


amplified when video recordings are a part of data acquisi-

tion and processing. The COSMOS research program has a

strong community outreach component. This is exemplified

by multi-year activities on running NSF REM and RET

programs where teachers from Harlem and other New York

City schools get training and participate in developing STEM

educational material for students in underprivileged schools

(https://www.cosmos-lab.org/outreach/, [4]). Our approach to

privacy is to integrate local communities into the data gov-

ernance process. We will develop technologies that enable

the communities to define and control data acquisition and

processing supported by edge computing and temporary data

storage paradigms.

B. Real-Time Interactions

The most important goal of smart city deployments is

to improve the safety of pedestrians and other participants.

Even in the most congested cities it is desirable to replace

human drivers with safer self-driven vehicles. This motivates

the concept of cloud-connected vehicles that interact with

city infrastructure to improve their ability to navigate, and

requires exceptionally low closed loop latencies associated

with security-critical real-time actions.

Real-Time for Safety-Critical Applications

Extracting intelligence that indicates a potential collision

and providing feedback to vehicles or pedestrians presents

computational and latency challenges. City street dynamics

are determined by vehicles travelling at velocities between 0

and 100 kilometers per hour (km/h). If we consider a vehicle

travelling at 10km/h, a typical speed of vehicles in congested

intersections, the vehicle is moving at approximately 3 meters

per second (m/s). If we divide 3m/s by the standard frame

rate of conventional video, 30 frames per second, the result is

a movement of 10cm, or the distance travelled by the vehicle

in 33.3 milliseconds. If a vehicle’s breaks could be activated

in that time, it is conceivable that numerous life-threatening

traffic accidents can ultimately be avoided. This approximate

calculation leads us to target latencies below 33 milliseconds.

Sensor Latencies

Smart city sensors will have a wide range of operational

frequencies and data acquisition bandwidths. CO2 sensors

may collect several bytes per hour, whereas high resolution

cameras may stream data in compressed form at tens of

Megabits per second, or in uncompressed form at several

Gigabytes per second. Low-cost CMOS imaging sensors have

latencies of several milliseconds, which are low enough not

to obstruct the closed-loop target of 1/30 second. IP cameras

use video encoding and streaming protocols that, because

of inter-frame coding, may have buffers requiring hundreds

of milliseconds to decode; this process severely impedes the

ability to provide closed-loop services with less than 33.3 ms

latencies.

Communications Latencies

Communications and networking latencies are determined

as much by speed of physical media as they are driven

by protocols at the application layer. The COSMOS optical

network can provide up to 100 Gb/s, offering almost unlimited

raw speed. On the other hand, conventional streaming of

high resolution videos can create hundreds of milliseconds of

latency. This suggests that video processing and inference is

best done at the ”extreme” edge - right next to the video sen-

sor. More interestingly, this motivates research on integrated

coding and video transmission protocols optimized for ultra-

low latency transmission of videos over high bandwidth edge

communications infrastructure.

Inference and Decision Latencies

Inference latencies come from video preprocessing and deep

learning algorithms for multiple object detection and tracking.

The training of DL models is done offline and does not

impact latencies for real-time interactions. Both published

work and our own studies indicate that contemporary GPUs

within specialized pipelines such as NVIDIA TensorRT and

DeepStream can deliver speeds above 30 fps for object de-

tection and tracking. We previously showed that inference

speed varies as a function of input resolution and actual device

capabilities, but we assess that inference computation will not

be a bottleneck in meeting our real-time latency target.

The decision process is defined as a higher level of in-

telligence built on top of object detection and tracking. For

example, this process would deduce the implications of a

pedestrian being on a trajectory to intersect with a speedy

vehicle and create a warning (or even a command) for the

pedestrian or vehicle. Computational needs for this type of

processes are subject to ongoing studies, but it is expected

that the latencies will be less than a millisecond.

C. COSMOS Experimental Testbed

New York City (NYC) is an excellent example of a

busy metropolis which provides formidable challenges for the

deployment of smart city technologies. Busy urban traffic

intersections have a large number of vehicles and pedes-

trians moving in many directions at various speeds, often

with chaotic or unpredictable behavior. Furthermore, obstruc-

tions like building corners, parked vehicles, and construction

equipment present difficulty to autonomous vehicle sensors

requiring further advancements in traffic intersection based

automation of monitoring, measuring, learning, and feedback.

The COSMOS testbed, NSF-funded Cloud Enhanced Open

Software Defined Mobile Wireless Testbed for City-Scale

Deployment [5], provides an experimentation platform for

applications and architectures to support intelligence nodes

of future metropolises. For our research, we use the COS-

MOS pilot site located at Columbia University, in New York

City, at the intersection of the 120th Street and Amsterdam

Avenue. The pilot node includes two street level and two

bird’s eye cameras, as illustrated in Fig.1. The COSMOS edge

cloud servers can run real-time algorithms for detection and

tracking of objects in the intersection to monitor and manage

traffic flow and pedestrian safety. The node is equipped with

an optical x-haul transport system that connects AI-enabled

edge computing clusters. This allows for baseband processing

with massively scalable CPU and GPU resources with FPGA











Fig. 10: Auto-SDA: Normalized histogram of the percentage

of social distancing violations.

Fig. 11: The “radar screen”: one frame of a video containing

locations and velocities of objects within an intersection.

An example of the results obtained with the bird’s eye video

dataset, illustrated in Fig. 9, shows the distribution of the

duration of social distancing violations during the Covid-19

pandemic. Fig. 10 shows the social distancing violation rates

for the ground-floor camera dataset (i) during the pandemic

and (ii) after the vaccine is widely available. Detailed analyses

and comparisons of multiple statistics before the pandemic and

during the pandemic demonstrate that the proposed systems

can reliably identify social distancing violations.

D. Real Time ”Radar-Screen”

The ”Radar-screen” application aims to infer positions and

velocities of objects within a traffic intersection and broadcast

them to the participants in the intersection, as illustrated

in Fig. 11. The information can be distributed in raw or

coded/meta format. The application intends to provide a real-

time service with latency of 1/30 seconds between the ob-

servation of objects and the wireless broadcast delivery. As

described previously, this is motivated by the approximation

of a 10 centimeter vehicle movement with speed of 10 km/h.

The application includes the acquisition of videos from

surrounding buildings, potential harvesting of videos (or en-

coded data) from cameras within vehicles, harvesting of IoT

sensor data, transmission via a high speed network to the

inference computer, data aggregation and preprocessing, DL-

based object detection and tracking, extraction of information

at a higher abstraction level, and (in a more advanced version)

deduction of commands that may be issued to individual

vehicles after optimizing the traffic flow. The final step is the

broadcasting of information. This is an aspirational applica-

tion in that achieving the cumulative latency of 33.3 ms is

technologically challenging. Balancing between computational

capabilities, power consumption, and latency minimization of

the extreme edge compute units, or edge computing centers,

requires rapid sensor data acquisition and dynamic network

and resource control. This application motivates research to

optimize each of the building blocks described in previous

sections of this paper as well latency-focused cross-module

system integration.

E. Traffic Management

Intelligent nodes located at individual intersections provide

powerful data acquisition and intelligent edge-computing. On

a larger scale, smart cities require the aggregation of data

from multiple intersections and mutual coordination. In that

vein, we have commenced collaborative studies with traffic

engineering experts on the definition of key parameters such

as timing resolution, sensor locations, and APIs for data

exchange between intelligent smart intersection nodes and

traffic optimization systems [18]. We are building simulators

and defining digital twins that will play predictive roles in

the behavior of individual traffic participants and in global

optimization of traffic management.

V. CONCLUSION AND FUTURE CHALLENGES

A vision of the smart city intersection as the intelligence

node for future metropolises has been presented. The proposed

architecture is driven by societal needs to preserve privacy,

which strongly implicate edge computing and intelligence

as the key paradigm for data management and processing.

Key technological components have been reviewed such as

sensors, networks, and edge AI computing. Real time needs of

future safety-critical systems have been examined, and design

considerations for a ”radar-screen” application, which closes

the loop from sensors to actuators, have been summarized.

The requirements for low latency, based on the 33.3 ms target,

have been explored. System integration challenges have been

illustrated using the examples from experiments performed on

the pilot node of the COSMOS testbed in New York City.

Our research points to the following exploration topics: (i)

State of the art DL-based object detection models are com-

prised of over 60 million parameters and require passing more

than 100 convolutional layers, where each convolution has

O(n4) complexity. Model optimization techniques like weight

pruning, inference scheduling, and neural algorithmic search

strategies [19] need to be incorporated into practical systems;

(ii) Reliance on supervised datasets for video processing is not

scalable due to the labeling cost and quality concerns. This

necessitates research on unsupervised learning methodologies

which should be based on continuous or active learning, and

take advantage of the peculiarities of the fixed scene within

a traffic intersection [20]; (iii) Data fusion from multiple

cameras is expected to yield notable improvements in detection

and tracking accuracies; (iv) Achieving low latency for low

rate little-data applications is possible by using processing

on the ”extreme edge”, but meeting the requirements of 1/30



second latency for high resolution videos is a challenge. New

video coding methods and streaming protocols should be

explored with focus on localized low-latency performance.
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