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Abstract—This paper introduces the Ninth Dialog System
Technology Challenge (DSTC-9). This edition of the DSTC
focuses on applying end-to-end dialog technologies for four
distinct tasks in dialog systems, namely, 1. Task-oriented dialog
Modeling with unstructured knowledge access, 2. Multi-domain
task-oriented dialog, 3. Interactive evaluation of dialog, and 4.
Situated interactive multi-modal dialog. This paper describes the
task definition, provided datasets, baselines and evaluation set-up
for each track. We also summarize the results of the submitted
systems to highlight the overall trends of the state-of-the-art
technologies for the tasks.

I. INTRODUCTION

The Dialog System Technology Challenge (DSTC) is a one
of the leading series of research competitions in the space
of dialog systems. Since the inception in 2013, DSTC has
been accelerating the development of dialog technologies, by
bringing the leading researchers and engineers together to
solve important problems in dialog systems. The challenge
has been evolving every year to cater the demand and the
interest of the dialog community to foster the development of
technology.

The first Dialog System Technology Challenge [1] used
human-to-bot dialogs in the bus timetable domain. Dialog
State Tracking Challenges 2 [2] and 3 [3] used restaurant
reservation application which introduced more complicated
and dynamic dialog states. Dialog State Tracking Challenge
4 [4] and Dialog State Tracking Challenge 5 [5] moved to
tracking human-to-human dialogs in mono and cross-language
settings. From the sixth challenge [6], the DSTC has rebranded
itself as “Dialog System Technology Challenge” and organized
multiple tracks in parallel to address a wider variety of dialog
related problems. The tracks in DSTC-6 were focused on end-
to-end conversation modeling and dialog breakdown detection.
DSTC-7 [7] focused on developing end-to-end dialog technolo-
gies for noetic response selection [8], [9], grounded response
generation [10], and audio visual scene aware dialog [11].
More recently in DSTC-8 [12] the focus has been on diverse
set of four tracks including, multi-domain task completion,
predicting responses, audio visual scene-aware dialog and
schema-guided dialog state tracking.

Every author has equal contribution

For the ninth edition of the DSTC, we received nine track
proposals from the leading research organizations and top
universities. The proposals went through a formal peer review
process focusing on each task’s potential for, (a) impact to
the community, (b) novelty of the task, (c) feasibility of
the proposal, and (d) potential participants. The DSTC-8
participants were also asked to provide their feedback on the
presented track proposals through a survey, and the responses
were also considered in the evaluation. Finally, we ended up
with the four main tracks including three newly introduced
tasks and one follow-up task from DSTC-8.

The track, Beyond Domain APIs: Task-oriented Conversa-

tional Modeling with Unstructured Knowledge Access (Track
1), aims to support frictionless task-oriented scenarios, where
the flow of the conversation does not break when users
have requests that are out of the scope of APIs/DB but
potentially are already available in external knowledge sources.
Track 2, Multi-domain Task-oriented Dialog Challenge II, is
a continuation of last year, and focuses on end-to-end multi-
domain task completion dialog and cross-lingual multi-domain
dialog state tracking. The track 3 of this year, Interactive

Evaluation of Dialog, aims to take the first step in expanding
dialog research beyond datasets and challenges the participants
to develop dialog systems that can converse effectively in
interactive environments with real users. SIMMC: Situated

Interactive Multi-Modal Conversational AI (track 4) is aimed
at laying the foundations for the real-world assistant agents
that can handle multi-modal inputs, and perform multi-modal
actions.

The following sections describe the details of each track.

II. TRACK 1 - BEYOND DOMAIN APIS - TASK-ORIENTED

CONVERSATIONAL MODELING WITH UNSTRUCTURED

KNOWLEDGE ACCESS

A. Track Overview

Most prior work on task-oriented dialog systems has been
restricted to a limited coverage of domain APIs. However,
users often have domain related requests that are not cov-
ered by the APIs. This challenge track aims to expand the
coverage of task-oriented dialog systems by incorporating
external unstructured knowledge sources. There are three main

http://arxiv.org/abs/2011.06486v1
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TABLE I: Summary of Track 1 tasks

Task #1 Knowledge-seeking Turn Detection

Goal To decide whether to continue existing flow or trigger
the knowledge access branch for a given utterance
and dialog history

Input Current user utterance, dialog context, and domain
API and knowledge sources

Output Binary class (requires knowledge access or not)
Task #2 Knowledge Selection

Goal To select proper knowledge sources from the domain
knowledge-base given dialog context at each turn
with knowledge access

Input Current user utterance, dialog context, and the entire
set of knowledge candidates

Output Ranking of top-k knowledge candidates
Task #3 Knowledge-grounded Response Generation

Goal To generate a system response for a given triple
of input utterance, dialog context, and the selected
knowledge sources

Input Current user utterance, dialog context, and selected
knowledge sources

Output Generated system response

TABLE II: Statistics of the Track 1 data sets

# total # # knowledge
Source Split dialogs instances seeking turns

MultiWOZ
Train 7,190 71,348 19,184
Valid 1,000 9,663 2,673
Test 977 2,084 977

SF
Written 900 1,834 900
Spoken 107 263 104

tasks in this track as introduced in [13]: knowledge-seeking
turn detection, knowledge selection, and knowledge-grounded
response generation (Table I).

B. Data

This challenge track uses two different data sets (Table II).
The first data is an augmented version of MultiWOZ 2.1 [14]
that includes newly introduced knowledge-seeking turns in the
MultiWOZ conversations. The data augmentation was incre-
mentally done by the crowdsourcing tasks described in [13].
A total of 22,834 utterance pairs were newly collected based
on 2,900 knowledge candidates from the FAQ webpages about
the domains and the entities in MultiWOZ databases. For the
challenge track, we divided the whole data into three subsets:
train, validation and test. The first two sets were released in
the development phase along with the ground-truth annotations
and human responses for participants to develop their models.

In the evaluation phase, we released the test split of the aug-
mented MultiWOZ 2.1 and the other conversations collected
from scratch about touristic information for San Francisco. To
evaluate the generalizability of models, the new conversations
cover knowledge, locale and domains that are unseen from the
train and validation data sets. In addition, this test set includes
not only written conversations, but also spoken dialogs to
evaluate system performance across different modalities [15].
All the backend resources for this data collection were also
released, which includes 9,139 knowledge snippets and 855
database entries for San Francisco.

TABLE III: Objective evaluation metrics for the Track 1 tasks

Task Metrics
Task #1 Precision/Recall/F-measure
Task #2 MRR@5, Recall@1, Recall@5
Task #3 BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR

ROUGE-1, ROUGE-2, ROUGE-L

C. Evaluation Criteria

Each participating team submitted up to five system outputs
each of which contains the results for all three tasks on the
unlabeled test instances. We first evaluated each submission
using the task-specific objective metrics (Table III) by com-
paring to the ground-truth labels and responses. Considering
the dependencies between the tasks in the pipelined architec-
ture, the final scores for knowledge selection and knowledge-
grounded response generation are computed by considering the
first step knowledge-seeking turn detection recall and precision
performance, as follows:

f(x) =

{

1 if x is a knowledge-seeking turn,
0 otherwise

f̃(x) =

{

1 if x is predicted as a knowledge-seeking turn,
0 otherwise

Sp(X) =

∑

xi∈X

(

s(xi) · f(xi) · f̃(xi)
)

∑

xi∈X f̃(xi)
,

Sr(X) =

∑

xi∈X

(

s(xi) · f(xi) · f̃(xi)
)

∑

xi∈X f(xi)
,

Sf (X) =
2 · Sp(X) · Sr(X)

Sp(X) + Sr(X)
, (1)

where s(x) is the knowledge selection or response generation
score in a target metric for a single instance x ∈ X .

Then, we aggregated a set of multiple scores across different
tasks and metrics into a single overall score computed by the
mean reciprocal rank, as follows:

Soverall(e) =
1

|M |

|M|
∑

i=1

1

ranki(e)
, (2)

where ranki(e) is the ranking of the submitted entry e in the
i-th metric against all the other submissions and M is the
number of metrics we considered.

Based on the overall objective score, we selected the finalists
to be manually evaluated by the following two crowd sourcing
tasks:

• Appropriateness: This task asks crowd workers to score
how well a system output is naturally connected to a given
conversation on a scale of 1-5.

• Accuracy: This task asks crowd workers to score the
accuracy of a system output based on the provided
reference knowledge on a scale of 1-5.

In both tasks, we assigned each instance to three crowd
workers and took their average as the final human evaluation
score for the instance. Those scores were then aggregated
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TABLE IV: Objective evaluation results of the best entry from
each team in the featured metrics for the Track 1 tasks. Team
0 is the baseline. Bold denotes the best result in each column
and ∗ indicates the finalists.

Task#1 Task#2 Task#3
Team F1 R@1 BLEU-1 METEOR ROUGE-L
0 0.9455 0.6201 0.3031 0.2983 0.3039
1 0.9721 0.8255 0.3368 0.3342 0.3364
2 0.9644 0.8584 0.3338 0.3322 0.3330
3∗ 0.9911 0.9013 0.3879 0.3914 0.3885
4 0.8998 0.6950 0.3025 0.3001 0.2990
5 0.9428 0.7055 0.3218 0.3266 0.3174
6 0.9838 0.8531 0.3371 0.3341 0.3362
7∗ 0.9702 0.8988 0.3752 0.3854 0.3702
8 0.9530 0.7403 0.3135 0.3097 0.3119
9 0.9242 0.7931 0.3154 0.3159 0.3101
10∗ 0.9726 0.9158 0.3684 0.3719 0.3692
11∗ 0.9675 0.8702 0.3743 0.3854 0.3797
12 0.9540 0.8011 0.3411 0.3526 0.3401
13∗ 0.9819 0.8434 0.3787 0.3902 0.3619
14 0.9252 0.6466 0.3019 0.2974 0.3003
15∗ 0.9803 0.8975 0.3779 0.3931 0.3765
16 0.9549 0.7327 0.3351 0.3334 0.3364
17∗ 0.9839 0.8734 0.3699 0.3724 0.3687
18∗ 0.9635 0.8994 0.3806 0.3864 0.3726
19∗ 0.9886 0.9235 0.3803 0.3869 0.3738
20∗ 0.9711 0.8628 0.3619 0.3637 0.3535
21∗ 0.9396 0.8269 0.3551 0.3594 0.3576
22 0.7803 0.2831 0.1792 0.1583 0.1852
23∗ 0.9618 0.8959 0.3534 0.3565 0.3519
24 0.3471 0.0017 0.0835 0.0796 0.0866

over the entire test set following Equation 1, i.e., weighted
by the knowledge-seeking turn detection performance. Finally,
we used the average of the Appropriateness and Accuracy
scores to determine the official ranking of the systems in the
challenge track.

D. Results

We received 105 entries in total submitted from 24 partici-
pating teams. To preserve anonymity, the teams were identified
by numbers from 1 to 24, while our baseline [13] was marked
as team 0. Table IV shows the objective evaluation results of
the best entry from each team in the featured metrics. The full
scores with all the submitted entries and the other metrics are
available on the track repository1. Most entries outperformed
the baseline in all three tasks. In particular, the best entry from
Team 3 achieved over 99% F-measure for knowledge-seeking
turn detection, and also the highest scores in the BLEU and
ROUGE variants for the response generation task. On the other
hand, Team 19 was the best in the knowledge selection metrics
and Team 15 was better than all the other teams in METEOR
for generation. We calculated the overall score (Equation 2)
of each entry and selected 12 finalists, corresponding to the
best entry from each of the top 12 teams.

Table V shows the final ranking of the Track 1 participating
teams based on the human evaluation scores of the finalist
entries. The top three teams (Team 19, 3 and 10) commonly
used ensemble of large-scale pre-trained language models in

1https://github.com/alexa/alexa-with-dstc9-track1-dataset

TABLE V: Human evaluation results for the Track 1 finalists

Rank Team Entry Accuracy Appropriateness Average
Ground-truth 4.5930 4.4513 4.5221

1 19 2 4.3917 4.3922 4.3920
2 3 1 4.3480 4.3634 4.3557
3 10 0 4.3544 4.3201 4.3373
4 15 3 4.3793 4.2755 4.3274
5 17 0 4.3360 4.3076 4.3218
6 7 4 4.3308 4.2989 4.3149
7 18 3 4.3309 4.2859 4.3084
8 13 3 4.3763 4.2360 4.3061
9 23 0 4.3082 4.2665 4.2874
10 11 3 4.2722 4.2619 4.2670
11 20 4 4.2283 4.2486 4.2384
12 21 3 4.1060 4.1560 4.1310

Baseline 3.7155 3.9386 3.8271

their best entries. Team 19 won the challenge track with the
highest scores for both Accuracy and Appropriateness, most
likely because of their better performance in the knowledge
selection task (as in the objective evaluation results). To
compare the importance of each task towards end-to-end
performance, we calculated the Spearman’s rank correlation
coefficient of the ranked lists of all the entries in every
pair of objective and human evaluation metrics. As a result,
Recall@1 for the knowledge selection task shows a strong
correlation with the averaged human evaluation ranking at
0.8601, which is significantly higher than 0.7692 and 0.6503
with F-measure for the knowledge-seeking turn detection and
BLEU-1 for the response generation, respectively. This implies
that the knowledge-selection is a key task to improve end-to-
end performance.

III. TRACK 2 - MULTI-DOMAIN TASK-ORIENTED DIALOG

CHALLENGE II

We provide two tasks in the multi-domain task-oriented
dialog setting. One is the end-to-end task-oriented dialog task
aiming to solve the complexity of building end-to-end dialog
systems. The other is cross-lingual dialog state tracking (DST)
to address the language adaption problem for the DST task.

A. End-to-end Task-oriented Dialog Task

This task is a continuation of last year at DSTC8 [16].
Participants will develop an end-to-end task-oriented dialog
system that takes natural language as input and generates nat-
ural language response as output in the travel planning setting.
Both the evaluation result of last year’s challenge [17] and
empirical analysis of models in ConvLab [18] show that the
best rule-based pipeline systems outperform systems assem-
bled using state-of-the-art component-wise machine learning
models. From the results, we’ve also observed a discrepancy
between the performance of component-wise models using
corpus-based evaluation and that of the entire system using
the end-to-end evaluation. These findings are consistent with
the landscape of dialog development technology stacks in
the industry. However, interestingly, the winning team built
their model based on GPT-2 [19], and achieved significant
improvement over other teams with regards to success rate, un-
derstanding score, and response score at the human evaluation

https://github.com/alexa/alexa-with-dstc9-track1-dataset
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phase. Meanwhile, by using similar model training paradigms,
SOLOIST [20] and SimpleTOD [21] shortly achieved top
performance in the MultiWOZ leaderboard by leveraging GPT-
2 [22].

This year, we continue with the end-to-end task-oriented
dialog task, aiming to promote the technology of building
end-to-end dialog systems one step further. Like last year,
participants are encouraged to explore all possible approaches,
and there is no restriction on dialog system architecture.

1) Data: Participants are expected to build dialog systems
based on MultiWOZ 2.1 [14], a multi-domain dialog dataset
spanning 7 distinct domains containing over 10,000 dialogs
under the travel planning setting. Compared with MultiWOZ
2.0 [23], MultiWOZ 2.1 re-annotated states to fix the noisy an-
notation and incorporated user dialog act annotation. Although
the dialog system is evaluated under MultiWOZ 2.1, partici-
pants can leverage any public datasets, pre-trained models, or
other resources to build the dialog system.

2) Evaluation Criteria: ConvLab-2 [24] is employed as the
platform for dialog development and evaluation. As the suc-
cessor of ConvLab [25], ConvLab-2 provides a user simulator
and evaluator for MultiWOZ 2.1 so that the participants can ef-
fectively run offline experiments and evaluations. Specifically,
we offer two evaluation approaches:

a) Automatic Evaluation: The dialog system is evalu-
ated via conversing with an end-to-end user simulator. The
simulator is constructed by assembling a BERT-based natural
language understanding model [26] , an agenda-based user
simulator [27] and a rule-based natural language generation
module. A dialog is successful only if all requested slots are
filled with grounded values in the database, and the booking
is successful. We report metrics including success rate, book
rate, number of turns for each dialog, and precision/recall/F1
score for slot prediction.

b) Human Evaluation: In human evaluation, Amazon
Mechanic Turkers communicate with the dialog systems via
natural language, judge whether the dialog is successful, and
provide scores based on language understanding correctness
and response appropriateness on a 5 point Likert-scale. Since
MTurkers do not directly access the back-end database, we
also report the success rate with grounding after verifying
whether the requested slot values returned by the dialog
systems match the database record. We take the average value
of success rate with grounding and without grounding as the
final ranking.

3) Results: As per our submission policy, each team is
allowed to submit up to 5 models. We received 34 models
in total from 10 teams. Table VI lists the automatic evaluation
result for the best models of each team. We filtered out low-
performance models based on the automatic evaluation result
while keeping the best model for each team and sent the
remaining models for human evaluation. With this process,
21 models were evaluated in human evaluation, with the
performance of each team’s best model listed in Table VII.

Team 1 achieves the top 1 performance in both automatic
and human evaluation by constructing an end-to-end dialog
system with the pre-trained dialog generation model PLATO-2
[28]. This model generates the dialog state, system action, and

TABLE VI: Automatic Evaluation Result (Best Submissions)

Team SR CR BR Inform P/R/F1 Turn S/A

1 93 95.2 94.6 84.1/96.2/88.1 12.5/12.7
2 91.4 96.9 96.2 80.2/97.3/86.0 15.3/15.7
3 90.8 94.4 96.7 81.0/95.4/85.9 13.4/13.6
4 89.8 94.6 96.3 72.4/96.0/80.1 15.1/15.8
5 83.3 88.5 89.1 81.1/90.3/83.5 13.5/13.8
6 67.7 88.5 90.8 70.4/85.6/75.2 12.8/14.2
7 57.8 87.1 85 68.7/81.6/72.6 13.7/16.4
8 52.6 66.9 66.7 57.5/80.7/64.8 13.2/22.5
9 44.4 50 26.5 57.9/64.5/58.9 12.2/14.6

10 21.4 40.7 0 55.4/60.0/54.1 11.0/25.9
Baseline 85 92.4 91.4 79.3/94.9/84.5 13.8/14.9

SR: Success Rate, CR: Complete Rate, BR: Book Rate, Inform P/R/F1: Prec./Recall/F1
score of slots prediction, Turn S/A: Turns for successful and all dialogs, respectively.

TABLE VII: Human Evaluation Result (Best Submissions)

Team SRa SRwg SRog Under. Appr. Turn Rank

1 74.8 70.2 79.4 4.54 4.47 18.5 1
2 74.8 68.8 80.8 4.51 4.45 19.4 1
7 72.3 62 82.6 4.53 4.41 17.1 3
6 70.6 60.8 80.4 4.41 4.41 20.1 4
3 67.8 60 75.6 4.56 4.42 21 5
4 60.3 51.4 69.2 4.49 4.22 17.7 6
5 58.4 50.4 66.4 4.15 4.06 19.7 7
9 55.2 43.2 67.2 4.15 3.98 19.2 8
8 35 26 44 3.27 3.15 18.5 9

10 19.5 6 33 3.23 2.93 18.8 10
Baseline 69.6 56.8 82.4 4.34 4.18 18.5 N/A
SRa: average success rate, SRwg: success rate w/ grounding, SRog: success rate
w/o grounding, Under.: understanding score, Appr.: appropriateness score.

system response simultaneously, given the dialog context. The
dialog state is used as the constraint for database query, and the
system action is then refreshed according to the queried results
to re-generate the final system response. Team 2 achieves the
same ranking as Team 1 in the human evaluation using a
similar hybrid end-to-end neural model. It borrows idea from
[20] and [29], uses GPT-2 as the backend for pre-training
and fine-tuning and add various pre/post-processing modules
to improve model generalization ability. An additional fault
tolerance mechanism is also added to correct errors.

4) Summary: Compared with the challenge results at
DSTC8, there is a trend of shifting from building dialogs by
assembling component-wise modules to end-to-end learning.
In DSTC8, out of 11 teams with valid submissions, 1 team
uses GPT-2 based models, 1 team uses word DST + word
policy, with the rest 9 team uses component-wise models.
This year, out of 10 teams, 8 teams used the end-to-end
learning mechanism by leveraging transformer-based models.
The top three systems in both automatic evaluation and human
evaluation are all built using transformer-based end-to-end
learning, and they have achieved much better performance in
human evaluation than the systems at DSTC82.

B. Cross-lingual Dialog State Tracking Task

We introduce the task of cross-lingual dialog state tracking,
requiring the participants to build a dialog state tracker for

2The success rate in DSTC8 human evaluation is success rate w/o ground-
ing.
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the target language with a training set in the source resource
language and a small development set in the target language.
Based on newly proposed large scale multi-domain task-
oriented dialog datasets, MultiWOZ 2.1 [14] and CrossWOZ
[30], we offer two sub-tasks: 1) cross-lingual transfer from
English to Chinese using MultiWOZ 2.1 dataset and 2) cross-
lingual transfer from Chinese to English using CrossWOZ
dataset.

Following a similar scheme as in DSTC-5 [5], we provided
machine translations of the original dataset. We collected
500 new dialogs in the target language as the test set. The
performance of each dialog state tracker is evaluated on the
test set and compared with reference annotation.

1) Data: Compared with previous datasets [5], [31], [32]
for cross-lingual transfer learning in task-oriented dialog, Mul-
tiWOZ 2.1 and CrossWOZ are much larger. MultiWOZ 2.1
contains over 10,000 dialogs, and CrossWOZ contains over
6,000 dialogs. They are also more challenging due to the
multi-domain setting. For each sub-task, we prepared data in
a similar way: a) collected 500 new dialogs in the source
language, b) translated the ontology to the target language,
and c) translated the original dialogs and the new dialogs. We
released 250 new dialogs without any annotation as a public
test set and reserved the other 250 dialogs as a private test set.

a) Test Data Collection: To collect new dialogs, we
adapted the data collection website of CrossWOZ where paired
workers can converse synchronously and make annotations.
New user goals were generated by the goal generator from
ConvLab-2. Following the Wizard-of-Oz setting, one worker
acts as the user who needs to accomplish the allocated goal,
and the other acts as the system that uses the database to
provide information. During the conversation, both sides need
to annotate the dialog acts of their utterances, and the system
should also annotate the dialog states that are queries over the
database.

b) Ontology Translation: We extracted the ontology
from dialog act and dialog state annotations of both the
original and test datasets. Then we used Google Translate to
translate them to the target language. For some slots that may
not be faithfully translated, such as “name” and “address”, we
employed human translators to correct the translations. This
process is vital to ensure the translation consistency of the
same values in different contexts.

c) Dialog Translation: To make sure that the translations
of values in a dialog are faithful to the ontology dictionary, we
first replaced the values that appeared in the dialog with their
translations in the dictionary. Then we used Google Translate
to translate the resulting code-switching sentences from the
original dataset and test set. In this way, translated dialogs
and corresponding annotations do not conflict. 250 dialogs
were sampled from the original dataset as the development set.
Human translators were employed to proofread the translations
of the development and test set.

2) Evaluation Criteria: We evaluate the performance of
the dialog state tracker using the following metrics: a) Joint
Goal Accuracy. This metric evaluates whether the predicted
dialog state is exactly equal to the ground truth. b) Slot
Accuracy. This metric evaluates whether each slot’s predicted

label is exactly equal to the ground truth, averaged over all
slots. c) Slot Precision/Recall/F1. These metrics evaluate the
overlap between the predicted labels and the ground truth
for non-empty slots, micro-averaged over dialog turns. Each
submission contains the predictions for the public test set and
the model that is used to make predictions for the private test
set. The results are averaged over the public and private test set.
The final ranking is solely based on the joint goal accuracy.

3) Results: The results of MultiWOZ (en→zh) and Cross-
WOZ (zh→en) sub-tasks are shown in Table VIII and IX
respectively. During the evaluation, we found that the Cross-
WOZ test data miss many “name” labels when the user accepts
the attraction/hotel/restaurant recommended by the system.
Therefore, we utilized the database search results and heuristic
rules to correct empty “name” labels and provided an updated
leaderboard for CrossWOZ in Table X. Both of the CrossWOZ
leaderboards are valid, but the updated one is preferred.

TABLE VIII: MultiWOZ Leaderboard (Best Submissions).

Team JGA SA Slot P/R/F1 JGA(pub/pri) Rank

1 62.37 98.09 92.15/94.02/93.07 62.70/62.03 1
2 62.08 98.10 90.61/96.20/93.32 63.25/60.91 2
3 30.13 94.40 87.07/74.67/80.40 30.53/29.72 3

BS 55.56 97.68 92.02/91.10/91.56 55.81/55.31 N/A
JGA: joint goal accuracy, SA: slot accuracy, Slot P/R/F1: slot precision/recall/f1,
pub/pri: public/private test set.

TABLE IX: CrossWOZ Leaderboard (Best Submissions).

Team JGA SA Slot P/R/F1 JGA(pub/pri) Rank

3 16.86 89.11 68.26/62.85/65.45 16.82/16.89 1
1 15.28 90.37 65.94/78.87/71.82 15.19/15.37 2
2 13.99 91.92 72.63/78.90/75.64 14.41/13.58 3

BS 7.21 85.13 55.27/46.15/50.30 7.41/7.00 N/A

TABLE X: CrossWOZ Leaderboard (Updated Evaluation, Best
Submissions).

Team JGA SA Slot P/R/F1 JGA(pub/pri) Rank

2 32.30 94.35 81.39/82.25/81.82 32.70/31.89 1
1 23.96 92.94 74.96/83.41/78.96 23.45/24.47 2
3 15.31 89.70 74.78/64.06/69.01 14.25/16.37 3

BS 13.02 87.97 67.18/52.18/58.74 13.30/12.74 N/A

We adapted SUMBT [33] as the baseline model and used
the translated training set of the original dataset to train for
both sub-tasks. We have received 10 models for MultiWOZ
(en→zh) and 8 models for CrossWOZ (zh→en) from the
same 3 teams. We briefly introduce their best models here.
Team 1 incorporated a four-class state operation prediction
task into CHAN model [34]. Team 2 modified SOM-DST
[35] and used ontology and some handcraft rules to post-
process the generated values. Team 3 formulated the dialog
state tracking as a sequence generation problem and used
mBART to generate pairs of slot names and slot values. All
of their best models were trained using the translated data in
the target language.

4) Summary: To our surprise, all the best models are
trained on monolingual machine translated data instead of
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both the original data and translations. Team 2 and 3 even got
negative results when training XLM/mBART on the original
data and the translations simultaneously. The performance of
“Translate-Train” partially depends on the machine translator,
which may be why team 1 and 2 augment the data by using
another translator to translate the original dataset. Team 1 and
2 modified DST models that are state-of-the-art on English
MultiWOZ 2.1 dataset and got strong performance on Chinese
MultiWOZ 2.1, verifying these models’ language portability.

IV. TRACK 3 - INTERACTIVE EVALUATION OF DIALOG

A. Track overview

The aim of dialog research is to create systems that can
be effectively used in interactive settings by real users [36].
Despite this, the majority of research is performed on static
datasets. For example, the task of response generation is typi-
cally done by producing a response for a static dialog context
[37]. This track is intended to move dialog research beyond
datasets and evaluate models in interactive environments with
real users.

This track consists of two sub-tasks: (1) static evaluation
and (2) interactive evaluation. The first subtask challenges
participants to build response generation models which are
evaluated in a static manner, using the Topical-Chat corpus
[38]. The second subtask aims to extend dialog models beyond
datasets and assess them in an interactive setting with real
users, using DialPort [39]. In in the first subtask, models must
generate a response to a fixed dialog context. In contrast in the
second subtask, they must have a back-and-forth interaction
with a real user. Through the two subtasks, this track chal-
lenges participants to take strong response generation models
and develop strategies of making them effective in interactive
settings.

B. Data

Participants in this track were free to train on any pub-
licly available data or use any pre-trained models. The static
evaluation in the first subtask was carried out on the Topical-
Chat corpus [38]. Topical-Chat is a large collection of human-
human knowledge-grounded open-domain conversations that
consists of 11,319 dialogs and 248,014 utterances. For each
conversational turn, several relevant facts are provided. Models
must leverage these facts and generate a response. This dataset
was chosen because it is the largest, knowledge-grounded
open-domain dataset presently available, to our knowledge.
Additionally, the choice of usable facts provides a mechanism
for systems to tailor responses to a specific user’s interests.

Since we continuously performed human evaluation over the
duration of the challenge and used reference free evaluation
metrics [40], it was not strictly necessary for models to be
trained on the Topical-Chat corpus. A strong pre-trained dialog
model may perform well on the first subtask, despite not
training on the corpus.

The second subtask was not tied to a dataset. The interactive
evaluation was carried out on DialPort3 [39] with real users
recruited through Facebook Advertising.

3http://dialog.speech.cs.cmu.edu:3000/

C. Evaluation Criteria

The first subtask was evaluated using ongoing (1) human
evaluation and (2) three automatic metrics: METEOR [41],
BERTscore [42] and USR [40]. Human evaluation was car-
ried out on Amazon Mechanical Turk with the annotation
questionnaire used to collect the FED dataset [43]. Over the
duration of the challenge, we carried out evaluation on the
Topical-Chat frequent validation set. For human evaluation,
30 context-response pairs were sampled and each one was
labeled by 3 annotators. For the final evaluation, we carried
out automatic evaluation on the frequent test set and perform
human evaluation on 100 randomly sampled context-response
pairs. For the final evaluation, the 100 dialog contexts used
for evaluation were consistent across the different systems.

The evaluation for the second subtask consists of (1)
collecting dialogs through conversations with real users on
DialPort and (2) post-hoc assessment of the collected dialogs.
Participants submitted dialog models (via an API) to DialPort.
Real users were recruited through Facebook Advertising to
interact with the submitted dialog systems. After gathering
a sufficient number of conversations, we performed post-hoc
assessment of the dialogs with the FED metric [43] and human
evaluation on Amazon Mechanical Turk with the annotation
questionnaire used to collect the FED dataset [43].

Throughout the challenge, we aimed to collect at least
100 conversations for each submitted system discounting any
dialogs with offensive terms (e.g., curse words, racist phrases).
For each system, 100 conversations were evaluated with the
FED metric and on Amazon Mechanical Turk, with 3 annota-
tors labeling each dialog.

For the final submission, we gather dialogs for all systems
over the same time period. Ultimately, given a Facebook
Advertising budget of $2500 and 11 systems (including two
baselines), we obtained 4651 conversations (after removing
offensive dialogs) with a total of 41,640 turns. We consider
only the conversations that are at least four turns in length
(total of 2960) for the final post-hoc assessment. For each
system, we carry out human evaluation with 200 conversations
of suitable length. Throughout the challenge, all individuals
who interact with the system on DialPort do so for free, of their

own volition, thereby avoiding common problems observed
with paid users [44].

D. Results

The challenge received 33 submissions to the first subtask
and 9 submissions to the second subtask.

Table XI shows the results of the static evaluation on
the Topical-Chat corpus [38], for the 10 best performing
systems according to the human evaluation. All of the top
10 systems used either pre-trained models or additional data,
highlighting the importance of pre-training for open-domain
response generation. This observation aligns with previous
research, which has seen strong performance in open-domain
response generation through the use of large-scale pre-training
[45], [46].

In addition to performing ongoing human evaluation
throughout the challenge, we assess systems in the first subtask

http://dialog.speech.cs.cmu.edu:3000/


7

TABLE XI: Results for subtask 1. For brevity, we only show
the top 10 submissions (out of 33) according to the human
evaluation. This table only reports the overall USR metric
and the overall impression of the response from the human
evaluation. The full evaluation results may be found here.

System METEOR BERTscore USR Human Rank

1 9.06 84.91 4.26 4.281 1
2 13.11 86.17 4.59 4.280 1
3 6.83 84.36 3.86 4.280 1
4 8.96 85.15 4.26 4.260 4
5 12.37 86.21 4.83 4.253 5
6 12.31 86.32 4.73 4.231 6
7 13.96 86.84 4.48 4.229 6
8 12.51 85.91 4.45 4.229 6
9 12.14 85.91 4.46 4.216 9

10 10.87 85.65 4.53 4.210 10

TABLE XII: Results for subtask 2. This table reports for
each system: the overall FED metric, the overall impression
of the dialogs from the human evaluation, as well as the
average number of dialog turns. The full results be found here.
System 6 and 11 are our DialoGPT and Transformer baselines,
respectively.

System Avg. Turns FED Human Rank

1 12.44 4.97 4.15 1
2 13.47 4.79 4.14 2
3 8.89 4.61 4.08 3
4 9.36 4.68 4.03 4
5 9.82 4.53 3.93 5
6 8.75 4.72 3.87 6
7 8.51 4.41 3.85 7
8 7.67 4.30 3.85 7
9 6.53 4.64 3.83 9
10 7.35 4.80 3.69 10
11 5.80 3.69 3.60 11

using three evaluation metrics. METEOR [41] and BERTscore
[42], are referenced evaluation metrics that compare a gen-
erated output to a ground-truth response. In contrast, USR
[40] is a reference free evaluation metric that uses pre-trained
models and self-supervised training objectives to estimate the
quality of a response. Though none of the evaluation metrics
is a perfect predictor of the final ranking, we find that USR
better correlates with the system-level human performance
(Spearman: 0.35, p < 0.05) than either METEOR (Spearman:
0.23, p > 0.05) or BERTscore (Spearman: 0.22, p > 0.05).
The relatively low system-level correlation highlights the im-
portance of performing ongoing human evaluation throughout
the challenge.

The poor performance of automatic metrics, may in part be
a consequence of the fact that several submissions did not fine-
tune on the Topical-Chat corpus and instead relied on open-
domain response generation capabilities learned through large-
scale pre-training. As such, while the responses were favored
by human annotators - the automatic metrics penalized them
for either not having high word-overlap with the ground truth
(METEOR, BERTscore) or not resembling the utterances in
the Topical-Chat corpus (USR).

The results for the second subtask are shown in Table XII.
System 6 is our DialoGPT baseline [45], fine-tuned on the

Topical-Chat corpus without knowledge grounding. System 11
is our Transformer baseline which was trained on the Topical-
Chat corpus and uses tf-idf sentence similarity to retrieve
relevant knowledge at inference time. The best performing
model, System 1, leverages large-scale pre-training in addition
to strategies for producing more diverse responses. This system
achieved first place in both subtasks: System 1 in Table XII
corresponds to System 2 in Table XI.

FED [43], which is an unsupervised evaluation metric for
interactive dialog is shown to be a moderate predictor of the
final ranking with a system-level Spearman correlation of 0.49
(p = 0.13), though it correctly predicts the top two systems.
We also note that the average number of turns for a particular
system is a strong indicator of its quality here (Spearman: 0.94,
p < 0.01). Real users are more inclined to interact with a better
system, making it an important metric for assessing systems
in interactive settings [47].

While many of the submissions in the first subtask perform
similarly, the scores in Table XII are much more varied. This
signifies that interactive evaluation more exhaustively tests
the capabilities of systems and is therefore a more indicative
measure of a system’s capabilities. This observation has been
shown by prior work [43], when analyzing dialogs from Meena
[46].

The Interactive Evaluation of Dialog track demonstrates
both the feasibility and the importance of evaluating dialog
systems in interactive settings with real users. We show
that with an advertising budget of $2500, we collect more
than 4000 dialogs on DialPort (2960 dialogs with at least 4
turns). The results of interactive evaluation are more varied
(Table XII) suggesting that back-and-forth interactions with
real users are challenging to dialog systems and that interactive
evaluation is a better reflection of a system’s capabilities.

V. TRACK 4 - SIMMC: SITUATED INTERACTIVE

MULTI-MODAL CONVERSATIONAL AI

A. Track overview

The SIMMC challenge aims to lay the foundations for
the real-world assistant agents that can handle multimodal
inputs, and perform multimodal actions. We thus focus on
task-oriented dialogs that encompass a situated multimodal
user context in the form of a co-observed image or virtual
reality (VR) environment. The context is dynamically updated
on each turn based on the user input and the assistant action.
Moon et al. [48] provides more details on the datasets and the
models we provide.

B. Data

SIMMC contains about 13k human-to-human dialogs (total-
ing about 169k utterances). We chose shopping experiences—
specifically furniture and fashion—as the domain for the
SIMMC datasets because of the dynamic environment created
by these domains, where rich multimodal interactions happen
around visually grounded items.

SIMMC offers four key advantages over previous multi-
modal dialog datasets:

https://docs.google.com/spreadsheets/d/1FWRUA1MFwe0IWFpHnrVr6Pwo6VGU6gjLYNPHrq5Qs4w/
https://docs.google.com/spreadsheets/d/1FWRUA1MFwe0IWFpHnrVr6Pwo6VGU6gjLYNPHrq5Qs4w/edit#gid=1829761446
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TABLE XIII: Summary of each team’s results on Test-Std split, average of Furniture and Fashion (*Team 5 submitted results
only for Fashion). Best results from each team are shown. (1) API prediction via accuracy, perplexity and attribute accuracy,
and, (2) Response prediction via BLEU, recall@k (k=1,5,10), mean rank, and mean reciprocal rank (MRR). (3) Dialog State

Tracking (DST), via slot and intent prediction F1. ↑: higher is better, ↓: lower is better.

Teams
Subtask 1. API Prediction Subtask 2. Response Generation Subtask 3. DST

Acc↑ Perp↓ A.Acc↑ BLEU↑ r@1↑ r@5↑ r@10↑ Mean↓ MRR↑ Slot F1↑ Intent F1↑

Baseline 79.3 63.7 1.9 0.0061 0.145 7.2 19.8 27.3 39.2 62.4 62.1
Team 1 80.2 74.6 2.0 0.105 0.326 21.1 43.6 56.8 18.8 77.8 76.7
Team 2 82.5 69.8 1.8 0.082 0.074 2.5 8.3 13.6 47.7 - -
Team 3 79.4 73.2 - 0.128 0.381 26.3 50.3 61.8 15.5 79.1 78.1
Team 4 81.3 73.9 3.5 0.108 0.673 52.6 87.4 95.1 3.2 78.6 77.7
Team 5* - - - - 0.39 26.7 52.1 66.0 14.8 - -

1) SIMMC assumes a co-observed multimodal context be-
tween a user and an assistant and records the ground-
truth item appearance logs of each item that appears.
SIMMC tasks emphasize semantic processing of the
input modalities, while work in this area has traditionally
focused heavily on raw image processing.

2) Compared with the conventional task-oriented conversa-
tional datasets, the agent actions in the SIMMC datasets
span across a diverse multimodal action space (e.g. “ro-
tate”, “search”, and “add to cart”).

3) Agent actions can be enacted on both the object level (e.g.
changing the view of a specific object within a scene) and
the scene level (e.g. introducing a new scene or an image).

4) SIMMC emphasizes semantic processing. The proposed
SIMMC annotation schema allows for a more systematic
and structural approach for visual grounding of conversa-
tions, which is essential for solving challenging problems
in real-world scenarios.

Datasets were collected through the SIMMC Platform [49],
an extension to ParlAI [50] for multimodal conversational data
collection and system evaluation that allows human annotators
to each play the role of either the assistant or the user.

C. Evaluation Criteria

We present three subtasks primarily aimed at replicating
human-assistant actions in order to enable rich and interactive
shopping scenarios.
Subtask 1: Structural API Call Prediction focuses on
predicting the assistant action as an API call given the dialog
and the multimodal contexts as inputs. Since accuracy does
not account for the existence of multiple valid actions, we
use perplexity (defined as the exponentiation of the Shannon
entropy) alongside accuracy. To also measure the correctness
of the predicted action (API) arguments, we use attribute
accuracy compared to the collected datasets.
Subtask 2: Response Prediction examines the relevance of
the assistant response in the current turn. We evaluate in
two ways; (a) as a conditional language modeling problem,
where the closeness between the generated and ground-truth
response is measured through using BLEU-4 score, and, (b) as
a retrieval problem, where we measure the model performance
when retrieving ground-truth responses from a pool of 100
candidates (randomly chosen and unique to each turn).

Subtask 3: Dialog State Tracking (DST) aims to system-
atically track the dialog acts and the associated slot pairs
across multiple turns, as represented in the flexible ontology
developed to represent the SIMMC multimodal context. We
use the intent and slot prediction metrics (F1), inline with
prior work in DST.

D. Results

The challenge saw a total of 11 model entries from 5 teams
across the world, setting a new state-of-the-art in all three
subtasks (Table XIII).

For each subtask, we listed metrics in a priority order
and the entry with the most favorable performance on the
highest priority metric was considered to be a candidate winner.
Any entries within one standard error of this candidate’s
performance were also considered as candidates. Where there
were more than one candidate, as in subtask 1, we used the
next metric in the priority list and repeat this process until we
had a single winner.

The winner of the structural API call prediction subtask

(subtask 1) was a BART [51] model (BART-Large) from Team
4 that jointly predicted the dialog state (subtask 3), API call
(subtask 1) and response (subtask 2a) as single target given
the dialog history, multimodal context and user utterance. This
model was one of two runners up on subtask 2a, and the runner
up on subtask 3.

The winner of the response retrieval subtask (subtask

2b) was a BART-based Bi-encoder [52], [53], [54], also from
Team 4, whose weights were initialized from the jointly trained
BART model that won subtask 1. This model achieved a mean
reciprocal rank (MRR) of 0.67, a lead of 0.29 points ahead of
the runner up team on this subtask.

The winner of the response generation and DST subtasks

(subtask 2a and subtask 3) was an ensemble of GPT-2 [22]
models from Team 3 that were of differing sizes (large and
small) and used differing portions of the training and develop-
ment sets. Each GPT-2 model was independently trained on
the joint tasks—subtask 2a and subtask 3—using a simple
language model loss that optimized over the concatenated
dialog history, multimodal context, user utterance, dialog state
and response. Preprocessing over dialogue states was done
before training, and an ensemble beam search over each
model’s prediction was used to generate the final prediction.
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VI. CONCLUSIONS

This paper summarizes the four tracks of the ninth dialog
system technology challenges (DSTC9). Beyond Domain APIs
track expands the coverage of current task-oriented dialog
systems by incorporating external unstructured knowledge
sources. Multi-domain Task-oriented Dialog Challenge II, fo-
cuses on end-to-end multi-domain task completion dialog and
cross-lingual multi-domain dialog state tracking. Interactive
Evaluation of Dialog Track, expands dialog research beyond
datasets encourages to develop dialog systems that can con-
verse effectively in interactive environments. The Situated In-
teractive Multi-Modal Conversational AI track focuses on real-
world assistant agents that can handle multi-modal inputs, and
perform multi-modal actions. All the datasets and resources
introduced for every track will be publicly available even after
the challenge period to support future dialog system research.
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