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Abstract. We construct the fine moduli space of log abelian varieties, which
gives a compactification of the moduli space of abelian varieties.
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Introduction

This part is the most important in our series of papers on log abelian varieties.

We construct the fine moduli space of principally polarized log abelian varieties

with level structure and a prescribed admissible degeneration, and show that this

moduli space is isomorphic to a toroidal compactification of the moduli space of

principally polarized abelian varieties with level structure. Our moduli space

is obtained as a part of the moduli space without prescription of degeneration,

which is a log algebraic space in the second sense.
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More precisely, we prove the following (1), (2), and (3).

(1) The moduli functor of g-dimensional principally polarized log abelian

varieties with level n structure is represented by a proper and log smooth log

algebraic space over Z[1/n] (n ≥ 3) in the second sense (Theorem 1.6).

(2) The moduli functor of g-dimensional principally polarized log abelian vari-

eties with level n structure and with local monodromies in a prescribed admissible

cone decomposition Σ is represented by a proper and log smooth algebraic space

with fs log structure over Z[1/n] (n ≥ 3) (Theorem 1.7).

(3) The space in (2) (essentially) coincides with the toroidal compactification

([5]) endowed with a natural log structure of the moduli space of g-dimensional

principally polarized abelian varieties with level n structure associated with local

monodromies in Σ (Theorem 1.8).

An important new instrument in this part of series of papers is the theory

of deformations of log abelian varieties. Like the other theories on log abelian

varieties, this is also parallel to the corresponding classical theory of abelian vari-

eties (see, for example, Proposition 4.1), which reflects the remarkable feature of

log abelian varieties that they are some kind of degenerations of abelian varieties

but still behave as proper smooth group objects without degeneration.

We are strongly influenced by the pioneering work by K. Fujiwara [6]. In

fact, the prototypes of all our results and techniques of proofs can be found in

his paper.

For other compactifications of the moduli space of abelian varieties, see [1],

[21], [24].

In Section 1, we describe main results. In Section 2, we show some results on

principal polarizations. In Section 3, we introduce universal additive extensions

of log abelian varieties and prove some basic facts. In Section 4, using them,

we discuss the deformation of log abelian varieties. After some preliminaries in

Section 5, the core of the proof is an application of Artin’s criterion to our moduli

functor in Section 6. We prove (1) and (2) in Section 7 except properness of our

moduli spaces. In Section 8, we prove the properness. Finally, we prove (3) in

Section 9. We also include several corrections to former parts in this series of

papers.
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1. Moduli functors

In this section, we state our main results.

Fix an integer g ≥ 1 and a finitely generated free abelian group W of rank g.

Let SQ(W ) be the Q-vector space of symmetric bilinear forms W ×W → Q.

1.1 DEFINITION. (Cf. [5, Chapter IV, Definition 2.2].) An admissible cone

decomposition (or an admissible fan) Σ of SQ(W ) is a set of finitely generated

(sharp) Q-cones in SQ(W ) satisfying the following conditions:

(1) For σ ∈ Σ, every face of σ is in Σ;

(2) For σ, τ ∈ Σ, the intersection σ ∩ τ is a face of σ;

(3) Σ is stable under the action of AutZ(W ). Here α ∈ AutZ(W ) acts on

SQ(W ) by b 7→ b(α(·), α(·));
(4) The number of the AutZ(W )-orbits in Σ is finite;

(5) For any σ ∈ Σ, any element of σ is positive semi-definite, i.e., b(w,w) ≥ 0

for any b ∈ σ and any w ∈ W ;

(6) For each positive semi-definite symmetric bilinear form b : W ×W → R,
there exists a unique σ ∈ Σ for which b is contained in the interior of σ⊗Q≥0

R≥0.

1.1.1 REMARK. (1) The last two conditions in Definition 1.1 can be replaced

with the condition that the support
⋃

σ∈Σ σ of Σ is equal to the set of all positive

semi-definite symmetric bilinear forms.

(2) It is known that an admissible cone decomposition of W exists by the

reduction theory (cf. [7], [22] 8.5).

1.2. Recall that a polarization on a weak log abelian variety A over an fs log

scheme S is a symmetric biextension of the pair (A,A) by Gm,log whose pullback

to s for any s ∈ S is induced by a polarization on the log 1-motif corresponding

to A×S s ([13] 1.3).

We say that a polarization is principal if for any s ∈ S, it induces an iso-

morphism from A×S s to its dual. (The dual of a weak log abelian variety with

constant degeneration is defined in [13] 1.2.)

We now define a principally polarized log abelian variety of degeneration

along an admissible fan as follows.

1.3 DEFINITION. Let Σ be an admissible cone decomposition of SQ(W ), and A

a principally polarized log abelian variety of dimension g over an fs log scheme S.

We say that the local monodromies of A are in Σ, or A is compatible with Σ, or

A is of degeneration along Σ, if strict étale locally on S, there exists a surjective

homomorphism f : W → Y satisfying the following condition: for any s ∈ S,
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there exists a σ ∈ Σ such that, for any homomorphism h : (MS/O×
S )s → N, the

composition

W ×W
f×f→ Y s × Y s

ϕ×id→ Xs × Y s
⟨·,·⟩→ (Mgp

S /O×
S )s

hgp

→ Z

is contained in σ. Here 〈·, ·〉 : X × Y → Gm,log/Gm is the canonical pairing of

Z-modules determined by A ([10] 4.4) and φ : Y s → Xs is the homomorphism

defined by the polarization.

1.4 DEFINITION. Let n be an integer ≥ 1. Let S be an fs log scheme over

SpecZ[1/n]. Let A be a log abelian variety over S of dimension g. A level n

structure of A is an isomorphism (Z/nZ)2g
∼=→ Ker(n : A→ A).

1.5 DEFINITION. Let n be an integer ≥ 1. We define a moduli functor

Fg,n : (fs/Z[1/n])→ (set)

and a moduli functor

Fg,n,Σ : (fs/Z[1/n])→ (set)

for an admissible cone decomposition Σ of SQ(W ) as follows. For an object U of

(fs/Z[1/n]), we set

Fg,n(U) :={g-dimensional principally polarized log abelian variety over U

with level n structure }/ ∼=;

Fg,n,Σ(U) :={g-dimensional principally polarized log abelian variety over U

with level n structure and with local monodromies in Σ}/ ∼= .

The following three theorems are the main results of this series of papers.

1.6 THEOREM. If n ≥ 3, the moduli functor Fg,n is represented by a proper and

log smooth log algebraic space over Z[1/n] in the second sense ([12] 10.1).

This was partially mentioned in [12] 10.6. Here a log algebraic space in the

second sense is said to be log smooth if it admits a log smooth cover, i.e., we

can take a log smooth F ′ in the definition in [12] 10.1. For the definition of the

properness, see [12] 17.3.

1.7 THEOREM. If n ≥ 3, the moduli functor Fg,n,Σ is represented by a proper

and log smooth log algebraic space over Z[1/n] in the first sense ([12] 10.1), that

is, it is an algebraic space with fs log structure over Z[1/n], and it is proper and

log smooth.
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1.8 THEOREM. If n ≥ 3 and Σ is smooth, a connected component of the base

change of the space representing the functor Fg,n,Σ in Theorem 1.7 to Z[ζn][1/n],
where ζn is the primitive nth root of unity, coincides with the toroidal compactifi-

cation Ag,n associated to Σ ([5]) of the moduli space Ag,n of principally polarized

abelian varieties with level n structure, endowed with the fs log structure defined

by the divisor Ag,n −Ag,n.

1.9. We explain the relationship between these theorems. Roughly speaking,

Theorem 1.6 except properness is deduced from Theorem 1.7 except properness.

But the properness of Fg,n,Σ in Theorem 1.7 is deduced from that of Fg,n in

Theorem 1.6. As for Theorems 1.7 and 1.8, it is possible to prove Theorem 1.8

first using the theory of Faltings–Chai ([5]) and deduce Theorem 1.7 by checking

some properties of Fg,n,Σ (cf. the second last paragraph of 9.3), as we did in the

one-dimensional case [11]. But, below, we prove Theorem 1.7 first without the

use of [5], and deduce Theorem 1.8 from it.

1.10. We hope that the theory of log abelian varieties works for variants such

as PEL-type moduli problems, compactifications over Z, X0(N)-type moduli

problems, moduli stacks for n = 1, 2, and so on. In particular, in a forthcoming

paper, we plan to throw the coefficient rings to the above three theorems so

that the resulting space in the generalized version of Theorem 1.7 gives a moduli

interpretation of the space constructed in [18]. See also [11] Section 6.

2. Principal polarization

We give some propositions on principal polarizations, which will be used later.

2.1. Let S be an fs log scheme. Consider Gm,log on (fs/S)ét. Let Gvert
m,log be the

vertical part of it, that is, the subgroup sheaf of Gm,log consisting of the sections

x satisfying the following condition: There are a, b ∈ Mgp
S such that a|x|b, that

is, both a−1x and x−1b belong to M ⊂ Gm,log.

2.2 LEMMA. Let A be a weak log abelian variety over an fs log scheme S.

(1) H0(A,Gm,log/Gvert
m,log) = Gm,log/Gvert

m,log.

(2) Hom(A,Gm,log/Gvert
m,log) = 0.

Proof. By [13] Lemma 3.1, (2) is reduced to (1).

We prove (1). This is an analogue of a part of [13] Proposition 2.1 and proved

similarly as follows.

First, to prove the case where A is with constant degeneration, we use an
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analogue of [10] Proposition 7.9 (2). That is, in the situation there, we have

f−1
U (Mgp

V (∆′)U
/Mgp,vert

V (∆′)U
) ∼= (Mgp

U /O×
U ⊕X)/(the vertical part),

where U is any fs log scheme over S, Mgp,vert
V (∆′)U

is the restriction of Gvert
m,log to the

small étale site of V (∆′)U , “(the vertical part)” is the subsheaf of Mgp
U /O×

U ⊕X

consisting of the sections sent into Mgp,vert
V (∆′)U

. But, since any interior element of S
is an interior element of ∆′∨ (still in the notation there), ∆′∨ ·Sgp = Cgp contains

X so that X is always included in the vertical part. Thus the right-hand-side

coincides with Mgp
U /Mgp,vert

U , where Mgp,vert
U is the restriction of Gvert

m,log to Uét.

Using this, in the notation of [13] 6.4, we can show

g∗(Gm,log/Gvert
m,log) = Gm,log/Gvert

m,log.

Hence, for any U over S, we have

H0(AU ,Gm,log/Gvert
m,log) = H0(Y,H0(BU ,Gm,log/Gvert

m,log)) = H0(U,Gm,log/Gvert
m,log)

in the notation in [13] 6.4, which completes the proof of the case of constant

degeneration.

In the general case, the zero section induces a surjectionH0(AU ,Gm,log/Gvert
m,log)

→ H0(U,Gm,log/Gvert
m,log). To reduce the injectivity of this surjection to the case

of constant degeneration, it is sufficient to show that H0(AU ,Gm,log/Gvert
m,log) →∏

u∈U

H0(Au,Gm,log/Gvert
m,log) is injective. We can replace AU here with any fs log

scheme over it. Then the injectivity follows.

2.3 REMARK. In the proof of the statement H0(A,Gm,log/Gm) = Gm,log/Gm

which is a part of [13] Proposition 2.1, the corresponding reduction step to the

case of the constant degeneration contains a rather inadequate explanation (cf.

the first paragraph in [13] Proposition 12.1). A correct argument is the one in

the proof of the above lemma.

2.4 PROPOSITION. Let A be a weak log abelian variety over an fs log scheme

S. Any strict fppf locally given principal polarization with descent data gives a

unique principal polarization on A.

Proof. Note that this is easy if Biext(A,A;Gm,log) is an fppf sheaf, but we have

not yet proved that it is so.

We reduce to the descent of an extension of A by Gm,log as follows.

The data give a homomorphism fppf locally

A→ Ext(A,Gm,log)
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by [13] Proposition 2.3. It is enough to show that the image E of any section of

A by this homomorphism with the descent data can be uniquely descended.

First, we claim that E as an extension comes from a unique extension E ′ of

A by Gvert
m,log.

This claim is proved as follows. Since Hom(A,Gm,log/Gvert
m ) = 0 (Lemma 2.2

(2)), we have the commutative diagram

0 −−−→ Ext(A,Gvert
m,log) −−−→ Ext(A,Gm,log) −−−→ Ext(A,Gm,log/Gvert

m,log)y y ∥∥∥
0 −−−→ Ext(A,Gvert

m,log/Gm) −−−→ Ext(A,Gm,log/Gm) −−−→ Ext(A,Gm,log/Gvert
m,log)

with exact rows. Hence, it is enough to show that the image of E in

Ext(A,Gm,log/Gm) comes from Ext(A,Gvert
m,log/Gm). By [13] Proposition 1.6 (1)

and [13] 2.7, this image comes from Hom(Y ,Gm,log/Gm)/X by the composite

Hom(Y ,Gm,log/Gm)/X → Ext(A/G,Gm,log/Gm)→ Ext(A,Gm,log/Gm),

where the first arrow is the injection in [13] Lemma 2.6 (2). Here the notation is

as in there. Further it comes from Hom(Y ,Gm,log/Gm)
(X)/X because it is so at

each fiber.

Since the above composite is compatible with another composite

Hom(Y ,Gvert
m,log/Gm)/X → Ext(A/G,Gvert

m,log/Gm)→ Ext(A,Gvert
m,log/Gm),

to complete the proof of the claim, it is sufficient to show

Hom(Y ,Gm,log/Gm)
(X) ⊂ Hom(Y ,Gvert

m,log/Gm).

Let ϕ : Y → Gm,log/Gm be in the (X)-part. Then for y ∈ Y in each fiber, there

exist x1, x2 ∈ X such that 〈x1, y〉|ϕ(y)|〈x2, y〉. Since 〈xi, y〉 (i = 1, 2) are in the

log of the base, this implies that ϕ(y) ∈ Gvert
m,log. Hence we see that ϕ factors

through Gvert
m,log/Gm, as desired.

Let Ẽ ′ be the extension of Ã by Gvert
m,log induced by our E ′. Since the composite

Hom(Y ,Gvert
m,log/Gm)/X → Ext(A/G,Gvert

m,log/Gm)→ Ext(Ã/G,Gvert
m,log/Gm)

is zero, Ẽ ′ induces the trivial extension of Ã by Gvert
m,log/Gm. Fix a splitting of this

trivial extension and identify the total space of this extension with the product

Gvert
m,log/Gm × Ã.

It is enough to descend E ′. We can do it similarly as in the case of A itself

(cf. [12] Section 9). We may assume that a prime ` is invertible on the base.

We cover Ẽ ′ with respect to the két topology by the images with respect to the

multiplication by `n (n ≥ 0) of a representable object explained below. Then
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as in the same way as in the case of A (cf. [12] Section 9), we descend Ẽ ′ by

descending this representable object with a partial group law, we descend the

kernel of Ẽ ′ → E ′, and we divide Ẽ ′ by the kernel to obtain the descended

E ′. The representable object we use is as follows. Let I be a model of Ã with

respect to a wide cone (as in [12] Section 9). Let a be an interior in the log

of the base. Let L be the part of Gvert
m,log/Gm consisting of x such that a−1|x|a.

Consider the inverse image in Ẽ ′ of L× I. Then it is representable. We explain

the representability. Assume that A = S. Then the inverse image of L in Gvert
m,log

is represented by the fs log scheme defined as the fiber product of

S → Spec(Z[N])← Spec(Z[N2]),

where the first morphism sends 1 ∈ N to a2 in MS, and the second morphism

is induced by the diagonal homomorphism N→ N2. The representability in the

general case follows from this.

2.5 REMARK. (1) The final portion of the above proof can be regarded as a

generalization of the argument with models for a log abelian variety in [12] to

that for a kind of log semiabelian variety. Though we even have not yet defined

a log semiabelian variety, the theory of (proper-like or quasiprojective) models

of a log semiabelian variety should be an important subject to study.

(2) In [12] Section 9, Lemma 9.10 and Lemma 9.11 are not essential. In fact,

in [12] 9.12, we may assume that the conditions (5)–(7) are satisfied only by

replacing the index λ.

2.6 PROPOSITION. Let (Sλ)λ be a filtered projective system of quasicompact

and quasiseparated fs log schemes whose transition morphisms are affine and

strict. Let S := lim←−Sλ. For a principally polarized log abelian variety (A, p) over

S, there are an index λ and a principally polarized log abelian variety (Aλ, pλ)

over Sλ whose pullback to S is isomorphic to (A, p).

Further, for some λ and two principally polarized log abelian varieties over Sλ

whose pullbacks to S are isomorphic to each other, there is another index λ→ λ′

such that their pullbacks to Sλ′ are already isomorphic to each other.

Proof. By [12] Proposition 9.2, we may assume that A over S comes from an

essentially unique weak log abelian variety Aλ over some Sλ. The problem is to

spread out p. (We mean that there exist an essentially unique principal polar-

ization on Aλ for a sufficiently large λ whose pullback coincides with p.) This is

shown by the same method in the proof of the previous proposition.

First, we can replace Gm,log by Gvert
m,log in Biext(A,A;Gm,log). In fact, by the

claim in the proof of Proposition 2.4, the polarization lives in Hom(A, Ext(A,
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Gvert
m,log)). Since Hom(A,Gvert

m,log) ⊂ Hom(A,Gm,log) = 0 ([13] Proposition 2.1 and

[13] Lemma 3.1), we have Hom(A, Ext(A,Gvert
m,log)) = Biext(A,A;Gvert

m,log) by [13]

Lemma 3.4.

Second, we consider the representable object induced by L × I × I in the

notation in the proof of Proposition 2.4. Then we can spread out the biextension

with partial group laws in the same way. To prove that the biextension on

Sλ is a principal polarization for a sufficiently large λ, we may assume that

the biextension on Sλ is symmetric. Further, we may assume that there is a

chart of Sλ. Then, by dividing Sλ into a finite number of constant log loci,

we may assume that Sλ has the constant log. Hence we can replace the log

abelian variety concerned with the corresponding log 1-motif [Y → Glog]. Then,

it is enough to show that the corresponding homomorphism [Y → Glog] →
[Y → Glog] is an isomorphism over Sλ for a sufficiently large λ when its pullback

to S is an isomorphism. It is valid because Y is a locally constant sheaf and

the homomorphism Glog → Glog comes from a homomorphism G → G ([10]

Proposition 2.5).

2.7 REMARK. We have not yet had the property of local finite presentation for

nonkét Biext. If it is the case, we can use it. Or, if we had the general theory of

duals for a weak log abelian variety not necessarily with constant degeneration,

the proposition follows from [12] Proposition 9.2 (1).

2.8 PROPOSITION. Let A be a weak log abelian variety over an fs log scheme S.

Then the homomorphism A→ Ext(A,Gm,log) induced by a principal polarization

on A ([13] Proposition 2.3) is injective.

To prove this, we need a lemma, which also will be used in later sections.

2.9 LEMMA. Let S be an fs log scheme, A1 and A2 weak log abelian varieties

over S with constant degeneration, f and g homomorphisms from A1 to A2. If

fs = gs for any s ∈ S, then f = g.

Proof. Let Mi = [Yi → Gi,log] be a log 1-motif over S corresponding to Ai for

i = 1, 2. It suffices to prove that a homomorphism M1 →M2 whose pullback to

s is zero for any s ∈ S is zero. The homomorphism consists of a homomorphism

Y1 → Y2 and that of G1,log → G2,log. The former is zero because Yi are locally

constant for i = 1, 2. The latter is induced by a homomorphism G1 → G2 by

[10] Proposition 2.5, which induces a homomorphism of the torus parts and the

abelian parts. The homomorphism of the torus parts is zero because the corre-

sponding homomorphism of the character groups is so. The homomorphism of

the abelian parts is also zero. Since there is no nontrivial homomorphism from
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the abelian part of G1 to the torus part of G2, we conclude that the homomor-

phism G1 → G2 is zero. Hence the homomorphism of M1 →M2 is zero.

2.10. We prove Proposition 2.8. By Proposition 2.6, we may assume that the

base is finitely generated over Z.
It is enough to prove that for any fs log scheme U over the base, the homo-

morphism A(U)→ Ext(AU ,Gm,log) is injective.

First, Ext(A,Gm,log) is locally of finite type. This is by [13] Proposition 12.8

(1) and the fact that Ext(A,Gm,log) → Extkét(A,Gm,log) is injective. The last

fact is seen as follows. Since both A and Gm,log are két sheaves ([12] Theorem 5.1

and [16] Theorem 3.2), any extension on the étale site is a két sheaf, too. Hence

the splitting on the két site gives a splitting on the étale site.

On the other hand, A is locally of finite presentation by [13] Proposition 12.7.

Hence, we may assume that U is finitely generated over Z.
Since A is locally of finite type, we can replace U with the strict localization at

each point. Again by that A is locally of finite type and by Artin’s approximation

theorem, we can replace U with a complete noetherian local ring. Here we have

the GAGF for H0(U,A), that is the algebraization of the sections, which can be

proved by taking a model. By it, we further replace U with an Artin local ring

so that we may assume that A is with constant degeneration ([10] Theorem 4.6

(2)).

Thus, it is enough to show the proposition under the additional assumption

that A is with constant degeneration. We denote by A∗ the dual of A. In this

case, A→ Ext(A,Gm,log) factors through f : A→ A∗, where A∗ is identified with

a subgroup of Ext(A,Gm,log) by [10] Remark 7.5 (2). By the assumption, fs is

an isomorphism for any s ∈ S. Then, f is an isomorphism by Lemma 2.9 as

desired.

3. Universal additive extension

We introduce the universal additive extension of a log abelian variety and will

use it for the study of the deformation of log abelian variety in the next section.

See [19] for a log elliptic curve case (though the definition of log elliptic curve in

[19] is different from ours).

3.1. We define the Lie sheaf Lie (A) and coLie sheaf coLie (A). Let S be an fs

log scheme.

In general, for a group sheaf G on (fs/S)ét, we define the Lie sheaf Lie (G) on
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(fs/S)ét by

Lie (G)(U) = Ker(G(U [ε]/(ε2))→ G(U)),

where U [ε]/(ε2) denotes the fs log scheme whose underlying space is that of U ,

whose structure sheaf is OU [ε]/(ε
2) and whose log structure is the pullback of

that of U .

We have a natural action of OS on Lie (G) (cf. [9] 1.3.11). In many cases,

Lie (G) is an OS-module via this action. For example, we have Lie (Gm,log) =

Lie (Gm) = Ga.

3.2. If A is a weak log abelian variety over S, Lie (A) is a locally free OS-module

of rank dim(A) because it coincides with the Lie sheaf of the semiabelian part.

Let

coLie (A) = HomOS
(Lie (A),OS),

which is also a locally free OS-module of rank dim(A).

3.3. We introduce the dual of A in case where A is principally polarized. In the

rest of this section, we assume that A is principally polarized unless explicitly

stated otherwise. We denote by A∗ the image of A→ Ext(A,Gm,log) and call it

the dual of A. By Proposition 2.8, A∗ is isomorphic to A. We identify A∗ with

A via this isomorphism.

3.4 PROPOSITION. Let A be a principally polarized log abelian variety over an

fs log scheme S. Then

coLie (A∗) ∼= Ext(A,Ga)
∗ := Hom(Ext(A,Ga),Ga)

and it is a vector bundle of rank dimA.

Proof. The map A∗ → Ext(A,Gm,log) induces a map

Lie (A∗)→ Lie (Ext(A,Gm,log))→ Ext(A,Lie (Gm,log)) = Ext(A,Ga).

It is enough to show that it is an isomorphism.

First we prove it under the assumption that A is with constant degeneration.

By [10] Theorem 7.3 (1), the exact sequence (the notation is as usual as in there)

(1) 0→ T
(Y )
log → Ã→ B → 0

yields isomorphisms Hom(Ã,Ga) = 0 and Ext(Ã,Ga) = Ext(B,Ga). Together

with an exact sequence

(2) 0→ Y → Ã→ A→ 0,
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we have an exact sequence

(3) 0→ Hom(Y,Ga)→ Ext(A,Ga)→ Ext(B,Ga)→ 0.

Hence Ext(A,Ga) is a vector bundle of the desired rank.

Further, from (2), we have Lie (A) = Lie (Ã). Together with (1), we have an

exact sequence

0→ Lie (T )→ Lie (A)→ Lie (B)→ 0.

Hence we have a commutative diagram

0 −−−→ Lie (T ∗) −−−→ Lie (A∗) −−−→ Lie (B∗) −−−→ 0y y y
0 −−−→ Hom(Y,Ga) −−−→ Ext(A,Ga) −−−→ Ext(B,Ga) −−−→ 0

with exact rows. Since the left and the right vertical arrows are isomorphisms,

the middle one is also, which completes the case of constant degeneration.

To prove the general case, by Proposition 2.6, we may assume that S is of

finite type over Z. It suffices to show that Lie (A∗)(U)→ Ext(AU ,Ga) is bijective

for any fs log scheme U over S.

We may assume that we are given the usual data by which we can discuss

models. (See [13] 4.5. It is always the case after going strict étale locally over the

base S.) We prove the case where U is the spectrum of a complete noetherian

local ring (R,m). Consider the diagram

Lie (A∗)(U) −−−→ Ext(AU ,Ga)∥∥∥ y
lim←−Lie (A∗)(Un) −−−→ lim←−Ext(AUn ,Ga),

where Un is the spectrum of R/mn+1 endowed with the pullback log structure

from U . Since we already proved the case of constant degeneration, the bottom

arrow is bijective. We prove that the right vertical arrow is injective so that

bijective. To see it, since Ext(AU ,Ga) is a subgroup of H1(AU ,Ga) (in fact, the

former coincides with the latter; see Lemma 3.17), it is enough to have GAGF

for H1(A,Ga). We take a complete and wide model P of AU ([13] Proposition

10.3). We take a prime ` which is invertible on U . For i ≥ 0, let Pi → AU be

the composite P → AU
ℓi→ AU . Cover AU with respect to the két topology by

the disjoint union
∐

Pi of the Pi. Consider the Čech-derived spectral sequence

for
∐

Pi/AU

Epq
2 = Ȟp(

∐
Pi/AU ,Hq(−,Ga))⇒ Hp+q(AU ,Ga).
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Note that the két cohomology here coincides with the étale cohomology (cf. [8]

Proposition 3.7). Since Epq
1 is a projective limit of modules of finite lengths for

every p, q, the classical GAGF implies that for Hm(AU ,Ga) for every m, which

completes the proof of the current case.

We prove the case of general U . We can prove that Ext(A,Ga)=Extkét(A,Ga)

is locally of finite presentation by the method of [13] Proposition 12.8 (1). Hence

we may assume that U is a strict localization of an fs log scheme of finite type

over Z. Then, again by that Ext(A,Ga) is locally of finite presentation and by

Artin’s approximation theorem, we reduce to the previous case where U is the

spectrum of a complete noetherian local ring.

3.5. By Proposition 3.4, we have a canonical isomorphism

Ext(A, Ext(A,Ga)
∗) = Ext(A,Ga)⊗ Ext(A,Ga)

∗

= Hom(Ext(A,Ga), Ext(A,Ga)).

Define

0→ Ext(A,Ga)
∗ → E(A)→ A→ 0

as the extension associated with the canonical element in the left-hand-side cor-

responding to the identity in the right-hand-side of the above isomorphism. We

call this the universal additive extension of A.

Then, by construction, it has a universality, that is, any extension of A by

some vector bundle V of finite rank can be obtained by the pushout with respect

to a unique homomorphism Ext(A,Ga)
∗ → V .

3.6. By Proposition 3.4 and the identification A = A∗, the universal additive

extension is isomorphic to

0→ coLie (A)→ E(A)→ A→ 0.

In the rest of this section, we prove the following proposition.

3.7 PROPOSITION. Let S → S ′ be a strict nil immersion of affine fs log schemes

of finite type over Z by an ideal I such that I2 = 0. Let A be a principally

polarized log abelian variety over S. Let A′ be a lift of A, that is, a principally

polarized log abelian variety over S ′ endowed with an isomorphism between A and

its pullback to S. Then we have a natural isomorphism between E(A′) and the

sheaf of groups Ext♮(A,Gm,log)
′ of \-extensions defined below. In particular, the

group sheaf E(A′) is independent of a lift up to isomorphisms.
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3.8. We define Ext♮(A,Gm,log)
′. Consider the sheaf H1

logcrys(A,Gm,log) associated

to the presheaf (fs/S ′) 3 U ′ 7→ H1(((fs/AU ′×S′S)/U
′)logcrys,Gm,log) (cf. [15] Section

5 for the log crystalline site). Let Ext♮(A,Gm,log) be the fiber product of

H1
logcrys(A,Gm,log)→ H1(A,Gm,log)← A.

Consider the projection q : (fs/S ′)ét → (fs/S ′)′ét, where the target is the sub-

site of (fs/S ′)ét consisting of fs log schemes over S ′ which are of finite type over

S ′. Let Ext♮(A,Gm,log)
′ = q−1q∗Ext♮(A,Gm,log).

Further, in the rest of this section, for an fs log scheme S of finite type over

Z and a sheaf F on (fs/S)ét, we denote q−1q∗F by F ′, where q is the projection

from (fs/S)ét to its subsite consisting of fs log schemes over S which are of finite

type over S. For all F ′ appearing in the rest of this section, it is plausible that

F = F ′. In particular, it is plausible Ext♮(A,Gm,log)
′ = Ext♮(A,Gm,log).

3.9. To prove Proposition 3.7, we use another construction of E(A) (see Propo-

sition 3.16). To explain this, we have to introduce the small site of A.

Let A be a weak log abelian variety over an fs log scheme S.

We define the small site (lét/A)ét ⊂ (fs/A)ét of A as the full subcategory

consisting of all log étale objects. Here (V → A) ∈ (fs/A) is said to be log étale if

for any fs log scheme W and any morphism W → A, the fiber product W ×A V

is a log étale log algebraic space over W in the first sense ([12] 10.1).

Next we define the site (fslét/A)ét as follows. Objects are the pairs (U, V ),

where U is an object of (fs/S) and V is an object of (lét/AU), where AU = A×SU .

Morphisms from (U ′, V ′) to (U, V ) is a compatible pair of morphisms U ′ → U

and V ′ → V . Coverings are the ((Ui, Vi) → (U, V ))i such that every Ui → U is

strict étale and that (Vi → V )i is a strict étale covering.

Assume that we are given the usual data by which we can discuss models.

Then any log étale fs log scheme over some model of A is an object of (lét/A)ét.

This is because for a model P , the projection P → A is relatively represented

by log blow-ups. Further, under the condition in [13] 1.4.1, the proof of [13]

Proposition 11.1 gives a set of topological generators consisting of these objects

together with log étale fs log schemes over models of weak log abelian varieties

which are isogeneous to A. Similarly, based on [13] Proposition 11.1, we can give

a set of generators of (fslét/A)∼ét consisting of the set of the pairs (U, V ), where

U is an object of (fs/S) and V is a log étale fs log scheme over some model of a

weak log abelian variety being isogeneous to AU .

We can develop the theory of quasicoherent sheaves on (fslét/A). Let OA

be the sheaf on (fslét/A)ét defined by OA((U, V )) = Γ(V,OV ). Define a sheaf

of OA-modules ω1
A/S by ω1

A/S((U, V )) = Γ(V, ω1
V/U). The sheaves Ga,Gm,Gm,log

have been considered on (fs/A)ét in former parts in our series of papers. But they
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are also defined on (fslét/A) (by abuse of notation) by Ga = OA,Gm((U, V )) =

Γ(V,O×
V ), and Gm,log((U, V )) = Γ(V,Mgp

V ).

Let Hq(A,−) be the q-th derived functor of the direct image functor

(fslét/A)ét → (fs/S);F 7→ (U 7→ lim←−
V/AU

F ((U, V ))).

Note that Hq(A,Ga), Hq(A,Gm), and Hq(A,Gm,log) in this sense coincide with

the ones in the former parts of this series of papers, where the cohomology is

considered via (fs/A)ét. This is because the canonical projection (fs/A)∼ét →
(lét/A)∼ét preserves Ga, Gm, and Gm,log. Note that we do not consider ω1

A/S on

the big site (fs/A)ét.

Below, we also consider the small site of Ã, the sheaf ω1
Ã/S

on it, and its

cohomologies, which are defined similarly.

3.10 PROPOSITION. Let S be an fs log scheme which is of finite type over Z.
Let A be a principally polarized log abelian variety over an fs log scheme S. Then

we have H0(A,ω1
A/S)

′ ∼= coLie (A). (See 3.8 for the notation (−)′.)

3.11. We prove this proposition till 3.14. Consider the natural map

H0(A,ω1
A/S)→ H0(G,ω1

G/S)→ coLie (G) ∼= coLie (A),

where G is the semiabelian part of A.

First we assume that A is of constant degeneration and we prove that the

above map is bijective so that we also have H0(A,ω1
A/S)

′ ∼= coLie (A). (Note that

in this case, we do not use the assumption that S is of finite type over Z.) By

[13] 6.4.1, we have an exact sequence

0→ H0(B,ω1
B/S)→ H0(Ã, ω1

Ã/S
)→ OS ⊗Z X → H1(B,ω1

B/S)

(the notation is as in there). Here the last arrow is zero because it factors through

the abelian variety Ext(B,Gm) and H1(B,ω1
B/S) is a vector bundle. Thus we

obtain the upper row of the commutative diagram

0 −−−→ H0(B,ω1
B/S) −−−→ H0(Ã, ω1

Ã/S
) −−−→ OS ⊗Z X −−−→ 0y y ∥∥∥

0 −−−→ coLie (B) −−−→ coLie (Ã) −−−→ OS ⊗Z X −−−→ 0.

Since the left vertical arrow is bijective, the middle one is also.

Now we prove that Y acts on H0(Ã, ω1
Ã/S

) trivially so that we may as-

sume that the upper row splits. Once we have it, since H0(A,ω1
A/S) = H0(Y,
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H0(Ã, ω1
Ã/S

)), we will have H0(A,ω1
A/S) = H0(Ã, ω1

Ã/S
) = coLie (Ã) = coLie (A),

as desired. Since H0(Ã × Ã, ω1
Ã×Ã/S

) → coLie (Ã × Ã) is injective as seen as

in the same way, and since there is a natural decomposition coLie (Ã × Ã) =

coLie (Ã)× coLie (Ã), we have the natural decomposition

H0(Ã× Ã, ω1
Ã×Ã/S

) = H0(Ã, ω1
Ã/S

)×H0(Ã, ω1
Ã/S

).

Let y ∈ Y and cy : Ã → Ã; a 7→ y the constant map. The translation by

y on H0(Ã, ω1
Ã/S

) coincides with H0(·, ω(·)) of Ã
(id,cy)→ Ã × Ã

sum→ Ã, which

factors, via the above decomposition, through H0(Ã, ωÃ/S) × H0(Ã, ωÃ/S) →
H0(Ã, ωÃ/S);α 7→ α+(c∗yα). Since cy factors through the base, c∗yα is zero. Thus

Y acts on H0(Ã, ω1
Ã/S

) trivially, which completes the proof of the case of constant

degeneration.

3.12. To prove the general case of Proposition 3.10, it is enough to show that

(∗) H0(A,ω1
A/S)→ coLie (A)(S)

is bijective. We may assume that we are given the usual data by which we can

discuss models. We prove the injectivity. The GAGF for H0(A,ω1
A/S) is proved

in the same way as the GAGF for H1(A,Ga) in the proof of Proposition 3.4. By

this and the constant degeneration case proved in 3.11, we see that

(1) H0(AŜ, ω
1
AŜ/Ŝ

) → coLie (A)(Ŝ) is bijective, where Ŝ is the completion of

the strict localization of S at every point.

We prove that

(2) H0(ASsh , ω1
A

Ssh/Ssh) → coLie (A)(Ssh) is injective, where Ssh is the strict

localization of S at every point.

Let α ∈ H0(ASsh , ω1
A

Ssh/Ssh). Assume that the image of α in coLie (A)(Ssh) is

zero. Then, by (1), the image of α in H0(AŜ, ω
1
AŜ/Ŝ

) is zero. Take any fs log

scheme P which is of finite type over Ssh and any morphism P → ASsh over Ssh.

The image of α in H0(PŜ, ω
1
PŜ/Ŝ

) is clearly zero. Then by Artin’s approximation

theorem, we see that H0(P, ω1
P/Ssh) is zero. Since when P varies, they cover

ASsh (see [13] Proposition 11.1; actually, the proper P s already cover ASsh), this

implies that α is zero. Thus (2) follows.

Similarly, we can deduce from (2) the desired injectivity as follows. Let

α ∈ H0(A,ω1
A/S). Assume that the image of it in coLie (A)(S) is zero. Then,

by (2), the image of it in H0(ASsh , ω1
A

Ssh/Ssh) is zero. Take any fs log scheme P

which is of finite type over S and any morphism P → A over S. The image of
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α in H0(PSsh , ω1
P
Ssh/Ssh) is clearly zero. Then the image of α in H0(P, ω1

P/S) is

étale locally vanishes, and hence, vanishes. Since P s cover A, this implies that

α is zero.

To prove the surjectivity of (∗), we use the following lemma.

3.13 LEMMA. Let A be a principally polarized log abelian variety over an fs log

scheme S. Then strict étale locally on S, there is a log regular fs log scheme S0

of finite type over Z, a strict morphism S → S0, and a principally polarized log

abelian variety A0 over S0 such that A is isomorphic to A0 ×S0 S.

Proof. By Proposition 2.6, we may assume that S is of finite type over Z. We

may work strict étale locally on S. Taking a chart of S and an admissible pairing

valued in the groupification of the chart which induces the admissible pairing 〈·, ·〉
associated to A, we may assume that there is a toric variety S0 over Z and a

strict morphism S → S0 such that 〈·, ·〉 comes from S0. We may further assume

that S → S0 is a strict closed immersion.

For each point s of S, consider the strict localizations at s and their com-

pletions of both S and S0. The A lifts formally over the completion of the

strict localization Ssh
0 of S0 by the formal smoothness of the local moduli in [14]

Theorem 2.4. By GAGF ([14] Theorem 6.1 and [14] Remark 6.1.1), it lifts also

algebraically. Then, by Proposition 2.6, A lifts over a subring of the completion

which is finitely generated over Ssh
0 . By Artin’s approximation theorem, we take

compatible sections over S and over S0, pull back the lift, and we have a lift of

A over Ssh
0 . Further, again by Proposition 2.6, we obtain a lift strict étale locally

on S, as desired.

3.14. We prove the surjectivity of (∗). By Lemma 3.13, we may assume that

A comes from a principally polarized log abelian variety A0 over a log regular

base. Since coLie is a vector bundle, we reduce to the surjectivity of (∗) for

A0. Hence we may assume that the base S is log regular in (∗). Let P be any

complete model of A. Let V be any fs log scheme which is log étale over A. Then

V ×A P → V is a log blow-up. Since S is log regular, V is also log regular and

we have R(V ×A P → V )∗Ga = Ga (cf. [17] p.44, Chapter I, Section 3, Corollary

1 to Theorem 12). From this, we see that Hm(A,ω1
A/S) = Hm(P, ω1

P/S) for every

m. In particular, H0(A,ω1
A/S) = H0(P, ω1

P/S).

Now take an element α ∈ coLie (A)(S). We use the same notation as

in 3.12. By (1) in 3.12, the image of α in coLie (A)(Ŝ) is in the image of

H0(AŜ, ω
1
AŜ/Ŝ

). Take a complete model P . Since the image of α in coLie (A)(Ŝ)

can be lifted to H0(PŜ, ω
1
PŜ/Ŝ

), by Artin’s approximation theorem, the image of
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α in coLie (A)(Ssh) can be lifted to H0(PSsh , ω1
P
Ssh/Ssh). Then, α itself can be

lifted to H0(P, ω1
P/S). But we have H0(P, ω1

P/S) = H0(A,ω1
A/S), which implies

that α is in the image of H0(A,ω1
A/S).

The proof of Proposition 3.10 is completed.

3.15. Let S and A be as in Proposition 3.10. Let ω1 = ω1
A/S.

Since H0(A,Gm,log) = Gm,log by [13] Proposition 2.1, we have an exact se-

quence

0→ H0(A,ω1)→ H1(A, [Gm,log → ω1])→ H1(A,Gm,log)→ H1(A,ω1).

Here [Gm,log → ω1] means the complex where Gm,log is in degree zero and the

map is d log.

From this, we have an exact sequence

0→ H0(A,ω1)′ → H1(A, [Gm,log → ω1])′ → H1(A,Gm,log)
′ → H1(A,ω1)′.

(See 3.8 for the notation (−)′.)
Since A as a group sheaf is locally of finite presentation ([13] Proposition

12.7), there is a natural map A→ H1(A,Gm,log)
′.

3.16 PROPOSITION. Let S and A be as in Proposition 3.10. The universal

additive extension is obtained also as the fiber product E ′(A) of

H1(A, [Gm,log → ω1])′ → H1(A,Gm,log)
′ ← A.

We have a universal exact sequence

0→ H0(A,ω1)′ → E ′(A)→ A→ 0.

We prove a lemma and a proposition we will use in the proof of Proposition

3.16.

3.17 LEMMA. Let A be a weak log abelian variety over a noetherian fs log scheme

satisfying the condition 1.4.1 in [13]. Then we have Ext(A,Ga) = H1(A,Ga).

Proof. This is an analogue of the cubic isomorphism [13] Theorem 2.2 (c), and

the general case is reduced to the constant degeneration case as in the same

way as in [13] 12.5. In the rest of this proof, we assume that A is with con-

stant degeneration. Then, by [13] 6.4.1, we have H i(Ã,Ga) = H i(B,Ga) (the

notation is as usual as in there). Hence we have the spectral sequence Eij
2 =

H i(Y,Hj(B,Ga))⇒ H i+j(A,Ga). Since Y acts on Hj(B,Ga) trivially for every

j, there is an exact sequence

0→ Hom(Y,Ga)→ H1(A,Ga)→ H1(B,Ga).
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Taking H1(B,Ga) = Ext(B,Ga) into account, by comparing this with the exact

sequence (3) in the proof of Proposition 3.4, we have Ext(A,Ga) = H1(A,Ga),

as desired.

3.18 PROPOSITION. Let A and A′ be principally polarized log abelian varieties

over a noetherian fs log scheme S. Then we have the following.

(1) The restriction of H1(A,Ga) to Sét is a vector bundle of rank dimA.

(2) H1(A× A′,Ga) = H1(A,Ga)⊕H1(A′,Ga).

Proof. (1) By Lemma 3.17, this is reduced to Proposition 3.4.

(2) It is by H0(A,Ga) = H0(A′,Ga) = Ga ([13] Proposition 12.1) and (1).

3.19. To have the exact sequence in Proposition 3.16, it is enough to show that

the composition A→ H1(A,Gm,log)→ H1(A,ω1) is the zero map.

The map A → H1(A,Gm,log) → H1(A,ω1) comes from an element α ∈
H1(A × A, pr∗1ω

1
A/S) such that (we denote the second A in A × A by A′) it

sends a section s of A′ to the image of α by the pullback with respect to s. By

Propositions 3.18 (2) and 3.10, we have

H1(A× A′, pr∗1ω
1
A/S) = H1(A× A′,Ga)⊗H0(A× A′, pr∗1ω

1
A/S)

= (H1(A,Ga)⊕H1(A′,Ga))⊗ coLie (A)(S)

= H1 ⊕H2,

where

H1 = H1(A,Ga)⊗ coLie (A)(S), H2 = H1(A′,Ga)⊗ coLie (A)(S).

Write α = α1 + α2 with αi ∈ Hi (i = 1, 2). Then the pullback of α in H1(A,ω1)

under every s ∈ A′ is α1 (α2 is killed by the pullback). That is, the map

A′ → H1(A,ω1) is a constant map. Because it is a homomorphism, it is the zero

map.

3.20. We prove Proposition 3.16. By Proposition 3.10, H0(A,ω1
A/S)

′ is a vector

bundle. Hence, by the universality, we have a map f : E(A)→ E ′(A). To prove

that it is bijective, it is enough to show that the induced map coLie (A) →
H0(A,ω1

A/S)
′ by f is the inverse of the map given in the proof of Proposition

3.10. By Lemma 3.13, we reduce to the case where the base is log regular. Hence

we reduce to the case where the log structure of the base is trivial, that is the

classical case.

3.21. Now we prove Proposition 3.7. We construct a map Ext♮(A,Gm,log)
′ →

E(A′). Since A′ is log smooth, by covering A′ by log smooth objects, for each
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section of Ext♮(A,Gm,log)
′, we can associate a class of H1(A′, [Gm,log

d log→ ω1
A′/S′ ])′.

We prove that the image of this class inH1(A′,Gm,log)
′ belongs to A′∗ so that this

class is in E ′(A′) = E(A′) (Proposition 3.16). By definition of Ext♮(A,Gm,log),

the image of this class in H1(A,Gm,log) belongs to A∗. Hence we reduce to the

following claim.

CLAIM 1. The map from A′ to the fiber product of

H1(A′,Gm,log)→ H1(A,Gm,log)← A

is bijective.

First we assume that A′ is with constant degeneration. By the definition

of the dual, it suffices to show that the map from Ext(A′,Gm,log) to the fiber

product of

H1(A′,Gm,log)→ H1(A,Gm,log)← Ext(A,Gm,log)

is bijective. Since H1(A′,Gm,log)/Ext(A′,Gm,log) injects into Hom(A′, A′∗) by

[13] Theorem 8.5 (2), it is enough to see that a homomorphism A′ → A′∗ is zero

if the induced homomorphism A→ A∗ is zero. This is by Lemma 2.9.

Next, let U ′ ∈ (fs/S ′) be of finite type over S ′ (so of finite type over Z).
We want to prove that an element of H1(A′,Gm,log)(U

′) belongs to A′(U ′) if

its image in H1(A,Gm,log)(U) belongs to A(U). By [13] Lemma 12.9, we can

replace U ′ by its strict localization. By Artin’s approximation theorem, we can

further replace U ′ by the completion. To reduce the problem to what we already

see in the constant degeneration case, it is sufficient to use the injective GAGF

for H1(A′,Gm,log) ([14] Theorem 1.2) and the GAGF for A′(S) (cf. the proof of

Proposition 2.8). We conclude that the element concerned belongs to A′(U ′), as

desired.

Thus we have a homomorphism Ext♮(A,Gm,log)
′ → E(A′) which fits into the

commutative diagram

0 −−−→ K −−−→ Ext♮(A,Gm,log)
′ −−−→ A′∗ −−−→ 0y y ∥∥∥

0 −−−→ H0(A′, ω1
A′/S′)′ −−−→ E(A′) −−−→ A′ −−−→ 0

with exact rows, where K = Ker(Ext♮(A,Gm,log)
′ → A′∗). Hence it is enough

to show that K → H0(A′, ω1
A′/S′)′ is bijective. By Claim 1, K coincides with

Ker(H1
logcrys(A,Gm,log)

′ → H1(A′,Gm,log)
′).

CLAIM 2. There is a natural exact sequence

0→ H0(A′, ω1
A′/S′)′ → H1

logcrys(A,Ga)
′ → Lie (A′).
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By comparing this exact sequence with the upper row of the above commu-

tative diagram, we see that the map K → H0(A′, ω1
A′/S′)′ is identified with the

identity, which completes the proof.

We prove Claim 2. By [15] Theorem 6.4, we have H1
logcrys(A,Ga) = H1(A′,

ω·
A′/S′). Further, by Proposition 3.4 and Lemma 3.17, we have a natural iso-

morphism Lie (A′) ∼= H1(A′, ω0
A′/S′)′. Hence, to obtain the claimed exact se-

quence as a part of the log Hodge-de Rham spectral sequence, it is enough to

show that the homomorphism H0(A′, ω1
A′/S′)′ → H0(A′, ω2

A′/S′) is zero. Since

H0(A′, ω1
A′/S′)′ ∼= coLie (A′) (Proposition 3.10) is a vector bundle, by Lemma

3.13, we may assume that the base is log regular. Then it is zero because it is so

over the nonlog open set.

4. Deformation of log abelian varieties

We discuss the deformation of log abelian varieties, which is used in the proofs

of main results.

4.1 PROPOSITION. Let S = SpecR → S ′ = SpecR′ be a strict nil immersion

of affine fs log schemes by a finitely generated and square-zero ideal I ⊂ R′. Let

A be a principally polarized log abelian variety over S. Assume that a lift A′ of

A over S ′ is given. Then the following hold.

(1) The set of the liftings of A over S ′ is naturally bijective to the underlying

set of

Homsym(coLie (A),Lie (A))⊗R I,

where Homsym means the subgroup consisting of the self-dual homomorphisms.

(2) Assume further that R′ = R[I] and that the lift A′ is the canonical one.

Then the bijection in (1) is an isomorphism of R-modules.

Proof. (1) Regard Lie (A′) as anOS′-module on the small étale site
◦
S ′

ét. Tensoring

it with the exact sequence 0→ I → OS′ → OS → 0, we have an exact sequence

0→ Lie (A)⊗OS
I → Lie (A′)→ Lie (A)→ 0

on
◦
S ′

ét. Let f : coLie (A) → Lie (A) ⊗ I be a homomorphism of OS′-modules on
◦
S ′

ét, which comes from an element of the set concerned. Consider the composite

coLie (A′)→ coLie (A)
f→ Lie (A)⊗ I ↪→ Lie (A′).
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Locally, it lifts to a homomorphism f̃ : coLie (A′) → Lie (E(A′)) that induces

the inclusion coLie (A) → Lie (E(A)). Regard f̃ as a homomorphism of abelian

sheaves on the big site (fs/S ′)ét. Then the image in E(A′) of the image of f̃ is

glued to give a subsheaf of E(A′) and the quotient A′′ of E(A′) with respect to

it does not depend on the choices up to isomorphisms.

Further, A′′ is a log abelian variety on S ′ which lifts the original A. To see

it, first we see that A′′ is log smooth over S ′. Next, there is a unique surjective

homomorphism A′′ → A′/G′ which lifts A→ A/G. Here G and G′ are the semi-

abelian parts of A and A′, respectively. Let G′′ be the kernel of this surjection.

Then G′′ is a strict smooth group object over S ′ so that it is semiabelian because

G is so. Since the pullback of A′′ to S is A, the fibers of A′′ are log abelian

varieties. Finally we deduce that A′′ is separated from the separability of E(A′).

The self-duality implies that A′′ is principally polarized. Thus we have a

map from the set concerned to the set of the liftings, which is injective by the

universality of E(A′). To prove its surjectivity, it is enough to show that for any

lift A′′, we have E(A′) ∼= E(A′′). To see this, by Proposition 2.6, we may assume

that S ′ is of finite type over Z, and we use Proposition 3.7. We complete the

proof of (1).

(2) is a formal consequence from (1).

4.2 PROPOSITION. Let S → S ′ and A be as in the previous proposition. Then

A lifts to S ′ Zariski locally on S.

Proof. The case where A is with constant degeneration is deduced from the log

smoothness of the local moduli in [14] Theorem 2.4. Hence, the case where S ′ is

the spectrum of an Artin ring is proved. Then the case where S ′ is the spectrum

of a complete noetherian local ring is proved by GAGF ([14] Theorem 6.1 and

Remark 6.1.1).

We prove the case where the underlying scheme of S ′ is a strict localization of

an fs log scheme of finite type over Z. By the previous case, we have a principally

polarized log abelian variety over the completion of S ′. Then by Proposition 2.6

and Artin’s approximation theorem, this case follows.

Consider the general case. We may assume that S ′ is of finite type over Z
by Proposition 2.6. Again by Proposition 2.6 and the case already proved, we

can find a lift étale locally on S. By Proposition 4.1, the obstruction for the

existence of a global lift is in H1(S,Homsym(coLie (A),Lie (A)) ⊗ I), where I is

as in Proposition 4.1. This vanishes Zariski locally. Hence A lifts Zariski locally

on S.
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5. Some related functors

We introduce some related functors which we will use in the proofs.

Throughout this section, let g, W , n be as in Section 1, Σ an admissible cone

decomposition of SQ(W ) (Definition 1.1), and

F := Fg,n, FΣ := Fg,n,Σ : (fs/Z[1/n])→ (set)

the moduli functors in Definition 1.5.

By the next lemma, F is a sheaf with respect to the classical étale topology

if n ≥ 3.

5.1 LEMMA. Let U be an fs log scheme, let n ≥ 3, and let A be a log abelian

variety over U with a principal polarization φ and with a level n structure e.

Then Aut(A, φ, e) = {1}.

Proof. By Proposition 2.6, [12] Proposition 9.2 (1), and the representability of

torsion points of a log abelian variety ([12] Proposition 18.1 (1)), we can spread

out a triple (A, φ, e) and an automorphism of it. Hence we may assume that
◦
U

is of finite type over Z. Since A is locally of finite presentation ([13] Proposition

12.7), we may replace U by a strict localization. By Artin’s approximation

theorem and again by [12] Proposition 9.2 (1), we may further replace U by the

spectrum of a complete noetherian local ring. Then by GAGF for a log abelian

variety ([14] Theorem 6.1), we may replace U by the spectrum of an Artin local

ring. Lastly, by Lemma 2.9, an automorphism of A whose restriction to the

closed point is the identity is the identity so that we may replace U by the closed

point.

The rest is to prove the case where
◦
U is the spectrum of a field. First we prove

that Aut(A, φ, e) is torsion-free. Since n ≥ 3, as in the classical case, it is enough

to show that for a prime number ` which is invertible on U and two log abelian

varieties A1 and A2 over U , the natural map Hom(A1, A2)→ HomZℓ
(TℓA1, TℓA2)

is injective. Let f ∈ Hom(A1, A2). Then the induced Tℓ(f) preserves the weight

filtrations (which means the filtration defined by the homomorphisms in [12]

18.9.1 and 18.9.2). Thus the above is reduced to the classical case (cf. [20] p.176,

Theorem 3) and hence Aut(A, φ, e) is torsion-free. Note here that Hom(A1, A2) is

also finitely generated. This is also reduced to the classical case as follows. Since

Ai is with constant degeneration, we can consider the associated log 1-motif

[Yi → Gi,log] to Ai (i = 1, 2). Then we have Hom(A1, A2) ↪→ Hom(Y1, Y2) ×
Hom(G1,log, G2,log) = Hom(Y1, Y2) × Hom(G1, G2), where the equality is by [10]

Proposition 2.5. Hence, Hom(A1, A2) is finitely generated. In particular, End(A)

is finitely generated.
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Next, we prove that Aut(A, φ) is finite, which competes the proof. We may

assume that Y for A is constant. We define the Rosati involution as in the

classical case: for g ∈ End(A), let ∗g be the homomorphism A
ϕ→ A∗ g∗→ A∗ ϕ−1

→ A.

Then ∗(·) gives an anti-automorphism of End(A). Let 〈g1, g2〉 be the trace of the
induced endomorphism on the Tate module by g1◦∗g2. Since this trace is the sum
of the traces of the endomorphisms on Y , X and B, where X ×Y →Mgp

S /O×
S is

the associated pairing and B is the abelian part, 〈g1, g2〉 defines a bilinear form

on R ⊗ End(A) as in the classical case. Further, by the definition, 〈g, g〉 = 1

for any automorphism g. The rest is to show the positivity, that is, 〈g, g〉 =
Tr(g◦∗g) > 0 for g 6= 0. As is explained above, the trace is the sum of the

three traces. The classical part is known (cf. [20] p.192, Theorem 1). The part

on Y and the part on X can be treated similarly. We write down the former

case. Let f : YQ → YQ be the induced homomorphism from g and ∗f : YQ → YQ

induced from ∗g. We have to prove Tr(f◦∗f) > 0 if f 6= 0. Let φ : YQ → XQ

be the homomorphism induced by φ. Then ∗f coincides with φ−1f∨φ, where

f∨ : XQ → XQ is the dual of f . Let 〈y, z〉Y be 〈φ(y), z〉 ∈ Mgp
S /O×

S . Then

〈y, f(z)〉Y = 〈φ(y), f(z)〉 = 〈f∨φ(y), z〉 = 〈φ−1f∨φ(y), z〉Y = 〈∗f(y), z〉Y . Let

N : Mgp
S /O×

S → N be a homomorphism whose kernel is trivial. Then N(〈·, ·〉Y )
is a positive definite form. Since f and ∗f are adjoint to each other with respect

to this form, Tr(f◦∗f) is positive.

5.2. To prove main theorems, we define the sheaf F ′ on (fs/Z[1/n])ét as

F ′(U) := {(A, φ, e, f)}/ ∼=,

U ∈ (fs/Z[1/n]), where (A, φ, e) is a g-dimensional principally polarized log

abelian variety over U with a level n structure and f is a surjective homomor-

phism W → Y (A).

This F ′ is indeed a sheaf because F is so.

5.3 PROPOSITION. The forgetful morphism F ′ → F ; (A, φ, e, f) 7→ (A, φ, e)

is represented by strict étale surjective algebraic spaces. More strongly, it is

represented by surjective Zariski local isomorphisms.

Proof. Let (A, φ, e) : U → F be a morphism from any fs log scheme U over

Z[1/n]. The functor F ′ ×F U over U is represented by the sheaf of surjective

homomorphisms W → Y (A). Let u ∈ U , put Y := Y (A)u, and, shrinking U if

necessary, we may assume that there is a surjection Y → Y (A). Then F ′ ×F U

is represented by the fs log scheme (
∐

h Uh)/ ∼, where h runs over the set of the

surjections W → Y , Uh is a copy of U , and Uh and Uh′ are glued by the open

subscheme on which h and h′ induce the same W → Y (A). The formation is

compatible with any base change so that F ′ → F is globally represented.
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Remark. Further, F ′ → F is represented by quasiseparated morphisms. This

is seen as follows. In the notation in the above proof, Y (A) locally comes from

an fs log scheme U that is of finite type over Z. Hence the glued schemes are

quasiseparated.

5.4. Next we introduce the sheaf I on (fs/Z[1/n])ét defined as

I(U) := {symmetric bilinear form W ×W
b→ (Gm,log/Gm)(U)

which is positive semi-definite},

U ∈ (fs/Z[1/n]), where b is said to be positive semi-definite if, for any u ∈ U and

any homomorphism (MU/O×
U )u → R(+)

≥0 , the induced W ×W → R is positive

semi-definite. Here R(+)
≥0 means the set {a ∈ R | a ≥ 0} regarded as a monoid

with respect to the addition.

We define the canonical morphism

F ′ → I

of sheaves by associating to (A, φ, e, f) over U ∈ (fs/Z[1/n]) a bilinear form

W ×W
f×f→ Y (A)× Y (A)

ϕ×id→ X(A)× Y (A)
⟨ , ⟩→ Gm,log/Gm.

We construct an explicit covering of I by representable objects. Let T be

the disjoint union of

Vσ := Spec
(
(Z[ 1

n
])[σ∨ ∩ Sym2

Z(W )]
)
,

where σ runs over the set K of all sharp finitely generated Q-cones consisting of

positive semi-definite symmetric bilinear forms W ×W → R.
We have the natural morphism

T → I.

5.5 PROPOSITION. The natural morphism T → I is surjective as a morphism

of sheaves, T ×I T is representable, the two projections T ×I T ⇒ T are log

étale and the natural morphism T ×I T → T ×Z[ 1
n
]
T is of finite type.

Proof. We prove that T → I is surjective. Let b be an element of I(U) (U ∈
(fs/Z[1/n])) and we prove that b comes from a section of T . We may assume

that U has a chart. Let σ be the dual of the inverse image of MU/O×
U by the

homomorphism Sym2
Z(W )→ Gm,log/Gm induced by b. Then, strict étale locally

on U , b comes from a section of Vσ. Hence, T → I is surjective.



34 T. KAJIWARA, K. KATO AND C. NAKAYAMA

Let σ, τ ∈ K. To prove the rest, it is enough to show that R := Vσ ×I Vτ is

representable, that R → Vσ is log étale and that R is quasicompact over Z[ 1
n
].

But the map Vσ∩τ ×Gm → R sending (t, u) to (t, t · u), where we denote by the

same symbol the images of t, is an isomorphism, which suffices.

Let F ′
T = F ′ ×I T . The next proposition is an essence of the proofs of our

main results. Once it is proved, all results are easily deduced from it.

5.6 PROPOSITION. The functor F ′
T , restricted on (sch/

◦
T ) ⊂ (fs/T ), is repre-

sented by a locally separated algebraic space over
◦
T .

We prove this in the next section.

6. Artin’s criterion

In this section, we prove Proposition 5.6 by the classical Artin criterion. This

section is a core of the proofs in this part VII of this series of papers.

6.1 LEMMA. The quotient sheaf Gm,log/Gm is an fppf sheaf.

Proof. This is proved in [16] 3.5. We include the proof for readers’ conveniences.

Let U ′ → U be a strict fppf covering. Let U ′′ := U ′ ×U U ′ and it is enough to

show that

Γ(U,Gm,log/Gm)→ Γ(U ′,Gm,log/Gm) ⇒ Γ(U ′′,Gm,log/Gm)

is exact. We may assume that U has a chart. Then every Gm,log/Gm is the

inverse image of Gm,log/Gm on UZar. Hence the above exactness is reduced to the

exactness of the diagram of topological spaces U ′′ ⇒ U ′ → U .

6.2. We prove Proposition 5.6. The functor concerned over (sch/
◦
T ) associates to

each
◦
T -scheme U the set of isomorphism classes of (A, φ, e, f) over (U,MT ) whose

induced section in I((U,MT )) coincides with the pullback of the one determined

by the given T → I. Here MT is the inverse image log structure of T . We

denote this functor by H.

By the classical Artin criterion [2] Theorem 5.3, to prove Proposition 5.6, it

is enough to show that the eleven conditions [0′]–[5′](c) there are satisfied for H.

Henceforth in this proof, the notation follows loc. cit. As a deformation

theory (loc. cit. Definition 5.2) for H, we take the standard one : D(A0,M, ξ0) =

Hξ0(A0[M ]). To see that it is actually a deformation theory, it is enough to

check the bijectivity of the map (∗) in loc. cit. p.48, which also implies the
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conditions [4′](b) and [5′](a) as explained there. This bijectivity is proved by the

calculation of deformations of log abelian varieties as follows. Let us recall the

situation. First let A0 be a noetherian OT -integral domain. Let A′ → A → A0

be infinitesimal extensions. Let B → A0 be another infinitesimal extension. For

every map B → A, consider the map

(∗) H(A′ ×A B)→ H(A′)×H(A) H(B).

We must show that it is bijective. Let (A1, φ1, e1, f1) ∈ H(B). By Proposi-

tion 4.1 (1) and Proposition 4.2, we have a bijection from the inverse image of

(A1, φ1, e1, f1) by H(A′ ×A B)→ H(B) to

Homsym(coLie (A1),Lie (A1))⊗ I,

where I = Ker(A′ ×A B → B). Since I = Ker(A′ → A), again by Proposition

4.1 (1) and Proposition 4.2, it is naturally bijective to the inverse image of the

image in H(A) of (A1, φ1, e1, f1) by H(A′)→ H(A). Hence (∗) is bijective.

6.3. We prove [0′], that is, that H is a sheaf for the fppf topology.

It is enough to show that F ′
T is an fppf sheaf. Let p : U ′ → U be a strict

fppf covering of a T -fs log scheme. We prove that F ′
T (U)→ F ′

T (U
′) is injective.

Let (A1, φ1, e1, f1), (A2, φ2, e2, f2) ∈ F ′
T (U) and assume that p−1(A1, φ1, e1, f1) ∼=

p−1(A2, φ2, e2, f2). We will prove (A1, φ1, e1, f1) ∼= (A2, φ2, e2, f2). Since F ′
T is an

étale sheaf, we may assume that there is an admissible pairing b : W ×W → Sgp

(S is an fs monoid) with a homomorphism S → (Gm,log/Gm)U such that the

composite W ×W → (Gm,log/Gm)U is the given pairing U → I which induces

A1/G1
∼= A2/G2

∼= Hom(X,Gm,log/Gm)
(Y )/Y . Here X = Y = W , and G1

and G2 are the semiabelian parts of A1 and A2 respectively. The assumption

together with Lemma 5.1 implies that there is an isomorphism p−1A1
∼= p−1A2

whose two pullbacks by the projections U ′′ := U ′×U U
′ ⇒ U ′ coincide. It induces

an isomorphism p−1Ã1
∼= p−1Ã2 whose two pullbacks by the projections U ′′ ⇒ U ′

coincide. Now let C ⊂ Hom(S,N)×Hom(X,Z) be as in [12] 2.2. Let C(m) be

the cones such that C =
⋃

C(m) as in [9] 3.4.9. By taking C(m)-models, we have

an isomorphism p−1Ã
(C(m))
1

∼= p−1Ã
(C(m))
2 whose two pullbacks by the projections

U ′′ ⇒ U ′ coincide. Then by the fppf descent of algebraic spaces together with

the descent of the fs log structure (cf. [23] Appendix Corollary A.5), we see that

the isomorphism of models descends into an isomorphism Ã
(C(m))
1

∼= Ã
(C(m))
2 of

algebraic spaces with fs log structures. By taking the union, we have Ã1
∼= Ã2.

This isomorphism preserves the group structure since it is so fppf locally. Further

it induces Y 1
∼= Y 2 since it is so fppf locally, where Y i = Ker(Ãi → Ai) (i = 1, 2).

Thus we have A1
∼= A2. This isomorphism respects polarizations, level structures

and surjections. This is by the fact that Ai (i = 1, 2) is an fppf sheaf, which is
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seen by observing that Ãi is a két sheaf ([12] Theorem 5.1) and that Ãi is the

union with respect to the két topology of log algebraic spaces in the first sense.

6.4. Next we prove the exactness of F ′
T (U) → F ′

T (U
′) ⇒ F ′

T (U
′′). Let

(A′, φ′, e′, f ′) be in the difference kernel of F ′
T (U

′) ⇒ F ′
T (U

′′). We will prove

that (A′, φ′, e′, f ′) comes from F ′
T (U). Note that the cocycle condition holds by

Lemma 5.1. Again by that F ′
T is an étale sheaf and that we already showed that

F ′
T is a separated presheaf for the fppf topology, we may assume that there is a

pairing b : W×W → Sgp as before which induces A′/G′ ∼= Hom(X,Gm,log/Gm)
(Σ)

/Y . (Here and hereafter the notation is similar to that in the previous para-

graph.) Again by taking Ã′ and its models, we have descent data of log algebraic

spaces in the first sense. By the fppf descent of log algebraic spaces in the first

sense as before, Ã′(C(m)) descends as a log algebraic space in the first sense. Then

Ã descends. Next, the pairing W ×W → Gm,log/Gm descends by Lemma 6.1.

The descended pairing is admissible since it is so fppf locally. Since the pairing

descends, X and Y also descend. The homomorphism Y → Ã descends. It is

injective since it is so fppf locally. Let A be the cokernel of Y → Ã.

We prove that A is a log abelian variety. Since Hom(X,Gm,log/Gm)
(Y )/Y

is an fppf sheaf by Lemma 6.1, the surjective morphism A′ → Hom(X,

Gm,log/Gm)
(Σ)/Y also descends. Hence, the semiabelian part also descends. Thus

the exact sequence

0→ G→ A→ Hom(X,Gm,log/Gm)
(Y )/Y → 0

exists. The diagonal is finite because it is so fppf locally.

The principal polarization descends by Proposition 2.4, which implies the

pointwise polarizability. Once the polarization descends, the level structure and

the surjection descend. This completes the proof of [0′].

6.5 REMARK. There are two alternative proofs for [0′]. One is by the use of

[14] Theorem 4.7, that is, the descent of A is reduced to that of models. Another

proof is as follows. We can prove [1′] and [2′] in advance. See 6.6 and 6.7 below.

Then, by [1′], we may assume that U is of finite type over Z, and replace U

by a strict localization. By Artin’s approximation theorem and [1′] again, we

further replace U by the spectrum of a complete noetherian local ring. Then,

by [2′], we reduce to the case where U is the spectrum of an Artin local ring

so that it suffices to show the fppf descent of log 1-motives [Y → Glog]. The

lattice Y descends. By [10] Proposition 2.5, the descent data on Glog give those

on G. Hence G descends and Glog also descends. The rest is to see that the

homomorphism Y → Glog descends. For it, it suffices to show that Glog is an

fppf sheaf. By using the exact sequence 0 → Tlog → Glog → B → 0, where T
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and B are the torus and the abelian part, respectively, we reduce the problem

to the vanishing of R1η∗Gm,log, where η is the projection of the fppf site to the

étale site. The last vanishing is a part of the log Hilbert 90 (see [16] Corollary

5.2).

6.6. We prove [1′] that H is locally of finite presentation. It is enough to show

that F ′ is locally of finite presentation, that is, that lim−→F ′(Ui) → F ′(U) is

bijective, where (Ui)i is an inverse system of affine Z[1/n]-fs log schemes with

strict transition morphisms and U := lim←−Ui.

This is by Proposition 2.6 by taking care of level structure and the surjection

W → Y (A). The level structure can be spread out by the representability of the

torsion points ([12] Proposition 18.1). It is obvious that the surjection is spread

out.

6.7. We prove [2′]. It is enough to show that F ′(R)→ lim←−F ′(R/mn) is injective

and has a dense image, where (R,m, k) is a complete noetherian localOT -algebra.

In fact the above map is bijective. This is essentially by [14] Theorem 6.1. We

have to take care of the polarization, the level structure, and the surjection. For

the polarization, see [14] Remark 6.1.1. The level structure is algebraized because

the group of torsion points of a log abelian variety is represented by finite log flat

group schemes ([12] Proposition 18.1). Finally, the formal surjection W → Y (A)

determines the surjection on R.

6.8. We prove the condition [3′](a). It is enough to show the following: Let S

be a geometric discrete valuation ring with an fs log structure over T . Then

F ′
T (S) → F ′

T (K) × F ′
T (k) is injective, where K (resp. k) is the fraction field

(resp. the residue field) of OS.

If S has the direct image log structure from K, then F ′
T (S)→ F ′

T (K)×F ′
T (k)

is injective because Cptpol0 = Cpol0 = Cpol2 (in the notation there) by [14] Theorem

3.4 (1) and (3). (Though S is not necessarily an fs log scheme, we define F ′
T (S)

here as in [14] 3.1.)

The general case is reduced to this case as follows. It suffices to prove that

F ′
T (S)→ F ′

T (S
′) is injective, where S ′ is the one endowed with the direct image

log structure from K. Since F ′
T (S) → F ′

T (S
sh) is injective by 6.3–6.4 and 6.6,

where Ssh is the strict henselization of S, we can replace S and S ′ by their strict

localizations. Furthermore, since F ′
T (S)→ F ′

T (Ŝ) is injective by 6.6 and Artin’s

approximation theorem, where Ŝ is the completion of S, we can further replace

S and S ′ by their completions.

Thus we may assume that S and S ′ are complete. Then by 6.7, we can

replace S and S ′ by the spectrum of Artin rings. Hence the log abelian varieties
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concerned are with constant degeneration. Let ξ and η be elements of F ′
T (S).

Assume that the pullbacks to S ′ of ξ and η coincide. Then the surjections

W → Y of ξ and η are common. The Y → X are also common. Together with

the definition of F ′
T , the admissible pairings X × Y → Gm,log/Gm are common.

Hence the torus part T is common. Since the underlying schemes of S and S ′

are the same, the abelian part B and the semiabelian part G are also common.

Hence it is enough to show that the homomorphism Y → Glog is determined by

the pullback to S ′; once it is proved, G→ G∗ and the level structure are common.

But the induced homomorphism Y → Glog/G = Tlog/T is common. Since there

is an exact sequence 0 → Hom(Y,G) → Hom(Y,Glog) → Hom(Y,Glog/G) and

an element of Hom(Y,G) is determined by the pullbacks, we have ξ = η.

6.9. We prove [4′](a), which means Hξ0(A0[M ]) commutes with localization in

A0 and is a finite module when M is free of rank one. Let A be the polarized log

abelian variety corresponding to ξ0. Then the condition [4′](a) is reduced to the

equality

Hξ0(A0[M ]) = Homsym(coLie (A),Lie (A))⊗A0 M

as A0-modules.

If we neglect the additional structures, this is by Proposition 4.1 (2). So

it is enough to show that the additional structures deform uniquely. By [12]

Proposition 18.1 (3), the torsion points are két locally isomorphic to (Z/nZ)2g.
Since the két site over Spec(A0) and that over Spec(A0[M ]) are equivalent, the

level structure uniquely deforms. The surjection also uniquely extends, which

completes the proof of [4′](a).

6.10. To see that the conditions [3′](b), [4′](c) and [5′](c) are valid for H, we may

assume by [10] Theorem 4.6 (2) that the ξ, η etc. concerned in these conditions

are with constant degeneration because MA0/O×
A0

is locally constant around the

generic point. (Here we use [4′](a) for [4′](c).) Then their lattices Y are constant

because the monodromy acts on Y trivially by Lemma 5.1. Let r be their rank.

Fix an isomorphism Zr =: Y ∼= Y (A′) and a surjection W → Y which are

compatible with f : W → Y , and denote by b the map U := (Spec(A0),MT )→ I.
Since U is quasicompact, we can take a finitely generated cone σ as in [14] Section

2 such that for any u ∈ U and any homomorphism MU,u → Q(+)
≥0 , the induced

pairing Y ×Y → Q by b belongs σ. Then b factors through Spec(σ∨) and further

through T0 := T ×I Spec(σ
∨) also after localizing U . Hence we may assume that

b factors through T0. (Here we use again [4′](a) for [4′](c).) Now ξ etc. can be

lifted to sections of (Fg,r,n,σ)T0 , and we can replace H by the restriction Hg,r,n,σ of

(Fg,r,n,σ)T0 in (sch/
◦
T 0). (Note that for [4

′](c) and [5′](c), we use here the fact that
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the deformations of log abelian varieties with the constant Y must be with the

constant Y .) Since (Fg,r,n,σ)T0 is pro-representable by [14] Theorem 2.4, Hg,r,n,σ

is also pro-representable (by the underlying formal scheme). From this, we can

see that [3′](b), [4′](c) and [5′](c) are valid for Hg,r,n,σ.

6.11. Since we already see in 6.2 that the conditions [4′](b) and [5′](a) are sat-

isfied, the rest is [5′](b). Since A0 ×K A′
K → A0 ×K AK in loc. cit. (the notation

is as in there) is a nilpotent thickening of local rings with square zero ideal, this

is reduced to Proposition 4.2 as follows. In fact, we prove that, in general, for

a nil immersion SpecR → SpecR′ of affine local schemes over
◦
T defined by a

(not necessarily finitely generated) ideal I with I2 = 0, any element of H(R)

can be lifted to H(R′). Take an inductive system (R′
i)i of noetherian local sub

O(
◦
T )-algebras of R′ such that lim−→R′

i is isomorphic to R′. For any i, let Ri be the

image of R′
i → R so that lim−→Ri = R. By [1′], any element of H(R) can be lifted

to an element of H(Ri) for some i. Hence we may assume that R′ is noetherian.

In this case, by Proposition 4.2, any polarized log abelian variety over R′ can

be lifted to R. The level structure and the surjection uniquely extend (cf. 6.9),

which completes the proof of [5′](b).

Thus the proof of Proposition 5.6 is completed.

7. Representability of moduli functors

In this section, we return to the study of the moduli functors of log abelian

varieties defined in Section 1, and prove Theorems 1.6 and 1.7 except properness

based on Proposition 5.6.

7.1. We deduce from Proposition 5.6 we have shown in the previous section, that

F ′
T is represented by a log smooth log algebraic space over T in the first sense.

In fact, Proposition 5.6 gives us an underlying algebraic space, denoted by
◦
X, over

◦
T . It contains as a dense open subset the part which is the moduli of

abelian varieties without degeneration. We denote this open set by U . Endow
◦
X with the inverse image log structure from T . Note that by the local theory

([14] Section 2), it coincides with the log structure by the complement of U and

the resulting log algebraic space X in the first sense is log smooth over the base

Z[1/n].
By definition, there is a canonical morphism X → F ′

T . It suffices to show

that it is an isomorphism. Since each log locus (i.e., a subscheme where M/O× is

locally constant) of X is a moduli of log abelian varieties with constant degenera-
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tion ([14] Section 2, cf. 6.10), the canonical morphism is formally an isomorphism.

Hence, by the argument in [11] 5.4, we reduce to the fact that F ′
T has the two

properties that F ′
T is locally of finite presentation and that F ′

T has the uniqueness

for GAGF. These are reduced to that F ′ has the same two properties, which is

shown in 6.6 and in 6.7, respectively.

7.2. Proof of Theorem 1.7 except properness. We prove a slight variant

of Theorem 1.7 as follows, which implies Theorem 1.7 except properness. Let Σ

be a fan in SQ(W ) supported by positive semi-definite bilinear forms which is not

necessarily complete and not necessarily stable under the action of AutZ(W ).

Let IΣ be the subsheaf of I defined by

IΣ(U) := {b ∈ I(U) | for any u ∈ U, there exists σ ∈ Σ such that, for any

homomorphism MU,u → Q(+)
≥0 , the induced W ×W → Q belongs to σ},

U ∈ (fs/S).

We define

F ′
Σ := F ′ ×I IΣ

and prove that F ′
Σ is a log smooth log algebraic space in the first sense.

To prove it, we may assume that Σ is the set of all faces of a cone σ. In this

case, we write F ′
Σ as F ′

σ. Let

Hσ := F ′
σ ×I Vσ = F ′

T ×T Vσ = F ′ ×I Vσ.

Then Hσ is a log algebraic space in the first sense because F ′
T is so.

We consider F ′
σ as a quotient of Hσ by the action by the torus defined as the

dense open subspace of Vσ where the log structure is trivial.

Let
◦
X be the quotient of

◦
Hσ by the torus action as a functor from the category

of schemes over Z[1/n] to the category of sets. We can prove that it is repre-

sentable by the classical Artin criterion ([2] Theorem 3.4). In fact, the openness of

versality is satisfied because
◦
Hσ is representable. The effective prorepresentabil-

ity is also satisfied because
◦
X is formally a moduli of log abelian varieties with

constant degeneration ([14] Section 2). The other conditions are easily verified.

Thus we have an algebraic space
◦
X, which contains as a dense open subset the

part of the moduli of abelian varieties without degeneration. We denote this

open set by U . Endow
◦
X with the log structure by the complement of U and

the resulting log algebraic space X in the first sense is log smooth by the local

theory. Further, the projection Hσ → F ′
σ factors through the natural morphism

Hσ → X because the latter is strict as seen pointwise by the local theory. To

see that the induced X → F ′
σ is an isomorphism, by the same argument as in
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7.1 with the use of the local theory, it is enough to show that F ′
σ has the two

properties there. It reduces to that F ′ has the two properties and again to 6.6

and 6.7. Thus X → F ′
σ is an isomorphism. We conclude that F ′

Σ is a log smooth

log algebraic space in the first sense.

By F ′
Σ = FΣ ×F F ′ and by Proposition 5.3, FΣ is also a log smooth log

algebraic space in the first sense, which completes the proof of Theorem 1.7

except properness.

7.3 REMARK. The above proof also shows that the space representing FΣ con-

tains as a dense open subset the moduli spaceAg,n of principally polarized abelian

varieties with level n structure.

7.4. Proof of Theorem 1.6 except properness. We deduce Theorem

1.6 except properness from the variant of Theorem 1.7 proved in the previous

paragraph.

We have F ′ =
⋃

σ∈K F ′
σ, where K is as in 5.4. Cover F ′ by

∐
σ∈K F ′

σ, which

is a log smooth log algebraic space in the first sense by 7.2. For two cones τ ⊂ σ,

we have that Vτ → Vσ is log étale so that F ′
τ → F ′

σ is represented by a log étale

morphism of log algebraic spaces in the first sense. This implies that F ′ is a log

smooth log algebraic space in the second sense. Hence, F is also.

8. Valuative criterion

In this section, we prove the properness of our moduli spaces, which completes

the proofs of Theorems 1.6 and 1.7. We use the valuative criterion and the unique

extendability of a log abelian variety over a complete discrete valuation field,

which was developed in former parts of our series of papers.

8.1. We use the same notation as before. We have to prove that F and FΣ are

proper over Z[1/n]. First we prove that F is proper, that is, F (OK) = F (K)

in the notation in [12] 17.3. In order to reduce this equality to the category

equivalence Cptpol0 ' Cpol2 ([14] Theorem 3.4), it is enough to show that for a

section (A, φ, e) ∈ F (K), where K is a field endowed with an fs log structure,

the lattice Y of A and the torus part T of A are unramified and the abelian part

B of A is of semistable reduction. To see it, it is enough to show that the local

monodromy acts on the Tate module of A trivially, which is by Lemma 5.1. This

completes the proof of Theorem 1.6.

8.2. Next we prove that FΣ is proper. The proof is parallel to that of [12]
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Proposition 11.3, which says that the properness of a weak log abelian variety

implies the properness of its model with respect to a complete fan.

First, to see that FΣ → Spec(Z[1/n]) is separated, we use the following

valuative criterion for separatedness for algebraic spaces.

8.3 PROPOSITION. Let Y be a locally noetherian scheme. Let f : X → Y be a

morphism of algebraic spaces. Assume

(1) f is locally of finite type, and

(2) for any commutative diagram

Spec(K) −−−→ Xy y
Spec(OK) −−−→ Y,

where K is a discrete valuation field with the valuation ring OK, there exist

at most one morphism Spec(OK) → X such that Spec(K) → X coincides

with Spec(K) → Spec(OK) → X and Spec(OK) → X → Y coincides with

Spec(OK)→ Y .

Then f is separated.

See [4] Lemma 19.1 (tag:0ARJ) for a proof. Note that, by definition we have

adopted, an algebraic space is quasiseparated.

8.4. Since we already see that FΣ is log smooth, the condition (1) in Proposition

8.3 is satisfied. Let the notation be as in Proposition 8.3 (2) with X = FΣ

and Y = Spec(Z[1/n]). Endow Spec(K) with the inverse image log structure

from FΣ and Spec(OK) with the direct image log structure from Spec(K). Then,

since a morphism Spec(OK) → X of algebraic spaces making the diagram in

Proposition 8.3 (2) commute uniquely extends to a morphism of log algebraic

spaces making the diagram of log algebraic spaces commute, it is sufficient to

show that FΣ(OK) → FΣ(K) is injective. This is by F (OK) = F (K) in 8.1 and

FΣ ⊂ F . Hence FΣ is separated.

8.5. Now we apply to FΣ → Spec(Z[1/n]) another valuative criterion [12] Propo-

sition 11.4 for universal closedness. Since we already see that FΣ is separated, it

suffices to check the conditions (1) and (2) in [12] Proposition 11.4.

First FΣ is quasicompact because, in virtue of the condition (4) in Definition

1.1, FΣ is the union of a finite number of σ-loci (σ ∈ Σ), and each σ-locus is

quasicompact by the local theory ([14] Section 2). Since we already know that FΣ

is log smooth, it is also of finite type, that is, the condition (1) in [12] Proposition

11.4 is satisfied.
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The condition (2) in [12] Proposition 11.4 can be deduced from F (OK) =

F (K) in 8.1 exactly in the same way as in [12] 11.6–11.7. (Note that in the third

last line in [12] 11.7, A(Σ)(S ′′) → A(Σ)(η′′) should be replaced by A(Σ)(η′′) →
A(η′′).) This completes the proof of Theorem 1.7.

9. Toroidal compactifications

Finally we prove Theorem 1.8, which says that the toroidal compactification

is the underlying space of our space.

9.1. First, since we have worked over Z[1/n] with the naive level structures, to

compare our space with that in [5], we have to adjust the moduli functor a little

by introducing the symplectic level structures, which we explain briefly.

For a principally polarized log abelian variety A over an fs log scheme S and

an integer n invertible on S, the exact sequence 0→ A[n]→ A
n→ A→ 0 induces

the exact sequence 0 → Hom(A[n],Gm,log) → Ext(A,Gm,log)
n→ Ext(A,Gm,log).

This defines the Weil pairing A[n]×A[n]→ Gm,log. Then we can define the sym-

plectic level structure on A, and the corresponding moduli functor over Z[ζn][1/n]
is represented by an open and closed subspace of the scalar extension of the space

representing the functor Fg,n,Σ in Theorem 1.7. Since this open and closed sub-

space contains Ag,n as a dense open subspace as is seen by the local theory, it

is in fact a connected component. Below, “our space” means this connected

component of the scalar extension.

9.2. Proof of Theorem 1.8. There are two methods, which have an outline

in common: In both methods, we construct a family of log abelian varieties over

the Faltings–Chai space Ag,n, which would coincide with the universal family

over our space. The family decides a morphism i from Ag,n to our space because

ours is a fine moduli, and we prove that i is an isomorphism.

In the first method, we construct the family of log abelian varieties by gluing

the local universal families over our local moduli in [14]. The compatibility of the

local families is checked by using the local properties of Faltings–Chai’s family

P over Ag,n, which compactifies the universal family of abelian varieties over the

open set Ag,n without degeneration of Ag,n. After we prove Theorem 1.8, we

show that their family P is a model of our family.

In the second method, we try to construct the family of log abelian varieties

directly from P by “recovering from models”-procedure. But it requires a cone

decomposition having some good property, and we have to suppose its existence.

Then we see that P is a model of our family as soon as we would prove Theorem
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1.8.

Notice that these two constructions generalize the two constructions of uni-

versal log elliptic curves over X(N) in [11] Section 3 and in [11] Appendix,

respectively.

9.3. We prove Theorem 1.8 by the first method. See Remark 9.4 for the second

method. Let x be a point of Ag,n. Since the formal completion of Ag,n at x can

be identified with our local moduli in [14], by GAGF for log abelian varieties ([14]

Theorem 6.1), we have a family Ax of log abelian varieties (with polarizations and

level structures (cf. 6.7), omitted below) over the completion of Ag,n at x. We

claim that they are compatible with each other and with the universal family of

abelian varieties over Ag,n. Then, they are glued globally and gives a morphism

i from Ag,n to our space (cf. [10] Proposition 4.8).

To prove this compatibility, we use the local portion of the theory of Faltings–

Chai. Let P be the family constructed by Faltings–Chai associated to an admis-

sible polyhedral cone decomposition {τβ}. We endow P with the fs log structure

determined by the inverse image of Ag,n−Ag,n. Then, over the formal completion

of Ag,n at x, which is identified with our local moduli, the pullback of P coincides

with a model of our formal universal family associated to the fan decided by {τβ}.
Hence, by GAGF, over the completion at x, the pullback of P can be regarded as

a model of Ax. Then, each Ax is compatible with the universal family of abelian

varieties on Ag,n because its model is so. The other compatibility that the Ax are

compatible with each other is reduced to this compatibility because for two log

abelian varieties over a log regular base, an isomorphism between the restrictions

to the open subset where the log structure is trivial uniquely extends over the

whole base. The last fact is a consequence of the separability of our space proved

in Section 8.

We prove that i is an isomorphism. Since it is formally an isomorphism, by

the argument in [11] 5.4, we reduce to the two properties of our functor, that is,

finiteness and uniqueness for GAGF. Both are valid as our functor is represented

by Theorem 1.7 (cf. 9.1). Thus we complete the proof of Theorem 1.8.

Additionally, under the identification of their space and our space, which is

just established, P is a model of our universal family because it is so formally

around each point, also on Ag,n, and isomorphisms are glued since they are

compatible on Ag,n.

9.4 REMARK. We explain the second method. By the argument of the second

last paragraph of 9.3, it suffices to construct an appropriate family of log abelian

varieties on Ag,n. We construct it from P in 9.3 directly.

On Ag,n, there are semiabelian schemes G and Gt and the pairing X(G) ×
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X(Gt)→ Gm,log/Gm globally as in [5] Chapter III, Section 10. Hence the sheaf

Q := Hom(X,Gm,log/Gm)
(Y )/Y

is defined globally, where X = X(G) and Y = X(Gt). The {τβ} in 9.3 decides a

subsheaf Σ′ of Q coming from complete fans (cf. [14] 4.4).

Then P is a G-torsor over Σ′. This can be checked formally and reduces to the

fact explained in 9.3 that P formally coincides with the model of our universal

family. We construct a family of log abelian varieties from P . Below, we assume

that Σ′ comes from complete and wide fans and use the category equivalence

Theorem 4.7 in [14]. The authors do not know if one can take such a {τβ}.
Under this assumption, it is enough to construct an object of the category B in

[14] Section 4 of the models and it is almost done in [5] except the construction of

the partial group law (P ×P )′ → P , where (P ×P )′ is constructed in [5] Chapter

VI as a compactification of the product of two copies of the universal abelian

varieties. To give it, we start with the partial group law in formal situation. By

GAGF, it induces a partial group law over the completion of each point of the

base. Then, it is glued globally because it is compatible with the group law on

the open subset Ag,n. Thus we have an object of B.

Corrections to former parts.

We gather several corrections to former parts in this series of papers.

C.1. We correct some errors of Part III ([11]) of this series of papers.

In [11] Definition 1.3 (2), we had to say that q and the exact sequence exist

only étale locally, not necessarily exist globally. With the current definition, [11]

Proposition 1.4 is false, though it would be valid with the corrected definition.

An example for which q exists only étale locally is as follows. Let L/K

be an unramified extension of local fields of degree 2 and let q be an element

of K such that ordK(q) = 3. Let E be the abelian sheaf over OK (endowed

with the canonical log structure) obtained by the descent from G(q)
m,log/q

Z over

OL (endowed with the canonical log structure) with the descent data x 7→ x−1.

Then “q” for this E does not exist globally. Thus, as for the sentence just after

the proof of [11] Proposition 1.4, q is not uniquely determined by E, but uniquely

determined up to sign by E.

In [11] 4.2, we should assume that q exists globally.

In [11] Section 5, we used the global existence of q in the proof. But both

(1) and (2) in [11] 5.3 easily reduce to that case. Further, even this reduction is

unnecessary in the case of Γ(N) because, in that case, the existence of the level

structure implies the global existence of q.

Additionally, in [11] 3.1, “local ring” and “field” are mistakes. The Ov in
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there should be defined by that Spf (Ov) coincides with the formal completion of

X(N) at the cusp v. The Kv should be defined by Kv = Ov[1/q].

C.2. We correct several mutually related errors in Part IV ([12]) and in Part VI

([14]) of this series of papers. We thank H. Zhao for pointing out these errors.

In [12] Section 13.4, trivially, α1 does not send Cpol0 (resp. Cptpol0 ) into Cpol1

(resp. Cptpol1 ), as is seen already in the case of log Tate curves. Thus the categories

Cpol1 and Cptpol1 in the current definition are too narrow and useless. We modify

them as follows. First we replace “polarizable” in the second last line of [12] 13.3

by “formally polarizable” to modify the definition of C[pol]1 . Similarly, in [12] 13.4,

we modify the definition of Cpol1 as follows: Cpol1 should be the full subcategory

of C1 consisting of formally polarizable objects. We discard the category Cptpol1 .

Thus the diagram in [12] 13.4 would be as follows.

C1 ⊃ C[pol]1 ⊃ Cpol1

α1
↑ ∼= ↑
C0 ⊃ Cptpol0 = Cpol0

α2
↓ ∼= ↓ ∼= ↓
C2 ⊃ Cptpol2 = Cpol2 and C[pol]1 ' C2

with the new C[pol]1 and Cpol1 .

In [12] 15.9, 3rd line, we replace “polarizable” by “formally polarizable.”

In [12] 15.9, 5th line, we replace “a polarization” by “formally a polarization.”

In the 8th line of the proof of [14] Theorem 3.6, we replace “a polarization” by

“formally a polarization.” Additionally, we give a complement that the equiva-

lence in here of the positivity in the special fiber and the ampleness in the generic

fiber can be seen by the rigid analytic method as in [3].

In the 3rd line of Proposition [14] 5.2 and in the 5th and the 6th lines of [14]

7.2, we replace “polarizable” by “formally polarizable.”

In the second last line of [14] 7.2, Cptpol1 should be C1. We had to say not “by

Theorem 5.3” but “as shown similarly as in the proof of Theorem 5.3.” (In the

proof of [14] Theorem 5.3, we use only the formal polarizability.)

Finally, [14] 6.10 lacks the proof that the biextension is actually a polarization.

This is reduced to [14] Theorem 3.6.

C.3. We correct a part of [13]. The exact sequence in the proof of [13] Proposition

12.8 (4) is not implied by its nonkét version. We suppress [13] Proposition 12.8

(4), [13] Remark 12.8.1 (1), [13] Lemma 12.9, and [13] Proposition 12.11. A

part of them can be recovered by another method, which we will discuss in a

forthcoming paper. They are not used for the proofs of the main results in [13]

and the other part of [13] is valid (the part of the proof of [13] Lemma 12.9 used

in [13] 12.12 is valid).
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