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Abstract. We construct the fine moduli space of log abelian varieties, which
gives a compactification of the moduli space of abelian varieties.
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Introduction

This part is the most important in our series of papers on log abelian varieties.
We construct the fine moduli space of principally polarized log abelian varieties
with level structure and a prescribed admissible degeneration, and show that this
moduli space is isomorphic to a toroidal compactification of the moduli space of
principally polarized abelian varieties with level structure. Our moduli space
is obtained as a part of the moduli space without prescription of degeneration,
which is a log algebraic space in the second sense.
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More precisely, we prove the following (1), (2), and (3).

(1) The moduli functor of g-dimensional principally polarized log abelian
varieties with level n structure is represented by a proper and log smooth log
algebraic space over Z[1/n] (n > 3) in the second sense (Theorem 1.6).

(2) The moduli functor of g-dimensional principally polarized log abelian vari-
eties with level n structure and with local monodromies in a prescribed admissible
cone decomposition X is represented by a proper and log smooth algebraic space
with fs log structure over Z[1/n] (n > 3) (Theorem 1.7).

(3) The space in (2) (essentially) coincides with the toroidal compactification
([5]) endowed with a natural log structure of the moduli space of g-dimensional
principally polarized abelian varieties with level n structure associated with local
monodromies in ¥ (Theorem 1.8).

An important new instrument in this part of series of papers is the theory
of deformations of log abelian varieties. Like the other theories on log abelian
varieties, this is also parallel to the corresponding classical theory of abelian vari-
eties (see, for example, Proposition 4.1), which reflects the remarkable feature of
log abelian varieties that they are some kind of degenerations of abelian varieties
but still behave as proper smooth group objects without degeneration.

We are strongly influenced by the pioneering work by K. Fujiwara [6]. In
fact, the prototypes of all our results and techniques of proofs can be found in
his paper.

For other compactifications of the moduli space of abelian varieties, see [1],
[21], [24].

In Section 1, we describe main results. In Section 2, we show some results on
principal polarizations. In Section 3, we introduce universal additive extensions
of log abelian varieties and prove some basic facts. In Section 4, using them,
we discuss the deformation of log abelian varieties. After some preliminaries in
Section 5, the core of the proof is an application of Artin’s criterion to our moduli
functor in Section 6. We prove (1) and (2) in Section 7 except properness of our
moduli spaces. In Section 8, we prove the properness. Finally, we prove (3) in
Section 9. We also include several corrections to former parts in this series of
papers.
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1. Moduli functors

In this section, we state our main results.
Fix an integer g > 1 and a finitely generated free abelian group W of rank g.
Let Sg(W) be the Q-vector space of symmetric bilinear forms W x W — Q.

1.1 DEFINITION. (Cf. [5, Chapter IV, Definition 2.2].) An admissible cone
decomposition (or an admissible fan) ¥ of So(W) is a set of finitely generated
(sharp) Q-cones in Sg(W) satistying the following conditions:

(1) For o € X, every face of ¢ is in ¥;

(2) For o, 7 € ¥, the intersection o N 7 is a face of o;

(3) X is stable under the action of Autz(WW). Here o € Auty (W) acts on
Sa(W) by b ba(), al));

(4) The number of the Autz(W)-orbits in X is finite;

(5) For any o € ¥, any element of o is positive semi-definite, i.e., b(w,w) > 0
for any b € 0 and any w € W;

(6) For each positive semi-definite symmetric bilinear form b: W x W — R,
there exists a unique o € X for which b is contained in the interior of 0 ®q., R>o.

1.1.1 REMARK. (1) The last two conditions in Definition 1.1 can be replaced
with the condition that the support (J .y, o of 3 is equal to the set of all positive
semi-definite symmetric bilinear forms.

(2) It is known that an admissible cone decomposition of W exists by the
reduction theory (cf. [7], [22] 8.5).

1.2. Recall that a polarization on a weak log abelian variety A over an fs log
scheme S is a symmetric biextension of the pair (A, A) by G, 10e Whose pullback
to s for any s € S is induced by a polarization on the log 1-motif corresponding
to A xg35 ([13] 1.3).

We say that a polarization is principal if for any s € S, it induces an iso-
morphism from A Xg 3 to its dual. (The dual of a weak log abelian variety with
constant degeneration is defined in [13] 1.2.)

We now define a principally polarized log abelian variety of degeneration
along an admissible fan as follows.

1.3 DEFINITION. Let ¥ be an admissible cone decomposition of Sp(WV), and A
a principally polarized log abelian variety of dimension g over an fs log scheme S.
We say that the local monodromies of A are in 3, or A is compatible with X, or
A is of degeneration along X3, if strict étale locally on S, there exists a surjective
homomorphism f: W — Y satisfying the following condition: for any s € S,
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there exists a o € ¥ such that, for any homomorphism h: (Mg/OJ)s — N, the
composition

Wx WV« 7, 2 X« VW () 03), " z

is contained in o. Here (-,-): X x Y — G og/Gm is the canonical pairing of
Z-modules determined by A ([10] 4.4) and ¢: Y5 — Xz is the homomorphism
defined by the polarization.

1.4 DEFINITION. Let n be an integer > 1. Let S be an fs log scheme over
SpecZ[1/n]. Let A be a log abelian variety over S of dimension g. A level n

structure of A is an isomorphism (Z/nZ)% = Ker(n: A — A).

1.5 DEFINITION. Let n be an integer > 1. We define a moduli functor
F,.: (fs/Z[1/n]) — (set)

and a moduli functor
Fynx: (f8/Z]1/n]) — (set)

for an admissible cone decomposition ¥ of Sp(W) as follows. For an object U of
(fs/Z[1/n]), we set

F, ,(U) :={g-dimensional principally polarized log abelian variety over U
with level n structure }/ =;
F, 5 (U) :={g-dimensional principally polarized log abelian variety over U

with level n structure and with local monodromies in ¥}/ = .
The following three theorems are the main results of this series of papers.

1.6 THEOREM. Ifn > 3, the moduli functor I, is represented by a proper and
log smooth log algebraic space over Z[1/n] in the second sense ([12] 10.1).

This was partially mentioned in [12] 10.6. Here a log algebraic space in the
second sense is said to be log smooth if it admits a log smooth cover, i.e., we
can take a log smooth F” in the definition in [12] 10.1. For the definition of the
properness, see [12] 17.3.

1.7 THEOREM. Ifn > 3, the moduli functor F,, s is represented by a proper
and log smooth log algebraic space over Z[1/n] in the first sense ([12] 10.1), that
is, it is an algebraic space with fs log structure over Z[1/n], and it is proper and
log smooth.
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1.8 THEOREM. Ifn > 3 and X is smooth, a connected component of the base
change of the space representing the functor F,, s, in Theorem 1.7 to Z[(,][1/n],
where (, is the primitive nth root of unity, coincides with the toroidal compactifi-
cation A, associated to % ([5]) of the moduli space A, of principally polarized
abelian varieties with level n structure, endowed with the fs log structure defined
by the divisor ./Tlgm —Agn.

1.9. We explain the relationship between these theorems. Roughly speaking,
Theorem 1.6 except properness is deduced from Theorem 1.7 except properness.
But the properness of Fj, s in Theorem 1.7 is deduced from that of Fj, in
Theorem 1.6. As for Theorems 1.7 and 1.8, it is possible to prove Theorem 1.8
first using the theory of Faltings—Chai ([5]) and deduce Theorem 1.7 by checking
some properties of F, 5, (cf. the second last paragraph of 9.3), as we did in the
one-dimensional case [11]. But, below, we prove Theorem 1.7 first without the
use of [5], and deduce Theorem 1.8 from it.

1.10. We hope that the theory of log abelian varieties works for variants such
as PEL-type moduli problems, compactifications over Z, Xy(N)-type moduli
problems, moduli stacks for n = 1,2, and so on. In particular, in a forthcoming
paper, we plan to throw the coefficient rings to the above three theorems so
that the resulting space in the generalized version of Theorem 1.7 gives a moduli
interpretation of the space constructed in [18]. See also [11] Section 6.

2. Principal polarization

We give some propositions on principal polarizations, which will be used later.

2.1. Let S be an fs log scheme. Consider Gy, 1o; on (fs/S)s. Let G;fﬁgg be the
vertical part of it, that is, the subgroup sheaf of G, 1o, consisting of the sections
x satisfying the following condition: There are a,b € ME" such that a|z|b, that

is, both a~'z and x7'b belong to M C Gy, 106

2.2 LEMMA. Let A be a weak log abelian variety over an fs log scheme S.
(1) HO(A, Gm,log/Gvert ) — Gm,log/Gvert

mvlog m,log :

(2) Hom(A, Gpiog/GEE ) = 0.

m,log

Proof. By [13] Lemma 3.1, (2) is reduced to (1).

We prove (1). This is an analogue of a part of [13] Proposition 2.1 and proved
similarly as follows.

First, to prove the case where A is with constant degeneration, we use an
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analogue of [10] Proposition 7.9 (2). That is, in the situation there, we have

f[jl(M‘g,‘EA,)U/M‘g}E’VGrt ) = (MEP/OF @ X)/(the vertical part),

Nu
where U is any fs log scheme over S, M‘%IZX?)TZ is the restriction of G5y, to tlrf
small étale site of V(A")y, “(the vertical part)” is the subsheaf of M{"/O; & X

consisting of the sections sent into M{%‘ZZ?;Z. But, since any interior element of S

is an interior element of A’V (still in the notation there), A’ - S8 = C®P contains
X so that X is always included in the vertical part. Thus the right-hand-side
coincides with MEP /M, where MEP"*" is the restriction of G¥e  to Ug.
Using this, in the notation of [13] 6.4, we can show

vert o vert
G+ (Gm710g/Gm,log) - Gmalog/Gm,log'
Hence, for any U over S, we have

HO(AU, Gm,log/G’vert ) — HO(K HO(BU, Gm,log/Gvert )) — HO(U, Gm7log/Gvert )

m,log m,log m,log

in the notation in [13] 6.4, which completes the proof of the case of constant
degeneration.

In the general case, the zero section induces a surjection H(Ay, G 1o /G, )
— H(U, G /Gy, )- To reduce the injectivity of this surjection to the case

of constant degeneration, it is sufficient to show that H(Ay, Goneg/Gr,) —

m,log

H HY(A,, Ginlog/Grt ) is injective. We can replace Ay here with any fs log

m,log
uel
scheme over it. Then the injectivity follows. O]

2.3 REMARK. In the proof of the statement H°(A, Guiog/Gm) = Gumiog/Gm
which is a part of [13] Proposition 2.1, the corresponding reduction step to the
case of the constant degeneration contains a rather inadequate explanation (cf.
the first paragraph in [13] Proposition 12.1). A correct argument is the one in
the proof of the above lemma.

2.4 PROPOSITION. Let A be a weak log abelian variety over an fs log scheme
S. Any strict fppf locally given principal polarization with descent data gives a
unique principal polarization on A.

Proof. Note that this is easy if Biext(A, A; Gy, 10¢) is an fppf sheaf, but we have
not yet proved that it is so.

We reduce to the descent of an extension of A by Gy, 10s as follows.

The data give a homomorphism fppf locally

A — Ext(A, Gy rog)
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by [13] Proposition 2.3. It is enough to show that the image E of any section of
A by this homomorphism with the descent data can be uniquely descended.
First, we claim that F as an extension comes from a unique extension E’ of

A by Gﬁﬁtog.

This claim is proved as follows. Since Hom(A, G 10g/Gr™) = 0 (Lemma 2.2
(2)), we have the commutative diagram

0 ——  Eat(A,GIE) ——  Ext(A,Gpiog) —— Ext(A,Gpog/GIE )

m,log m,log

| | H

0 —— Ext(A, G [Gr) —— Ext(A, Gpiog/Gm) —— Ext(A, Grniog/GIL )

m,log m;,log

with exact rows. Hence, it is enough to show that the image of F in
Ext(A, Gplog/Gm) comes from Ext(A, GV /Gp,). By [13] Proposition 1.6 (1)

m,log

and [13] 2.7, this image comes from Hom (Y, G, 105/Gm)/X by the composite
Hom (Y, Gpntog/Gm) /X — Ext(A)G,Gmiog/Gm) = Ext(A, Gutog/Gim),

where the first arrow is the injection in [13] Lemma 2.6 (2). Here the notation is
as in there. Further it comes from Hom(Y, G iog/Gm) ™) /X because it is so at
each fiber.

Since the above composite is compatible with another composite

Hom(Y,G¥ [G) /X — Ext(A)G,GY [Gr) — Ext(A, G /Gn),

m Jog m,log m Jlog

to complete the proof of the claim, it is sufficient to show

Hom (Y, Gpiog/Gr) X € Hom(Y,GX /Gy,

m Jlog

Let o: Y — Gmog/Gm be in the (X)-part. Then for y € Y in each fiber, there
exist 1,79 € X such that (z1,9)|o(y)|(z2,). Since (z;,y) (i = 1,2) are in the
log of the base, this implies that p(y) € G)%,. Hence we see that ¢ factors
through Gt /G,,, as desired.

m,log

Let E' be the extension of A by G induced by our E’. Since the composite

m,log

Hom(Y, G /G,) /X — Ext(A)G,GYE [Gy) — Ext(A)G,GY /G,,)

m Jlog m,log m,log

is zero, E’ induces the trivial extension of A by G¥*% /G,,. Fix a splitting of this

m,log
trivial extension and identify the total space of this extension with the product
Gty /Gm X A.

It is enough to descend E’. We can do it similarly as in the case of A itself
(cf. [12] Section 9). We may assume that a prime ¢ is invertible on the base.
We cover E' with respect to the két topology by the images with respect to the
multiplication by ¢ (n > 0) of a representable object explained below. Then
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as in the same way as in the case of A (cf. [12] Section 9), we descend E' by
descending this representable object with a partial group law, we descend the
kernel of B/ — E’, and we divide E’ by the kernel to obtain the descended
E'’. The representable object we use is as follows. Let I be a model of A with
respect to a wide cone (as in [12] Section 9). Let a be an interior in the log
of the base. Let L be the part of G'} /G,, consisting of = such that a™!|z|a.

" m,log
Consider the inverse image in £’ of L x I. Then it is representable. We explain
the representability. Assume that A = .S. Then the inverse image of L in G
is represented by the fs log scheme defined as the fiber product of

vert
m,log

S — Spec(Z[N]) + Spec(Z[N?)),

where the first morphism sends 1 € N to a? in Mg, and the second morphism
is induced by the diagonal homomorphism N — N2. The representability in the
general case follows from this. [

2.5 REMARK. (1) The final portion of the above proof can be regarded as a
generalization of the argument with models for a log abelian variety in [12] to
that for a kind of log semiabelian variety. Though we even have not yet defined
a log semiabelian variety, the theory of (proper-like or quasiprojective) models
of a log semiabelian variety should be an important subject to study.

(2) In [12] Section 9, Lemma 9.10 and Lemma 9.11 are not essential. In fact,
in [12] 9.12, we may assume that the conditions (5)—(7) are satisfied only by
replacing the index \.

2.6 PROPOSITION. Let (S))a be a filtered projective system of quasicompact
and quasiseparated fs log schemes whose transition morphisms are affine and
strict. Let S := 1@5}. For a principally polarized log abelian variety (A,p) over
S, there are an index A and a principally polarized log abelian variety (Ax,py)
over Sy whose pullback to S is isomorphic to (A,p).

Further, for some A and two principally polarized log abelian varieties over S
whose pullbacks to S are isomorphic to each other, there is another index A — N
such that their pullbacks to Sy are already isomorphic to each other.

Proof. By [12] Proposition 9.2, we may assume that A over S comes from an
essentially unique weak log abelian variety A, over some S. The problem is to
spread out p. (We mean that there exist an essentially unique principal polar-
ization on A, for a sufficiently large A whose pullback coincides with p.) This is
shown by the same method in the proof of the previous proposition.

First, we can replace Gy, 10g by G;’Sﬁgg in Biext(A, A; Gy, 10¢). In fact, by the
claim in the proof of Proposition 2.4, the polarization lives in Hom(A, Ext(A,
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ibg)). Since Hom (A, Gyeit,) € Hom(A, Gy o) = 0 ([13] Proposition 2.1 and
[13] Lemma 3.1), we have Hom(A, Ext(A, G)¥Y,)) = Biext(A, A;Gyei,) by [13]
Lemma 3.4.

Second, we consider the representable object induced by L x I x I in the
notation in the proof of Proposition 2.4. Then we can spread out the biextension
with partial group laws in the same way. To prove that the biextension on
Sy is a principal polarization for a sufficiently large A\, we may assume that
the biextension on Sy is symmetric. Further, we may assume that there is a
chart of S). Then, by dividing S, into a finite number of constant log loci,
we may assume that S, has the constant log. Hence we can replace the log
abelian variety concerned with the corresponding log 1-motif [Y — Giog]. Then,
it is enough to show that the corresponding homomorphism [Y — Gl —
Y — Giog| is an isomorphism over S) for a sufficiently large A when its pullback
to S is an isomorphism. It is valid because Y is a locally constant sheaf and
the homomorphism Gjos — Glog comes from a homomorphism G — G ([10]
Proposition 2.5). O

2.7 REMARK. We have not yet had the property of local finite presentation for
nonkét Biext. If it is the case, we can use it. Or, if we had the general theory of
duals for a weak log abelian variety not necessarily with constant degeneration,
the proposition follows from [12] Proposition 9.2 (1).

2.8 PROPOSITION. Let A be a weak log abelian variety over an fs log scheme S.
Then the homomorphism A — Ext(A, Gy, 10g) induced by a principal polarization
on A ([13] Proposition 2.3) is injective.

To prove this, we need a lemma, which also will be used in later sections.

2.9 LEMMA. Let S be an fs log scheme, Ay and Ay weak log abelian varieties
over S with constant degeneration, f and g homomorphisms from Ay to As. If
fs=gs for any s € S, then f =g.

Proof. Let M; = [Y; — G 10g] be a log 1-motif over S corresponding to A; for
¢ = 1,2. It suffices to prove that a homomorphism M; — M, whose pullback to
S is zero for any s € S is zero. The homomorphism consists of a homomorphism
Y: — Y5 and that of G 1os — G210g- The former is zero because Y; are locally
constant for ¢« = 1,2. The latter is induced by a homomorphism G; — G5 by
[10] Proposition 2.5, which induces a homomorphism of the torus parts and the
abelian parts. The homomorphism of the torus parts is zero because the corre-
sponding homomorphism of the character groups is so. The homomorphism of
the abelian parts is also zero. Since there is no nontrivial homomorphism from
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the abelian part of G; to the torus part of GG, we conclude that the homomor-
phism G; — Gy is zero. Hence the homomorphism of M; — M, is zero. O

2.10. We prove Proposition 2.8. By Proposition 2.6, we may assume that the
base is finitely generated over Z.

It is enough to prove that for any fs log scheme U over the base, the homo-
morphism A(U) — Ext(Ay, G,,10¢) 18 injective.

First, Ext(A, Gy, 10g) is locally of finite type. This is by [13] Proposition 12.8
(1) and the fact that Ext(A, Gpiog) = Extis(A, G iog) is injective. The last
fact is seen as follows. Since both A and G,;, 1o are két sheaves ([12] Theorem 5.1
and [16] Theorem 3.2), any extension on the étale site is a két sheaf, too. Hence
the splitting on the két site gives a splitting on the étale site.

On the other hand, A is locally of finite presentation by [13] Proposition 12.7.
Hence, we may assume that U is finitely generated over Z.

Since A is locally of finite type, we can replace U with the strict localization at
each point. Again by that A is locally of finite type and by Artin’s approximation
theorem, we can replace U with a complete noetherian local ring. Here we have
the GAGF for H°(U, A), that is the algebraization of the sections, which can be
proved by taking a model. By it, we further replace U with an Artin local ring
so that we may assume that A is with constant degeneration ([10] Theorem 4.6
2).

Thus, it is enough to show the proposition under the additional assumption
that A is with constant degeneration. We denote by A* the dual of A. In this
case, A — Ext(A, Gy, o) factors through f: A — A* where A* is identified with
a subgroup of Ext(A, Gy, 10¢) by [10] Remark 7.5 (2). By the assumption, f5 is
an isomorphism for any s € S. Then, f is an isomorphism by Lemma 2.9 as
desired.

3. Universal additive extension

We introduce the universal additive extension of a log abelian variety and will
use it for the study of the deformation of log abelian variety in the next section.
See [19] for a log elliptic curve case (though the definition of log elliptic curve in
[19] is different from ours).

3.1. We define the Lie sheaf Lie (A) and coLie sheaf coLie (A). Let S be an fs
log scheme.
In general, for a group sheaf G on (fs/S)g, we define the Lie sheaf Lie (G) on
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(fs/S)e by
Lie (G)(U) = Ker(G(U[e]/(e*)) = G(U)),
where Ule]/(?) denotes the fs log scheme whose underlying space is that of U,
whose structure sheaf is Oy[e]/(¢?) and whose log structure is the pullback of
that of U.
We have a natural action of Og on Lie (G) (cf. [9] 1.3.11). In many cases,

Lie (G) is an Og-module via this action. For example, we have Lie (G, 104) =
Lie (G,,) = G,.

3.2. If A is a weak log abelian variety over S, Lie (A) is a locally free Og-module
of rank dim(A) because it coincides with the Lie sheaf of the semiabelian part.
Let

coLie (A) = Homo,(Lie (A), Og),
which is also a locally free Og-module of rank dim(A).
3.3. We introduce the dual of A in case where A is principally polarized. In the
rest of this section, we assume that A is principally polarized unless explicitly
stated otherwise. We denote by A* the image of A — Ext(A, G, 105) and call it

the dual of A. By Proposition 2.8, A* is isomorphic to A. We identify A* with
A via this isomorphism.

3.4 PROPOSITION. Let A be a principally polarized log abelian variety over an
fs log scheme S. Then

colie (A*) = Ext(A, G,)" := Hom(Ext(A, G,),G,)

and it is a vector bundle of rank dim A.

Proof. The map A* — Ext(A, G,y 10¢) induces a map
Lie (A*) — Lie (Ext(A, G iog)) = Ext(A, Lie (Gog)) = Ext(A, G,).

It is enough to show that it is an isomorphism.
First we prove it under the assumption that A is with constant degeneration.
By [10] Theorem 7.3 (1), the exact sequence (the notation is as usual as in there)

(1) O—>TSQ—>Z[—>B—>O

yields isomorphisms Hom(A, G,) = 0 and Ext(A, G,) = Ext(B,G,). Together

with an exact sequence

(2) 0=Y A= A0,
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we have an exact sequence
(3) 0 — Hom(Y,G,) — Ext(A,G,) — Ext(B,G,) — 0.

Hence Ext(A, G,) is a vector bundle of the desired rank.

Further, from (2), we have Lie (A) = Lie (A). Together with (1), we have an
exact sequence

0 — Lie (T') — Lie (A) — Lie(B) — 0.
Hence we have a commutative diagram

0 —— Lie(T*) —— Lie(A*) —— Lie(B*) —— 0

| | |

0 —— Hom(Y,G,) —— Ext(A,G,) —— Ext(B,G,) —— 0

with exact rows. Since the left and the right vertical arrows are isomorphisms,
the middle one is also, which completes the case of constant degeneration.

To prove the general case, by Proposition 2.6, we may assume that S is of
finite type over Z. It suffices to show that Lie (A*)(U) — Ext(Ay, G,) is bijective
for any fs log scheme U over S.

We may assume that we are given the usual data by which we can discuss
models. (See [13] 4.5. It is always the case after going strict étale locally over the
base S.) We prove the case where U is the spectrum of a complete noetherian
local ring (R, m). Consider the diagram

Lie (A*)(U) ——  Ext(Ay,G,)

| l

lim Lie (A*)(U,) —— lim Ext(Ay, , Ga),

where U, is the spectrum of R/m"™"! endowed with the pullback log structure

from U. Since we already proved the case of constant degeneration, the bottom
arrow is bijective. We prove that the right vertical arrow is injective so that
bijective. To see it, since Ext(Ay, G,) is a subgroup of H'(Ay,G,) (in fact, the
former coincides with the latter; see Lemma 3.17), it is enough to have GAGF
for H'(A,G,). We take a complete and wide model P of Ay ([13] Proposition
10.3). We take a prime ¢ which is invertible on U. For ¢ > 0, let P, — Ay be

the composite P — Ay £ Ay. Cover Ay with respect to the két topology by
the disjoint union [] P; of the P;. Consider the Cech-derived spectral sequence
for [[ P;/Au

EY = HY([TP:/Au, H'(—, G.)) = H""(Ay, G,).
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Note that the két cohomology here coincides with the étale cohomology (cf. [8]
Proposition 3.7). Since Ef? is a projective limit of modules of finite lengths for
every p,q, the classical GAGF implies that for H™(Ay, G,) for every m, which
completes the proof of the current case.

We prove the case of general U. We can prove that Ext(A, G,) =Extiet (A, G,)
is locally of finite presentation by the method of [13] Proposition 12.8 (1). Hence
we may assume that U is a strict localization of an fs log scheme of finite type
over Z. Then, again by that Ext(A, G,) is locally of finite presentation and by
Artin’s approximation theorem, we reduce to the previous case where U is the
spectrum of a complete noetherian local ring. O

3.5. By Proposition 3.4, we have a canonical isomorphism

Ext(A,Ext(A,G,)") = Ext(A,G,) @ Ext(A,G,)"
= Hom(Ext(A,G,),Ext(A,G,)).

Define
0— Ext(A,G,)" - E(A) - A—0

as the extension associated with the canonical element in the left-hand-side cor-
responding to the identity in the right-hand-side of the above isomorphism. We
call this the universal additive extension of A.

Then, by construction, it has a universality, that is, any extension of A by
some vector bundle V' of finite rank can be obtained by the pushout with respect
to a unique homomorphism Ext(A, G,)* — V.

3.6. By Proposition 3.4 and the identification A = A*, the universal additive
extension is isomorphic to

0 — coLie (A) - E(A) - A— 0.
In the rest of this section, we prove the following proposition.

3.7 PROPOSITION. Let S — S’ be a strict nil immersion of affine fs log schemes
of finite type over Z by an ideal I such that I*> = 0. Let A be a principally
polarized log abelian variety over S. Let A" be a lift of A, that is, a principally
polarized log abelian variety over S" endowed with an isomorphism between A and
its pullback to S. Then we have a natural isomorphism between E(A’) and the
sheaf of groups Ext?(A, G, 10e) of b-extensions defined below. In particular, the
group sheaf E(A’) is independent of a lift up to isomorphisms.
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3.8. We define Ext*(A, Gy, 10g). Consider the sheaf H{,,... (A, Gy 1og) associated
to the presheaf (fs/S") > U' — H'(((fs/Avrx ,8)/U" )8, Giog) (cf. [15] Section

crys?

5 for the log crystalline site). Let Ext*(A, G,y 10¢) be the fiber product of
Hllogcrys(A7 Gm,log) — Hl(Aa Gm,log) — A.

Consider the projection ¢: (fs/S5")s — (fs/5”)%, where the target is the sub-
site of (fs/S")¢ consisting of fs log schemes over S’ which are of finite type over
S’ Let Ext (A, Grnog) = ¢ 1Lt (A, Gpptog)-

Further, in the rest of this section, for an fs log scheme S of finite type over
Z and a sheaf F on (fs/S)s, we denote ¢~ 'q,.F by F’, where ¢ is the projection
from (fs/S)e to its subsite consisting of fs log schemes over S which are of finite
type over S. For all I’ appearing in the rest of this section, it is plausible that

F = F'. In particular, it is plausible £xt*(A, Gp10g) = EXtH(A, Grilog)-

3.9. To prove Proposition 3.7, we use another construction of E(A) (see Propo-
sition 3.16). To explain this, we have to introduce the small site of A.

Let A be a weak log abelian variety over an fs log scheme S.

We define the small site (1ét/A)s C (fs/A)s of A as the full subcategory
consisting of all log étale objects. Here (V' — A) € (fs/A) is said to be log étale if
for any fs log scheme W and any morphism W — A, the fiber product W x4V
is a log étale log algebraic space over W in the first sense ([12] 10.1).

Next we define the site (fslét/A)s as follows. Objects are the pairs (U, V),
where U is an object of (fs/S) and V' is an object of (16t/Ay ), where Ay = AxgU.
Morphisms from (U’, V') to (U,V) is a compatible pair of morphisms U’ — U
and V' — V. Coverings are the ((U;,V;) — (U,V)); such that every U; — U is
strict étale and that (V; — V'); is a strict étale covering.

Assume that we are given the usual data by which we can discuss models.
Then any log étale fs log scheme over some model of A is an object of (1ét/A).
This is because for a model P, the projection P — A is relatively represented
by log blow-ups. Further, under the condition in [13] 1.4.1, the proof of [13]
Proposition 11.1 gives a set of topological generators consisting of these objects
together with log étale fs log schemes over models of weak log abelian varieties
which are isogeneous to A. Similarly, based on [13] Proposition 11.1, we can give
a set of generators of (fslét/A)z; consisting of the set of the pairs (U, V'), where
U is an object of (fs/S) and V is a log étale fs log scheme over some model of a
weak log abelian variety being isogeneous to Ay.

We can develop the theory of quasicoherent sheaves on (fslét/A). Let O4
be the sheaf on (fslét/A)¢ defined by O4((U,V)) = I'(V,Oy). Define a sheaf
of Os-modules w) g by w},5((U,V)) = I'(V,wy, ;). The sheaves G, Guny G log
have been considered on (fs/A)g in former parts in our series of papers. But they
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are also defined on (fslét/A) (by abuse of notation) by G, = O4, G,,((U,V)) =
I'(V,05), and G, 105((U, V) = T(V, MP).
Let H?(A, —) be the ¢g-th derived functor of the direct image functor

(516t/A)ae — (Is/S); F s (U = lim F((U,V))).
V/Ay

Note that HI(A, G,), HU(A,G,,), and HI(A, G, 10¢) in this sense coincide with
the ones in the former parts of this series of papers, where the cohomology is
considered via (fs/A)¢. This is because the canonical projection (fs/A)z; —
(16t/A)z preserves G,, G, and Gy, 10e. Note that we do not consider w’ /g On
the big site (fs/A)g.

Below, we also consider the small site of Av, the sheaf wk

ijs OB it, and its

cohomologies, which are defined similarly.

3.10 PROPOSITION. Let S be an fs log scheme which is of finite type over Z.
Let A be a principally polarized log abelian variety over an fs log scheme S. Then
we have H(A,w} )" = coLie (A). (See 3.8 for the notation (—)".)

3.11. We prove this proposition till 3.14. Consider the natural map
’HO(A,inS) — HO(G,wé/S) — colie (G) = coLie (A),

where (G is the semiabelian part of A.

First we assume that A is of constant degeneration and we prove that the
above map is bijective so that we also have H°(A4, wi/s)/ = coliie (A). (Note that
in this case, we do not use the assumption that S is of finite type over Z.) By
[13] 6.4.1, we have an exact sequence

0 1 0 1 1
0—H (B7WB/S> —H (A,CUE/S) — OS Xz X — H1<B7WB/S)
(the notation is as in there). Here the last arrow is zero because it factors through
the abelian variety xt(B,G,,) and 'Hl(B,w}B/S) is a vector bundle. Thus we
obtain the upper row of the commutative diagram

0 — H(B,whg) — 'HO(Z,W%/S) —— O0s®zX —— 0

l l H

0 —— colie(B) —— colie(4) —— Os®zX —— 0.

Since the left vertical arrow is bijective, the middle one is also.

Now we prove that Y acts on HO(A, wh ) trivially so that we may as-

/S)
sume that the upper row splits. Once we have it, since 'HO(A,w}‘/S) = H(Y,



24 T. KAJIWARA, K. KATO AND C. NAKAYAMA

0
HO(A, wA/S))
as desired. Since HO(A x A, wk

we will have H(A,w) g) = HO(A, wﬁ/s) — coLie (A) = coLie (A),

i A/S) — coLie (A x A) is injective as seen as
in the same way, and since there is a natural decomposition colie (A x A) =

coLie (A) x coLie (A), we have the natural decomposition

HO(A x A, wh HO(A, wh ) x HOA, w

Ax A/S) A/S A/S)

Let y € Y and ¢: A > g;a — y the constant map. The translation by
y on HO(A, wA/S) coincides with H°(-,w()) of A (o) 4« 4 s A, which
factors, via the above decomposition, through H°(A, wi/g) X HO(A, wiss) —
HO(A, wi/g)i @ — a+(cya). Since ¢, factors through the base, cja is zero. Thus

Y acts on H° (A, wt i S) trivially, which completes the proof of the case of constant

degeneration.
3.12. To prove the general case of Proposition 3.10, it is enough to show that
(%) HO(A,UJ}L‘/S) — coLie (A)(95)

is bijective. We may assume that we are given the usual data by which we can
discuss models. We prove the injectivity. The GAGF for HY(A,w), /s) is proved
in the same way as the GAGF for H'(A,G,) in the proof of Proposition 3.4. By
this and the constant degeneration case proved in 3.11, we see that

(1) H(Ag o)

the strict locahzatlon of S at every point.

— coLie (A)(S) is bijective, where S is the completion of

We prove that

(2) H°(Agen, wA ,/gen) — colLie (A)(S®h) is injective, where S®! is the strict
localization of S at every point.
Let a € H°(Age, wA ,/gon)- Assume that the image of o in coLie (A)(S®h) is

zero. Then, by (1), the image of @ in H°(Ag,w' ;) is zero. Take any fs log

Ag/8
scheme P which is of finite type over S*" and any morphism P — Agw over S%.

The image of « in H%(Pg, w! is clearly zero. Then by Artin’s approximation

b
theorem, we see that H°(P,w /Ssh) is zero. Since when P varies, they cover
Agen (see [13] Proposition 11.1; actually, the proper Ps already cover Age ), this
implies that « is zero. Thus (2) follows.

Similarly, we can deduce from (2) the desired injectivity as follows. Let
a € HY(A, w,lq/s) Assume that the image of it in coLie (A)(S) is zero. Then,
by (2), the image of it in H°(Ags,w? Ay /Sbh) is zero. Take any fs log scheme P

which is of finite type over S and any morphlsm P — A over S. The image of
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ain H O(Pssh,wll)ssh /Ssh) is clearly zero. Then the image of a in H°(P, wllg/s) is
étale locally vanishes, and hence, vanishes. Since Ps cover A, this implies that
« 1S zero.

To prove the surjectivity of (x), we use the following lemma.

3.13 LEMMA. Let A be a principally polarized log abelian variety over an fs log
scheme S. Then strict étale locally on S, there is a log reqular fs log scheme Sy
of finite type over Z, a strict morphism S — Sy, and a principally polarized log
abelian variety Ay over Sy such that A is isomorphic to Ay xg, S.

Proof. By Proposition 2.6, we may assume that S is of finite type over Z. We
may work strict étale locally on S. Taking a chart of S and an admissible pairing
valued in the groupification of the chart which induces the admissible pairing (-, -)
associated to A, we may assume that there is a toric variety Sy over Z and a
strict morphism S — Sy such that (-, ) comes from Sy. We may further assume
that S — Sy is a strict closed immersion.

For each point s of S, consider the strict localizations at s and their com-
pletions of both S and Sy. The A lifts formally over the completion of the
strict localization S5! of Sy by the formal smoothness of the local moduli in [14]
Theorem 2.4. By GAGF ([14] Theorem 6.1 and [14] Remark 6.1.1), it lifts also
algebraically. Then, by Proposition 2.6, A lifts over a subring of the completion
which is finitely generated over S5'. By Artin’s approximation theorem, we take
compatible sections over S and over Sy, pull back the lift, and we have a lift of
A over S5P. Further, again by Proposition 2.6, we obtain a lift strict étale locally
on S, as desired. O

3.14. We prove the surjectivity of (x). By Lemma 3.13, we may assume that
A comes from a principally polarized log abelian variety Ay over a log regular
base. Since colie is a vector bundle, we reduce to the surjectivity of (x) for
Ap. Hence we may assume that the base S is log regular in (x). Let P be any
complete model of A. Let V' be any fs log scheme which is log étale over A. Then
V x4 P — V is a log blow-up. Since S is log regular, V is also log regular and
we have R(V x4 P — V).G, = G, (cf. [17] p.44, Chapter I, Section 3, Corollary
1 to Theorem 12). From this, we see that H™(A,w} q) = H™(P,wpg) for every
m. In particular, HO(A,wi/S) = HO(P, wllj/s).

Now take an element o € colLie(A)(S). We use the same notation as
in 3.12. By (1) in 3.12, the image of o in coLie (A)(S) is in the image of
HO(A&“&;S/S)‘ Take a complete model P. Since the image of a in coLie (4)(S)

can be lifted to H°(Pg,w,, / ¢); by Artin’s approximation theorem, the image of
S
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a in coLie (A)(S™) can be lifted to H(Psw,wp ). Then, a itself can be
gs
lifted to H°(P,wpg). But we have H°(P,wp,q) = H°(A,w}g), which implies
that « is in the image of H°(A, wllél/s).
The proof of Proposition 3.10 is completed.

3.15. Let S and A be as in Proposition 3.10. Let w! = wi‘/s.
Since HY(A4, Guiog) = Ginlog by [13] Proposition 2.1, we have an exact se-
quence

0— H' (A w') = HYA, [Grog — w']) = H (A, Gptog) — H (A, wh).

Here (G 10g — wl] means the complex where G, 1o, is in degree zero and the
map is dlog.
From this, we have an exact sequence

0 — HOUA, w") = HY A, [Grieg — w']) = HYA Gtog) — H'(A,w').

(See 3.8 for the notation (—)".)
Since A as a group sheaf is locally of finite presentation ([13] Proposition
12.7), there is a natural map A — H*(A4, Gy i0g)"-

3.16 PROPOSITION. Let S and A be as in Proposition 3.10. The universal
additive extension is obtained also as the fiber product E'(A) of

HY (A, [Grtog — w']) — HYA, Gppog) < A.
We have a universal exact sequence

0— HUA W — E'(A) = A— 0.

We prove a lemma and a proposition we will use in the proof of Proposition

3.16.

3.17 LEMMA. Let A be a weak log abelian variety over a noetherian fs log scheme
satisfying the condition 1.4.1 in [13]. Then we have Ext(A,G,) = H'(A,G,).

Proof. This is an analogue of the cubic isomorphism [13] Theorem 2.2 (c), and
the general case is reduced to the constant degeneration case as in the same
way as in [13] 12.5. In the rest of this proof, we assume that A is with con-
stant degeneration. Then, by [13] 6.4.1, we have H'(A,G,) = H'(B,G,) (the
notation is as usual as in there). Hence we have the spectral sequence Fy =
H'(Y,H’(B,G,)) = H™(A,G,). Since Y acts on H/(B,G,) trivially for every
j, there is an exact sequence

0 — Hom(Y,G,) — H'(A,G,) — H'(B,G,).
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Taking H'(B,G,) = Ext(B, G,) into account, by comparing this with the exact
sequence (3) in the proof of Proposition 3.4, we have Ext(4,G,) = H'(A,G,),
as desired. O

3.18 PROPOSITION. Let A and A’ be principally polarized log abelian varieties
over a noetherian fs log scheme S. Then we have the following.

(1) The restriction of H'(A, G,) to S is a vector bundle of rank dim A.

(2) HY(Ax A',G,) = H'(A,G,) ® H' (A", G,).

Proof. (1) By Lemma 3.17, this is reduced to Proposition 3.4.
(2) It is by HY(A, G,) = H(A',G,) = G, ([13] Proposition 12.1) and (1). O

3.19. To have the exact sequence in Proposition 3.16, it is enough to show that
the composition A — H' (A, Gp10g) — H'(A,w') is the zero map.

The map A — H'(A,Gpiog) — H'(A,w') comes from an element a €
H'(A x A priwy g) such that (we denote the second A in A x A by A') it
sends a section s of A’ to the image of a by the pullback with respect to s. By
Propositions 3.18 (2) and 3.10, we have

HY (A x A priwy ) = H' (A x A", G,) ® H*(A x A’ priw} q)
= (H'(A,G,) @ H (A, G,)) ® coLie (A)(S)
- Hl EB H27

where
H, = H'(A,G,) ® coLie (A)(S), Hy, = H'(A",G,) ® coLie (A)(S).

Write a = a; + ap with ; € H; (i = 1,2). Then the pullback of o in H'(A, w!)
under every s € A’ is oy (ay is killed by the pullback). That is, the map
A" — H'(A,w!) is a constant map. Because it is a homomorphism, it is the zero
map.

3.20. We prove Proposition 3.16. By Proposition 3.10, H°(A4,w} ¢)" is a vector
bundle. Hence, by the universality, we have a map f: F(A) — E’(A). To prove
that it is bijective, it is enough to show that the induced map coLie (A) —
HO(A, wh /s)/ by f is the inverse of the map given in the proof of Proposition
3.10. By Lemma 3.13, we reduce to the case where the base is log regular. Hence
we reduce to the case where the log structure of the base is trivial, that is the
classical case.

3.21. Now we prove Proposition 3.7. We construct a map Exth(A,Gm,log)’ —
E(A"). Since A’ is log smooth, by covering A’ by log smooth objects, for each
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section of Ext*(A, G, 10g)', We can associate a class of H (A’ [Gyy 10 e "%14//3/])/
We prove that the image of this class in H'(A’, Gy, 104)’ belongs to A™* so that this
class is in E'(A") = E(A") (Proposition 3.16). By definition of Ext (A, G iog),
the image of this class in H'(A4, G 1og) belongs to A*. Hence we reduce to the
following claim.

CLAIM 1. The map from A’ to the fiber product of
Hl(A,, Gm,log) — Hl(A, Gm,log) — A
is bijective.
First we assume that A’ is with constant degeneration. By the definition

of the dual, it suffices to show that the map from Ext(A’, G, 105) to the fiber
product of

H1<A/, Gm,log) — Hl(A, Gm,log) <— gl’t(A, Gm,log)

is bijective. Since H'(A', Gy 106)/Ext(A’, Gyprog) injects into Hom(A', A™) by
[13] Theorem 8.5 (2), it is enough to see that a homomorphism A" — A'* is zero
if the induced homomorphism A — A* is zero. This is by Lemma 2.9.

Next, let U" € (fs/S’) be of finite type over S’ (so of finite type over Z).
We want to prove that an element of H'(A', Gy 10g)(U’) belongs to A'(U') if
its image in H'(A, Gy 106)(U) belongs to A(U). By [13] Lemma 12.9, we can
replace U’ by its strict localization. By Artin’s approximation theorem, we can
further replace U’ by the completion. To reduce the problem to what we already
see in the constant degeneration case, it is sufficient to use the injective GAGF
for H'(A’, Gpnog) ([14] Theorem 1.2) and the GAGF for A'(S) (cf. the proof of
Proposition 2.8). We conclude that the element concerned belongs to A'(U’), as
desired.

Thus we have a homomorphism Ext%(A, G,10¢) — E(A’) which fits into the
commutative diagram

0 —— K —— Ext (A, Gprleg) —— A —— 0
0 —— HU(A\whe) — E(A") — A —— 0

with exact rows, where K = Ker(Ext'(A, G, 105) — A’™). Hence it is enough
to show that K — H(A',w), /)’ 1s bijective. By Claim 1, K coincides with
Ker(Hjyerys (A, Grtog) — H (A, Giog)')-

CLAIM 2. There is a natural exact sequence

0— HO(A’,wi‘,/S,)’ — Miogerys(A, Go)' — Lie (4").
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By comparing this exact sequence with the upper row of the above commu-
tative diagram, we see that the map K — HO(A',wi‘,/S,)’ is identified with the
identity, which completes the proof.

We prove Claim 2. By [15] Theorem 6.4, we have Hy, ... (A, G,) = H' (A
Wps /s')' Further, by Proposition 3.4 and Lemma 3.17, we have a natural iso-
morphism Lie (A") = H(A, WY, )s)'- Hence, to obtain the claimed exact se-
quence as a part of the log Hodge-de Rham spectral sequence, it is enough to
show that the homomorphism H°(A',w}, s )" — HO(A',w%, /g ) is zero. Since
HO(A W, ss1)" = colie (A’) (Proposition 3.10) is a vector bundle, by Lemma
3.13, we may assume that the base is log regular. Then it is zero because it is so
over the nonlog open set.

4. Deformation of log abelian varieties

We discuss the deformation of log abelian varieties, which is used in the proofs
of main results.

4.1 PROPOSITION. Let S = Spec R — S’ = Spec R’ be a strict nil immersion
of affine fs log schemes by a finitely generated and square-zero ideal I C R'. Let
A be a principally polarized log abelian variety over S. Assume that a lift A" of
A over S is given. Then the following hold.

(1) The set of the liftings of A over S’ is naturally bijective to the underlying
set of

Homygy,, (coLie (A), Lie (A)) ®r I,

where Homgym, means the subgroup consisting of the self-dual homomorphisms.
(2) Assume further that R’ = R[I] and that the lift A’ is the canonical one.
Then the bijection in (1) is an isomorphism of R-modules.

Proof. (1) Regard Lie (A’) as an Og-module on the small étale site S%,. Tensoring
it with the exact sequence 0 — I — Og — Og — 0, we have an exact sequence

0 — Lie (A) ®04 I — Lie (A’) — Lie (A) = 0

on §;t Let f: coLie (A) — Lie(A) ® I be a homomorphism of Og-modules on

[}
S’., which comes from an element of the set concerned. Consider the composite

coLie (A") — coLie (A) I Lie (A) ® I < Lie(A4").
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Locally, it lifts to a homomorphism f: coLie (A’) — Lie (E(A4’)) that induces
the inclusion coLie (A) — Lie (E(A)). Regard f as a homomorphism of abelian
sheaves on the big site (fs/5")¢. Then the image in E(A’) of the image of f is
glued to give a subsheaf of F(A’) and the quotient A” of E(A’) with respect to
it does not depend on the choices up to isomorphisms.

Further, A” is a log abelian variety on S’ which lifts the original A. To see
it, first we see that A” is log smooth over S’. Next, there is a unique surjective
homomorphism A” — A’/G’ which lifts A — A/G. Here G and G’ are the semi-
abelian parts of A and A’, respectively. Let G” be the kernel of this surjection.
Then G” is a strict smooth group object over S’ so that it is semiabelian because
(G is so. Since the pullback of A” to S is A, the fibers of A” are log abelian
varieties. Finally we deduce that A” is separated from the separability of E(A’).

The self-duality implies that A” is principally polarized. Thus we have a
map from the set concerned to the set of the liftings, which is injective by the
universality of F(A’). To prove its surjectivity, it is enough to show that for any
lift A”, we have E(A") = E(A”). To see this, by Proposition 2.6, we may assume
that S’ is of finite type over Z, and we use Proposition 3.7. We complete the
proof of (1).

(2) is a formal consequence from (1). O

4.2 PROPOSITION. Let S — 5" and A be as in the previous proposition. Then
A lifts to S" Zariski locally on S.

Proof. The case where A is with constant degeneration is deduced from the log
smoothness of the local moduli in [14] Theorem 2.4. Hence, the case where 5’ is
the spectrum of an Artin ring is proved. Then the case where S’ is the spectrum
of a complete noetherian local ring is proved by GAGF ([14] Theorem 6.1 and
Remark 6.1.1).

We prove the case where the underlying scheme of S’ is a strict localization of
an fs log scheme of finite type over Z. By the previous case, we have a principally
polarized log abelian variety over the completion of S’. Then by Proposition 2.6
and Artin’s approximation theorem, this case follows.

Consider the general case. We may assume that S’ is of finite type over Z
by Proposition 2.6. Again by Proposition 2.6 and the case already proved, we
can find a lift étale locally on S. By Proposition 4.1, the obstruction for the
existence of a global lift is in H'(.S, Homsym(coLie (4), Lie (A)) ® I), where I is
as in Proposition 4.1. This vanishes Zariski locally. Hence A lifts Zariski locally
on S. O
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5. Some related functors

We introduce some related functors which we will use in the proofs.
Throughout this section, let g, W, n be as in Section 1, ¥ an admissible cone
decomposition of Sg(W) (Definition 1.1), and

F:=F,,, Fy:=F,,s:(s/Z]1/n])— (set)

the moduli functors in Definition 1.5.
By the next lemma, F'is a sheaf with respect to the classical étale topology
if n > 3.

5.1 LEMMA. Let U be an fs log scheme, let n > 3, and let A be a log abelian
variety over U with a principal polarization ¢ and with a level n structure e.

Then Aut(A, ¢,e) = {1}.

Proof. By Proposition 2.6, [12] Proposition 9.2 (1), and the representability of
torsion points of a log abelian variety ([12] Proposition 18.1 (1)), we can spread

out a triple (A, ¢, e) and an automorphism of it. Hence we may assume that (}
is of finite type over Z. Since A is locally of finite presentation ([13] Proposition
12.7), we may replace U by a strict localization. By Artin’s approximation
theorem and again by [12] Proposition 9.2 (1), we may further replace U by the
spectrum of a complete noetherian local ring. Then by GAGF for a log abelian
variety ([14] Theorem 6.1), we may replace U by the spectrum of an Artin local
ring. Lastly, by Lemma 2.9, an automorphism of A whose restriction to the
closed point is the identity is the identity so that we may replace U by the closed
point.

The rest is to prove the case where UO is the spectrum of a field. First we prove
that Aut(A, ¢, e) is torsion-free. Since n > 3, as in the classical case, it is enough
to show that for a prime number ¢ which is invertible on U and two log abelian
varieties A; and Ay over U, the natural map Hom(A;, Ay) — Homy, (T, A1, 11 As)
is injective. Let f € Hom(A;, A). Then the induced Ty(f) preserves the weight
filtrations (which means the filtration defined by the homomorphisms in [12]
18.9.1 and 18.9.2). Thus the above is reduced to the classical case (cf. [20] p.176,
Theorem 3) and hence Aut(A, ¢, ) is torsion-free. Note here that Hom(A;, As) is
also finitely generated. This is also reduced to the classical case as follows. Since
A; is with constant degeneration, we can consider the associated log 1-motif
Y; = Giog) to A; (i = 1,2). Then we have Hom(A;, Ay) — Hom(Y3,Y3) X
Hom (G jog, Go210g) = Hom(Y7,Y32) x Hom(Gy, G), where the equality is by [10]
Proposition 2.5. Hence, Hom(A;, Ay) is finitely generated. In particular, End(A)
is finitely generated.
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Next, we prove that Aut(A, ¢) is finite, which competes the proof. We may
assume that Y for A is constant. We define the Rosati involution as in the
classical case: for g € End(A), let *g be the homomorphism A LT NyTEINyY
Then *(+) gives an anti-automorphism of End(A). Let (g1, go) be the trace of the
induced endomorphism on the Tate module by g;0*gs. Since this trace is the sum
of the traces of the endomorphisms on Y, X and B, where X x Y — Mg /O is
the associated pairing and B is the abelian part, (g1, go) defines a bilinear form
on R ® End(A) as in the classical case. Further, by the definition, (g,g9) = 1
for any automorphism g¢g. The rest is to show the positivity, that is, (g,9) =
Tr(go*g) > 0 for g # 0. As is explained above, the trace is the sum of the
three traces. The classical part is known (cf. [20] p.192, Theorem 1). The part
on Y and the part on X can be treated similarly. We write down the former
case. Let f: Yp — Yp be the induced homomorphism from g and *f: Yo — Yp
induced from *g. We have to prove Tr(fo*f) > 01if f # 0. Let ¢: Yo — Xo
be the homomorphism induced by ¢. Then *f coincides with ¢! fY¢, where
fV: Xg — Xg is the dual of f. Let (y,z)y be (¢(y),z) € ME’/OZ. Then
(, f(2))y = (6W), f(2)) = (f'y),2) = (67 f"d(y), 2)y = ("f(y),2)y. Let
N: Mg /O — N be a homomorphism whose kernel is trivial. Then N((-,-)y)
is a positive definite form. Since f and *f are adjoint to each other with respect
to this form, Tr(fo*f) is positive. O

5.2. To prove main theorems, we define the sheaf F’ on (fs/Z[1/n])s as

F'(U) ={(4,¢.¢,/)}/ =,
U € (fs/Z[1/n]), where (A, ¢,e) is a g-dimensional principally polarized log
abelian variety over U with a level n structure and f is a surjective homomor-
phism W — Y (A).
This F” is indeed a sheaf because F' is so.

5.3 PROPOSITION. The forgetful morphism F' — F ; (A, ¢,e, f) — (A, ¢, ¢€)
15 represented by strict étale surjective algebraic spaces. More strongly, it is
represented by surjective Zariski local isomorphisms.

Proof. Let (A,¢,e): U — F be a morphism from any fs log scheme U over
Z[1/n]. The functor F' xp U over U is represented by the sheaf of surjective
homomorphisms W — Y (A). Let u € U, put Y := Y (A)g, and, shrinking U if
necessary, we may assume that there is a surjection Y — Y (A). Then F' xp U
is represented by the fs log scheme (][, Up)/ ~, where h runs over the set of the
surjections W — Y, U, is a copy of U, and Uy, and Uy are glued by the open
subscheme on which h and A’ induce the same W — Y (A). The formation is
compatible with any base change so that F' — F' is globally represented. O]
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Remark. Further, F' — F is represented by quasiseparated morphisms. This
is seen as follows. In the notation in the above proof, Y(A) locally comes from
an fs log scheme U that is of finite type over Z. Hence the glued schemes are
quasiseparated.

5.4. Next we introduce the sheaf Z on (fs/Z[1/n])s defined as

Z(U) := {symmetric bilinear form W x W LA (Gimtog/Gm)(U)

which is positive semi-definite},

U € (fs/Z[1/n]), where b is said to be positive semi-definite if, for any u € U and
any homomorphism (My/OF)z — ]R(;B), the induced W x W — R is positive
semi-definite. Here ]R(;B) means the set {a € R|a > 0} regarded as a monoid
with respect to the addition.

We define the canonical morphism

F'—=1T
of sheaves by associating to (A, ¢, e, f) over U € (fs/Z[1/n]) a bilinear form

Wox W Y(4) x F(4) 2 X(4) % T(A) S Gongos/ G

We construct an explicit covering of Z by representable objects. Let T be
the disjoint union of

Vo = Spec((Z[3])[o” N Symz(W)]),

where o runs over the set K of all sharp finitely generated Q-cones consisting of
positive semi-definite symmetric bilinear forms W x W — R.
We have the natural morphism

T—1T.

5.5 PROPOSITION. The natural morphism T — T is surjective as a morphism
of sheaves, T Xz T is representable, the two projections T Xz T = T are log
étale and the natural morphism T xz T — T Xy T is of finite type.

Proof. We prove that T — Z is surjective. Let b be an element of Z(U) (U €
(fs/Z[1/n])) and we prove that b comes from a section of 7. We may assume
that U has a chart. Let o be the dual of the inverse image of My /O}; by the
homomorphism Sym3 (W) — G106/ G, induced by b. Then, strict étale locally
on U, b comes from a section of V,. Hence, T — T is surjective.
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Let o, 7 € K. To prove the rest, it is enough to show that R :=V, x7 V, is
representable, that R — V, is log étale and that R is quasicompact over Z[%]
But the map V,n, X G,,, = R sending (t,u) to (t,t - u), where we denote by the
same symbol the images of ¢, is an isomorphism, which suffices. Il

Let F- = F' x7 T. The next proposition is an essence of the proofs of our
main results. Once it is proved, all results are easily deduced from it.

5.6 PROPOSITION. The functor FJ, restricted on (Sch/7o‘) C (fs/T), is repre-

sented by a locally separated algebraic space over 70'

We prove this in the next section.

6. Artin’s criterion

In this section, we prove Proposition 5.6 by the classical Artin criterion. This
section is a core of the proofs in this part VII of this series of papers.

6.1 LEMMA. The quotient sheaf Gy, 105/Gn is an fppf sheaf.

Proof. This is proved in [16] 3.5. We include the proof for readers’ conveniences.
Let U" — U be a strict fppf covering. Let U” := U’ xy U’ and it is enough to
show that

F(U, Grm,log/(GTm) — F<U,; Gm,log/Gm) = F(Uﬂa Gm,log/Gm)

is exact. We may assume that U has a chart. Then every Gy, 104/Gy, is the
inverse image of G, 105/ Gy, 01 Uzs,. Hence the above exactness is reduced to the
exactness of the diagram of topological spaces U" = U" — U. O

6.2. We prove Proposition 5.6. The functor concerned over (sch/ 70‘) assoclates to

each T-scheme U the set of isomorphism classes of (A, ¢, e, f) over (U, M) whose
induced section in Z((U, M7)) coincides with the pullback of the one determined
by the given 7 — Z. Here My is the inverse image log structure of 7. We
denote this functor by H.

By the classical Artin criterion [2] Theorem 5.3, to prove Proposition 5.6, it
is enough to show that the eleven conditions [0']-[5'](c) there are satisfied for H.

Henceforth in this proof, the notation follows loc. cit. As a deformation
theory (loc. cit. Definition 5.2) for H, we take the standard one : D(Ag, M, &) =
H¢ (Ap[M]). To see that it is actually a deformation theory, it is enough to
check the bijectivity of the map (x) in loc. cit. p.48, which also implies the
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conditions [4'](b) and [5](a) as explained there. This bijectivity is proved by the
calculation of deformations of log abelian varieties as follows. Let us recall the
situation. First let Ag be a noetherian Or-integral domain. Let A — A — Aq
be infinitesimal extensions. Let B — A be another infinitesimal extension. For
every map B — A, consider the map

(%) H(A x4 B) = H(A') x (1) H(B).

We must show that it is bijective. Let (Ay, ¢1,€e1, f1) € H(B). By Proposi-
tion 4.1 (1) and Proposition 4.2, we have a bijection from the inverse image of

(A1, ¢1, €1, f1) by H(A x4 B) = H(B) to
Homgyp, (coLie (A;), Lie (4;)) ® I,

where I = Ker(A" x4 B — B). Since I = Ker(A" — A), again by Proposition
4.1 (1) and Proposition 4.2, it is naturally bijective to the inverse image of the
image in H(A) of (A1, ¢1,e1, f1) by H(A") — H(A). Hence (x) is bijective.

6.3. We prove [0'], that is, that H is a sheaf for the fppf topology.

It is enough to show that F7 is an fppf sheaf. Let p: U’ — U be a strict
fppf covering of a T-fs log scheme. We prove that F7-(U) — F-(U’) is injective.
Let (A1, é1,e1, f1), (A2, @2, €2, fo) € F(U) and assume that p~' (A1, ¢1, €1, f1) =
p 1 (Ag, do, €2, fo). We will prove (Aq, ¢1,e1, f1) = (A2, ¢o, €2, fo). Since F is an
étale sheaf, we may assume that there is an admissible pairing b: W x W — S&P
(S is an fs monoid) with a homomorphism S — (Gyy10g/Gy)u such that the
composite W x W — (G 10¢/ G )u is the given pairing U — 7 which induces
Ay /Gy 2 Ay)Gy =2 Hom(X,Giog/Gn) Y /Y. Here X =Y = W, and Gy
and (G5 are the semiabelian parts of A; and Aj respectively. The assumption
together with Lemma 5.1 implies that there is an isomorphism p~tA; = p~1A,
whose two pullbacks by the projections U” := U’ xy U’ = U’ coincide. It induces
an isomorphism p*1/L = p*IZQ whose two pullbacks by the projections U” = U’
coincide. Now let C' C Hom(S,N) x Hom(X,Z) be as in [12] 2.2. Let C(m) be

the cones such that C' = |JC(m) asin [9] 3.4.9. By taking C'(m)-models, we have
an isomorphism p~t A o p=1 AL g6 two pullbacks by the projections
U” = U’ coincide. Then by the fppf descent of algebraic spaces together with
the descent of the fs log structure (cf. [23] Appendix Corollary A.5), we see that
the isomorphism of models descends into an isomorphism A’gc(m” = géc(m)) of
algebraic spaces with fs log structures. By taking the union, we have A~ A,
This isomorphism preserves the group structure since it is so fppf locally. Further
it induces Y| & Y, since it is so fppf locally, where Y; = Ker(A; — A;) (i = 1,2).
Thus we have A; = A,. This isomorphism respects polarizations, level structures

and surjections. This is by the fact that A; (¢ = 1,2) is an fppf sheaf, which is
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seen by observing that A; is a két sheaf ([12] Theorem 5.1) and that A; is the
union with respect to the két topology of log algebraic spaces in the first sense.

6.4. Next we prove the exactness of F(U) — Fr(U') = Fr(U"). Let
(A", ¢, €, f') be in the difference kernel of F7-(U') = F7-(U"). We will prove
that (A',¢', ¢, f') comes from F-(U). Note that the cocycle condition holds by
Lemma 5.1. Again by that F7 is an étale sheaf and that we already showed that
F% is a separated presheaf for the fppf topology, we may assume that there is a
pairing b: W xW — S#P as before which induces A'/G’ = Hom (X, Gy 1og/Gm) >
/Y. (Here and hereafter the notation is similar to that in the previous para-
graph.) Again by taking A’ and its models, we have descent data of log algebraic
spaces in the first sense. By the fppf descent of log algebraic spaces in the first
sense as before, A/Cm) descends as a log algebraic space in the first sense. Then
A descends. Next, the pairing W x W — Gy, 106/ Gy, descends by Lemma 6.1.
The descended pairing is admissible since it is so fppf locally. Since the pairing
descends, X and Y also descend. The homomorphism Y — A descends. Tt is
injective since it is so fppf locally. Let A be the cokernel of Y — A.

We prove that A is a log abelian variety. Since Hom (X, G ios/Gm)Y) /Y
is an fppf sheaf by Lemma 6.1, the surjective morphism A" — Hom(X,
Gmjlog/ G,,)®) /Y also descends. Hence, the semiabelian part also descends. Thus
the exact sequence

0= G — A= Hom(X,Guiog/Gm) /Y =0

exists. The diagonal is finite because it is so fppf locally.

The principal polarization descends by Proposition 2.4, which implies the
pointwise polarizability. Once the polarization descends, the level structure and
the surjection descend. This completes the proof of [0/].

6.5 REMARK. There are two alternative proofs for [0']. One is by the use of
[14] Theorem 4.7, that is, the descent of A is reduced to that of models. Another
proof is as follows. We can prove [1'] and [2'] in advance. See 6.6 and 6.7 below.
Then, by [1'], we may assume that U is of finite type over Z, and replace U
by a strict localization. By Artin’s approximation theorem and [1'] again, we
further replace U by the spectrum of a complete noetherian local ring. Then,
by [2], we reduce to the case where U is the spectrum of an Artin local ring
so that it suffices to show the fppf descent of log 1-motives [Y — Gloe]. The
lattice Y descends. By [10] Proposition 2.5, the descent data on Gieg give those
on G. Hence G descends and Giog also descends. The rest is to see that the
homomorphism Y — Gjos descends. For it, it suffices to show that G, is an
fppf sheaf. By using the exact sequence 0 — Tioe — Giog — B — 0, where T’
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and B are the torus and the abelian part, respectively, we reduce the problem
to the vanishing of R'7.Gy,10g, where 7 is the projection of the fppf site to the
étale site. The last vanishing is a part of the log Hilbert 90 (see [16] Corollary
5.2).

6.6. We prove [1'] that H is locally of finite presentation. It is enough to show
that F’ is locally of finite presentation, that is, that ligF’(Ui) — F'(U) is
bijective, where (U;); is an inverse system of affine Z[1/n|-fs log schemes with
strict transition morphisms and U := @ Us.

This is by Proposition 2.6 by taking care of level structure and the surjection
W — Y (A). The level structure can be spread out by the representability of the
torsion points ([12] Proposition 18.1). It is obvious that the surjection is spread
out.

6.7. We prove [2']. It is enough to show that F'(R) — Jim F'(R/m™) is injective
and has a dense image, where (R, m, k) is a complete noetherian local Or-algebra.
In fact the above map is bijective. This is essentially by [14] Theorem 6.1. We
have to take care of the polarization, the level structure, and the surjection. For
the polarization, see [14] Remark 6.1.1. The level structure is algebraized because
the group of torsion points of a log abelian variety is represented by finite log flat
group schemes ([12] Proposition 18.1). Finally, the formal surjection W — Y (A)
determines the surjection on R.

6.8. We prove the condition [3'](a). It is enough to show the following: Let S
be a geometric discrete valuation ring with an fs log structure over 7. Then
Fr(S) = Fr(K) x Fp(k) is injective, where K (resp. k) is the fraction field
(resp. the residue field) of Og.

If S has the direct image log structure from K, then F7(S) — F-(K) x Fr(k)
is injective because CE"*' = €' = €2 (in the notation there) by [14] Theorem
3.4 (1) and (3). (Though S is not necessarily an fs log scheme, we define F7-(.5)
here as in [14] 3.1.)

The general case is reduced to this case as follows. It suffices to prove that
F7(S) — Fi-(5') is injective, where S’ is the one endowed with the direct image
log structure from K. Since F(S) — FJ-(S*") is injective by 6.3-6.4 and 6.6,
where S*! is the strict henselization of S, we can replace S and S’ by their strict
localizations. Furthermore, since F7-(S) — Ffr(g) is injective by 6.6 and Artin’s
approximation theorem, where S is the completion of S, we can further replace
S and S’ by their completions.

Thus we may assume that S and S’ are complete. Then by 6.7, we can
replace S and S’ by the spectrum of Artin rings. Hence the log abelian varieties
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concerned are with constant degeneration. Let & and 1 be elements of F7(S).
Assume that the pullbacks to S’ of £ and n coincide. Then the surjections
W — Y of £ and n are common. The Y — X are also common. Together with
the definition of F7, the admissible pairings X x Y — Gy, 10¢/Gy, are common.
Hence the torus part T is common. Since the underlying schemes of S and S’
are the same, the abelian part B and the semiabelian part G are also common.
Hence it is enough to show that the homomorphism ¥ — G, is determined by
the pullback to S’; once it is proved, G — G* and the level structure are common.
But the induced homomorphism Y — Gl /G = Tiog/T is common. Since there
is an exact sequence 0 — Hom(Y,G) — Hom(Y, Giog) — Hom(Y, Gioe/G) and
an element of Hom(Y, G) is determined by the pullbacks, we have & = .

6.9. We prove [4'](a), which means Hg,(Ao[M]) commutes with localization in
Ag and is a finite module when M is free of rank one. Let A be the polarized log
abelian variety corresponding to &. Then the condition [4’](a) is reduced to the
equality

He, (Ao[M]) = Homgyy, (coLie (A), Lie (A)) ®4, M

as Ag-modules.

If we neglect the additional structures, this is by Proposition 4.1 (2). So
it is enough to show that the additional structures deform uniquely. By [12]
Proposition 18.1 (3), the torsion points are két locally isomorphic to (Z/nZ).
Since the két site over Spec(Ay) and that over Spec(Ag[M]) are equivalent, the
level structure uniquely deforms. The surjection also uniquely extends, which
completes the proof of [4'](a).

6.10. To see that the conditions [3'](b), [4'](c) and [5'](c) are valid for H, we may
assume by [10] Theorem 4.6 (2) that the £, n etc. concerned in these conditions
are with constant degeneration because My,/O} is locally constant around the
generic point. (Here we use [4'](a) for [4'](c).) Then their lattices Y are constant
because the monodromy acts on Y trivially by Lemma 5.1. Let r be their rank.
Fix an isomorphism Z" =: Y = Y(A’) and a surjection W — Y which are
compatible with f: W — Y, and denote by b the map U := (Spec(Ay), M7) — T.
Since U is quasicompact, we can take a finitely generated cone o as in [14] Section
2 such that for any v € U and any homomorphism Myz — Q(;B), the induced
pairing Y x Y — Q by b belongs . Then b factors through Spec(a") and further
through 7o := T Xz Spec(c") also after localizing U. Hence we may assume that
b factors through 7y. (Here we use again [4'](a) for [4’](c).) Now & etc. can be
lifted to sections of (Fy, )7, and we can replace H by the restriction Hy, ,, , of

(Fyrne)To in (sch/70’0). (Note that for [4'](c) and [5'](c), we use here the fact that
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the deformations of log abelian varieties with the constant Y must be with the
constant Y.) Since (F,, )7 is pro-representable by [14] Theorem 2.4, Hy ., »
is also pro-representable (by the underlying formal scheme). From this, we can
see that [3'](b), [4'](c) and [5](c) are valid for H,, .-

6.11. Since we already see in 6.2 that the conditions [4’](b) and [5'](a) are sat-
isfied, the rest is [5](b). Since Ag xx A} — Ao Xk Ak in loc. cit. (the notation
is as in there) is a nilpotent thickening of local rings with square zero ideal, this
is reduced to Proposition 4.2 as follows. In fact, we prove that, in general, for

a nil immersion Spec R — Spec R’ of affine local schemes over 7CL defined by a
(not necessarily finitely generated) ideal I with I? = 0, any element of H(R)
can be lifted to H(R'). Take an inductive system (R}); of noetherian local sub

O(%)—algebras of R’ such that lim R is isomorphic to R'. For any i, let R; be the
image of R} — R so that lim R; = R. By [1'], any element of H(R) can be lifted
to an element of H(R;) for some i. Hence we may assume that R’ is noetherian.
In this case, by Proposition 4.2, any polarized log abelian variety over R’ can
be lifted to R. The level structure and the surjection uniquely extend (cf. 6.9),
which completes the proof of [5'](b).

Thus the proof of Proposition 5.6 is completed. n

7. Representability of moduli functors

In this section, we return to the study of the moduli functors of log abelian
varieties defined in Section 1, and prove Theorems 1.6 and 1.7 except properness
based on Proposition 5.6.

7.1. We deduce from Proposition 5.6 we have shown in the previous section, that
F} is represented by a log smooth log algebraic space over T in the first sense.
In fact, Proposition 5.6 gives us an underlying algebraic space, denoted by

X over ’T It contains as a dense open subset the part which is the moduli of
abelian varieties without degeneration. We denote this open set by U. Endow

X with the inverse image log structure from 7. Note that by the local theory
([14] Section 2), it coincides with the log structure by the complement of U and
the resulting log algebraic space X in the first sense is log smooth over the base
Z[1/n].

By definition, there is a canonical morphism X — Fr. It suffices to show
that it is an isomorphism. Since each log locus (i.e., a subscheme where M/O* is
locally constant) of X is a moduli of log abelian varieties with constant degenera-
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tion ([14] Section 2, cf. 6.10), the canonical morphism is formally an isomorphism.
Hence, by the argument in [11] 5.4, we reduce to the fact that F7- has the two
properties that F7- is locally of finite presentation and that F- has the uniqueness
for GAGF. These are reduced to that F’ has the same two properties, which is
shown in 6.6 and in 6.7, respectively.

7.2. PROOF OF THEOREM 1.7 EXCEPT PROPERNESS. We prove a slight variant

of Theorem 1.7 as follows, which implies Theorem 1.7 except properness. Let X

be a fan in Sg(W) supported by positive semi-definite bilinear forms which is not

necessarily complete and not necessarily stable under the action of Autz(W).
Let Zs; be the subsheaf of Z defined by

Is(U) :={b € Z(U) |for any u € U, there exists o € ¥ such that, for any
homomorphism Myz — Q(;)), the induced W x W — Q belongs to o},

U e (fs/9).
We define

FXIJ = F’ XIIE

and prove that FY, is a log smooth log algebraic space in the first sense.
To prove it, we may assume that X is the set of all faces of a cone o. In this
case, we write Fy, as F.. Let

H, =F, xz Vo, =Fr x7V, =F x7V,.

Then H, is a log algebraic space in the first sense because F7 is so.
We consider F. as a quotient of H, by the action by the torus defined as the
dense open subspace of V, where the log structure is trivial.

Let X be the quotient of H, by the torus action as a functor from the category
of schemes over Z[1/n] to the category of sets. We can prove that it is repre-
sentable by the classical Artin criterion ([2] Theorem 3.4). In fact, the openness of

versality is satisfied because H, is representable. The effective prorepresentabil-

ity is also satisfied because X is formally a moduli of log abelian varieties with
constant degeneration ([14] Section 2). The other conditions are easily verified.

Thus we have an algebraic space X, which contains as a dense open subset the
part of the moduli of abelian varieties without degeneration. We denote this

open set by U. Endow X with the log structure by the complement of U and
the resulting log algebraic space X in the first sense is log smooth by the local
theory. Further, the projection H, — F! factors through the natural morphism
H, — X because the latter is strict as seen pointwise by the local theory. To
see that the induced X — F! is an isomorphism, by the same argument as in
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7.1 with the use of the local theory, it is enough to show that F’ has the two
properties there. It reduces to that F’ has the two properties and again to 6.6
and 6.7. Thus X — F! is an isomorphism. We conclude that Fy, is a log smooth
log algebraic space in the first sense.

By I} = Fsx xpg F’ and by Proposition 5.3, Fy is also a log smooth log
algebraic space in the first sense, which completes the proof of Theorem 1.7
except properness.

7.3 REMARK. The above proof also shows that the space representing Fy. con-
tains as a dense open subset the moduli space A, ,, of principally polarized abelian
varieties with level n structure.

7.4. PROOF OF THEOREM 1.6 EXCEPT PROPERNESS. We deduce Theorem
1.6 except properness from the variant of Theorem 1.7 proved in the previous
paragraph.

We have F' = |, F, where K is as in 5.4. Cover F' by []__, F., which
is a log smooth log algebraic space in the first sense by 7.2. For two cones 7 C o,
we have that V. — V is log étale so that F — F! is represented by a log étale
morphism of log algebraic spaces in the first sense. This implies that F” is a log
smooth log algebraic space in the second sense. Hence, F' is also.

8. Valuative criterion

In this section, we prove the properness of our moduli spaces, which completes
the proofs of Theorems 1.6 and 1.7. We use the valuative criterion and the unique
extendability of a log abelian variety over a complete discrete valuation field,
which was developed in former parts of our series of papers.

8.1. We use the same notation as before. We have to prove that ' and F¥ are
proper over Z[1/n]. First we prove that F is proper, that is, F(Og) = F(K)
in the notation in [12] 17.3. In order to reduce this equality to the category
equivalence C5"™*" ~ C3°' ([14] Theorem 3.4), it is enough to show that for a
section (A, ¢,e) € F(K), where K is a field endowed with an fs log structure,
the lattice Y of A and the torus part T of A are unramified and the abelian part
B of A is of semistable reduction. To see it, it is enough to show that the local
monodromy acts on the Tate module of A trivially, which is by Lemma 5.1. This
completes the proof of Theorem 1.6.

8.2. Next we prove that Fy is proper. The proof is parallel to that of [12]
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Proposition 11.3, which says that the properness of a weak log abelian variety
implies the properness of its model with respect to a complete fan.

First, to see that Fyx — Spec(Z[1/n]) is separated, we use the following
valuative criterion for separatedness for algebraic spaces.

8.3 PROPOSITION. LetY be a locally noetherian scheme. Let f: X — Y be a
morphism of algebraic spaces. Assume

(1) f is locally of finite type, and

(2) for any commutative diagram

Spec(K) —— X

| |

Spec(Og) —— Y,

where K is a discrete valuation field with the valuation ring Og, there exist
at most one morphism Spec(Ok) — X such that Spec(K) — X coincides
with Spec(K) — Spec(Og) — X and Spec(Og) — X — Y coincides with
Spec(Ok) = Y.

Then f is separated.

See [4] Lemma 19.1 (tag:0ARJ) for a proof. Note that, by definition we have
adopted, an algebraic space is quasiseparated.

8.4. Since we already see that Fy; is log smooth, the condition (1) in Proposition
8.3 is satisfied. Let the notation be as in Proposition 8.3 (2) with X = F¥
and Y = Spec(Z[1/n]). Endow Spec(K) with the inverse image log structure
from Fy, and Spec(Of) with the direct image log structure from Spec(K'). Then,
since a morphism Spec(Og) — X of algebraic spaces making the diagram in
Proposition 8.3 (2) commute uniquely extends to a morphism of log algebraic
spaces making the diagram of log algebraic spaces commute, it is sufficient to
show that Fx(Og) — Fx(K) is injective. This is by F(Ok) = F(K) in 8.1 and
Iy, C F. Hence FY; is separated.

8.5. Now we apply to I, — Spec(Z[1/n]) another valuative criterion [12] Propo-
sition 11.4 for universal closedness. Since we already see that Fy; is separated, it
suffices to check the conditions (1) and (2) in [12] Proposition 11.4.

First Fy; is quasicompact because, in virtue of the condition (4) in Definition
1.1, Fs is the union of a finite number of o-loci (¢ € ¥), and each o-locus is
quasicompact by the local theory ([14] Section 2). Since we already know that F;
is log smooth, it is also of finite type, that is, the condition (1) in [12] Proposition
11.4 is satisfied.
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The condition (2) in [12] Proposition 11.4 can be deduced from F(Og) =
F(K) in 8.1 exactly in the same way as in [12] 11.6-11.7. (Note that in the third
last line in [12] 11.7, A®)(S") — A®)(5") should be replaced by A® (") —
A(n").) This completes the proof of Theorem 1.7.

9. Toroidal compactifications

Finally we prove Theorem 1.8, which says that the toroidal compactification
is the underlying space of our space.

9.1. First, since we have worked over Z[1/n] with the naive level structures, to
compare our space with that in [5], we have to adjust the moduli functor a little
by introducing the symplectic level structures, which we explain briefly.

For a principally polarized log abelian variety A over an fs log scheme S and
an integer n invertible on S, the exact sequence 0 — A[n] — A = A — 0 induces
the exact sequence 0 — Hom(A[n], Gy 1og) = Ext(A, Gpylog) 5 Ext(A, Gm,log)-
This defines the Weil pairing A[n| x A[n] = G, 105- Then we can define the sym-
plectic level structure on A, and the corresponding moduli functor over Z[(,][1/n]
is represented by an open and closed subspace of the scalar extension of the space
representing the functor Fy, s in Theorem 1.7. Since this open and closed sub-
space contains A, , as a dense open subspace as is seen by the local theory, it
is in fact a connected component. Below, “our space” means this connected
component of the scalar extension.

9.2. PROOF OF THEOREM 1.8. There are two methods, which have an outline
in common: In both methods, we construct a family of log abelian varieties over
the Faltings—Chai space 7197,1, which would coincide with the universal family
over our space. The family decides a morphism i from ./Tlgm to our space because
ours is a fine moduli, and we prove that ¢ is an isomorphism.

In the first method, we construct the family of log abelian varieties by gluing
the local universal families over our local moduli in [14]. The compatibility of the
local families is checked by using the local properties of Faltings—Chai’s family
P over A, ,,, which compactifies the universal family of abelian varieties over the
open set A,, without degeneration of A,,. After we prove Theorem 1.8, we
show that their family P is a model of our family.

In the second method, we try to construct the family of log abelian varieties
directly from P by “recovering from models”-procedure. But it requires a cone
decomposition having some good property, and we have to suppose its existence.
Then we see that P is a model of our family as soon as we would prove Theorem
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1.8.

Notice that these two constructions generalize the two constructions of uni-
versal log elliptic curves over X(N) in [11] Section 3 and in [11] Appendix,
respectively.

9.3. We prove Theorem 1.8 by the first method. See Remark 9.4 for the second
method. Let x be a point of A, ,. Since the formal completion of A, at  can
be identified with our local moduli in [14], by GAGF for log abelian varieties ([14]
Theorem 6.1), we have a family A, of log abelian varieties (with polarizations and
level structures (cf. 6.7), omitted below) over the completion of A, at z. We
claim that they are compatible with each other and with the universal family of
abelian varieties over A ,,. Then, they are glued globally and gives a morphism
i from A, , to our space (cf. [10] Proposition 4.8).

To prove this compatibility, we use the local portion of the theory of Faltings—
Chai. Let P be the family constructed by Faltings—Chai associated to an admis-
sible polyhedral cone decomposition {75}. We endow P with the fs log structure
determined by the inverse image of .,Tlg,n — A, . Then, over the formal completion
of A, at z, which is identified with our local moduli, the pullback of P coincides
with a model of our formal universal family associated to the fan decided by {73}.
Hence, by GAGF, over the completion at x, the pullback of P can be regarded as
a model of A,. Then, each A, is compatible with the universal family of abelian
varieties on A, ,, because its model is so. The other compatibility that the A, are
compatible with each other is reduced to this compatibility because for two log
abelian varieties over a log regular base, an isomorphism between the restrictions
to the open subset where the log structure is trivial uniquely extends over the
whole base. The last fact is a consequence of the separability of our space proved
in Section 8.

We prove that ¢ is an isomorphism. Since it is formally an isomorphism, by
the argument in [11] 5.4, we reduce to the two properties of our functor, that is,
finiteness and uniqueness for GAGF. Both are valid as our functor is represented
by Theorem 1.7 (cf. 9.1). Thus we complete the proof of Theorem 1.8.

Additionally, under the identification of their space and our space, which is
just established, P is a model of our universal family because it is so formally
around each point, also on A,,, and isomorphisms are glued since they are
compatible on A, .

9.4 REMARK. We explain the second method. By the argument of the second
last paragraph of 9.3, it suffices to construct an appropriate family of log abelian
varieties on ngn. We construct it from P in 9.3 directly.

On ng, there are semiabelian schemes G and G* and the pairing X (G) x
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X(G") = Giniog/Gm globally as in [5] Chapter III, Section 10. Hence the sheaf
Q = Hom(X, GmJog/Gm)(?)/?

is defined globally, where X = X(G) and Y = X(G*). The {75} in 9.3 decides a
subsheaf ¥’ of () coming from complete fans (cf. [14] 4.4).

Then P is a G-torsor over Y. This can be checked formally and reduces to the
fact explained in 9.3 that P formally coincides with the model of our universal
family. We construct a family of log abelian varieties from P. Below, we assume
that ¥’ comes from complete and wide fans and use the category equivalence
Theorem 4.7 in [14]. The authors do not know if one can take such a {75}.

Under this assumption, it is enough to construct an object of the category B in
[14] Section 4 of the models and it is almost done in [5] except the construction of
the partial group law (P x P)" — P, where (P x P)’ is constructed in [5] Chapter
VI as a compactification of the product of two copies of the universal abelian
varieties. To give it, we start with the partial group law in formal situation. By
GAGF, it induces a partial group law over the completion of each point of the
base. Then, it is glued globally because it is compatible with the group law on
the open subset A, ,. Thus we have an object of B.

Corrections to former parts.
We gather several corrections to former parts in this series of papers.

C.1. We correct some errors of Part III ([11]) of this series of papers.

In [11] Definition 1.3 (2), we had to say that ¢ and the exact sequence exist
only étale locally, not necessarily exist globally. With the current definition, [11]
Proposition 1.4 is false, though it would be valid with the corrected definition.

An example for which ¢ exists only étale locally is as follows. Let L/K
be an unramified extension of local fields of degree 2 and let ¢ be an element
of K such that ordg(q) = 3. Let E be the abelian sheaf over Ok (endowed
with the canonical log structure) obtained by the descent from Ggg?log /q% over
Op, (endowed with the canonical log structure) with the descent data x — x L.
Then “q” for this £ does not exist globally. Thus, as for the sentence just after
the proof of [11] Proposition 1.4, ¢ is not uniquely determined by E, but uniquely
determined up to sign by F.

In [11] 4.2, we should assume that ¢ exists globally.

In [11] Section 5, we used the global existence of ¢ in the proof. But both
(1) and (2) in [11] 5.3 easily reduce to that case. Further, even this reduction is
unnecessary in the case of I'(IV) because, in that case, the existence of the level
structure implies the global existence of q.

Additionally, in [11] 3.1, “local ring” and “field” are mistakes. The O, in
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there should be defined by that Spf (O,) coincides with the formal completion of
X(N) at the cusp v. The K, should be defined by K, = O,[1/¢].

C.2. We correct several mutually related errors in Part IV ([12]) and in Part VI
([14]) of this series of papers. We thank H. Zhao for pointing out these errors.
In [12] Section 13.4, trivially, oy does not send C5® (resp. C5™) into CP*
(resp. Cftp Ol), as is seen already in the case of log Tate curves. Thus the categories
¢ and CP™' in the current definition are too narrow and useless. We modify
them as follows. First we replace “polarizable” in the second last line of [12] 13.3
by “formally polarizable” to modify the definition of C**Y. Similarly, in [12] 13.4,
we modify the definition of C** as follows: CP* should be the full subcategory
of C, consisting of formally polarizable objects. We discard the category CP™.

Thus the diagram in [12] 13.4 would be as follows.

¢ o bl » cr!
(o7 T =
Cy 5 Cgtpol _ C(;))ol
o = | =
c;, o o= oy and P~

with the new /" and P

In [12] 15.9, 3rd line, we replace “polarizable” by “formally polarizable.”

In [12] 15.9, 5th line, we replace “a polarization” by “formally a polarization.”

In the 8th line of the proof of [14] Theorem 3.6, we replace “a polarization” by
“formally a polarization.” Additionally, we give a complement that the equiva-
lence in here of the positivity in the special fiber and the ampleness in the generic
fiber can be seen by the rigid analytic method as in [3].

In the 3rd line of Proposition [14] 5.2 and in the 5th and the 6th lines of [14]
7.2, we replace “polarizable” by “formally polarizable.”

In the second last line of [14] 7.2, C** should be C;. We had to say not “by
Theorem 5.3” but “as shown similarly as in the proof of Theorem 5.3.” (In the
proof of [14] Theorem 5.3, we use only the formal polarizability.)

Finally, [14] 6.10 lacks the proof that the biextension is actually a polarization.
This is reduced to [14] Theorem 3.6.

C.3. We correct a part of [13]. The exact sequence in the proof of [13] Proposition
12.8 (4) is not implied by its nonkét version. We suppress [13] Proposition 12.8
(4), [13] Remark 12.8.1 (1), [13] Lemma 12.9, and [13] Proposition 12.11. A
part of them can be recovered by another method, which we will discuss in a
forthcoming paper. They are not used for the proofs of the main results in [13]
and the other part of [13] is valid (the part of the proof of [13] Lemma 12.9 used
in [13] 12.12 is valid).
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