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Abstract

A fundamental problem in drug discovery is to
design molecules that bind to specific proteins.
To tackle this problem using machine learning
methods, here we propose a novel and effective
framework, known as GraphBP, to generate 3D
molecules that bind to given proteins by placing
atoms of specific types and locations to the given
binding site one by one. In particular, at each
step, we first employ a 3D graph neural network
to obtain geometry-aware and chemically infor-
mative representations from the intermediate con-
textual information. Such context includes the
given binding site and atoms placed in the pre-
vious steps. Second, to preserve the desirable
equivariance property, we select a local reference
atom according to the designed auxiliary classi-
fiers and then construct a local spherical coordi-
nate system. Finally, to place a new atom, we
generate its atom type and relative location w.r.t.
the constructed local coordinate system via a flow
model. We also consider generating the variables
of interest sequentially to capture the underlying
dependencies among them. Experiments demon-
strate that our GraphBP is effective to generate 3D
molecules with binding ability to target protein
binding sites. Our implementation is available at
https://github.com/divelab/GraphBP.

1. Introduction

Designing molecules that can bind to a specific target protein
(a.k.a. structure-based drug design) is a fundamental and
challenging problem in drug discovery (Anderson, 2003). It
is highly promising to develop machine learning methods
for this problem since there are recently available large-scale
datasets of protein-ligand complex structures, such as PDB-
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bind (Liu et al., 2017) and CrossDocked2020 (Francoeur
et al., 2020). In addition, machine learning approaches
have been shown to be effective for learning from richly
structured data in biochemistry. The most representative
example is AlphaFold (Jumper et al., 2021), which achieves
remarkable accuracy on the problem of 3D protein struc-
ture prediction from amino acid sequence, a long-standing
challenge for decades.

However, machine learning approaches have rarely been
explored to generate molecules that bind to specific pro-
tein binding sites. We summarize the main challenges or
considerations in three folds. (i) Complicated conditional
information. When generating molecules that are capable
of binding to a specific target protein, both the 3D geometric
structure and the chemical features of the binding site are
important considerations. It is crucial to consider how to
capture such informative context effectively. (ii) Enormous
chemical space and continuous 3D space. The chemical
space of all possible molecules is enormous (estimated to be
larger than 105Y), while the number of molecules that have
binding ability to a specific target is extremely small. In
addition, the 3D space around the binding site is continuous
by nature. In other words, it is desirable that our generative
model is capable of generating molecules in any continuous
positions without discretizing the space. (iii) Equivariance
property. Intuitively, if we rotate or translate the binding
site, the generated molecules are expected to be rotated or
translated the same way. That is, molecules generated by
our machine learning approach should be equivariant to any
rigid transformation of the binding site.

Here, we present GraphBP, a novel and effective generative
framework for structure-based drug design, that takes the
described challenges into consideration. Particularly, we
generate 3D molecules by placing atoms to the specific 3D
binding site one by one. At each step, a 3D graph neu-
ral network is firstly employed to extract the intermediate
contextual information by considering both 3D geometric
structures and chemical interactions. Afterwards, we con-
struct a local coordinate system based on a local reference
atom selected by the designed auxiliary classifiers. Generat-
ing a new atom in this local coordinate system can ensure
the equivariance property. Finally, to place a new atom, we
generate its atom type and relative continuous position w.r1.
the constructed local coordinate system with a flow model.
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Moreover, the variables of interest are generated sequen-
tially, aiming to capture the underlying dependencies.

To our knowledge, in structure-based drug design, our
GraphBP is the first machine learning method that satis-
fies all of the following three characteristics; that is, it can
perceive 3D geometric structures and chemical interactions
of protein-ligand complexes, place atoms in any continuous
positions, and preserve the desirable equivariance property.
More discussions with prior works (Ragoza et al., 2021;
Luo et al., 2021a) are included in Section 2. Experiments
show that our approach outperforms baselines significantly
in generating 3D molecules that have binding affinity to
target 3D protein binding sites.

2. Preliminaries and Related Work

1D/2D molecule generation. Molecules can be represented
as 1D SMILES strings (Weininger, 1988) or 2D molecu-
lar graphs. Several works propose to generate SMILES
strings (Gémez-Bombarelli et al., 2018; Kusner et al., 2017;
Dai et al., 2018) with sequence methods. Alternatively,
many works generate 2D graphs by leveraging advanced
deep generative models. They either generate the node type
matrix and adjacency matrix directly (Simonovsky & Ko-
modakis, 2018; De Cao & Kipf, 2018; Zang & Wang, 2020;
Liu et al., 2021b), or generate nodes, edges, or motifs by
adding them one by one (Li et al., 2018; You et al., 2018; Jin
et al., 2018; Shi et al., 2019; Luo et al., 2021¢). These meth-
ods generate 1D or 2D molecules without perceiving 3D
spatial information. Thus, they cannot be directly applied to
generate 3D molecules for target protein binding.

3D molecule generation. Recently, many works pro-
pose to generate 3D molecular geometries from given 2D
graphs (Mansimov et al., 2019; Simm & Hernandez-Lobato,
2020; Gogineni et al., 2020; Xu et al., 2021; Shi et al., 2021;
Ganea et al., 2021; Luo et al., 2021b), from a given bag of
atoms (Simm et al., 2020), or from scratch (Gebauer et al.,
2019; Hoffmann & Noé, 2019; Nesterov et al., 2020; Sator-
ras et al., 2021; Luo & Ji, 2022). In structure-based drug
design, however, the prior knowledge of 2D graphs or the
bag of atoms are unknown. In addition, these methods usu-
ally consider small organic molecules (Luo et al., 2021a),
thus remaining to be insufficient to generate 3D drug-like
molecules interacting with given binding sites. For a com-
prehensive review of molecule generation, we recommend
referring to the recent survey (Du et al., 2022).

Structure-based drug design. Generating 3D molecules
that bind to specific binding sites with machine
learning approaches is challenging and under-explored.
LiGAN (Ragoza et al., 2021) converts protein-ligand com-
plexes to 3D atomic density grids, i.e., 3D images. Then
it treats structure-based drug design as a 3D image gener-

ation task, thus enabling the usage of GANs (Goodfellow
et al., 2014) and VAEs (Kingma & Welling, 2013). After
generating density grids, it performs an atom fitting algo-
rithm to obtain 3D molecular geometries. As a preliminary
work, it fails to preserve the desirable equivariance property
since performing 3D CNNs (Ji et al., 2012) on an atomic
density grid is not equivariant. Also, it has to discretize
the continuous 3D space to construct grids. Another recent
work (Luo et al., 2021a) tackles this problem by modeling
the distribution of atom occurrence in the 3D space around
the binding site, and then employing a sampling algorithm
to place atoms according to the learned distribution. During
sampling, it also discretizes the 3D space onto meshgrids
and evaluates the probability densities of atom’s occurrences
on the grids. In contrast, our method can place the atoms
in any continuous positions, thereby enabling more flexible
atom placement.

Autoregressive flow models. A flow model (Dinh et al.,
2014; Rezende & Mohamed, 2015; Weng, 2018) defines a
parameterized invertible transformation function fy : z €
RP — & € RP from latent variable z ~ py to data vari-
able x, where pz is a known prior distribution. The log-
likelihood of a data point « can be computed by

oMo (@) ’
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logpx (z) =logpz (f, ' (z)) + log ¢

Thus, fy is required to be invertible and its Jacobian de-
terminant should be computed easily. An autoregressive
flow model (Papamakarios et al., 2017) is a specific flow
method where the transformation function is formulated
as an autoregressive model; that is, each dimension of =
is conditioned on the previous dimensions. Formally, it is
usually defined as an affine transformation as

xi = 0i(®1:i-1) O zi + pi(x1io1), i=1,---,D, (2)
where the scale factor o;(-) € R and the translation factor
1i(+) € R are functions of x1.;_1. @ denotes the element-
wise multiplication. This transformation function is easy
to inverse as z; = % In addition, the determinant of
the Jacobian matrix can be computed linearly since it is a

. . . of, 1 (x) D 1
triangular matrix. To be specific, det—4—— = [];_; -

3. Method

Notations and problem. We represent the 3D geometry of
a molecule (i.e., a ligand) as M = {(a;, ;) }}_; and the
corresponding binding site of a protein (i.e., a receptor) as
P = {(bj,s;)}}-;. n and m denote the numbers of atoms
in the molecule and in the binding site, respectively. a; €
{0, 1}* is the one-hot vector indicating the atom type of the
i-th atom in the molecule, and r; € R3 is its 3D Cartesian
coordinate. Similarly, the atom type and the coordinate of
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the j-th atom in the binding site are denoted as one-hot
vector b; € {0,1}% and s; € R3. p and q represent the total
numbers of atom types in molecules and in binding sites,
respectively, and they can be obtained from the statistics
of the training set. We consider the problem of generating
3D molecules in the given binding site. Thus, our goal
is to learn a generative model to capture the conditional
distribution p(M|P) of observed protein-ligand pairs.

3.1. Generation

Overview. In GraphBP, we formulate the generation of
3D molecules in the given binding site as a sequential gen-
eration process; that is, we place atoms to the given 3D
binding site one by one. At the ¢-th step, we generate the -
th atom, including its atom type a; and coordinate 7, based
on the intermediate contextual information C(*~1). Note
that the context C(*~1) contains not only the binding site
but also the atoms placed in the previous ¢ — 1 steps, i.e.,
C=Y =P U {(a;,7:)}.Z] whent > 2. At the first step
(t = 1), the context is the binding site itself, i.e., cO =p,

Within each step, we firstly generate the atom type based
on the context. Afterwards, its coordinate is generated by
considering both the context and the generated atom type
information. Therefore, each step ¢ (t = 1,2,--- ,n) of our
generation process can be formulated as

a; =g° (C(tfl);zf) ,
re=g" (c(t—1>,at;z:) : (3)

CH =V U{(as,r)}.

Generators g”(-) and ¢g"(+) are autoregressive functions. z{
and z} denote the latent variables used in the flow model at
step ¢, which will be introduced in details later.

In the following, we describe the details of one generation
step, i.e., how the autoregressive functions g*(-) and ¢" ()
are parameterized. In addition, we also explain how the
key challenges summarized in Section 1 are considered in
GraphBP. Particularly, there are mainly three parts in one
generation step, namely encoding the context, selecting
a local reference atom, and placing a new atom, as illus-
trated in Figure 1. The details are elucidated as follows.

3.1.1. ENCODING THE CONTEXT

As introduced in Section 1, both geometric shape and chem-
ical interactions are vital to protein-ligand binding affinity.
Hence, it is important to capture such information by the
context encoder. We firstly construct a graph for the context
€'Y by connecting atoms with considering certain cutoff
distance. Let G(*~1) denote the obtained context graph. Af-
terwards, we employ a 3D graph neural network (3D GNN)

to encode G*~1), Formally,

{hgt)’ . pW

1} =3DGNN (GUD) @)

where hff) represents the encoded representation of atom k&
in the context C(*~1). Note that there are totally m + t — 1
atoms in the context, including m atoms from the binding
site and ¢ — 1 atoms placed in the previous ¢ — 1 steps.

The first layer of our 3DGNN is an embedding layer for
encoding atom types. Note that we use different learnable
embeddings for atoms in the binding site and atoms in the
ligand, thereby differentiating ligand atoms from protein
atoms. For example, a carbon atom in the ligand and a car-
bon atom in the protein have different initial representations.
Let {hgt’o)7 I hﬁflﬂi_l} be the resulting initial represen-
tations. Then, we have L feature aggregation layers in our
3DGNN. The aggregation for each atom £ at the ¢-th layer
(1 < /¢ < L) can be formulated as

R =h 4 3 R © MLP (ersr (du))
ueN (k)

4)
where N (k) denotes neighbors of atom k in G(¢—1),
MLPZ(~) is a multi-layer perceptron, and ® represents
the element-wise multiplication. erpr (dyi) is the high-
dimensional embedding of the distance d,j using ra-
dial basis functions (RBF), such as Gaussian func-
tions (Schlichtkrull et al., 2018) and spherical Bessel func-
tions (Klicpera et al., 2019). Note that the representations
{hgt), ceey hffL)th_l} obtained by these L feature aggrega-
tion layers are invariant to the rotation and translation of
the context C(*~1), since the distance d,,;, used in Eq. (5)1is
rotationally and translationally invariant. Our aggregation
layer shown in Eq. (5) is a variant of SchNet (Schlichtkrull
et al., 2018). We can further employ more advanced but
more memory-consuming 3D GNNs (Liu et al., 2021a),
such as DimeNet (Klicpera et al., 2019) and SphereNet (Liu
et al., 2022), to encode the context information. In this work,
we do not use them as our encoder because of insufficient
memory budget, given that the context graph could have
hundreds of atoms.

3.1.2. SELECTING A LOCAL REFERENCE ATOM

As described in Section 1, the location of a generated
molecule should be equivariant to any rigid transformation
of the binding site. In other words, if we rotate or translate
the binding site, the generated molecule should be rotated
or translated correspondingly. In our sequential generation
case, as formulated in Eq. (3), it is desired that the gener-
ated coordinate of the ¢-th atom is equivariant to any rigid
transformation of the context C(*=1), while the generated
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Figure 1. An illustration of one generation step of GraphBP. Details are described in Section 3.1.

atom type keeps invariant. Formally,

g (Cwl); zg) = 4° (RT (C(H)) ;Z?) )
RT (g (¢ Vai27)) =g (RT (") a27) |

where RT(+) represents any rigid transformation, including
rotation, translation, and any composition of them.

As described in Section 3.1.1, our atom representations
obtained from context encoding are invariant to any rigid
transformation of the context. Thus, it is straightforward
to generate invariant atom type by using these representa-
tions. Nevertheless, it is non-trivial to generate coordinate
that are equivariant to any rigid transformation of the con-
text. To achieve this desirable equivariance, inspired by
G-SchNet (Gebauer et al., 2019), MolGym (Simm et al.,
2020), and G-SphereNet (Luo & Ji, 2022), we choose to
construct a local spherical coordinate system (SCS) and gen-
erate the invariant 3-tuple (d;, 0;, @) w.r.t. the constructed
local SCS.

To construct such local SCS, we consider selecting a local
reference atom from the context by using two auxiliary
atom-wise classifiers; they are contact atom classifier (for
t = 1) and focal atom classifier (for t > 2). (i) At the first
step (¢t = 1), the known context information is the binding
site. The contact atom classifier takes the context-encoded
representation of each atom in the binding site as input,
and determines if the corresponding atom can serve as a
local reference atom (i.e., yes or no). The atom selected
based on the contact atom classifier will be used as the local
reference atom for generating the first atom in the ligand.
This selected atom is termed as contact atom because it acts
like a “bridge” in contact with the ligand. (ii) For ¢t > 2,
we select a local reference atom from the ligand atoms
generated in the previous ¢ — 1 steps, considering that the
new atom is expected to be placed in the local region of
the selected reference atom. To be specific, we apply focal
atom classifier to the context-encoded representations of

all existing atoms in the ligand, which are generated in the
previous ¢ — 1 steps, and classify them into two categories:
focal atom and non-focal atom. Then, the selected focal
atom will be used as the local reference atom to generate
the new atom. Overall, for t = 1, a local reference atom
is selected from the binding site using the contact atom
classifier. For t > 2, a local reference atom is selected
from the existing ligand atoms according to the focal atom
classifier. We describe how to train these two auxiliary
classifiers in Section 3.2.

In general, we need three points in the 3D space to de-
fine an SCS. Assuming that the selected local reference
atom is the f-th atom in the context C (t=1) we can further
find two atoms in the context that are closest and second
closest to f. These two atoms are denoted as the c-th and
the e-th atom in the context C(*=1), and they could be in
the ligand or in the binding site. With these three atoms
(f, ¢, e), we can construct a local SCS. Further, we can gen-
erate the invariant (d;, 0;, ;) w.r.t. this local SCS. Specif-
ically, d; is distance between the new atom and atom f,
ie,d, = || —ry|l2, 0, € [0, 7] is the angle between line
(rg,r¢) and line (r¢,r.), and ¢, € [—m, 7] is the torsion
angle formed by plane (rf,7.,r¢) and plane (7, 7., re).
Afterwards, we can compute r; based on the generated
(d¢, 04, ¢) and the known (¢, 7., 7). Note that the con-
structed local SCS is associated with the context, thus being
equivariant to any rigid transformation of the context. In
other words, (rs,r.,7.) is equivariant to any rigid trans-
formation of the context. Therefore, the computed 7, also
keeps equivariant as long as the generated (dy, 6y, ¢;) is
invariant to any rigid transformation of the context C(*~1),
In addition, we can achieve flexible atom placement since
the generated (d;, 0;, ;) are continuous values, while pre-
vious works (Ragoza et al., 2021; Luo et al., 2021a) have to
discretize the continuous space during atom placement.
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3.1.3. PLACING A NEW ATOM

The remaining part in generation is to place a new atom
by generating (dy, 6, ¢:) as well as a;. As analyzed
above, a¢, d¢, 0¢, and ¢; should be invariant to any rigid
transformation of the context C(t=1), Hence, it is natural
to generate them with context-encoded representations of
atoms (f,c,e), i.e., (hgf), R h®), which are invariant
to the rotation and translation of the context C*~1). In
addition, intuitively, a;, d;, 0¢, and ¢; are not independent
to each other. For example, a carbon atom and an oxygen
atom have different distributions over the distance to
their local reference atoms. Further, atoms with the
same atom type but different distances w.r.t. their local
reference atoms could have different distributions over
angles. Thus, we propose to generate a;, d;, #;, and
(¢ sequentially in each generation step to capture their
underlying dependencies. To be specific, we generate
these variables using the order a; — dy — 0y — @y,
and the generation of each variable is dependent on
the previous variables. For instance, to generate ¢y, in
addition to C (t_l), we incorporate the information of ay,
d;, and 0;,. Mathematically, p(at,dt,ﬁt,gpt|C(t’1)) =
P (a|CU=1) p (d|CU=1) p (6:/C D) p (pe|Ct)
does not hold if a;, d;, 0, and ¢; are not independent. In
contrast, the following equation always holds according
to the multiplication rule of probability, no matter if the
variables are independent or not.

P (at, dy, 0, <pt|c<t*1>) —p (at|c<t*1>) P (dt\c“*l), at)

p (9t|c(t_1), audt) D (<Pt|c(t_1), ag,dy, 9t> .

)
This demonstrates that our generation strategy is also tech-
nically sound. We conduct ablation study in Section 4 to
demonstrate the effectiveness of this sequential generation
strategy. Therefore, our one-step generation, as shown in
Eq. (3), can be reformulated as

a; = g° (C(tfl);z?> ,
b= (0 ).
0; = g° (C(t_l),at,dt;zte) ,

Pt = gw (C(til)vatadtvot; Zf) )

®)

where 2 € R?, 28 € R, 2/ € R, and 2{ € R are all latent
variables used in the flow model. During generation, we
sample latent variables from known prior Gaussian distri-
butions, and then map them to variables of interest (i.e.,
a;, dg, 04, ). For training, we map observed variables to
latent variables, and maximize their likelihood. Since the
atom type vector is discrete, which cannot fit into a flow
model, we convert it to a continuous variable during train-

ing using dequantization techniques (Kingma & Dhariwal,
2018). This is widely used by existing molecule generation
methods (Madhawa et al., 2019; Shi et al., 2019; Liu et al.,
2021b). Specifically, we add uniform noise as a; = a; + u,
u ~ U(0,1)?. In the following, we elaborate how to em-
ploy flow model to construct invertible mappings z{ — ax,
28— dy, 20 — 0;, and 2 — @y, respectively. The training
scheme is elucidated in Section 3.2.

To generate a;, we first apply affine transformation to map
the latent variable z¢ to a;. Formally,

a =op (CV) oz (), O

where the scale factor ¢ (-) € R? and the translation factor
p¢(-) € RP are both dependent on the context C(*~1. To
be specific, they are computed by applying MLPs to the
context-encoded representation of the selected local refer-
ence atom f. Formally,

ol (C“*U) — MLP? (hgf)) ,
e (C“*l)) — MLP" (h;”) .

After obtaining a;, we can derive the one-hot a; by per-
forming the argmax operation to a.

(10)

Similar to the generation of atom type, we can produce d;,
0;, and @4 as

dy = o (C(tfl),at) o 28+ pd (C(til),at) ;
6, = o? (c<t—1>, as, dt) © 20+ uf (c“-”, as, dt) ,

Pt = Uf (C(t_l)v ay, dy, 9t) © Z;p + :uf (C(t_l)» ag, dy, Ht) .

(1)
The scale factors o(-),0?(-),0f(-) € R and the transla-
tion factors ué(-), uf(-), uf (-) € R are dependent on their
corresponding conditional information that are defined and
justified in our generation strategy, as formulated in Eq. (8).
These factors are also naturally parameterized by MLPs
with considering their respective conditional information.
To be specific,

h}t/);/e = hgf/)c/e © Embedding (a;), (12)
ot (e s Mp (),
i (C(tfl),at) = MLPz (hgct)’) ’ (13)
h,sft/):/e = h(ft/);/e © LBggF (ersr (dt)) , (14)
of (C(tfl),at,dt) = MLP? ([h;t)//’hgt),,}y
1f (C(t*1)7at,dt) = MLPZ ([h;t)”, hgt),/D |
(15)
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h(t)///

e =RY) . ©LBsr (ecur (d,0,),  (16)

o (00 o) = (o

s (C“—”,at,dt,@t) — MLP¢ ([hgf)'”,
A7)
Embedding (-) is the same embedding layer that is used to
encode ligand atom types during context encoding. Multi-
plying the embedding of a; in Eq. (12) helps to incorporate
the generated atom type information in the subsequent gen-
eration for d;, 0, and ¢;. As the distance embedding in
Eq. (5), erpr (d;) is the RBF embedding of the distance
d;. Further, ecgr (d;, 0;) denotes the high-dimensional em-
bedding of (d;, #;) with circular basis functions (CBF). We
use the same circular basis functions as previous works that
consider geometric information (Klicpera et al., 2019; Liu
et al., 2022; Klicpera et al., 2021). LBrpr/cer(+) represents
a linear layer and [-] denotes the concatenation operation.
Intuitively, incorporating the distance embedding in Eq. (14)
and distance-angle embedding in Eq. (16) can guide the
subsequent generation for 6; and ;, respectively. This aims
to capture the underlying dependencies of variables a;, d;,
0y, and ;.

3.1.4. OVERALL GENERATION PROCESS

So far, we have described the key components of our gen-
erative framework. To generate a 3D molecular geometry
for a given binding site, we autoregressively place one atom
at each step. At each step ¢, we firstly encode the current
known context information, then select a local reference
atom with our auxiliary classifiers, and finally place a new
atom by producing a;, d;, 0;, and ¢, sequentially. We il-
lustrate one generation step of our GraphBP in Figure 1.
The autoregressive generation will be terminated if either no
atom in the ligand can serve as a local reference atom accord-
ing to the focal atom classifier or a predefined maximum
number of atoms has been achieved. Afterwards, following
previous works (Ragoza et al., 2021; Luo et al., 2021a), we
apply OpenBabel (O’Boyle et al., 2011) to construct bonds
based on our generated 3D molecular geometries.

3.2. Training

To train our autoregressive generative model, we need to
decompose a 3D molecule in a ligand-protein pair to a trajec-
tory of atom placement steps. Inspired by G-SphereNet (Luo
& Ji, 2022), we expect that the new atom should be placed
in the local region of the reference atom during generation.
Thus, we select the atom in the binding site that is closest to
the ligand as the first local reference atom, i.e., contact atom,
and the atom in the ligand that is closest to the binding site
as the first atom to be generated. Then, starting from this

WO 1)),
RO B0 ).

selected atom in the ligand, we apply Prim’s algorithm on
the 3D molecular geometry to obtain the placement order
of atoms in the ligand, as well as their corresponding local
reference atoms. This strategy can guarantee that the new
atom for each step is always in the local region of the cor-
responding reference atom. With such obtained trajectory,
GraphBP is trained by stochastic gradient descent using the
following three loss functions.

Atom placement loss £,;,. As described in Eq. (1), with
flow model, we can compute the log-likelihood of training
data and maximize it. Hence, the training loss function for
atom placement is defined as the negative of the computed
log-likelihood of the training trajectory. Formally, for a 3D
molecular geometry with n atoms, we have

Lop—- Z Klog D (o2, (1) +1ox (o0 (1))

s ) (| 2))
e ()
)

PD(+) is used to represent the product of elements across
dimensions of a vector, since z{ and o¢ are both p-
dimensional vectors. Latent variables 2¢, zZ, 2¢ and 27
can be computed by the inverted mappings of Eq. (9) and

Eq. (11), such as zf = b= “t - PZ,> Pz4 Pz,» and pz, are

prior Gaussian distributlonst. The detailed derivation of £,
is included in Appendix A.

1
of
1

0
t

1
+ (log (pz, (2f)) +log (’0@
t

Q

Contact atom classifier loss L.... The contact atom clas-
sifier is used to select the first local reference atom from
the binding site. We train it with the standard binary cross
entropy loss. In particular, we use the contact atom, which
is the atom in the binding site that is closest to the ligand,
as the positive sample, and the atom in the binding site that
is furthest to the ligand, as the negative sample.

Focal atom classifier loss L .. The focal atom classifier is
also trained with the standard binary cross entropy loss and
used for selecting a local reference atom from the existing
ligand atoms. The ground truth for an atom is negative if all
of its bonded atoms have been generated, otherwise positive.

In summary, the overall loss function for training GraphBP
iSL="Lgp+ Lec+ Lype.

4. Experiments

We firstly evaluate the ability of our GraphBP to generate
3D molecules that are capable of binding to given protein
targets. The experiment demonstrates that GraphBP out-
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performs baselines by significant margins. Afterwards, we
perform ablation studies to verify the effectiveness of the
sequential generation proposed in Section 3.1.3.

Dataset. We use the CrossDocked2020 dataset (Francoeur
et al., 2020), which contains over 22 million docked protein-
ligand crystal structures, to evaluate GraphBP for structure-
based drug design. Following LiGAN (Ragoza et al., 2021),
we ignore any poses that have root-mean-squared devia-
tions (RMSD) greater than 2A, thus obtaining a dataset
with around 500k protein-ligand complexes. We use the
same training set and test set, as used in LiGAN, for fair
comparison. Total number of atom types in ligands and in
binding sites are 27 and 19, respectively. The atom types
are summarized in Appendix B.

Setup. We use the same 10 target proteins as LiGAN for
test evaluation. Each of them could have multiple associated
ligands, leading to 90 protein-ligand pairs in the test set as
reference. Following LiGAN, we generate 100 molecules
with GraphBP for each reference binding site in the test set.
This evaluation setting is challenging because the test targets
are diversely selected from different pocket clusters and the
reference ligand usually bind strongly to the target binding
site (Ragoza et al., 2021). We quantitatively measure the
generation performance by two metrics: (i) Validity is the
percentage of chemically valid molecules among all gener-
ated molecules. A molecule is valid if it can be sanitized
by RDkit (Landrum et al., 2006). (ii) ABinding measures
the percentage of generated molecules that have higher pre-
dicted binding affinity than their corresponding reference
molecules. Note that we are unable to perform wet-lab ex-
periment assays to evaluate the binding affinity of generated
molecules. Also, there does not exist a computational metric
that can serve as a golden standard for assessing binding
affinity. Hence, following LiGAN, the binding affinity is
predicted by an ensemble of CNN scoring functions (Ragoza
et al., 2017) that were trained on the CrossDocked2020 data
set. Such CNN predicted affinity has been shown to be more
accurate than using the Autodock Vina empirical scoring
function (Trott & Olson, 2010). Therefore, it can be used
as a reasonable and convincing metric for evaluating the
binding affinity of generated molecules. Following LiGAN,
we firstly refine the generated 3D molecules by Universal
Force Field minimization (Rappé et al., 1992). Afterwards,
Vina minimization and CNN scoring are applied to both gen-
erated and reference molecules by using gnina, a molecular
docking program (McNutt et al., 2021).

Baselines. We consider two variants from the recent
LiGAN (Ragoza et al., 2021) method as baselines. LIGAN-
prior generates molecules conditional on the given binding
sites, which has the identical conditional information as our
GraphBP. LiGAN-posterior encodes the whole reference
protein-ligand complex as conditional information, thus gen-

Table 1. Generation performance on structure-based drug design.
1 represents that higher value indicates better performance.

Method Validity"  ABinding”
LiGAN-prior 90.9% 15.9%
LiGAN-posterior  98.5% 15.4%
GraphBP (ours) 99.7 % 27.0%

b 4
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Figure 2. Visualization of ABinding affinity distributions for
LiGAN and GraphBP. The values denote the relative improve-
ments of generated molecules over their corresponding reference
molecules.

erating molecules biased towards the reference molecule.
Note that LiGAN-posterior incorporates more conditional
information than GraphBP and LiGAN-prior.

Results. We present the quantitative results in Table 1. Our
GraphBP can generate more valid molecules than baselines,
including LiGAN-posterior which even includes a valid
reference ligand as conditional information. More impor-
tantly, 27.0% of molecules generated by GraphBP have
higher predicted binding affinity than reference molecules.
This outperforms LiGAN by an absolute margin of 11.1%.
These significant improvements over baselines demonstrate
that GraphBP, which incorporates graph representations and
a more flexible atom placement strategy, can capture the
underlying distribution of 3D molecular geometries condi-
tional on binding sites more effectively.

We further provide the detailed distributions of ABinding
affinity in Figure 2. Note that LIGAN-posterior achieves
higher average ABinding affinity but lower variance than
LiGAN-prior and GraphBP. This indicates that LiGAN-
posterior, with encoding the reference molecules as con-
ditions, might perform slight modifications on reference
molecules. Even though, compared with LiGAN-posterior,
our GraphBP still generates more molecules that are pre-
dicted to bind more strongly than reference molecules
(27.0% vs. 15.4%), demonstrating that GraphBP can gener-
ate more diverse molecules to bind with target proteins by
effectively capturing the underlying conditional distribution.

In Figure 3, we provide several examples of generated 3D
molecules that are predicted to bind more strongly to the
target proteins than their corresponding reference molecules.
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Figure 3. Several examples of generated 3D molecules that have higher predicted binding affinity than reference molecules. The PDB IDs
and the ligand IDs of proteins and reference molecules are labeled on the top.

Table 2. Comparison on random molecular geometry generation task between our method and ablation models. 1 () represents that
higher (lower) value indicates better performance. The top two results in terms of each metric are highlighted as 1st and 2nd.

MMD distances*
. . T
Method  Validity! -~ cN Cc.O0 H-C HN HO Ave
No dep. 2535% 0776 0499 1251 2.600 0.823 2.849 1.466
Partial dep.  76.72%  0.343  0.384 0257 0227 0373 0.828 0.402
Ours 81.98% 0232 0.160 0475 0058 0318 0202 0.241

It can be observed that our generated molecules with higher
predicted binding affinity are largely different from refer-
ence molecules, further indicating that our model is capable
of generating diverse and novel molecules to bind target pro-
teins, instead of simply memorizing or modifying known
molecules.

Ablation studies. In Section 3.1.3, we propose to generate
the variables of interest sequentially to capture their under-
lying dependencies. Specifically, given context C(*~1), we
produce a;, d;, 6, and o, one by one as C*"1) — a, —
dy — 0; — . To verify the effectiveness of this strategy,
we employ the following two variants. (i) No dependen-
cies. The variables a, d;, 0;, and @, are generated inde-
pendently from the context, as C*~1 — a,, C*=1 — d,,
Ct=1 — @,, and C*~1Y — ;. Thus, we omit the incorpo-
rating of atom type embedding (Eq. (12)), distance embed-
ding (Eq. (14)), and distance-angle embedding (Eq. (16)).
(ii) Partial dependencies. We consider the generated atom
type information when generating d;, 6;, and ¢,. However,
dy, 6, and ; are treated independently. It can be denoted
as C(t_l) — Qy, (C(t_l), at) — dt, (C(t_l), at) — (gt,
and (C*~V a;) — ¢,, leading to a similar model as G-
SphereNet (Luo & Ji, 2022). For efficiency, we choose
to conduct experiments on random molecular geometry
generation, avoiding encoding large binding sites. Follow-
ing G-SphereNet, we train models on 3D molecules from

QM9 (Ramakrishnan et al., 2014) and evaluate the generated
molecular geometries. The evaluation metrics are validity
of generated molecules and the Maximum Mean Discrep-
ancy (MMD) (Gretton et al., 2012) distances of bond length
distributions between generated 3D molecules and training
3D molecules. The bond length distributions of molecules
generated by different models and training molecules are
illustrated in Figure 5, Appendix C.

The comparison is summarized in Table 2. It shows that
adding dependencies improves the generation performance
consistently. Our sequential generation method performs
best, demonstrating that it can model the distribution of
molecular geometries more effectively by capturing the un-
derlying dependencies among the variables. Since the loss
for atom placement (Eq. (18)) can be divided into losses
w.r.t. atom type, distance, angle, and torsion, respectively,
we can further analyze the modeling ability for these vari-
ables by observing their corresponding training losses. We
illustrate the comparison of training losses in Figure 4. By
observing the loss for each variable, we can conclude that
adding dependencies can help to fit the training data better.

5. Conclusions

In this work, we propose GraphBP, a machine learning ap-
proach to generate 3D molecules for target protein binding.
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Figure 4. Comparison of training losses between our method and ablation models.

GraphBP is capable of capturing 3D geometric structures
and chemical interactions of protein-ligand complexes, plac-
ing atoms without discretizing the 3D space, and preserving
the equivariance property during generation. GraphBP is
shown to be effective and outperforms recent baselines sig-
nificantly in generating 3D molecules that bind strongly to
target proteins.
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A. The Detailed Derivation of L,

The detailed derivation of L, as introduced in Eq. (18), is as follows.

Lop=— long (at, dy, 0y, got|C(t71)> (19)
t=1
= _ilogp (ahdtueh@t‘c(t_l)) (20)
t=1
=- z": log p (at|c(t_1)) D (dt\c(t_1)7 at) D (9t|C(t_1)» a, dt) D (SOt|C(t_1), ay,dy, 9t> 2n
t=1

__y (--1) (--1) (--1) (--1)
;(mgp(atwt D) +logp (4D, ar) +logp (01C D, ar, i) +logp (w1l V. ar,di.6;) )

(22)

[I>

(1ogp (&tIC(t’”) +logp (dt\C(H), at) +logp (&\C(H), ar, dt) +logp (%IC(H), az,dy, 01&))

y

Klog (PD (pz, (20))) + log (’PD (;) D) + <log (pza (1)) +1log (‘Jlg o

+ <log (v20 (7)) +10g< >) + <log (b2, (7)) + log <‘01f ))} .

PD(+) is used to represent the product of elements across dimensions of a vector, since z¢ and o¢ are both p-dimensional
vectors. Eq. (24) is obtained from Eq. (23) by the property of autoregressive flow models, as described in Eq. (1). Latent

variables z¢, z¢, zf and z{ can be computed by the inverted mappings of Eq. (9) and Eq. (11), such as z{ =

n

~

n

t=1

0
Oy

dt*ll(ti
od - DPZy»

Pz4> PZ,» and pz,, are prior Gaussian distributions.

Since we apply dequantization technique to obtain a; from a; during training, the first term in Eq. (23) maximizes the
log-likelihood of p (dt|C (t’l)) instead of p (at IC (t’l)). We have to use this dequantization technique since flow model
used in our framework does not apply to discrete data directly. Note that we can simply perform argmax operation to convert
a; back to a;. Hence, such dequantization can be viewed as an operation similar to data augmentation during training. Such
dequantization technique is widely used and shown to be effective by existing molecule generation methods (Madhawa
et al., 2019; Shi et al., 2019; Liu et al., 2021b).

B. Dataset Details

There are totally 27 atom types for ligands; they are B, C, N, O, F, Mg, Al, Si, P, S, Cl, Sc, V, Fe, Cu, Zn, As, Se, Br, Y, Mo,
Ru, Rh, Sb, I, W, and Au. For binding sites, there are 19 possible atom types, including C, N, O, Na, Mg, P, S, CL, K, Ca,
Mn, Co, Cu, Zn, Se, Cd, I, Cs, and Hg.

C. More Experimental Results

The bond length distributions of molecules generated by different models and training molecules are compared in Figure 5.
We can observe that adding dependencies among variables helps to improve the modeling ability. Our sequential generation
strategy outperforms ablation variants consistently.
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Figure 5. Visualization of bond length distributions of generated molecules and training molecules.



