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Abstract
Recently, many reinforcement learning tech-
niques have been shown to have provable guaran-
tees in the simple case of linear dynamics, espe-
cially in problems like linear quadratic regulators.
However, in practice many tasks require learning
a policy from rich, high-dimensional features such
as images, which are unlikely to be linear. We
consider a setting where there is a hidden linear
subspace of the high-dimensional feature space in
which the dynamics are linear. We design natural
objectives based on forward and inverse dynam-
ics models. We prove that these objectives can
be efficiently optimized and their local optimizers
extract the hidden linear subspace. We empiri-
cally verify our theoretical results with synthetic
data and explore the effectiveness of our approach
(generalized to nonlinear settings) in simple con-
trol tasks with rich observations.

1. Introduction
Reinforcement learning has made tremendous progress re-
cently, achieving strong performance in difficult problems
like go (Silver et al., 2017) and Starcraft (Vinyals et al.,
2019). A common theme in the recent progress is the use
of neural networks to handle the cases when the system
dynamics and policy are both highly nonlinear. However,
theoretical understanding for reinforcement learning is most
thoroughly developed in the tabular setting (where the num-
ber of state/actions is small) or when the underlying dynam-
ics of the system is linear (see Section 1.1).

Requiring the dynamics to be linear is especially limiting
for problems with rich, high dimensional output, e.g. ma-
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nipulating a robot from video frames or playing a game by
observing pixel representations. Consider a simple system
where we control an object by applying forces to it. The
state of the object (position and velocity) can evolve linearly
according to physical laws. However, if the observation
is a visual rendering of this object in a 3-d environment,
the observation contains a lot of redundant information and
doesn’t have linear dynamics. Such problems can poten-
tially be solved by learning a state representation mapping ϕ
that maps the complicated observations to states that satisfy
simpler dynamics. State representation learning is popular
in practice, but theoretical understanding is still nascent; see
the survey by Lesort et al. (2018) and more references in
Section 1.1. Many approaches either try to learn a forward
model, which predicts the next state or an inverse model,
which predicts the action taken given the states. In this pa-
per we show both approaches can provably extract a state
representation that encodes linear dynamics.

We first consider a simple theoretical model where the full
observation x does not have linear dynamics, but there exists
an unknown subspace V where the projection y = ΠVx has
linear dynamics. This corresponds to the case when the state
representation mapping is a linear projection. We give two
provably correct algorithms for identifying V , one based on
learning a linear forward model, and one based on learning
a linear inverse model.

In more complicated settings one might need a nonlinear
mapping in order to extract a latent space representation
that has linear dynamics. We extend our algorithms to the
nonlinear setting, and show that if we can find solutions to
similar nonconvex optimization problems with 0 loss, then
the representations have nontrivial linear dynamics.

We discuss related works in Section 1.1. We next introduce
our model and discuss how one can formalize learning a
state representation mapping as optimization problems in
Section 2. In Sections 3 and 4 we give algorithms based
on forward and inverse models, respectively, and prove that
these recover the underlying state representation. We then
extend these to nonlinear state representations in Section 5.
Finally in Section 6, we empirically validate our approach
on synthetic data and simple RL environments. All detailed
proofs are found in the appendix.
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1.1. Related Work

State Representation Learning with Rich Observations
Several recent papers have addressed the problem of state
representation learning (SRL) in control problems. Lesort
et al. (2018) survey the recent literature and identify four cat-
egories that describe many SRL approaches: reconstructing
the observation, learning a forward dynamics model, learn-
ing an inverse dynamics model, and using prior knowledge
to constrain the state space. Raffin et al. (2019) evaluate
many of these SRL approaches on robotics tasks and show
how to combine the strengths of the different methods. Sev-
eral papers adopt the approach of learning forward or inverse
models (Hafner et al., 2019b; Pathak et al., 2017; Zhang
et al., 2018) and demonstrate practical effectiveness, but
they lack a theoretical analysis of the approach. Our work
aims to help fill this gap.

Domains with rich observations include raw images or video
frames from video games (Anand et al., 2019), robotics en-
vironments (Higgins et al., 2017), and renderings of classic
control problems (Watter et al., 2015), and deep learning
methods have enabled success in this space. Srinivas et al.
(2020) use a contrastive learning approach to extract state
representations from pixels. Ha & Schmidhuber (2018)
learn low-dimensional representations and dynamics which
simple linear policies to achieve effective control. Hafner
et al. (2019a) utilize latent imagination to learn behav-
iors that achieve high performance in terms of reward and
sample-efficiency on several visual control tasks.

Theoretical work on state representation learning Du
et al. (2019a) investigate whether good representations lead
to sample-efficient RL in the context of MDPs, showing
exponential lower bounds in many settings. Our setting
circumvents these negative results because the representa-
tions that we learn transform the nonlinear problem into a
linear (and hence tractable) control problem. Other works
(Du et al., 2019b; Misra et al., 2019) study the Block MDP
model, in which a high-dimensional observation space is
generated from a finite set of latent states. Our model, by
contrast, considers continuous state and action spaces.

Recent work by Mhammedi et al. (2020) studies a similar
setting to ours, where a latent LQR control problem gener-
ates nonlinear observations. That work is interested in find-
ing a near-optimal controller with respect to the quadratic
costs, whereas we focus here on finding the ground-truth
representation that has linear dynamics. We give both a
forward and an inverse approach while Mhammedi et al.
(2020) focuses on learning inverse models. Recent work by
Dean et al. (2020) also consider a somewhat similar setting,
although their focus is on robust control guarantees, and
their state representations are learned through a supervised
technique that requires ground-truth representations.

Linear Dynamical Systems and Control Problems Lin-
ear dynamical systems and control problems have been
extensively studied for many decades and admit efficient,
robust, and provably correct algorithms. For the problem of
system identification, Qin (2006) gives a review of subspace
identification methods; our inverse model approach, while
for a different setting, is somewhat similar to the regression
approaches described in the review. Other recent works
analyze gradient-based methods for system identification
(Hardt et al., 2018), policy optimization (Fazel et al., 2018),
and online control (Cohen et al., 2018) in the setting of
linear dynamical systems and quadratic costs.

2. Hidden Subspace Model and State
Representation Learning

In this section we introduce a basic model which admits
a linear state representation mapping. Later we show that
the linear state representation can be learned efficiently via
either a forward or inverse modelling approach.

2.1. Notation and Preliminaries

We follow the notation of a discrete-time control system,
where xt denotes the (observed) state at the t-th step, ut
denotes the control signal (action) at the t-th step, and f
denotes the dynamics function, xt+1 = f(xt, ut). A state
representation mapping is a function ϕ : Rd → Rr that
maps xt to a different space (usually r ≪ d) such that the
dynamics governing the evolution of ϕ(xt) are simpler, e.g.,
linear.

If a1, . . . , ak are vectors, we let (a1, . . . , ak) denote the
concatenation of these vectors. For centered random vectors
a and b, let Σab denote the matrix E[ab⊤] and Σa denote
E[aa⊤]. Likewise, if A ∈ Rm×k and B ∈ Rn×k, let ΣAB
denote the empirical cross-covariance matrix k−1AB⊤ and
let ΣA denote the empirical covariance matrix k−1AA⊤.
Let ρ(a, b) denote the canonical correlation between a and
b, namely

ρ(a, b) = max
a′,b′

E[⟨a, a′⟩⟨b, b′⟩]√
E[⟨a, a′⟩2]E[⟨b, b′⟩2]

.

For a matrix A, let A+ denote its Moore-Penrose pseudoin-
verse, and let col(A) denote the column-space of A. For
a linear subspace C ⊂ Rn, let ΠC ∈ Rn×n denote the or-
thogonal projection matrix onto C, and let C⊥ denote the
orthogonal complement of C.

We adapt the standard notion of controllability from control
systems theory to be subspace-dependent.

Definition 2.1. Given matrices A ∈ Rd×d, B ∈ Rd×l, and
an r-dimensional subspace V ⊂ Rd, we say that the tuple
(A,B) is V-controllable if col(A), col(A⊤), col(B) ⊂ V
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Figure 1. A graphical illustration of our hidden subspace model.
The hidden states hi evolve according to a linear control system
and generate nonlinear features zi.

and the d× rl matrix[
B AB · · · Ar−1B

]
has rank r.

2.2. Hidden Subspace Model

We consider a model with a latent ground truth state ht ∈ Rr
and controls ut ∈ Rl that satisfy linear dynamics:

ht+1 = Āht + B̄ut.

We observe a high-dimensional state xt ∈ Rd with d >
r that satisfies xt = V ht + V ⊥g(ht). Here, V ∈ Rd×r
and V ⊥ ∈ R(d−r)×r are full-rank matrices whose columns
respectively form bases for an r-dimensional subspace V
and its orthogonal complement V⊥, and g(ht) ∈ Rd−r is a
nonlinear, possibly stochastic function of ht. We use yt to
denote V ht and zt to denote V ⊥g(ht), and we call these the
linear and nonlinear parts of xt, respectively. The model is
illustrated in Figure 1.

Observe that yt also satisfies linear dynamics, namely
yt+1 = Ayt + But−1, where A = V ĀV + and B = V B̄.
On the other hand, zt is conditionally independent of all
other variables {ui : i ≥ 0}, {yi : i ̸= t}, and
{zi : i ̸= t} given ht. Thus, we can write xt as a sum
of two orthogonal components, xt = yt + zt, where yt
evolves linearly and zt contains the nonlinear, redundant
features. The constraint that the linear and nonlinear parts
of xt lie in mutually orthogonal subspaces enables one to
project away zt and recover the linear part, if V is known.
Our task is to extract the latent state ht (or any invertible
linear transformation thereof) from xt, given observed tra-
jectories x0, x1, x2, . . . and controls u0, u1, . . .. To find this
mapping it suffices to recover the hidden subspace V .

Throughout this section and Sections 3 and 4, we assume
that the initial latent state h0 and the controls ui are indepen-
dent standard Gaussian random vectors, that E[zi] = 0 for
each i, and that Σxi is full rank for each i. All expectations
are taken over the randomness induced by h0, ui, and zi.

2.3. Learning Forward and Inverse Models

In order to learn a state representation mapping that induces
linear dynamics, a natural approach is to jointly learn the
representation and a dynamics model that enforces linear-
ity. Suppose we take random actions u0, u1, . . . from a
random initial state x0, generating a trajectory of observa-
tions x1, x2, . . .. We could attempt to learn a mapping ϕ
and matrices C ∈ Rr×r, D ∈ Rr×l such that the forward
dynamics equation is linear: ϕ(xt+1) = Cϕ(xt) + But.
Alternatively, we could instead seek to learn ϕ and matrices
P,L ∈ Rl×d such that the inverse dynamics equation is
linear: ut = Pϕ(xt+1)− Lϕ(xt).

We show how both of these ideas can be carefully imple-
mented to identify V in the hidden subspace model. In
particular, we propose the forward model objective

min
P,Q,D

1

2
E∥Px1 −Qx0 −Du0∥22 +

λ

4
∥PΣx1

P⊤ − I∥2F

as well as the inverse model objective

min
P,{Li},{Ti}

1

2
E

r∑
i=1

∥Pxi−Lix0−
i−1∑
k=1

Tkui−1−k−ui−1∥22.

While both of these approaches are viable in the hidden
subspace model, it’s worth noting how they differ from each
other. The forward model objective is non-convex, only
requires one step of the control system, and it immediately
yields the state representation map P . By contrast, the
inverse model is a convex optimization problem, it considers
trajectories of length r, and the final state representation map
is constructed from P,L1, . . . , Lr. The two approaches also
require different assumptions for their theoretical guarantees.
In Sections 3 and 4 we motivate and analyze these two
approaches in more detail.

3. Forward Model
In this section, we focus on the forward model, which tries
to predict the next state given the current state and action.
We first motivate the design of forward objective function
(1) and prove its guarantees. We next explain how the for-
ward model objective is connected to canonical correlation
analysis. We finally study the sample complexity of the
empirical version of the problem.

Recall the forward model objective

min
P,Q,D

1

2
E∥Px1−Qx0−Du0∥22+

λ

4
∥PΣx1P

⊤−I∥2F (1)

where P,Q ∈ Rr×d, D ∈ Rr×l, and λ > 0. To motivate
(1), note that a first attempt to learn a linear forward model
is to find matrices P,C,D that satisfy Px1 = CPx0+Du0.
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This, however, immediately runs into the problem of trivial
solutions – we can choose these matrices to be all zero and
the linear dynamics equation holds, but this is clearly not a
useful representation and it doesn’t recover the subspace V .

A simple way to rule out such trivial solutions is to constrain
the state representation Px1 to have a full-rank covariance
matrix. Dealing with non-convex rank constraints directly
can be difficult, so we instead introduce a regularizer term
∥E[Px1x⊤1 P ]− I∥2F which encourages Px1 to have spheri-
cal covariance. Additionally, we relax the forward dynamics
model to a simpler linear model Px1 = Qx0 +Du0. This
relaxation removes some non-convexity from the objective
function and simplifies the analysis. Both of these adjust-
ments lead to (1). This objective is still non-convex due to
the regularizer term, but its landscape is benign, as explained
in Theorem 3.2.

In order to ensure that solutions to (1) recover V , we specify
the nonlinearity of z1 as follows:

Assumption 3.1 (Forward Nonlinearity). There exists a
constant ρ ∈ (0, 1) such that ρ(z1, (x0, u0)) ≤ ρ.

This assumption simply asserts that z1 is not linearly de-
pendent on the initial data x0, u0. We can now state the
theoretical guarantees for the forward model.

Theorem 3.2. Set λ ∈ (0, 1 − ρ2), and let (P,Q,D) be
a second-order stationary point of (1). Under Assumption
3.1, col(P⊤) = V .

A variety of local search algorithms (such as perturbed gra-
dient descent (Jin et al., 2017)) are proven to efficiently find
second-order stationary points, and so Theorem 3.2 implies
that we can efficiently recover V by optimizing (1). Intu-
itively, Theorem 3.2 holds because if the rows of P aren’t
all in V , then Pz1 is nonzero. However, Assumption 3.1
implies that z1 is not a linear function of x0 and u0, so Pz1
contributes excess loss in the first term of (1), so it should be
removed. Moreover, if P is rank-deficient, we can reduce
the second term of (1) by increasing the rank of P while
ensuring its rows stay in V . Our proof makes this intuition
precise by first showing that Assumption 3.1 implies a gap
in the canonical correlations between x1 and (x0, u0), and
then utilizing Theorem 3.3. Full details are in the appendix.

3.1. Connection to CCA

We now analyze the forward model objective in a more gen-
eral setting and draw connections to canonical correlation
analysis. Consider two random vectors u ∈ Rn, v ∈ Rm
with full-rank covariance matrices Σu and Σv. Canonical
correlation analysis deals with finding the directions of max-
imal correlation between u and v. To this end, we propose

the optimization problem

min
P,Q

1

2
Eu,v∥Pu−Qv∥22 +

λ

4
∥PΣuP⊤ − I∥2F (2)

where P ∈ Rr×n, Q ∈ Rr×m, and λ ∈ (0, 1) is a hyperpa-
rameter. Define C = Σ

−1/2
u ΣuvΣ

−1
v ΣvuΣ

−1/2
u and write

its spectral decomposition as C =
∑d
i=1 ρ

2
i cic

⊤
i where

1 ≥ ρ1 ≥ · · · ≥ ρd ≥ 0 and ∥ci∥2 = 1 for each i. Ac-
cording to CCA theory (Borga, 2001), ρi are the canonical
correlations between u and v, and the vectors Σ−1/2

u ci are
the corresponding canonical correlation directions for u, i.e.,
the directions in which u maximally correlates with v.

For each i ∈ {1, . . . , d}, define Ci = span{c1, . . . , ci}.
Let C0 denote the trivial subspace {0} and define ρ0 =
1, ρd+1 = 0. The subspaces Ci are useful because they al-
low us to project u to a lower-dimensional subspace while
maximally preserving its correlation with v. Solving the op-
timization problem (2) recovers these subspaces, depending
on the value of λ.
Theorem 3.3. Let i ∈ {0, 1, . . . , d} satisfy 1− ρ2i < λ <
1− ρ2i+1. Let (P,Q) be a second-order stationary point of
(2). Then col(Σ1/2

u P⊤) ⊂ Ci and rank(P ) = min{r, i}.

To prove Theorem 3.3, we first analyze the first-order nec-
essary conditions of (2), which are closely connected to
the matrix C. In particular, the gradients vanish only if
the rows of PΣ1/2

u are contained in Ci. Next, we show
that the loss function can be additionally minimized if
rank(P ) < min{r, i}. In particular, by carefully increas-
ing the rank of P we can ensure that the regularizer term
decreases more than the linear model term increases.

3.2. Sample Complexity

Since (1) involves an expectation, we can’t solve it exactly.
Instead, we optimize the empirical objective function

min
θ

1

2n
∥PX1−QX0−DU0∥2F+

λ

4
∥PΣX1

P⊤−I∥2F (3)

where the columns of Xi ∈ Rd×n and Ui ∈ Rl×n are i.i.d.
copies of xi and ui, respectively. If n is sufficiently large,
the solution to this problem recovers V . We introduce the
following assumption that allows us to utilize quantitative
concentration results, and then we state the theoretical guar-
antee for (3).
Assumption 3.4 (Sub-Gaussianity). There exists a constant
C > 0 such that P (|⟨q,Σ−1/2

ξiξi
ξi⟩| > t) ≤ exp(−Ct2) for

any unit vector q, where we define ξi := (z1, x0, u0).
Theorem 3.5. Set λ ∈ (0, (1−ρ2)/4), and let (P,Q,D) be
a second-order stationary point of (3). Under Assumptions
3.1 and 3.4, there exists a constant C0 such that if n ≥
C0 log

2(2d + l)/(1 − ρ)2, then with probability at least
0.99, col(P⊤) = V .
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To prove this theorem, we first use a concentration of mea-
sure result to establish that the empirical canonical correla-
tions between X1 and (X0, U0) have a sufficient gap, and
then the proof of Theorem 3.3 does the rest of the work.

4. The Inverse Model
In this section, we focus on the inverse model, whose goal
is to predict action based on the state representations. We
show that this approach efficiently learns the linear state
representation in our hidden subspace model when certain
assumptions are satisfied. We also study the sample com-
plexity of this problem when we only have i.i.d. samples
from the model. In the appendix we study a simplified
version of the model where there is noise.

Recall the inverse model objective

min
θ

1

2
E

r∑
i=1

∥Pxi − Lix0 −
i−1∑
k=1

Tkui−1−k − ui−1∥22 (4)

Here, θ is the tuple of parameters
(P,L1, . . . , Lr, T1, . . . , Tr−1) with P,Li ∈ Rl×d and
Ti ∈ Rl×l, and the expectation is taken over the random-
ness of x0, u0, . . . , ur−1. To motivate (4), we start by
considering one step of the dynamics:

x1 = y1 + z1 = Ay0 +Bu0 + z1 = Ax0 +Bu0 + z1.

If B has full column rank, then we have B+B = I and
B+z1 = 0 since the rows of B+ are in V . Hence, we have
u0 = B+x1 −B+Ax0. This expression suggests that if we
fit a linear model to predict u0 given x0 and x1, the solution
may allow us to recoverB+ andB+A, both of which reveal
part of the latent subspace V . Advancing the system up to
timestep i, we have a similar relationship:

ui−1 = B+xi −B+Aix0 −
i−1∑
k=1

B+AkBui−1−k.

Once again, if we fit a linear model to predict ui−1 from
xi, x0, u0, . . . , ui−2, then we can recover more of V .

Trying to solve for A and B directly by minimizing a
squared error loss based on the above expression is problem-
atic, given the presence of high powers of A and products
between A, B, and B+. The optimization landscape corre-
sponding to such an objective function is non-convex and
ill-conditioned. To circumvent this issue, we propose the
convex relaxation:

ui−1 = Pxi − Lix0 −
i−1∑
k=1

Tkui−1−k

Here, P corresponds to B+, Li to B+Ai, and Tk to
B+AkB. We arrive at (4) by fitting this inverse model

over a trajectory of length r, which is chosen so that we can
recover the entirety of V .

In order to state our theoretical guarantees for this approach,
we introduce a few assumptions.

Assumption 4.1 (No Linear Dependence). Let h0 and
u0, . . . , ui−1 be independent standard Gaussian vectors.
Then E[zi] = 0 and there is a constant 0 ≤ ρ < 1 such
that for each i = 1, . . . , r, ρ((zi, z0), (hi, h0)) ≤ ρ.

Remark 4.2. Assumption 4.1 concretely specifies the nonlin-
earity of zi, as it precludes any linear dependence between
zi and the controls. Without this assumption, the inverse
model that we learn may use information from V⊥ to predict
the controls, and it is impossible to uniquely recover V .

Assumption 4.3 (Controllability). The tuple (A⊤, (B+)⊤)
is V-controllable.

Remark 4.4. Assumption 4.3 is related to the standard con-
trollability property of linear control systems. Instead of as-
suming (A,B) controllability, we need the property to hold
for (A⊤, (B+)⊤) since we are learning an inverse model
which is related to the matrices B+, B+A, . . . , B+Ar.

Assumption 4.5 (Non-degeneracy). ,The matrix B has lin-
early independent columns, i.e. rank(B) = l.

Remark 4.6. Assumption 4.5 allows us to learn the inverse
model. If B is rank-deficient, we could not hope to predict
even u0 from x0 and x1, since it is non-identifiable. One
interpretation of this assumption is that the control inputs
ui are well-specified, i.e., not redundant.

Observe that (4) is a convex optimization problem, but there
may not be a unique global minimizer due to redundancies
in the parametrization. While the set of global optimizers
is in general a linear subspace, by imposing certain norm
preferences we can still recover the intended solutions B+,
B+Ai andB+AkB. We now state the theoretical guarantee
for our algorithm.

Theorem 4.7. Let f be the objective function in (4),
and let Θ∗

0 = {θ = (P, {Li}ri=1, {Ti}
r−1
i=1 ) ∈

f−1(0) | ∥P∥F is minimal} be the set of optimal solu-
tions to (4) that have minimal norm for P . Let θ∗ =
(P ∗, {L∗

i }, {T ∗
i }) ∈ Θ∗

0 be the solution in this set that mini-
mizes

∑r
i=1 ∥Li∥2F . Then under assumptions 4.1, 4.3, and

4.5, P = B+ and Li = B+Ai for i = 1, . . . , r. Moreover,
V = col(P⊤) + col(L⊤

1 ) + · · ·+ col(L⊤
r ).

Remark 4.8. To find the desired solution, we can first find
the set Θ∗ = f−1(0) of global minimizers. For such lin-
ear systems, Θ∗ is a subspace, so Θ∗

0 can be obtained by
optimizing for the norm of P within this subspace.

Intuitively, Theorem 4.7 is correct because by Assump-
tion 4.1, any direction in V⊥ will not have a perfect linear
correlation with the control signal ui that we are trying to
predict. This does not mean that every optimal solution to
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Equation (4) has components only in V – it is still possi-
ble that components in V⊥ cancel each other. However, if
any of the matrices P,Li have components in V⊥, remov-
ing those components will reduce the norm of the matrices
while not changing the predictive accuracy. Therefore the
minimum norm solution must lie in the correct subspace. Fi-
nally, the fact that we recover the entirety of V follows from
Assumption 4.3. Our proof makes this intuition precise by
analyzing the first-order optimality conditions of (4) and
making use of a spectral characterization of Assumption 4.1.
The detailed proof is deferred to the appendix, where we
also adapt this result to a simplified case where there is noise
in the linear dynamics.

4.1. Sample Complexity

As with the forward model, in practice we can only solve
the empirical inverse model objective

min
θ

1

2n

r∑
i=1

∥PXi−LiX0−
i−1∑
k=1

TkUi−1−k−Ui−1∥2F (5)

Here, the columns of Xi ∈ Rd×n, Ui ∈ Rl×n are i.i.d.
copies of xi and ui, respectively. We again introduce an as-
sumption that allows us to utilize quantitative concentration
results, and then we state the sample complexity result.

Assumption 4.9 (Sub-Gaussianity). There exists a con-
stant C > 0 such that for each i ∈ {1, . . . , r},
P (|⟨q,Σ−1/2

ξiξi
ξi⟩| > t) ≤ exp(−Ct2) for any unit vector q,

where we define ξi := (zi, z0, hi, h0).

Theorem 4.10. Let f be the objective function in
(5), and let Θ∗

0 = {θ = (P, {Li}ri=1, {Ti}
r−1
i=1 ) ∈

f−1(0) | ∥P∥F is minimal} be the set of optimal solu-
tions to (4) that have minimal norm for P . Let θ∗ =
(P ∗, {L∗

i }, {T ∗
i }) ∈ Θ∗

0 be the solution in this set that
minimizes

∑r
i=1 ∥Li∥2F . Under assumptions 4.1, 4.3, 4.5,

and 4.9, there exists a constant C0 such that if n ≥
C0(d+rl) log r log

2(d+rl)/(1−ρ)2, then with probability
at least 0.99, P = B+ and Li = B+Ai for i = 1, . . . , r.

Our proof for Theorem 4.10 is similar to that of Theorem 4.7
but requires somewhat more care. We use additional con-
centration of measure results in order to ensure that the em-
pirical canonical correlation ρ((Zi, Z0), (Hi, H0)) is close
to its population value. The first-order optimality conditions
of (5) also contain additional empirical cross-covariance
terms that must be handled. Full details are deferred to the
appendix.

5. Nonlinear State Representation Learning
In this section, we extend the forward model and inverse
model objectives to the setting in which there are no latent
linear dynamics in the original state observations. In this

case, we try to learn a nonlinear state representation ϕ under
which the dynamics are nearly linear. An example of this
setting is when the state observations are raw pixels from a
camera and ϕ is a convolutional neural network.

For the forward model objective, we introduce an interme-
diate feature map ψ : Rd → Rd′ and fit the forward model
to the transformed states ψ(x0), ψ(x1). The resulting opti-
mization problem is

min
θ

E∥Pψ(x1)−Qψ(x0)−Du0∥22+λ∥PΣψ(x1)P
⊤−I∥2F

(6)
where θ is the tuple of parameters (ψ, P,Q,D). The final
state representation map ϕ is given by ϕ(x) = Pψ(x).

For the inverse model objective, we again simply fit the
inverse model to the transformed states ψ(xi):

min
θ

1

2
E

τ∑
i=1

∥Pψ(xi)−Liψ(x0)−
i−1∑
k=1

Tkui−1−k−ui−1∥22

(7)
Although unlikely to be obtained in practice, we verify that
if the 0 loss is achieved, then we can extract a nontrivial
linear control system.

Theorem 5.1. Let ψ, P, {Li, Ti}, i = 1, . . . , τ be optimal
solutions to the optimization problem (7), and assume that
these parameters incur zero loss. Define V = col(P⊤) +
col(L⊤

1 )+ · · ·+ col(L⊤
τ−1), and assume that col(L⊤

τ ) ⊂ V .
Let ϕ(x) = ΠVψ(x). Then there exist matrices A ∈ Rn×n
and B ∈ Rn×l such that for each x and u,

ϕ(xt+1) = Aϕ(xt) +But.

As the theorem indicates, to get the final representation ϕ,
we apply ψ followed by the projection ΠV . The dynamics
of ϕ are nontrivial because, as before in the linear case, the
control input can be predicted given the initial and current
state representations and previous control inputs.

Intuitively, as τ increases, by result of Theorem 4.7 we can
expect that one learns a larger and larger subspace with
linear dynamics. Theorem 5.1 shows that as soon as the di-
mension of this linear subspace stops increasing at a certain
length τ , the dynamics of ψ(x) are linear on this subspace.
To prove this, we use the fact that the loss is 0 to obtain the
identity

Pψ(xi) = Liψ(x0) +

i−1∑
k=1

Tkui−1−k + ui−1

for i = 1, . . . , τ . Notice that if we view the trajectory as
starting at x1, we have

Pψ(xi) = Li−1ψ(x1) +

i−2∑
k=1

Tkui−1−k + ui−1.
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Combining these identities and simplifying yields
Li−1ψ(x1) = Liψ(x0) + Ti−1u0. This shows roughly
that ψ has linear dynamics in the directions of Li−1 and Li.
We use these facts together with condition col(L⊤

τ ) ⊂ V to
show that ψ has (invariant) linear dynamics on all of V . The
detailed proof is found in the appendix.

To solve either (6) or (7) in practice, we constrain ψ to be in
some parametric function class and minimize the empirical
version of the objective function induced by a finite sample.
Since these problems now involve optimizing the parame-
ters of ψ, they are non-convex and much more difficult to
analyze explicitly. In general, we can only hope to obtain
small loss rather than 0 loss. It is natural to ask whether we
can get any guarantees when we have small but nonzero loss
for (7). This is a challenging question to answer theoreti-
cally, but empirically we observe that achieving moderately
small loss yields reasonable state representations on two
simple nonlinear control environments; see Section 6.

6. Experiments
We conduct simple experiments to numerically validate our
theory. We first discuss experiments with synthetic data
generated according to our hidden subspace model, and then
experiments using standard RL environments with nonlinear
dynamics and high-dimensional observations.

6.1. Synthetic Experiments

Forward Model We create synthetic data from the hid-
den subspace model by first drawing random matrices
Ā ∈ R3×3 and B̄ ∈ R3×2 with i.i.d. standard Gaus-
sian entries, and then generating 1000 i.i.d. samples from
the model h0 ∈ R3 ∼ N(0, I), u0 ∈ R2 ∼ N(0, I),
h1 = Āh0 + B̄u0. We consider two methods for gener-
ating nonlinear features: first by adding white noise where
zi = hi + ϵi, with ϵi ∼ N(0, σ2I) and σ = .1, and second
by taking cubic features zi = h3i (where the cubic power
is performed entry-wise, and then truncation is applied to
prevent numerical blowup). The observations are then con-
structed by concatenation: xi = (hi, zi). For both the noisy
and cubic features, we optimize (3) using gradient descent
with λ = .75, λ = .5, learning rates .001, .0005, and num-
ber of steps 2.5× 106, 5× 105, respectively. In both cases,
the correct subspace is successfully identified. In Figure 2
we plot the loss function and error in P for both experiments.
We also conduct similar experiments for the CCA objective
– details are in the appendix.

Inverse Model We generate data according to our hidden
subspace model as follows. Set the system matrices Ā, B̄ at
random (with i.i.d. Guassian entries) and multiply Ā by a
constant to ensure it is well-conditioned (to avoid numerical
issues). Sample the initial latent states h0 ∼ N(0, I) and
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Figure 2. Error in P and loss for the forward model objective

actions ui ∼ N(0, I). The nonlinear components zi are
created either as independent Gaussian noise or low-degree
polynomials of hi. We collect 5(d+ rl) samples for each
run (this is lower than the sample complexity we give in the
Theorem 4.10, but it sufficed for our experiments).

To construct the particular minimal-norm solutions in Theo-
rem 4.10, we optimize (5) in a two-stage linear least squares
process using a standard least-square solver (“lstsq” func-
tion in SciPy). Further details about this process are given in
the appendix. We then check that our constructed solution
matches the solution guaranteed by Theorem 4.10. In all
of our runs, whenever the computations were numerically
stable, we indeed recover the expected solution.

6.2. Nonlinear RL Environments

While our theory doesn’t provide guarantees for the set-
ting in which the learned nonlinear state representations
incur nonzero loss, we can empirically investigate whether
optimizing (6) and (7) lead to reasonable representations.
We examine the learned representations visually and ex-
plore whether they admit effective control policies. We
focus on two standard continuous control tasks from Ope-
nAI Gym (Brockman et al., 2016): ‘Pendulum-v0’ and
‘MountainCarContinuous-v0’.

We implement our learning algorithm in PyTorch (Paszke
et al., 2017), and our policy search algorithms use the Stable
Baselines library (Hill et al., 2018). We follow the basic
approach taken by Lillicrap et al. (2015) in working with
pixel observations: modify the environments so that each
action is repeated over three consecutive timesteps in the
original environment, and concatenate the resultant obser-
vations. We parameterize the map ψ as a neural network
with two convolutional layers followed by fully-connected
layers with ReLu activations. The full details of training are
provided in the appendix.

Visual Analysis The pendulum environment has two un-
derlying state variables: the angle of the pendulum from
vertically upwards, and its angular velocity. Hence, the slice
of the state space corresponding to 0 angular velocity can
be viewed as a circle, with the pendulum angle ranging
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Figure 3. Visualizations of learned pendulum state representations
for the forward model (left) and inverse model (right)

cyclically from 0 to 2π. Given a trained representation, we
evenly sample this slice of the state space and compute the
state representation at each of these points. We then project
onto the top two principal components and plot the result in
Figure 3, where the color-coding indicates the angle in radi-
ans of the pendulum from vertical (red and violet correspond
to fully vertical). Both representations capture in distinct
ways the symmetry of the state space when reflecting the
angle about 0.

Policy Learning After training the state representations,
we next explore whether they admit effective policies. For
the inverse model, we restrict to linear policies, as these are
simpler to optimize and work well for our representation.
For the forward model, nonlinear neural network policies
are trained, as the linear policies weren’t as effective. We
also include two baselines that rely on standard RL algo-
rithms implemented in Stable Baselines. Baseline 1 trains
nonlinear policies directly from the raw pixel observations
(we tune the learning rates and report the best results), and
baseline 2 trains policies directly on the low-dimensional
state variables using tuned hyperparameters provided by RL
Baselines Zoo (Raffin, 2018). The learning curves for all
approaches are shown in Figure 6.2.

Note that the forward model representation is far less sam-
ple efficient than the other methods (its x-axis is scaled up
by an order of magnitude compared to the others). The
discrepancy between the forward and inverse model rep-
resentations in this respect may be due in part to the fact
that a neural network policy has many more parameters
than a linear policy, and hence will naturally train slower.
It may also point to an intrinsic difference in the quality
of representations produced by the forward model and the
inverse model. Perhaps the inverse model representation
benefits from being trained over longer trajectories, whereas
the forward model just uses a single time step.

For both the pendulum and mountain car environments,
each representation admits performant policies that solve
the tasks, albeit with less total reward than the tuned Base-
line 2 policies. These results show that our state representa-
tion learning algorithms capture the relevant structure and
dynamics necessary to enable reasonable control policies.
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Figure 4. Learning curves for ‘Pendulum-v0’ (top four) and
‘MountainCarContinuous-v0’ (bottom four).’

7. Conclusion and Future Work
State representation learning is a promising way to bridge
nonlinear, high-dimensional reinforcement learning prob-
lems and the simple linear models that have theoretical guar-
antees. In this paper we study a basic model for state repre-
sentation learning and show that effective, low-dimensional
state representations can be learned efficiently from rich
observations using either forward or inverse models. The
algorithm inspired by our theory can indeed recover rea-
sonable state representations for simple tasks in OpenAI
gym.

There are still many open problems: the nonconvex objec-
tives (6) and (7) can be hard to optimize for the network ar-
chitectures we tried; is there a way to design the architecture
to make the loss go to 0? Additionally, the our algorithms
rely on the initial state distribution, which may not suffi-
ciently cover all parts of the state space; can we complement
our algorithm with an exploration strategy? Are there more
realistic models for state representation learning that can
also be learned efficiently? We hope our paper serves as a
starting point towards these questions.
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In this appendix, we first give proofs of the theoretical results stated in the main paper. Next, we discuss synthetic experiments
that validate our theoretical results. Finally, we give the additional details for the experiments in Section 6 in the main paper.

A. Deferred Proofs from Sections 3, 4, and 5
In this section we re-state and prove the theorems in the main paper.

We begin by stating a result about empirical canonical correlation that will be used later on. Define empirical canonical
correlation in the natural way: for random vectors y and z, let Y and Z be the corresponding sample matrices and define

ρ(Y,Z) = max
a,b

a⊤ΣY Zb√
a⊤ΣY a

√
b⊤ΣZb

.

We need to control the difference between ρ(Y, Z) and ρ(y, z) when the number of samples is large enough. We utilize a
concentration result stated in (Gao et al., 2019) that quantifies this.
Lemma A.1 (Adapted from Corollary 7 of (Gao et al., 2019)). Assume that y ∈ Rk1 and z ∈ Rk2 are sub-Gaussian,
set k = k1 + k2, and let ϵ ∈ (0, 1). There exists a constant C such that for any t ≥ 1, if n ≥ Ct2k log2 k/ϵ2 then
|ρ(Y,Z)− ρ(y, z)| ≤ ϵ with probability at least 1− exp(−t2k).

Note that the statement of this result in (Gao et al., 2019) is slightly different since they don’t specify the dependence of the
sample complexity on the failure probability parameter t. Our version here is easily obtained by using Corollary 5.50 from
(Vershynin, 2010) to include the parameter t.

A.1. Forward Model

We begin by proving Theorem 3.3, which we state again here.
Theorem. Let i ∈ {0, 1, . . . , d} satisfy 1− ρ2i < λ < 1− ρ2i+1. Let (P,Q) be a second-order stationary point of (2). Then
col(Σ1/2

u P⊤) ⊂ Ci and rank(P ) = min{r, i}.

Proof. Define

f(P,Q) =
1

2
Eu,v∥Pu−Qv∥22, r(P ) =

1

4
∥PΣuP⊤ − I∥2F .

Let (P,Q) be a second-order stationary point. We first show that col(Σ1/2
u P⊤) ⊂ Ci. The gradients of g := f + λr are as

follows:

∇Qg = QΣv − PΣuv

∇P g = PΣu −QΣvu + λ(PΣuP
⊤ − I)PΣu

Since these gradients vanish at (P,Q), we have Q = PΣuvΣ
−1
v . Plugging this into the other gradient expression, we have

0 = PΣ1/2
u ((1− λ)I − C)Σ1/2

u + λPΣuP
⊤PΣu (8)

Set P̃ = PΣ
1/2
u and P̂ = P̃ (I −ΠCi). Let a ∈ Rr and η > 0 satisfy P̂ P̂⊤a = ηa. Note that

((1− λ)I − C)(I −ΠCi
) = (I −ΠCi

)((1− λ)I − C) =

d∑
j=i+1

(1− λ− ρ2j )cjc
⊤
j

is positive definite since 1− λ− ρ2j > 1− (1− ρ2i+1)− ρ2j = ρ2i+1 − ρ2j ≥ 0 for j > i. In particular, this implies that

a⊤P̃ ((1− λ)I − C)P̂⊤a = a⊤P̂ ((1− λ)I − C)P̂⊤a ≥ 0.

Now by left-multiplying (8) with a⊤ and right-multiplying with Σ
−1/2
u P̂⊤a we have

0 = a⊤P̃ ((1− λ)I − C)P̂⊤a+ λa⊤P̃ P̃⊤P̃ P̂⊤a

≥ λa⊤P̃ P̃⊤P̂ P̂⊤a

= ληa⊤P̃ P̃⊤a

≥ λη2∥a∥22.
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This means that a must be 0, and so P̂ P̂⊤ has no nonzero eigenvectors, i.e., P̂ = 0. Thus, the rows of P̃ are contained in Ci,
which is precisely what we wanted to show.

Next, we show that rank(P ) = min{i, r}. Assume to the contrary that rank(P ) < min{i, r} and let b ∈ Rd, a ∈ Rr be
unit vectors satisfying b ∈ Ci, P̃ b = 0, and P̃⊤a = 0. We claim that for sufficiently small ϵ > 0, the point (P ′, Q′), where
P ′ = P + ϵab⊤Σ

−1/2
u and Q′ = Q+ ϵab⊤Σ

−1/2
u ΣuvΣ

−1
v yields a strictly smaller loss. First observe that

(P + ϵab⊤Σ−1/2
u )Σu(P + ϵab⊤Σ−1/2

u )⊤ = PΣuP
⊤ + ϵ2aa⊤.

Using this and the fact that P⊤a = Σ
−1/2
u P̃⊤a = 0, we have

4r(P ′) = ∥P ′ΣuP
′⊤ − I∥2F

= ∥PΣuP⊤ − I∥2F + ∥ϵ2aa⊤∥2F − 2ϵ2tr(aa⊤)

= ∥PΣuP⊤ − I∥2F + ϵ4 − 2ϵ2

< 4r(P )

for sufficiently small ϵ, so r indeed decreases.

Next we inspect the change in f on this step. We have the following calculation:

E∥ϵab⊤Σ−1/2
u (u− ΣuvΣ

−1
v v)∥2F = ϵ2E⟨ab⊤Σ−1/2

u (u− ΣuvΣ
−1
v v), ab⊤Σ−1/2

u (u− ΣuvΣ
−1
v v)⟩

= ϵ2⟨Σ−1/2
u ba⊤ab⊤Σ−1/2

u ,Σu − ΣuvΣ
−1
v Σvu⟩

= ϵ2⟨bb⊤, I − C⟩
≤ ϵ2(1− ρ2i )

since b ∈ Ci and ∥b∥2 = 1. Furthermore, we have E⟨Pu − Qv, ab⊤Σ
−1/2
u (u − ΣuvΣ

−1
v v)⟩ = 0 since a⊤P = 0 and

a⊤Q = a⊤PΣuvΣ
−1
v = 0. Putting these together, we have

2f(P ′, Q′) = E∥(P + ϵab⊤Σ−1/2
u )u− (Q+ ϵab⊤Σ−1/2

u ΣuvΣ
−1
v )v∥22

= E∥Pu−Qv + ϵab⊤Σ−1/2
u (u− ΣuvΣ

−1
v v)∥22

= 2f(P,Q) + 2ϵE⟨Pu−Qv, ab⊤Σ−1/2
u (u− ΣuvΣ

−1
v v)⟩+ 2E∥ϵab⊤Σ−1/2

u (u− ΣuvΣ
−1
v v)∥22

≤ 2f(P,Q) + ϵ2(1− ρ2i ).

Therefore, we conclude that

(f(P,Q) + λr(P ))− (f(P ′, Q′) + λr(P ′)) ≥ λ(2ϵ2 − ϵ4)

4
− ϵ2(1− ρ2i )

2
=

(λ− (1− ρ2i ))ϵ
2

2
− λϵ4

4
.

Since λ > 1− ρ2i , this implies that the Hessian has a negative eigenvalue at (P,Q). This contradicts the fact that (P,Q) is a
second-order stationary point, so we conclude that rank(P ) = min{i, r}.

Now we work toward proving Theorem 3.2. We start with a lemma that connects Assumption 3.1 to the canonical correlations
between x1 and (x0, u0).

Lemma A.2. Let w denote (x0, u0) and let x denote x1. Define C = Σ
−1/2
x ΣxwΣ

−1
w ΣwxΣ

−1/2
x . Let λ1 ≥ λ2 ≥ · · · ≥

λd ≥ 0 be the eigenvalues of C (with multiplicity) and let c1, . . . , cd be corresponding orthonormal eigenvectors. Then
under Assumption 3.1, λi = 1 for i = 1, . . . , r and λr+1 ≤ ρ2. Moreover, span{Σ−1/2

x ci : 1 ≤ i ≤ r} = V .

Proof. We first show that λr+1 ≤ ρ2. Define Ṽ = {Σ1/2
x v : v ∈ V}. Noting that ΠVx = z1 and dim(Ṽ) = 1, by the
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variational characterization of eigenvalues of symmetric matrices and Assumption 3.1, we have that

λr+1 = min
U

{
max
a∈U

a⊤Ca

∥a∥22
: dim(U) = d− r

}
≤ min

U

{
max

a∈U,b∈Rd+l

(a⊤Σ
−1/2
x ΣxwΣ

−1/2
w b)2

∥a∥22∥b∥22
: dim(U) = d− r

}

≤ max
a∈Ṽ,b∈Rd+l

(a⊤Σ
−1/2
x ΣxwΣ

−1/2
w b)2

∥a∥22∥b∥22

= max
a∈V,b∈Rd+l

(a⊤Σxwb)
2

(a⊤Σxa)(b⊤Σwb)

= max
a∈Rd,b∈Rd+l

(a⊤Σz1wb)
2

(a⊤Σz1a)(b
⊤Σwb)

= ρ(z1, w)
2

≤ ρ2,

as desired.

Now let T : Rd+l → Rd be the linear transformation satisfying y1 = Tw. Let v ∈ V . Note that v⊤x = v⊤y1 = v⊤Tw, so
we have

CΣ1/2
x v = Σ−1/2

x ΣxwΣ
−1
w Σwxv

= Σ−1/2
x ΣxwΣ

−1
w ΣwT

⊤v

= Σ−1/2
x ΣxwT

⊤v

= Σ−1/2
x Σxv

= Σ1/2
x v.

Hence, Σ1/2
x v is an eigenvector of C with eigenvalue equal to 1. Since V is r-dimensional, we conclude that the top r

eigenvalues of C are all equal to 1, and the corresponding r-dimensional eigenspace is precisely Ṽ . It then follows that
span{Σ−1/2

x ci : 1 ≤ i ≤ r} = V .

We are now ready to prove Theorem 3.2.

Proof. Let (P,Q,D) be a second-order stationary point of (1). Let x,w,C be as in Lemma A.2. Let Cr be as Theorem 3.3
where u is identified with x and v is identified with w. By Lemma A.2, we have that V = Σ

−1/2
x Cr. By Theorem 3.3, we

have rank(P ) = r and col(Σ1/2
x P⊤) = Cr. Thus, we conclude that col(P⊤) = Σ

−1/2
x Cr = V , as desired.

Finally, we address the sample complexity of the forward model objective. We begin with the following lemma.

Lemma A.3. Let w denote (x0, u0). Let Z and W be the sample matrices of z1 and w, respectively. Let E denote
the event that |ρ(Z,W ) − ρ(z, w)| ≤ (1 − ρ)/2. Under Assumption 3.4, there exists a constant C0 such that if n ≥
C0 log(2d+ l)/(1− ρ)2, then P (E) ≥ 0.99.

Proof. Set t =
√
2 log(10)/(2d+ l) and note that 1− exp(−t2(2d+ l)) = 0.99. Let ϵ = (1− ρ)/2 and note that

t2(2d+ l) log2(2d+ l)/ϵ2 = 8 log 10 log2(2d+ l)/(1− ρ)2.

Then by Lemma A.1 applied to z1 and w with the above ϵ, there exists a constant C such that if n ≥ (8 log 10)C log2(2d+
l)/(1− ρ)2, then |ρ(Z,W )− ρ(z1, w)| ≤ (1− ρ)/2 with probability at least 0.99.

We can now prove Theorem 3.5.
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Proof. As before, let x denote x1, and let X denote the corresponding sample matrix. We also have w, W , and Z as before.
Condition on the event that |ρ(Z,W )− ρ(z1, w)| ≤ (1− ρ)/2, which has probability at least 0.99 by Lemma A.3. Then
ρ(Z,W ) ≤ ρ(z1, w) + (1− ρ)/2 ≤ (1 + ρ)/2.

Define C = Σ
−1/2
X ΣXWΣ−1

W ΣWXΣ
−1/2
X , and let λ1 ≥ · · · ≥ λd be its eigenvalues with corresponding orthonormal

eigenvectors c1, . . . , cd. Just as in the population case, the eigenvalues of C are the squared empirical canonical correlations
between X and W , and the eigenvectors give the corresponding canonical correlation directions. Note that ΠVX has perfect
linear correlation with W . Using the same arguments from Lemma A.2, we have that the top r eigenvalues of C are equal to
1 and λr+1 ≤ (1 + ρ)2/4. Moreover, span{Σ−1/2

X ci : 1 ≤ i ≤ r} = V .

Note that (1 − ρ2)/4 ≤ (3 − 2ρ − ρ2)/4 = 1 − (1 + ρ)2/4. Hence, we have λ ≤ 1 − (1 + ρ)2/4. Now let (P,Q,D)
be a second-order stationary point of (3). We claim that the proof of Theorem 3.3 carries through exactly the same if
we replace the population objective function with the corresponding finite sample version (the argument is identical, we
just need to replace every covariance and cross-covariance matrix with the appropriate empirical version – there are no
spurious correlations to deal with). Hence, we can make use of that result here, and conclude that P has rank r and
col(Σ1/2

X P⊤) = span{c1, . . . , cr}. Combining this with the fact that span{Σ−1/2
X ci : 1 ≤ i ≤ r} = V completes the

proof.

A.2. Inverse Model

We first give a proof of Theorem 4.7, which shows that our objective function can recover the unknown subspace V . The
theorem is restated below.

Theorem A.4. Let f be the objective function in (4), and let Θ∗
0 = {θ = (P, {Li}ri=1, {Ti}

r−1
i=1 ) ∈

f−1(0) | ∥P∥F is minimal} be the set of optimal solutions to (4) that have minimal norm for P . Let θ∗ =
(P ∗, {L∗

i }, {T ∗
i }) ∈ Θ∗

0 be the solution in this set that minimizes
∑r
i=1 ∥Li∥2F . Then under assumptions 4.1, 4.3, and 4.5,

P = B+ and Li = B+Ai for i = 1, . . . , r. Moreover, V = col(P⊤) + col(L⊤
1 ) + · · ·+ col(L⊤

r ).

Recall the objective (4) was:

min
θ

1

2
E

r∑
i=1

∥Pxi − Lix0 −
i−1∑
k=1

Tkui−1−k − ui−1∥22

The main difficulty of proving this theorem lies in a mismatch between Assumption 4.1 and our objective function (4): in the
objective (4), we try to enforce a linear relationship between xi, x0, u1, u2, ..., ui−1, while Assumption 4.1 is about (hi, h0)
and (zi, z0). The following lemma helps relate the two.

Lemma A.5. Let i ∈ {1, . . . , r}. Let h̃i = (hi, h0, u0, . . . , ui−2) and let z̃i = (zi, z0). Then

ρ(h̃i, z̃i) ≤ ρ((hi, h0), (zi, z0)).

Proof. Note that the definition of h̃i doesn’t make sense for i = 1. In that case, define h̃1 = (h1, h0). Let u =
(u0, u1, . . . , ui−1). Observe that the coordinates of h̃i are a subset of the coordinates of (hi, h0, u), so ρ(h̃i, z̃i) ≤
ρ((hi, h0, u), z̃i). Note that there exist matrices P and Q such that hi = Ph0 + Qu. Let a1, a2 ∈ Rr, b1, b2 ∈ Rd, and
a3 ∈ Ril. Write a3 = Q⊤v1 + v2, where Qv2 = 0. Note that u is independent of h0 and ⟨v2, u⟩ is independent of each
coordinate of hi (as these are Gaussian random vectors). Then we have

E[(⟨a1, hi⟩+ ⟨a2, h0⟩+ ⟨a3, u⟩)2] = E[(⟨a1, hi⟩+ ⟨a2, h0⟩+ ⟨Q⊤v1, u⟩+ ⟨v2, u⟩+ ⟨P⊤v1, h0⟩ − ⟨P⊤v1, h0⟩)2]
= E[(⟨a1 + v1, hi⟩+ ⟨a2 − P⊤v1, h0⟩+ ⟨v2, u⟩)2]
= E[(⟨a1 + v1, hi⟩+ ⟨a2 − P⊤v1, h0⟩)2] + E[⟨v2, u⟩2]

Now u is independent of z0, so E[⟨v2, u⟩⟨b2, z0⟩] = 0. Moreover, u and zi are conditionally independent given hi, so we
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have

E[⟨v2, u⟩(⟨b1, zi⟩+ ⟨b2, z0⟩)] = E[⟨v2, u⟩⟨b1, zi⟩]
= E[E[⟨v2, u⟩⟨b1, zi⟩|hi]]
= E[E[⟨v2, u⟩|hi]E[⟨b1, zi⟩|hi]]
= E[E[⟨v2, u⟩]E[⟨b1, zi⟩|hi]]
= 0.

Then we have

E[(⟨a1, hi⟩+ ⟨a2, h0⟩+ ⟨a3, u⟩)(⟨b1, zi⟩+ ⟨b2, z0⟩)]√
E[(⟨a1, hi⟩+ ⟨a2, h0⟩+ ⟨a3, u⟩)2]E[(⟨b1, zi⟩+ ⟨b2, z0⟩)2]

≤ E[(⟨a1 + v1, hi⟩+ ⟨a2 − P⊤v1, h0⟩)(⟨b1, zi⟩+ ⟨b2, z0⟩)√
E[(⟨a1 + v1, hi⟩+ ⟨a2 − P⊤v1, h0⟩)2]E[(⟨b1, zi⟩+ ⟨b2, z0⟩)2]

≤ ρ((hi, h0), (zi, z0)).

We are ready to prove Theorem 4.7:

Proof. The main idea of the proof is to derive conditions for the variables based on first-order optimality conditions. We
first prove that the optimal variables have support only on the linearizing subspace. As a consequence, we can then show
that these variables equal the true model parameters.

To start, fix i ∈ {1, . . . , r}, define θi = [P Li T1 · · · Ti−1], let ỹi = (yi,−y0,−ui−2, . . . ,−u0), h̃i =
(hi,−h0,−ui−2, . . . ,−u0), and z̃i = (zi,−z0). Define K = [I 0]⊤ to be the block matrix that satisfies θiK = [P Li].
Define Ṽ = diag(V, V, I, . . . , I) to be the block diagonal matrix that satisfies ỹi = Ṽ h̃i, and note that Ṽ has full column
rank. Observe that there exists a matrix M such that ui−1 =Mh̃i.

We can now express the objective function as f(θ) =
∑τ
i=1 fi(θi), where fi(θi) = 1

2E∥θi(Kz̃i + Ṽ h̃i)− ui−1∥22. Since
each fi has minimal value 0, any optimal point for f must simultaneously optimize each fi. Hence, ∇f(θi) = 0 is a
necessary condition for optimality. To this end, we compute the gradient of fi as

∇fi(θi) = θi(KΣz̃iz̃iK
⊤ + Ṽ Σh̃ih̃i

Ṽ ⊤ + Ṽ Σh̃iz̃i
K⊤ +KΣz̃ih̃i

Ṽ ⊤)− Σui−1z̃iK
⊤ − Σui−1h̃i

Ṽ ⊤

We split the optimality condition according to orthogonal subspaces V and V ⊥ to obtain

0 = θi(Ṽ Σh̃ih̃i
Ṽ ⊤ +KΣz̃ih̃i

Ṽ ⊤)− Σui−1h̃i
Ṽ ⊤ (9)

0 = θi(KΣz̃iz̃iK
⊤ + Ṽ Σh̃iz̃i

K⊤)− Σui−1z̃iK
⊤ (10)

From (9), we have θiṼ Σh̃ih̃i
= Σui−1h̃i

− θiKΣz̃ih̃i
, and plugging this into (10) (while also clearing K⊤ by right-

multiplying the equation by K) gives

0 = θiKΣz̃iz̃i + θiṼ Σh̃ih̃i
Σ+

h̃ih̃i
Σh̃iz̃i

− Σui−1z̃i

= θiKΣz̃iz̃i − θiKΣz̃ih̃i
Σ+

h̃ih̃i
Σh̃iz̃i

− Σui−1z̃i +Σui−1h̃i
Σ+

h̃ih̃i
Σh̃iz̃i

= θiK(Σz̃iz̃i − Σz̃ih̃i
Σ+

h̃ih̃i
Σh̃iz̃i

)−MΣh̃iz̃i
+MΣh̃ih̃i

Σ+

h̃ih̃i
Σh̃iz̃i

= θiKΣz̃iz̃i(I − Σ+
z̃iz̃i

Σz̃ih̃i
Σ+

h̃ih̃i
Σh̃iz̃i

).

By Lemma A.5 and Assumption 4.1, we have that I−Σ+
z̃iz̃i

Σz̃ih̃i
Σ+

h̃ih̃i
Σh̃iz̃i

is nonsingular, so we conclude that θiKΣz̃iz̃i =

0. In particular, this implies that θiKΣz̃iỹi = 0.

We can now simplify (9) as 0 = θiṼ Σh̃ih̃i
Ṽ ⊤ − Σui−1h̃i

Ṽ ⊤ = θiΣỹiỹi − Σui−1ỹi . This matrix equation can be naturally
partitioned into blocks according to the block partition of θi and ỹi. Reading out the second block column gives 0 =
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−PAi + LiV V
⊤. Reading out the (k + 1)-st block column (for k ≥ 1) gives 0 = −PAkB + Tk. The first block column

gives

0 = PΣyiyi − LiΣy0yi −
i−1∑
k=1

TkΣui−1−kyi − Σui−1yi

= P (Ai(Ai)⊤ +

i−1∑
k=1

AkB(AkB)⊤ +BB⊤)− Li(A
i)⊤ −

i−1∑
k=1

Tk(A
kB)⊤ −B⊤

= (PB − I)B⊤ + (PAi − Li)(A
i)⊤ +

i−1∑
k=1

(PAkB − Tk)(A
kB)⊤

= (PB − I)B⊤.

Using Assumption 4.5, we right-multiply by (B+)⊤ to obtain PB = I . Since P is the minimal-norm optimal solution,
we conclude that P = B+. Then LiV V ⊤ = B+Ai and Tk = B+AkB. Since we are also minimizing the norm of Li,
we see that Li must vanish on V ⊥, so that Li = LiV V

⊤, and Li = B+Ai. That we recover all of V is a consequence of
Assumption 4.3.

Now we address the finite sample complexity of the inverse model objective. In this section, for each random vector
zi, yi, hi, ui involved in the model, we consider corresponding sample matrices Zi, Yi ∈ Rd×n, Hi ∈ Rr×n, Ui ∈ Rl×n.
For sample covariance matrices we use the notation ΣUiUi =

1
nUiU

⊤
i ,ΣYiZi

= 1
nYiZ

⊤
i , and so on.

More precisely, letH0 ∈ Rr×n be a random matrix whose columns are independent standard Gaussian vectors. Likewise, for
k = 0, . . . , r − 1, let Uk ∈ Rl×n be a matrix whose columns are independent standard Gaussian vectors. For i = 0, . . . , r,
let Hi = ĀiH0 +

∑i−1
k=0 Ā

kBUi−1−k, and let Xi = V Hi + Zi, where the columns of Xi are the observed states and the
columns of Zi are the nonlinear parts.

We also need to ensure that a certain Gaussian empirical covariance matrix is invertible. We use the following standard
matrix concentration inequality.

Lemma A.6 (From Corollary 5.35 of (Vershynin, 2010)). Let Y ∈ Rk×n be a matrix whose entries are independent
standard Gaussian random variables. Then for every t ≥ 0, with probability at least 1− 2 exp(−t2/2) it holds that

√
n−

√
k − t ≤ σmin(Y ).

We now use these two concentration results to prove our main lemma for this section.

Lemma A.7. Let Z̃i and H̃i be the sample matrices of z̃i and h̃i, respectively (from the proof of Theorem 4.7). Further
define Ĥi to be the sample matrix for the random vector ĥi := (h0, ui−1, ui−2, . . . , u0). Let Ei denote the event that
|ρ(H̃i, Z̃i)− ρ(h̃i, z̃i)| ≤ (1− ρ)/2. Let Fi denote the event that σmin(Ĥi) ≥ 1/2. There exists a constant C0 such that if
n = C0(d+ rl) log r log2(d+ rl)/(1− ρ)2, then

P

(
r⋂
i=1

Ei ∩ Fi

)
≥ 0.99.

Proof. Set the failure probability parameter t = C ′√log r, where C ′ is a large enough constant such that

r(exp(−t2(2d+ 2r)) + 2 exp(−t2/2)) ≤ 0.01.

Let C be the constant from Lemma A.1 applied to h̃i and z̃i with ϵ = (1 − ρ)/2 – we can take the same C for each i
since we assume each (hi, zi) satisfy the same sub-Gaussian property. Set C0 large enough so that when n = C0(d +
rl) log r log2(d+ rl)/(1− ρ)2, the following hold for i = 1, . . . , r:

n ≥ 4Ct2(2d+ 2r + (i− 2)l) log2(2d+ 2r + (i− 2)l)/(1− ρ)2,
√
n ≥ 1/2 +

√
r + (i− 1)l + t
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We first analyze P (Ei). Apply Lemma A.1 to h̃i ∈ R2r+(i−2)l and z̃i ∈ R2d with ϵ = (1− ρ)/2 and the specified value of t.
Then we see that n is large enough to ensure that P (Ei) ≥ 1− exp(−t2(2d+ 2r + (i− 2)l)) ≥ 1− exp(−t2(2d+ 2r)).

Next, consider P (Fi). Apply Lemma A.6 to Ĥi with the specified value of t. Again it is clear that n is large enough to
ensure that P (Fi) ≥ 1− 2 exp(−t2/2).

Finally, by the union bound,

P

(
r⋂
i=1

Ei ∩ Fi

)
≥ 1−

r∑
i=1

(2− P (Ei) + P (Fi))

≥ 1− r(exp(−t2(2d+ 2r)) + 2 exp(−t2/2))
≥ 0.99.

We now prove Theorem 4.10.

Proof. Lemma A.7 provides the sample complexity and success probability – all that’s left is to analyze the empirical loss
assuming that the conclusion of Lemma A.7 holds. Our analysis of the empirical loss is close to that of the population loss. We
use the same notation as in the proof of Theorem 4.7, e.g. Ỹi, H̃i, Ũi, Z̃i are the sample matrices of ỹi, h̃i, ũi, z̃i, respectively.
Likewise, define θi, K, and Ṽ as before. We additionally define Ĥi to be the sample matrix for (h0, ui−1, ui−2, . . . , u0).

By the same argument as in the proof of Theorem 4.7, we have that

0 = θiKΣZ̃iZ̃i
(I − Σ+

Z̃iZ̃i
ΣZ̃iH̃i

Σ+

H̃iH̃i
ΣH̃iZ̃i

).

The spectral norm of −Σ+

Z̃iZ̃i
ΣZ̃iH̃i

Σ+

H̃iH̃i
ΣH̃iZ̃i

is ρ(H̃i, Z̃i), and by assumption and Lemma A.7, we have

ρ(H̃i, Z̃i) ≤ ρ(h̃i, z̃i) + (1− ρ)/2 ≤ (1 + ρ)/2 < 1.

Hence, (I − Σ+

Z̃iZ̃i
ΣZ̃iH̃i

Σ+

H̃iH̃i
ΣH̃iZ̃i

) is robustly nonsingular, so we conclude that θiKΣZ̃iZ̃i
= 0 and likewise

θiKΣZ̃iỸi
= 0.

Using this fact, we can continue to follow the proof of Theorem 4.7 to obtain

0 = θiṼ ΣH̃iH̃i
Ṽ ⊤ − ΣUi−1H̃i

Ṽ ⊤.

Analyzing this equation is slightly more complicated now due to the fact that sample cross-covariance terms like ΣH0Uj
are

nonzero (whereas the corresponding population covariances vanish due to independence). By splitting the equation into
block columns, grouping terms, and simplifying the terms that cancel, it is straightforward to see that

0 = [(PAi − Li) (PB − I) (PAB − T1) · · · (PAi−1B − Ti−1)]Ṽ ΣĤiĤi
Ṽ ⊤.

By assumption, σmin(Ĥi) ≥ 1/2, so ΣĤiĤi
is robustly nonsingular. Hence, we have that

0 = [(PAi − Li) (PB − I) (PAB − T1) · · · (PAi−1B − Ti−1)]Ṽ ,

which implies that PB = I and (PAi − Li)V = 0 for all i. Since we assume P has minimal norm, we conclude that
P = B+. Thus, LiV = B+AiV , i.e. Li = B+Ai on the subspace V . By the construction of our minimal norm solution,
we know that Li must vanish on V ⊥, and this completes the proof.

A.3. Handling Noise in the Model

We now consider a simple version of our model with noise, and show that our algorithm identifies the correct subspace
(up to an error proportional to the noise) in this setting as well. We consider a one-step trajectory where the initial state
x0 = 0, and we assume that our observation is corrupted by independent centered noise. In particular, we can write the state
observation as x = Bu+ z + ξ, where ξ is a random vector in Rd that is independent of both u and z. Assume the noise



Latent State Representations with Linear Dynamics

covariance matrix Σξξ splits orthogonally along the subspace V and V ⊥, that is, we can write Σξξ = Σ1 +Σ2, where Σ1 is
the covariance of the noise projected onto V and Σ2 is the covariance of the noise projected onto the column-span of V ⊥.
This orthogonal splitting is satisfied when ξ is a spherical Gaussian random vector, for example.

Given this noisy state observation x and control input u, the task is to recover the column-span of B by learning a linear
inverse model:

min
P

1

2
Eu,ξ∥Px− u∥22 (11)

Due to the noise term, this linear model will not achieve zero error. However, we can bound the error of our solution as a
function of the noise magnitude and correlation bound.

Theorem A.8. Let u ∈ Rl and ξ ∈ Rd be independent spherical Gaussian random vectors, with Σξξ = σ2I . Let P be the
minimal norm optimal solution to the optimization problem (11). Write P = P1 + P2, where P1 is the projection of P onto
V , and P2 is its projection onto V ⊥. In the noisy setting described above, we have P1 = B+ and

∥P2∥2 ≤ σρ

2
√

1− ρ2
∥B+∥2∥P1∥2

where σ = λmax(Σξξ) and ρ := ρ(u, z).

Note that ideally we want P2 = 0, since its rows are in V ⊥. This theorem says that the spectral norm of P2 is small
compared to P1, which allows us to approximately recover B+.

Proof. In this setting, the optimality conditions of (11) take the form

0 = BΣuu(B
⊤P1 − I) +BΣuzP2 + σ2P1 (12)

0 = Σzu(B
⊤P1 − I) + ΣzzP2 + σ2P2, (13)

Multiplying (12) by Σzu(BΣuu)
+ and subtracting (13) yields the following identity (after simplification):

(σ2I +Σzz − ΣzuΣ
−1
uuΣuz)P2 = σ2Σzu(BΣuu)

+P1. (14)

Let Qz be the (orthogonal) projection onto the column-span of Σzz , and note that we can write Qz = (Σ
1/2
zz )+Σ

1/2
zz . Define

C = Qz − (Σ
1/2
zz )+ΣzuΣ

−1
uuΣuz(Σ

1/2
zz )+. Note that (Σ1/2

zz )+ΣzuΣ
−1
uuΣuz(Σ

1/2
zz )+ has maximal eigenvalue ρ2. Then C has

column-span equal to that of Σzz , with minimal nonzero singular value equal to 1− ρ2.

Set Γ = (σ−1Σ
1/2
zz C1/2)+ + (σ−1Σ

1/2
zz C1/2)⊤. Based on the properties of C that we established, it is evident that Γ has

column-span equal to that of Σzz , and it has minimal singular value bounded below by 2 by Lemma A.9. We have

P2 = (C1/2Γ)+C1/2ΓP2

= (C1/2Γ)+σ−1(Σ1/2
zz )+

(
σ2I +Σzz − ΣzuΣuuΣuz

)
P2

= (C1/2Γ)+σ−1(Σ1/2
zz )+σ2ΣzuΣ

−1
uuB

+P1

= σΓ+(C1/2)+((Σ1/2
zz )+ΣzuΣ

−1/2
uu )Σ−1/2

uu B+P1.

Now (Σ
1/2
zz )+ΣzuΣ

−1/2
uu must have maximal singular value equal to ρ, since it gives a symmetric low-rank factorization of

(Σ
1/2
zz )+ΣzuΣ

−1
uuΣuz(Σ

1/2
zz )+. Hence, we finally have the bound

∥P2∥2 ≤ σρ

2
√

1− ρ2
∥Σ−1/2

uu B+∥2∥P1∥2.

Lemma A.9. For any matrix A, the minimal nonzero singular value of A+ +A⊤ is at least 2.

Proof. Write the compressed SVD of A+ as UΣV ⊤, and note that we can write A⊤ = UΣ−1V ⊤. It is then evident that the
non-zero singular values of A+ +A⊤ are of the form x+ x−1 for x > 0. But x+ x−1 ≥ 2 for all x > 0.
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A.4. Nonlinear Representation Learning

We here give a proof of Theorem 5.1. For this section, instead of writing ϕ(x) to denote the state representation of x, we
simply drop explicit reference to ϕ and agree that any system state we discuss has already been mapped to its representation
via ϕ. This will simplify notation but doesn’t change any of the analysis.

Theorem A.10. Let ϕ, P, {Li, Ti}, i = 1, . . . , τ be optimal solutions to the optimization problem (7), and assume that these
parameters incur zero loss. Define V = col(P⊤) + col(L⊤

1 ) + · · ·+ col(L⊤
τ−1), and assume that col(L⊤

τ ) ⊂ V . Let Q be
the orthogonal projection matrix onto V . Then there exist matrices A ∈ Rn×n and B ∈ Rn×l such that

Qf(x, u) = Qf(Qx, u) = AQx+Bu.

Proof. Zero loss in the objective function implies that

Pf(x, {u0, . . . , ui−1) = Lix+

i−2∑
k=0

Ti−1−kuk + ui−1

for all x ∈ ϕ(Rd) and uj ∈ Rl, j = 0, . . . , i− 1.

Fix 2 ≤ i ≤ τ + 1. By assumption,

Pf(x, {u0, . . . , ui−1}) = Lix+

i−2∑
k=0

Ti−1−kuk + ui−1.

But we can also express this as follows:

Pf(x, {u0, . . . , ui−1}) = Pf(f(x, u0), {u1, . . . , ui−1})

= Li−1f(x, u0) +

i−3∑
k=0

Ti−2−kuk+1 + ui−1

Equating these two expressions and eliminating like terms gives

Li−1f(x, u0) = Lix+ Ti−1u0.

Note that here it is crucial that we couple the Ti matrices. Without the coupling we would not be able to eliminate the terms
relating ui for i > 0.

Next, let {v1, . . . , vr} be an orthonormal basis for V . Then we can write Q =
∑r
j=1 vjv

⊤
j . Furthermore, by construction,

for each vj , there exist vectors yj,0, yj,1, . . . , yj,τ such that vj = P⊤yj,0 +
∑τ
i=1 L

⊤
i yj,i. Notice that for i = 1, . . . , τ + 1,

since col(L⊤
i ) ⊂ V , it holds that Li = LiQ. Then we have

Qf(x, u) =

r∑
j=1

vjv
⊤
j f(x, u)

=

r∑
j=1

vj

(
y⊤j,0Pf(x, u) +

τ∑
i=1

y⊤j,iLif(x, u)

)

=

r∑
j=1

vj

(
y⊤j,0(L1x+ u) +

τ∑
i=1

y⊤j,i(Li+1x+ Tiu)

)

=

 r∑
j=1

τ∑
i=0

vjy
⊤
j,iLi+1

Qx+

 r∑
j=1

τ∑
i=0

vjy
⊤
j,iTi

u

where we let T0 = I . Now set A =
∑r
j=1

∑τ
i=0 vjy

⊤
j,iLi+1 and B =

∑r
j=1

∑τ
i=0 vjy

⊤
j,iTi, and we have our result.
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Figure 5. Error and threshold rank of P during training

B. Synthetic Experiments
B.1. CCA Objective

We generate 1000 i.i.d. samples from the model u ∈ R5 ∼ N(0, I) and v = u+ ϵ, where ϵ ∼ N(0, diag(0, .25, .5, .75, 1)).
We compute the empirical canonical correlations ρ1, . . . , ρ5 and the corresponding subspaces C1, . . . , C5, and then set
regularizer weights λi = (2 − ρ2i − ρ2i+1)/2 for i = 1, . . . , 4. For each λi, we optimize the finite-sample version of (2)
using gradient descent on the parameters P,Q ∈ R5×5 with a learning rate of 0.1 for 20000 steps. We measure the error in
P given by ∥PΣ1/2

u ΠC⊥
i
∥F and the threshold rank of P (the number of singular values of P greater than 10−5). In every

case, the error in P converges to 0 and the threshold rank converges to i, thus confirming the conclusion of Theorem 3.3. In
Figure 5, we plot of these quantities for i = 3 as a function of the gradient step.

B.2. Constructing the Solution to the Inverse Model

In this section we discuss in detail how to obtain the particular minimal-norm solution to (5) that we require in Theorem
4.10. We then discuss synthetic numerical experiments that we conducted to validate the correctness of this result.

It simplifies things to consider the least squares problem

min
x,y

∥Ax+By − c∥22,

where A and B are arbitrary matrices and c is an arbitrary vector. Assume the space of solutions {x, y} that have zero error
is nonempty (i.e. it is an entire linear space of solutions). We want to select the optimal solution (x∗, y∗) such that for any
other optimal solution (x′, y′), we have ∥x∗∥2 ≤ ∥x′∥2 and if ∥x∗∥2 = ∥x′∥2 then ∥y∗∥2 ≤ ∥y′∥2.

We can obtain such a solution by splitting the problem into two stages. First, let x∗ be the minimal norm solution of

min
x

∥(I − PB)Ax− (I − PB)c∥22,

where PB is the orthogonal projection onto the column-span of B. We can compute x∗ using standard least squares
techniques such as using the singular value decomposition. Then, let y∗ be the minimal norm solution to

min
y

∥By − PBc+ PBAx
∗∥22.

Let us verify that (x∗, y∗) has the desired properties. Let (x′, y′) be any solution, i.e. Ax′ + By′ = c. Left-multiplying
the equation by I − PB , we see that (I − PB)Ax

′ = (I − PB)c. By construction, we have that ∥x∗∥2 ≤ ∥x′∥2.
Now assume that ∥x∗∥2 = ∥x′∥2. This implies that x∗ = x′ (the minimum-norm solution is unique). Then we have
By′ = PBc− PBAx

′ = PBc− PBAx
∗. Again, by construction we have that ∥y∗∥2 ≤ ∥y′∥2, as desired.
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Figure 6. Pixel observations for the environments tested.

C. Experimental Details for Section 6
We here provide further details about the experiments discussed in Section 6.

For each environment, we re-implement the scene renderings to reduce render time and make it compatible with our
computing environment. We also add to our environments the ability to reset the system in a desired state (rather than a
random state). This allows us to sample initial states from a desired distribution on the state space. We repeat the action
three times for both environments, and the resulting concatenated pixel observations have sizes (64, 192) and (80, 360) for
the pendulum and mountain car environments, respectively. Figure 6 displays examples of these state observations.

The state representation map ϕ is a basic neural network with two convolutional layers (each with 16 output channels, the
first layer with kernel size 8 and stride 4, the second layer with kernel size 4 and stride 2) followed by two fully connected
layers each of width 50 for the inverse model, and two fully connected layers of width 1000 and 8 for the forward model.
All layers use ReLu activation with no other nonlinearities. For the inverse model, after the final layer, we project to the top
4 right singular directions of the matrix [P⊤ L⊤

1 · · · L⊤
τ ]

⊤, so that in the end, we have a 4-dimensional representation.

To train the representations, we solve (6) and (7) using the Adam optimizer using minibatches of data. We observed that the
loss function converged to a nonzero value, which means there may be room to better learn the forward and inverse models
if we explore different architecture or training options.

Policy Training The forward and inverse model representations used in Figure 6.2 were trained on a fixed set of batches
of trajectories. The inverse model naturally trains over longer trajectories. With the forward model we found it necessary
to not just collect many length-1 trajectories, but instead collect longer trajectories and then extract the 1-step trajectories
embedded within.

We use the Stable Baselines implementation of TRPO to learn a linear policy for our trained inverse model representations,
and we learn a basic fully-connected neural network policy for the forward model representations. For the linear policies,
we use all of the default parameters except for the stepsize parameter “vf stepsize”, which we tested over the range of values
[0.00005, 0.0001, 0.0005, 0.001, 0.01, 0.1, 0.5]. We observed similar performance for all of these choices, but reported the
best results in Figure 6.2. For the nonlinear policies, we tested over a larger set of hyperparameters and again reported the
best results.


