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Abstract—Software vulnerabilities have become a serious prob-
lem with the emergence of new applications that contain po-
tentially vulnerable or malicious code that can compromise the
system. The growing volume and complexity of software source
codes have opened a need for vulnerability detection methods
to successfully predict malicious codes before being the prey
of cyberattacks. As leveraging humans to check sources codes
requires extensive time and resources and preexisting static
code analyzers are unable to properly detect vulnerable codes.
Thus, artificial intelligence techniques, mainly deep learning
models, have gained traction to detect source code vulnerability.
A systematic review is carried out to explore and understand
the various deep learning methods employed for the task and
their efficacy as a prediction model. Additionally, a summary
of each process and its characteristics are examined and its
implementation on specific data sets and their evaluation will
be discussed.

Index Terms—Deep Learning, Software Security, Source code
Vulnerability

I. INTRODUCTION

The growing number of software applications in the modern

world has also seen a growing number of cyber security attacks

have plagued the information era. The Mitre organization in

charge of the Common Vulnerability and Exposures (CVE)

term software vulnerability as a: “A flaw in the computational

logic, such as code, is identified in software and hardware

components that, when exploited, has a detrimental influence

on confidentiality, integrity, or availability” [37].

The number of software vulnerabilities have only increased

over time where CVE reports 20149 vulnerabilities reported

in 2021 while 4155 vulnerabilities detected in 2011 as shown

extensively in Figure 1. Recently, Apple suffered an iMessage

vulnerability, FORCEDENTRY exploit, by Pegasus spyware

that bypassed the iOS BlastDoor security feature to deploy

the spyware and create malicious webpages when iPhone or

iPads access the internet [39]. This attack implemented integer

overflow as tracked by CVE [37] and resulted in snooping of

private information of political figures and extortion scams that

blackmailed people to pay a ransom [39].

Fig. 1. CVE Vulnerabilities detected from 1999 to 2022 [42]

The prevalence of software vulnerabilities still exist in spite

of academics and industries efforts to enhance software qual-

ity. The main two reasons for this phenomenon is widespread

usage of open-software and code reuse that contain these flaws

[40] and the increase in the number of internet user which

also increased the number of attacks [38]. Thus, to prevent

cyberattacks that cause data leakage of sensitive information,

denial-of service condition, lose control of software or even

suspend production of firms [41] deep learning approaches can

be implemented to detect vulnerabilities existing in the source

code of the software.

Deep learning is a subset of machine learning in Artificial

Intelligence that aims to imitate the human brain and nervous

system. Deep learning techniques tend to be superior than

traditional rule-based methods generated manually by human

experts, which are can be imprecise, resource-intensive, time-

consuming, subjective to the software and entirely dependent

on the knowledge and experience of the expert, or by static

tools such as Checkmarx, Flawfinder etc. that have high false-

positive rates and/or high false-negative rates [40]. Deep learn-

ing techniques can learn features automatically to demonstrate
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better generalization ability than manually determined fea-

tures. So, success and efficacy of the vulnerability prediction

model is mediated by the sophistication of the deep neural

networks of the model in deep learning rather than the feature

selection used in conventional machine learning.

A. Contributions of this Survey

Few surveys exist that explicitly conduct the investigation of

deep learning models in software vulnerability detection. This

survey aims to expand on this research field and provide a

different perspective. An overview of the nature of datasets

that are used to train the deep learning models such as:

synthetic codes, semi-synthetic codes and real codes. An in-

depth perspective on the popular source code representations

to capture semantic information of unlabelled source code are

explored. Furthermore, deep learning models in vulnerability

detection are presented with its evaluation metrics.

II. RESEARCH METHODOLOGY

A systematic literature review has been conducted to find

existing papers related to our topic of research. Thus, a “Search

Process” was implemented to find such papers for our study

[43], [44]. The specific search strings had the keywords,

“Source Code Vulnerability Detection”, “Software Vulnerabil-

ity Detection using Deep Learning”, “Automatic Detection OR

Discovery of vulnerability”, “Deep Learning detect Software

Vulnerability”. An exclusion process was utilized to exclude

papers unrelated to our goal or duplicates of the selected paper.

The scientific databases considered were: (i) IEEE Xplore (ii)

arXiv e-Print Archive (iii) ACM Digital ibrary and (iv) Google

Scholar.

TABLE I
INCLUSION AND EXCLUSION CRITERIA FOR THE PRIMARY STUDIES

Condition (Inclusion) Condition (Exclusion)
The study must be related to Software
Vulnerability that implement Deep
Learning methods specifically

The studies not focusing on
software vulnerability or imple-
ments other models such as ma-
chine learning trained models

Papers are not duplicated in different
databases

Similar papers in different
databases

Peer-reviewed papers published in a
conference proceeding or journal

Non-peer-reviewed papers

Studies that are available in the full
format and in English

Studies are not available fully
and Non-English studies

The initial keyword search process had undergone a fil-

tration procedure that only selected papers published in the

TABLE II
GENERALIZED TABLE FOR SEARCH CRITERIA

Scientific
Databases Initial Keyword Search Total Inclusion

IEEE Xplore 161 5
arXiv e-Print Archive 42 3
ACM Digital ibrary 50 1

Springer 25 1
Google Scholar 50 0

last 5 years from 2017 to 2022. Additional restraints were

placed in each of the scientific databases to find relevant

research material. IEEE Xplore included only Conferences and

Journals while ACM required filters specifying Journals and

Research Articles. arXiv e-Print Archive did not require any

predefined filters nor did Google Scholar. However, Google

Scholar failed to provide any unique research papers related

to our study. A total of 303 research papers were procured

in-depth screening process that accounted for the publication

title, abstract, experimental results and conclusions shortened

the list to 10 papers for our study.

A. Related Reviews

Multiple studies have been conducted to systematically

summarize the machine learning technology, deep learning

technology or state-of-the-art research achievements in source

code vulnerability analysis. Ghaffarian and Shahriari [51]

provided an extensive and detailed review of the traditional

machine learning and data mining techniques for detection

and analysis of software vulnerability. This research concluded

the immature state of machine learning techniques but did not

explore deep learning techniques. Malhotra [52] came to a

similar conclusion after reviewing 64 preliminary studies of

machine learning techniques used on software fault prediction.

Radjenovic et al. [45] conducted a systematic literature

review on the software metrics for software fault solutions.

However, software fault prediction has very limited application

and lacks relevance to software vulnerability detection [46]. M.

Masum et al. [47] introduced a novel Bayesian optimization-

based framework for the automatic optimization of hyper-

parameters to ensure the best deep neural network architec-

ture. The authors also introduced a feature selection-based

framework by adopting different machine learning algorithms

including neural network-based architectures to classify the

security level for ransomware detection and prevention by ap-

plying Decision Tree (DT), Random Forest (RF), Naive Bayes

(NB), Logistic Regression (LR) as well as Neural Network

(NN)-based classifiers [48]. M.J.H. Faruk et al. emphasized

Artificial Intelligence (AI) based techniques for detecting and

preventing malware activity. Both machine learning and deep

learning methods, techniques, and approaches were presented

to detect and prevent malware [49].

III. SOURCE CODE REPRESENTATION

Source code representation is an essential step to decompose

the input sample of source code to only contain important

syntactic and semantic information by removing unnecessary

lines, comments, spaces. While many representations exist,

this study will aim to present the state-of-the-art methods

utilized to capture the structural and semantic information

from the source code for feature extraction.

A. Abstract Syntax Tree (AST)

Abstract Syntax Tree (AST) is the tree representation of a

source code that can capture the abstract syntax structure and

semantics of the code block that allows the source code to be
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analyzed statically [17, 18]. This procedure allows the partition

of the initial input source code into smaller parts and achieves

greater granularity of the function-level source code [13]. An

AST can be acquired by using a parser such as CodeSensor

[18], [19], or Pycparser [7]. While these ASTs can be directly

used, it lacks granularity due to codes being large or complex

[16]. Thus, in [7] the AST tree, which can be considered

an m-ary tree, enforces rules to convert it into a complete

binary AST tree to preserve its structural relations from the

AST nodes. Similarly, an RNN model has also been proposed

called Tree-LSTM which leverages its bottom-up calculation

to integrate outputs of all AST child nodes to construct a

binary AST tree [18], [20].

B. Code Gadgets

Code gadgets are a composition of multiple lines of program

statements that have a semantic correlation in terms of data

dependency and control dependency [3] by implementing

program slicing [22]. Program slicing can be categorized into

two type of slices: forward and backward [3]. Forward slices

are the slices of code that are received from an external input,

such as file o sockets; whereas, backward slices do not receive

an direct input externally from the environment in which the

program is run [2], [21]. This decomposition of programs by

analyzing their data flow and control flow [22] allows the

reduction of the lines of codes and focuses on the key points of

library/API function calls, arrays, or pointers. VulDeePecker

[3] only accounts for data dependency in the code gadgets

[8], [21] as it uses the commercial tool Checkmarx [25] and

performs forward and backward slices for each argument and

then assembled to form code gadgets. In Zagane’s model [23]

the dataset contains 420,627 code slices which consist of

56395 vulnerable code slices and the code metrics of each

slice is calculated for their deep learning model.

C. Code Property Graph (CPG)

Code Property Graph (CPG) is an amalgamation of classical

data structures representing a source i.e. abstract syntax tree,

control flow graph (CFG), and program dependence graph

(PDG) [26]. The REVEAL [1] vulnerability prediction frame-

work utilizes a modified CPG rather than the data structure

represented by Yamaguchi et al. [26] by adding a data-flow

graph (DFG) in conjunction with the existing CPG to capture

additional context about the semantic in the code. Devign [5]

takes a similar approach of CPG in source code representation

by merging the concepts of AST, CFG, DFG, and Natural

Code Sequence (NCS) into a joint graph.

D. Lexed Representation

Russell et al. [6] constructed a custom lexer for C/C++

code that formed a code representation of 156 tokens as

the vocabulary size. This methodology included keywords,

operators, separators while excluding irrelevant code in terms

of compilation. The lexer converted the code to tokens of

three different types. String, character, and float literals were

lexed to type-specific placeholders while integer literals were

tokenized digit-by-digit due to relevance to vulnerability de-

tection. Types and function calls from common libraries are

mapped to their generic versions. Zheng et al. [19] imple-

mented this custom lexer for word-level tokenization on texts

from the Draper VDISC dataset.

E. Semantics-based Vulnerability Candidates (SeVC)

Semantics-based Vulnerability Candidates are the various

statements that are semantically related to the Syntax-Based

Vulnerability Candidates (SyVC) by extraction of its program

slices [19]. In order to conceptualize SeVCs the term SyVC

needs to be explored. SyVCs extraction requires the conversion

of source code to an AST which contains multiple consecutive

tokens. The AST is traversed to locate a code element that

matches the defined vulnerability syntax which is labelled as

a SyVC [4]. SyVCs are transformed into SeVCs by program

slicing [22] to capture the semantic relation of statements

based on data dependency and control dependency. Joern [24]

tool extracts PDGs of each SyVC; then, program slices are

generated from interprocedural forward and backward slices

[27] which are transformed to SeVCs [4].

IV. DEEP LEARNING MODELS

Deep Neural Networks were inspired from the biological

aspects of the human brain and nervous system. It forms

networks similar to the human nervous system and mimics

the thought mechanisms of humans by training itself with

the data provided. Deep learning has been successful in

image classification and captures nonlinear effects of variables

with high-level feature representation. Thus, deep learning

techniques have been implemented to extract features from

texts (source code) and then train its model to understand and

detect the vulnerability in the software.

A. CNN (Convolutional Neural Network)

CNN is a deep learning model that was introduced mainly

to analyze features in images but it has also been implemented

on feature extraction of source codes to learn its vector

representations [12]. Furthermore, since codes do not possess

extensive features that are present in images, CNN can extract

the features as well as understand the structure of the program

by learning patterns and relationships between contexts in the

source code [9]. In the study of Russell et al. [6] the CNN

implemented had a filter size of 9 and 512 filters paired with

batch normalization and ReLU to determine the sequential

tokens.

B. RNN (Recurrent Neural Network)

RNN allows longer token dependencies to be extracted

than CNN [6] as its “memory” contains information from the

previous and next tokens [9]. RNN used in Russel et al. [6]

had a hidden size of 256 and was maxpooled to generate a

fixed size of vector representations.

LSTM is an extended version of the RNN architecture

that can learn long-term dependencies. LSTM can overcome

the limitations of a conventional statistical model (such as
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ARIMA) by capturing non-linearity of sequential data and

simultaneously generating more precise forecasting for time-

series data [11]. LSTM addresses the vanishing gradient prob-

lem of RNN [50]. The building block of LSTM architecture

is a memory block, which consists of a memory cell that

can preserve information of the preceding time step with

self-recurrent connections. BLSTM is a variation of LSTM

deep learning model but builds upon the one-way model by

pairing it with another CNN model called GRU to enforce

two-way LSTM i.e. BLSTM. μVulDeePecker [8] implemented

a multi-feature fusion method of BLSTM that could extract

information from global-feature learning model, local-feature

learning model and feature-fusion model.

GRU is an alternative version of LSTM that was intro-

duced to avoid the vanishing gradient problem and boost

the efficiency of LSTM [17]. GRU has a less complicated

architecture than LSTM, with a reduced number of parameters

to learn. It consists of two gates: update and reset gates, (In

comparison, three gates are included in LSTM.) GRU solves

the vanishing gradient problems of RNN by leveraging the

two gates through controlling what information should be

passed to the future states [14]. The input and forget gates

in LSTM models are integrated into the GRU update gate,

which determines how much information from previous steps

should be passed to the future time steps. Similarly, to the

output gate in LSTM, the reset gate in the GRU incorporates

new input and previous memory and determines how much

memory of past information should be forgotten.

V. DATASETS

The datasets observed in this field of research when im-

plementing Deep Learning models are source code in the

C/C++ language. These datasets are popular because an in-

depth review has been done in quantifying the amount of

vulnerable and malicious code present in the dataset as shown

in Figure 2.

Fig. 2. Overview of Datasets

A. NVD and SARD

Software Assurance Reference Dataset (SARD) [28] con-

tains production, synthetic, and academic security flaws or

vulnerabilities, and National Vulnerability Database (NVD)

[29] contains vulnerabilities in production software [3]. The

dataset is made up of C/C++ programs and software products

[4] which contain 61,638 code gadgets, including 17,725 code

gadgets that are vulnerable and 43,913 code gadgets that

are not vulnerable [31] as shown in Figure 5. Among the

17,725 code gadgets that are vulnerable, 10,440 code gadgets

correspond to buffer error vulnerabilities (CWE-119) and the

rest 7,285 code gadgets correspond to resource management

error vulnerabilities (CWE-399) [3]. The dataset is named

as Code Gadget Database (CGD) [31] and its extensions are

Semantics-based Vulnerability Candidate (SeVC) dataset [32]

(used during SeSeVR [4]) and Multiclass Vulnerability Dataset

(MVD) [33] (used during μVulDeePecker [8]).

B. Draper VDISC

The dataset consists of the source code of 1.27 million

functions mined from open source software, labelled by static

analysis for potential vulnerabilities [30]. Draper VDISC

dataset has C/C++ codes from open source projects: Debian

Linux Distribution [34], Public git repositories on GitHub

[35] and, SATE IV Juliet Test Suite of NIST Samate project

[36] where the first 2 source projects are real and the last

one is synthetic. The Debian package releases provide a

selection of very well-managed and curated code while, the

GitHub dataset provides a larger quantity and wider variety of

(often lower-quality) code and the SATE IV Juliet Test Suite

contains synthetic code examples with vulnerabilities from 118

different Common Weakness Enumeration (CWE) [6], [7].

C. REVEAL

ReVeal is a real-world source code dataset where vulnera-

bilities are tracked from Linux Debian Kernel and Chromium

open-source projects. This dataset contains C/C++ sources and

are well-maintained public projects with large evolutionary

history and both represent important program domains (OS

and browsers) and plenty of publicly available vulnerability

reports.[1] Fixed issues with publicly available patches can be

collected using Bugzilla for Chromium and Debian security

tracker for Linux Debian Kernel. The ReVeal dataset contains

a total of 22,734 samples, with 2240 non-vulnerable and

20,494 vulnerable samples as seen in Figure 3.

D. FFMPeg+Qemu

FFMPeg+Qemu is a balanced, real world dataset collected

from Github repositories that consist of 4 large C-language

open-source projects that are popular among developers and

diversified in functionality, i.e., Linux Kernel, QEMU, Wire-

shark, and FFmpeg [5]. The labelling of this dataset was done

manually based on commit messages and domain experts [15].

Figure 5 presents the balanced nature of the dataset with

23355 non-vulnerable commits messages and 25332 which are

vulnerbale.
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TABLE III
DEEP LEARNING MODELS FOR VULNERABILITY ANALYSIS

Author Dataset Dataset Type Feature Representation Source Code Representation Vector Representation DL Models

Russel et al. [6] DRAPER VDISC Synthetic, Semi-synthetic, Real Token NLP approach (Convolutional and Recurrent Feature Extraction) word2vec CNN + RF, RNN + RF

S. Chakraborty et al. [1] REVEAL, FFMPeg+Qemu Real Graph CPG word2vec GGNN + MLP + Triplet Loss

G.Tang et al. [2] SARD & NVD Synthetic, Semi-synthetic Token Code Gadgets doc2vec KELM

Z. Bligin et al. [7] DRAPER VDISC Synthetic, Semi-synthetic, Real Token Binary AST Array Representation MLP, CNN

Z.Li et al. [3] SARD & NVD Synthetic, Semi-synthetic Token Code Gadgets word2vec BLSTM

D.Zou et al. [8] SARD & NVD Synthetic, Semi-synthetic Token Code Gadgets + Code Attention word2vec BLSTM

Z.Li et al. [4] SARD & NVD Synthetic, Semi-synthetic Token SeVCs word2vec BGRU

Y.Zhou et al. [5] FFMPeg+Qemu Real Graph AST+CFG+DFG+NCS word2vec GGNN

S. Liu et al. [18] FFMPeg+Qemu Real Graph AST word2vec BLSTM

Guo et al. [18] SARD & NVD Synthetic, Semi-synthetic Token Code Gadgets word2vec CNN+LSTM

VI. CHALLENGES AND FUTURE WORK

The review acknowledges the infancy of the research field

of deep learning-based software vulnerability detection. There

are multiple problems that are unresolved but this indicates the

need for further research to solve these issues for better discov-

ery of vulnerable codes. Thus, we have compiled a number of

challenges and possible future research directions which have

been assessed by the conclusive remarks of previous works.

Dataset is an integral part of training a vulnerability predic-

tion model. As surveyed in this paper, various studies utilize

various datasets, like SARD & NVD or REVEAL dataset, to

train their models which indicates the lack of a standardized

benchmarking dataset that covers most CWE vulnerabilities.

Thus, a unified and standardized metric for evaluations of the

deep learning-based models cannot be produced. Furthermore,

deep learning models require huge amounts of training data

to provide excellent performance but the current datasets

are insufficient in this regard. Thus, development of such

vulnerability datasets is an essential direction for research to

resolve the issue of dataset with ground truth. The ratio of

vulnerable code to non-vulnerable code tends to be stagger-

ingly unbalanced as seen in Figure 5. Non-vulnerable codes

are abundant but vulnerable codes are a huge minority that

results in deep learning vulnerability prediction models to have

insufficient training data for detection of the vulnerabilities and

cause overfitting in the model. There exists class imbalance in

specific CWE vulnerabilities as well such as CWE 469 present

in the Draper VDISC dataset leading to poor prediction where

as CWE 119 exists in multitude leading to best prediction of

this vulnerability in the model during cross validation [7]

Deep learning models possess nonlinearity and hidden lay-

ers that make it difficult to interpret the behaviour that lead

to a vulnerability prediction begs the following questions: Is

the model accurate? Is the the prediction on vulnerability

discovery reliable? What is the reason for the classification of

vulnerable or non-vulnerable in a specific piece of the source

code? This problem has been tackled by two methods by re-

searchers. Firstly, the use of LIME [10] to create linear models

of the neural networks for simple interpretation. Secondly, the

introduction of code attention to the source code representation

[8] that enables researchers to obtain the attention vectors and

quantitatively measure how much attention was given to a

specific network in the midst of all the neural networks in

the deep learning models. Further research can lead to better

source code analysis which can explain deep learning-based

models in vulnerability prediction.

VII. CONCLUSION

The emergence of vast software applications with increasing

complexity and this continual popularity of software in the

information era will require automatic deep learning-based

models to learn and detect vulnerabilities in these softwares.

In this survey, we review the studies conducted on the im-

plementation of deep learning technology for source code

vulnerability analysis. At first, a general overview is discussed

in the formation of deep learning models for source code

vulnerability detection. A detailed summary of the state-of-

the-art source code representations are explored which can

decompose the text of source code and still conserve its

behaviour to feed into the deep learning models for training.

Next, the deep learning models implemented for vulnerability

detection are outlined with brief examples of of the hidden

layers used in the trained models. Lastly, based on the existing

studies mentioned in this paper, the challenges and directions

for future work in this research field are stated.
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