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Abstract— This research-track work-in-progress paper
contributes to engineering education by documenting progress in
developing a new standard Engineering Computational Thinking
Diagnostic to measure engineering student success in five factors
of computational thinking. Over the past year, results from an
initial validation attempt were used to refine diagnostic
questions. A second statistical validation attempt was then
completed in Spring 2021 with 191 student participants at three
universities. Statistics show that all diagnostic questions had
statistically significant factor loadings onto one general
computational thinking factor that incorporates the five original
factors of (a) Abstraction, (b) Algorithmic Thinking, (c)
Decomposition, (d) Data Representation and Organization, and
(e) Impact of Computing. This result was unexpected as our goal
was a diagnostic that could discriminate among the five factors.
A small population size caused by the virtual delivery of courses
during the COVID-19 pandemic may be the explanation and a
third round of validation in Fall 2021 is expected to result in a
larger population given the return to face-to-face instruction.

When statistical validation is completed, the diagnostic
will help institutions identify students with strong entry level
skills in computational thinking as well as students that require
academic support. The diagnostic will inform curriculum design
by demonstrating which factors are more accessible to
engineering students and which factors need more time and focus
in the classroom. The long-term impact of a successfully
validated computational thinking diagnostic will be introductory
engineering courses that better serve engineering students
coming from many backgrounds. This can increase student self-
efficacy, improve student retention, and improve student
enculturation into the engineering profession. Currently, the
diagnostic identifies general computational thinking skill
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computing

I. INTRODUCTION

This research-track work-in-progress paper is a second-year
report on a National Science Foundation funded project to
develop a new standard Engineering Computational Thinking
diagnostic (ECTD). In a systematic literature review, existing
computational thinking frameworks were found to be broad
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instruments focused primarily on pre-university students [1] [2]
[3] [4]. These frameworks did not target engineering students
specifically and some targeted only a limited set of
computational thinking factors.

Frameworks define computational thinking in various
ways. Generally, however, computational thinking is
understood to be deeper than computer programming skill [5]
[6]. Computational thinkers can abstract problems into
experiments, models, and data that hide details irrelevant to the
question at hand. Computational thinkers can write algorithms
that apply mathematics and logic to solve problems.
Computational thinkers can transform raw data into
appropriate data representations for analysis. Computational
thinkers can pattern match similarities in data to choose
appropriate solution techniques. Computational thinkers can
decompose problems into subsets and automate solutions.
And, computational thinkers wunderstand the impact of
computing solutions as benefits and risks to multiple groups of
users. Many of these computational thinking skills are implied
within the ABET student outcomes as well as the Taxonomy of
Engineering Education [7] [8] [9]. Given the centrality of
computing to modern engineering, engineering students must
develop computational thinking in engineering problem
domains and integrate it in the product design, analysis, and
maintenance workflows.

In 2019, our multi-institutional team of researchers began
working toward the goal of a targeted diagnostic for
engineering students through revision of an initial version of a
computational thinking diagnostic developed by one of its
investigators in 2017 [10]. The new diagnostic was organized
as five computational thinking factors: (1) Abstraction, (2)
Algorithmic  Thinking and Programming, (3) Data
Representation, Organization, and Analysis, “)
Decomposition, and (5) Impact of Computing. For each of the
five factors, different diagnostic items were created at each of
three levels of developer-perceived difficulty: low, medium,
and high. The 2019 diagnostic went through an unsuccessful
round of validation that showed excessive correlation between
factors [11].

First-year engineering courses often teach computational
thinking while introducing computer programming as a



computational thinking tool. The goal of a validated diagnostic
is a standard assessment to identify students that have strong
entry level skills in computational thinking, to identify students
that need extra help, and to identify areas for targeted
intervention. A broader impact of a successful computational
thinking diagnostic is better instruction of engineering students
coming from many backgrounds — increasing student self-
efficacy, persistence, and student enculturation into the
engineering profession.

II. DEVELOPMENT AND REVISIONS OF THE ECTD
The ECTD has been under development for four years.
Table I documents the number of engineering students testing

each version, as well as the total number of diagnostic
questions.

TABLE I: DEVELOPMENT OF THE ECTD

Time Version Questions Participants
Fall 2017 Pilot 15 1951
Fall 2019 Alpha Version A: 15 Version A: 373
Version B: 15 Version B: 153
Spring and Beta Version A: 15 Version A: 480
Fall 2020 Version B: 15 Version B: 436
Spring 2021 Gamma 20 191

The first version of the ECTD was created in 2017 [10].
This pilot version was given to engineering students in their
first year of study at a large university in the southwestern
United States. Each question had five multiple choice
responses. Survey responses were analyzed to assess the
quality of the items, and especially that the level of difficulty of
each question was consistent with the design.

NSF funded the refinement and expansion of the ECTD in
2019 to two additional institutions: a large public institution in
the midwestern United States, and a small private institution in
the Great Lakes region of the United States. This research team
then created the second version of the ECTD, called ECTD
Alpha, in the summer of 2019. The existing diagnostic
questions were categorized into the five computational thinking
factors noted above and additional questions were added. Two
ECTD versions were created so the diagnostic could be given
as a pre/post assessment in a class without repeating survey
items. Each version was designed to contain three questions of
varying difficulty for each factor category: one each of high,
medium, and low difficulty. Five hundred and twenty-six first-
year engineering students at the large Southwestern university
took ECTD alpha versions A and B in the fall of 2019 [11].

The analysis of the ECTD Alpha surveys did not produce
the desired psychometric properties. Several pairs of survey
items were found to have negative correlation coefficients
instead of the positive correlations that were expected. When
the eigenvalues were analyzed using an inflection point in the
scree plot, five eigenvalues were greater than 1.0 [12] [13].
This result could have indicated that the five factors used to

design the diagnostic were present. Unfortunately, the
experimentally determined factor loadings from both Version
A and B did not match the diagnostic design goal. When
evaluating the five-factor model, Version A had one factor
supported by seven questions and the other four factors were
supported by only one question. The five-factor model for
Version B similarly had one factor indicated by eight questions
with only one or two questions supporting three other factors.
These results caused the team to revise the ECTD again.

The research team created ECTD Beta (versions A and B)
by modifying questions from ECTD Alpha that had
undesirable psychometric properties. This included the
reconsideration of question content and phrasing, as well as the
choice of distractors. As one might expect, data collection
during the 2020 was challenging due to the COVID-19
pandemic. Students were more reluctant to take the survey,
probably due to fatigue. Through multiple recruitment
attempts, the large university in the southwestern United States
was able to recruit 916 first-year engineering students to take
ECTD Beta. This survey had some better psychometric
properties, including having positive correlation coefficients
between all pairs of items. Unfortunately, only four
eigenvalues were found to be greater than 1.0, indicating that
the survey was measuring four factors instead of the five it was
designed to measure. As with ECTD Alpha, only one or two
questions were loaded onto three factors, with a single factor
having most of the questions loaded. These problems were
found in both the A and B versions of ECTD Beta. Since the
psychometric properties of the diagnostic did not match the
desired design goal, more modifications were necessary.

To improve the psychometric properties of the diagnostic, a
subset of the items in the A and B versions of ECTD Beta were
combined into ECTD Gamma. Four questions were selected
for each factor based on measured psychometric properties.
Hence, ECTD Gamma has twenty questions. Questions were
shortened and simplified to improve clarity and reduce
wordiness. In addition, questions were re-examined to remove
possible cultural bias, for example, by providing contextual
information that some students such as international students or
students of low socio-economic status might not have. The
revision process for a question is shown in Table II. The
exponent in the original question was changed to the whole
number 125 because exponentiation is not critical to
understanding or solving the problem. The concept of traversal
was replaced with counting, which is simpler and more direct.
In addition, we added another label for block 26 to help
students see that decomposition to layers might be helpful.

III. METHOD

The purpose of this research phase was to explore the
psychometric characteristics of ECTD Gamma for engineering
students, such as evidence of construct validity and reliability.



TABLE II: DECOMPOSITION PROBLEM FROM ECTD BETA

The Rubik’s cube in the figure is composed of 5° (5 to the third
power) blocks. A program counts the number of blocks traversed
from the origin to the desired block by first traversing along the
x-axis, then the y-axis, and finally the z-axis. For example, the
block labeled 6 is the 6th block accessed. How many blocks are
traversed to get to the block with the frog icon?

a) 6 b)ll )18 )78 ¢ 86

The Rubik’s cube in the figure is composed of 125 blocks. A
program counts the number of blocks from the origin of the
coordinate system to a given block by counting the blocks along
the x-axis, then along the y-axis, and finally along the z-axis. For
example, the block labeled 6 is the sixth block counted and the
block labeled 26 is the twenty-sixth block counted. How many
blocks have been counted by the program when it arrives at the
frog icon?

a) 6  b)ll 018 d) 78 e) 86

These research questions guided the work.

e Does construct validity of the ECTD Gamma hold for
engineering students?

e Does internal consistency and reliability of the ECTD
Gamma version exist for engineering students?

A. Participants

Study participants were recruited through email at three
institutions previously described: a small private Great Lakes
university (Institution A), a large midwestern public institution
(Institution B), and a large public southwestern university
(Institution C). Recruitment response rates were lower than
expected, likely due to COVID-19 fatigue. Table III shows the
demographic characteristics of the participants. The average
age of the 191 students was 19.09 years old with SD = 1.49.

TABLE III: PARTICIPANT DEMOGRAPHICS

Sub A B C Total
categories | n | % n | % n | % n | %
Sex
Female 0| 0.0 9 50.0 | 63 37.1 | 72 37.7
Male 31100 |8 444 | 105 61.8 | 117 60.7
Other/No 0| 00 1 5.6 2 1.2 3 1.6
Answer
Race/Ethnicity
Hispanic 0| 00 2 11.1 | 32 18.8 | 34 17.8
Non-
Hispanic
Asian 1 ({333 |4 222 | 42 247 | 47 24.6
Black 0100 0 0.0 1 0.6 1 0.5
Multi- 0| 0.0 2 11.1 10 5.9 12 6.3
racial
White 2| 66.7 | 8 444 | 78 459 | 88 46.1
First Generation
Yes 1 {333 ]2 11.1 | 20 11.8 | 23 12.0
No 1 |333 ] 16 88.9 | 146 859 | 163 85.3
First Time in College
Yes 3 | 100 16 88.9 | 155 912 | 174 91.9
No 0] 0.0 2 11.1 15 8.8 17 8.9
Residency
Intl. 0| 00 2 11.1 | 7 4.1 9 4.7
USA 3 | 100 16 88.9 | 163 959 | 182 95.3
Student Level
Year 1 3 | 100 10 55.6 | 120 70.6 | 133 69.6
Year 2 0] 00 6 333 | 20 11.8 | 26 13.6
Year 3 0] 0.0 0 0 28 16.5 | 28 14.7
Year 4 0] 00 2 11.1 | 2 1.2 4 2.1
Totals [3]100 [18 [100 [170 [100 [ 191 [ 100

Note. Due to unspecified responses, category totals_do-may not add up to
100%.

B. Data Analysis Approach

Student responses on the questions were coded binary, 0 for
incorrect and 1 for correct answers. This binary coding is
naturally categorical and the distribution of responses for each
item was skewed and did not follow a normal distribution.
Therefore, robust weighted least squares (WLSMV) employed
in Mplus 7.11 was utilized as an estimator to obtain parameter
estimates for factor analyses with categorical data [14].

First, an exploratory factor analysis (EFA) was conducted
to identify underlying factor structure and irrelevant items that
did not fit into any factors that exist in the scale. Eigenvalues
and factor loadings after oblique rotation of GEOMIN, which
is the default rotation of Mplus, were calculated to judge the
number of factors and items for each factor. Second, as we
identified a factor structure and items for ECTD Gamma from
the EFA, we calculated the reliability coefficient of internal
consistency, Cronbach’s a, using SPSS Statistics Version 25 to
investigate how items are inter-related within each factor,
subfactor, and the overall instrument [15]. Finally, we explored
item level characteristics, such as item difficulty and
discrimination.

IV. RESULTS

A. Exploratory Factory Analysis

Tetrachoric correlation coefficients among the 20 items,
which are binary categorical variables, revealed that the



coefficients were positively correlated, and ranged from 0.082
to 0.845. Multicollinearity (strong correlations over 0.85) did
not exist between items except 0.856 between Items 18 and 19,
implying that most of the items do not measure the same aspect
of engineering computational thinking ability. Four eigen
values (10.4, 1.5, 1.2, and 1.1) were over 1.0, but we extracted
the number of factors underlying the data based on the point of
inflection of the curve in the scree plot [12]. This yielded one
factor considered for inclusion in a putative factor structure for
the ECTD Gamma version. According to Stevens’ guideline
about the relationship between sample size and cutoff factor
loading, we considered items with a factor loading greater than
0.40 significant for the designated factor [16]. This cutoff
usually functions to suppress any irrelevant items that do not fit
well into the designated factor. This resulted in all 20 items that
had statistically significant factor loadings onto the one factor,
general computational thinking ability incorporating the five
categories of (a) Abstraction, (b) Algorithmic Thinking, (c)
Decomposition, (d) Data Representation and Organization, and
(e) Impact of Computing, indicating each item’s unique
contribution to the factor. Table IV shows factor loadings of 20
items and their item characteristics, such as item difficulty and
item discrimination based on the classical test theory.

B. Item Analysis

Item Difficulty. Here, item difficulty index is defined as the
ratio of the number of correct responses to the number of total
responses on each item. A higher item difficulty value
indicates the easiest item. Among the 20 ECTD Gamma items,
Item 1 was the easiest question as 90% of the participants got
the question correct and Item 16 was the hardest as only 39%
of the participants got the question correct.

Table IV: Exploratory Factor Analysis

Category Question Factor Item Item
Loading | Difficulty | Discrim.
Abstraction | 1. Number of lines 0.640 0.90 0.37
2. Factorials 0.589 0.66 041
3. Sigma 0.570 0.68 0.41
4. Arrays 0.651 0.59 0.51
Algorithmic | 5. Find value of w 0.765 0.88 0.52
Thinking 6. Variable max 0.877 0.80 0.63
7. Factor and max 0.505 0.73 0.34
8. Printed sum 0.683 0.52 0.50
Decompose | 9.Dashboard 0.796 0.85 0.51
10. Program 0.738 0.76 0.52
11. Rubik’s cube 0.783 0.53 0.56
12. Test engineer 0.719 0.78 0.53
Represent 13. Natural number | 0.765 0.70 0.56
Data 14. New phone app | 0.919 0.82 0.67
15. Weather data 0.527 0.67 0.39
16. Bridges 0.434 0.39 0.29
Impact of 17. Self-driving cars 0.554 0.82 0.32
Computing 18. Social media 0.840 0.79 0.60
19. Smart phones 0.904 0.86 0.60
20. Website 0.781 0.74 0.57

Item Discrimination: Item discrimination index, which is
referred to as item-test correlation or as point-biserial
correlation for dichotomously scored items, means the
correlation between the item score and the total score. Even

though the correlation is dependent on item difficulty, high
item correlation is desired because it indicates that high ability
respondents tend to get the item correct while low ability
respondents tend to get the item incorrect [17]. Therefore,
among the 20 items on ECTD Gamma, Item 14 has the highest
discrimination and Item 16 has the lowest discrimination.

Internal Consistency Reliability: The overall reliability of
the ECTD Gamma with 20 items was Cronbach’s o = 0.878.
All ECTD Gamma items were worthy of inclusion because
removal of any items would not increase the score reliability
for any construct and ECTD Gamma as a whole [18].

Subgroups: Table VI presents results from independent
samples t-test between several subgroups. There was a
statistically significant sex difference on the ECTD Gamma
with a medium effect size (0.324) that favors male students.
Similarly, there was a statistically significant difference in
representation on the ECTD Gamma that favors White and
Asian students over those from other systemically marginalized
racial/ethnic groups with a large effect size. However, there
was no difference by student level (first year versus all other
years).

Table VI: Subgroup Comparisons of Scores on ECTD Gamma

N M SD Hedges | t df P
Sub- g
cate-
gory
Sex

Female 72 13.50 498 | 0.324 -2.2 186 0.031
Male 116 15.04 | 4.58

Representation
URM 47 12.98 5.38 0.785 -2.4 69.236 0.017
ORM 135 15.11 4.45

Student Level
Year 1 133 14.80 | 4.63 | 0.245 1.6 189 0.120
Year2+ | 58 13.64 5.01

Note: URM = underrepresented racial/ethnic group, ORM = overrepresented

V. DISCUSSION

Results show items clustering in one factor establishing that
such factor is the desired computational thinking construct. We
recognize the difficulty of discriminating factors within the
overall construct since they are highly correlated; these factors
are closely intertwined.

We plan to conduct another iteration of validation during
the Fall of 2021. Fall semesters tend to have better response
rates, especially since the three institutions are planning to have
in-person instruction instead of online instruction this year. We
expect that this next validation will show the five desired
factors. If it does not, we will begin another round of refining
questions until the desired model is achieved.

Our survey results are consistent with the many previous
studies that show White/Asian advantage over students from
systemically ~ marginalized  racial/ethnic =~ groups in
computational thinking skills. Similarly, male students were
found to have an advantage over female students. The absence
of difference in computational thinking skills by student levels
is an indication that the instrument may capture an ability that



does not change simply because of exposure to college classes,
even in engineering.

The limitations of the study include a high chance of
sampling bias, considering the low response rates across all
three institutions. Second, due to the small sample size of 191,
we were only able to conduct EFA. CFA modeling is planned
using the data collected in this fall. Third, even though ECTD
was designed to assess the five categories, they were not
captured as latent factors from the EFA. This could be a result
from a low power due to the small sample size. Fourth, for the
generalizability of the ECTD, there is a need to test
psychometric characteristics of the ECTD using the data
collected from additional institutions.
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