported by IsoBugView.

Figure 3: Another potential isolation bug reported by
IsoBugView.

drop down list provided with 8○ gives a breakdown of which edges

are marked to be removed. By clicking the "rerun" button, the

rightmost button shown by 9○, the IsoBugView backend will run

the analysis again with the original parameters, but the desired

edges deleted. Once the new analysis is done, a user can observe the

new result, which not only avoids the execution shown in Figure 1,

but also other executions that involve the deleted edge.

4 APPLICATION EXAMPLES
In this section, we show examples of how IsoBugView helps us

understand potential bugs of running TPC-C under the Read Com-

mitted isolation level. We run the TPC-C implementation from the

OLTPBench [8] upon a MySQL database, configure MySQL to log

SQL traces, and also record the schema information from MySQL.

We then submit the schema and log to the IsoBugView GUI.

Figure 2 shows a potential bug involving two NewOrder trans-

actions. By clicking the first normal dependency edge and viewing

the corresponding SQL statements, we can know that the first

NewOrder transaction reads the d_next_o_id value, which is up-

dated by the second NewOrder transaction; by checking the second

normal dependency edge, we can see that the second NewOrder

transaction reads the d_next_o_id value, which is then read by

the first NewOrder transaction. By looking at the logic of the

whole NewOrder transaction, we see that NewOrder reads the

d_next_o_id, increments it by 1 and uses it as the ID of the new or-

der, and then updates the d_next_o_id value to reflect the increment.

Therefore, if twoNewOrder transactions read the d_next_o_id value

at the same time, they may end up using the same ID for different

orders, which is problematic. This problem could be fixed by adding

the “for update” keyword for the select statement.

Figure 3 shows another potential bug reported by IsoBugView,

which is the same as the one shown in Figure 1. It involves a

NewOrder transaction and a StockLevel transaction. By clicking

the left normal edge, we can know that the NewOrder transaction

updates the d_next_o_id value and the StockLevel transaction will

read the updated d_next_o_id; by clicking the right normal edge,

we can know that the StockLevel transaction reads the ol_i_id value

and then the NewOrder transaction updates that value. In this case,

the StockLevel transaction reads the updated d_next_o_id value

but still the stale ol_i_id, which will not happen under a serializable

execution. However, the TPC-C specification indicates that serializ-

able result is not required for the StockLevel transaction. This is

a typical example of how application-level constraint or require-

ment can introduce false positives into the analysis. Therefore, we

use IsoBugView to remove StockLevel transaction and re-run the

analysis, which results in a shorter list of potential bugs.

5 CONCLUSIONS
To improve the productivity of analyzing isolation bugs, we have

built IsoBugView, a tool to visualize isolation bugs and incorpo-

rate users’ feedback. IsoBugView visualizes an isolation bug using

the dependency graph and further allows a user to view detailed

information of each node and edge in the graph. IsoBugView em-

beds hook functions into the underlying analysis tool to express

application-specific feedback and further allows a user to submit

such hook functions through the GUI. Our experience shows that

such a tool is critical to the productivity of analyzing isolation bugs.

ACKNOWLEDGMENTS
We thank all reviewers for their insightful comments. This material

is based in part upon work supported by the National Science

Foundation under Grant Numbers CNS-1908020 and CCF-2118745.

REFERENCES
[1] A. Adya, B. Liskov, and P. O’Neil. 2000. Generalized isolation level definitions.

In Proceedings of 16th International Conference on Data Engineering.
[2] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017. Seeing is

Believing: A Client-Centric Specification of Database Isolation. In Proceedings of
the ACM Symposium on Principles of Distributed Computing (Washington, DC,

USA) (PODC ’17). ACM, New York, NY, USA, 73–82. https://doi.org/10.1145/

3087801.3087802

[3] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis

Shasha. 2005. Making Snapshot Isolation Serializable. ACM Trans. Database Syst.
30, 2 (June 2005), 492–528. https://doi.org/10.1145/1071610.1071615

[4] Yifan Gan. 2021. Exploring Transaction Anomalies under Weak Isolation

Levels for General Database Applications (Dissertation). https://github.com/

SayuRanger/dissertation/blob/main/Phd_Thesis_Yifan_Gan.pdf. (2021).

[5] Yifan Gan, Xueyuan Ren, Drew Ripberger, Spyros Blanas, and Yang Wang. 2020.

IsoDiff: Debugging Anomalies Caused by Weak Isolation. Proc. VLDB Endow. 13,
11 (2020).

[6] Sudhir Jorwekar, Alan Fekete, Krithi Ramamritham, and S. Sudarshan. 2007.

Automating the Detection of Snapshot Isolation Anomalies. In Proceedings of the
33rd International Conference on Very Large Data Bases (Vienna, Austria) (VLDB
’07). VLDB Endowment, 1263–1274. http://dl.acm.org/citation.cfm?id=1325851.

1325995

[7] Kyle Kingsbury and Peter Alvaro. 2020. Elle: Inferring Isolation Anomalies from

Experimental Observations. Proc. VLDB Endow. 14, 3 (Nov. 2020), 268–280.
[8] oltpbench [n.d.]. OLTPBench. https://github.com/oltpbenchmark/oltpbench.

[9] Andrew Pavlo. 2017. What Are We Doing With Our Lives? Nobody Cares About

Our Concurrency Control Research. In SIGMOD 17. 3.
[10] Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael Walfish. 2020. Cobra:

Making Transactional Key-Value Stores Verifiably Serializable. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 63–80. https://www.usenix.org/conference/osdi20/presentation/tan

[11] ToddWarszawski and Peter Bailis. 2017. ACIDRain: Concurrency-RelatedAttacks

on Database-Backed Web Applications. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD ’17).
ACM, New York, NY, USA, 5–20. https://doi.org/10.1145/3035918.3064037

https://doi.org/10.1145/3087801.3087802
https://doi.org/10.1145/3087801.3087802
https://doi.org/10.1145/1071610.1071615
https://github.com/SayuRanger/dissertation/blob/main/Phd_Thesis_Yifan_Gan.pdf
https://github.com/SayuRanger/dissertation/blob/main/Phd_Thesis_Yifan_Gan.pdf
http://dl.acm.org/citation.cfm?id=1325851.1325995
http://dl.acm.org/citation.cfm?id=1325851.1325995
https://github.com/oltpbenchmark/oltpbench
https://www.usenix.org/conference/osdi20/presentation/tan
https://doi.org/10.1145/3035918.3064037

	Abstract
	1 Introduction
	2 Background and related work
	3 Design and Implementation of IsoBugView
	3.1 Overview of IsoBugView
	3.2 IsoBugView Backend
	3.3 IsoBugView GUI

	4 Application Examples
	5 Conclusions
	Acknowledgments
	References

