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Abstract— This research-track work-in-progress paper 

contributes to engineering education by documenting progress in 

developing a new standard Engineering Computational Thinking 

Diagnostic to measure engineering student success in five factors 

of computational thinking. Over the past year, results from an 

initial validation attempt were used to refine diagnostic 

questions. A second statistical validation attempt was then 

completed in Spring 2021 with 191 student participants at three 

universities. Statistics show that all diagnostic questions had 

statistically significant factor loadings onto one general 

computational thinking factor that incorporates the five original 

factors of (a) Abstraction, (b) Algorithmic Thinking, (c) 

Decomposition, (d) Data Representation and Organization, and 

(e) Impact of Computing. This result was unexpected as our goal 

was a diagnostic that could discriminate among the five factors.  

A small population size caused by the virtual delivery of courses 

during the COVID-19 pandemic may be the explanation and a 

third round of validation in Fall 2021 is expected to result in a 

larger population given the  return to face-to-face instruction.  

 When statistical validation is completed, the diagnostic 

will help institutions identify students with strong entry level 

skills in computational thinking as well as students that require 

academic support. The diagnostic will inform curriculum design 

by demonstrating which factors are more accessible to 

engineering students and which factors need more time and focus 

in the classroom. The long-term impact of a successfully 

validated computational thinking diagnostic will be introductory 

engineering courses that better serve engineering students 

coming from many backgrounds. This can increase student self-

efficacy, improve student retention, and improve student 

enculturation into the engineering profession. Currently, the 

diagnostic identifies general computational thinking skill  

Keywords—Diversity, engineering curriculum, computing 

knowledge, persistence, psychometric analysis 

I. INTRODUCTION 

This research-track work-in-progress paper is a second-year 

report on a National Science Foundation funded project to 

develop a new standard Engineering Computational Thinking 

diagnostic (ECTD). In a systematic literature review, existing 

computational thinking frameworks were found to be broad 

instruments focused primarily on pre-university students [1] [2] 

[3] [4]. These frameworks did not target engineering students 

specifically and some targeted only a limited set of 

computational thinking factors.  

Frameworks define computational thinking in various 

ways. Generally, however, computational thinking is 

understood to be deeper than computer programming skill [5] 

[6]. Computational thinkers can abstract problems into 

experiments, models, and data that hide details irrelevant to the 

question at hand. Computational thinkers can write algorithms 

that apply mathematics and logic to solve problems. 

Computational thinkers can transform raw data into 

appropriate data representations for analysis. Computational 

thinkers can pattern match similarities in data to choose 

appropriate solution techniques. Computational thinkers can 

decompose problems into subsets and automate solutions. 

And, computational thinkers understand the impact of 

computing solutions as benefits and risks to multiple groups of 

users. Many of these computational thinking skills are implied 

within the ABET student outcomes as well as the Taxonomy of 

Engineering Education [7] [8] [9]. Given the centrality of 

computing to modern engineering, engineering students must 

develop computational thinking in engineering problem 

domains and integrate it in the product design, analysis, and 

maintenance workflows.  

In 2019, our multi-institutional team of researchers began 

working toward the goal of a targeted diagnostic for 

engineering students through revision of an initial version of a 

computational thinking diagnostic developed by one of its 

investigators in 2017 [10]. The new diagnostic was organized 

as five computational thinking factors: (1) Abstraction, (2) 

Algorithmic Thinking and Programming, (3) Data 

Representation, Organization, and Analysis, (4) 

Decomposition, and (5) Impact of Computing. For each of the 

five factors, different diagnostic items were created at each of 

three levels of developer-perceived difficulty: low, medium, 

and high. The 2019 diagnostic went through an unsuccessful 

round of validation that showed excessive correlation between 

factors [11].  

First-year engineering courses often teach computational 

thinking while introducing computer programming as a 



computational thinking tool.  The goal of a validated diagnostic 

is a standard assessment  to identify students that have strong 

entry level skills in computational thinking, to identify students 

that need extra help, and to identify areas for targeted 

intervention. A broader impact of a successful computational 

thinking diagnostic is better instruction of engineering students 

coming from many backgrounds – increasing student self-

efficacy, persistence, and student enculturation into the 

engineering profession. 

II. DEVELOPMENT AND REVISIONS OF THE ECTD 

 

The ECTD has been under development for four years. 

Table I documents the number of engineering students testing 

each version, as well as the total number of diagnostic 

questions.  

TABLE I: DEVELOPMENT OF THE ECTD 

Time Version Questions Participants 

Fall 2017 Pilot 15 1951  

Fall 2019 Alpha Version A: 15 
Version B: 15 

Version A: 373 
Version B: 153 

Spring and 
Fall 2020 

Beta Version A: 15 
Version B: 15 

Version A: 480 
Version B: 436 

Spring 2021 Gamma 20 191  

 

The first version of the ECTD was created in 2017 [10]. 

This pilot version was given to engineering students in their 

first year of study at a large university in the southwestern 

United States. Each question had five multiple choice 

responses. Survey responses were analyzed to assess the 

quality of the items, and especially that the level of difficulty of 

each question was consistent with the design. 

NSF funded the refinement and expansion of the ECTD in 

2019 to two additional institutions: a large public institution in 

the midwestern United States, and a small private institution in 

the Great Lakes region of the United States. This research team 

then created the second version of the ECTD, called ECTD 

Alpha, in the summer of 2019. The existing diagnostic 

questions were categorized into the five computational thinking 

factors noted above and additional questions were added. Two 

ECTD versions were created so the diagnostic could be given 

as a pre/post assessment in a class without repeating survey 

items. Each version was designed to contain three questions of 

varying difficulty for each factor category: one each of high, 

medium, and low difficulty. Five hundred and twenty-six first-

year engineering students at the large Southwestern university 

took ECTD alpha versions A and B in the fall of 2019 [11]. 

The analysis of the ECTD Alpha surveys did not produce 

the desired psychometric properties. Several pairs of survey 

items were found to have negative correlation coefficients 

instead of the positive correlations that were expected. When 

the eigenvalues were analyzed using an inflection point in the 

scree plot, five eigenvalues were greater than 1.0 [12] [13]. 

This result could have indicated that the five factors used to 

design the diagnostic were present. Unfortunately, the 

experimentally determined factor loadings from both Version 

A and B did not match the diagnostic design goal. When 

evaluating the five-factor model, Version A had one factor 

supported by seven questions and the other four factors were 

supported by only one question.  The five-factor model for 

Version B similarly had one factor indicated by eight questions 

with only one or two questions supporting three other factors. 

These results caused the team to revise the ECTD again. 

The research team created ECTD Beta (versions A and B) 

by modifying questions from ECTD Alpha that had 

undesirable psychometric properties. This included the 

reconsideration of question content and phrasing, as well as the 

choice of distractors. As one might expect, data collection 

during the 2020 was challenging due to the COVID-19 

pandemic. Students were more reluctant to take the survey, 

probably due to fatigue. Through multiple recruitment 

attempts, the large university in the southwestern United States 

was able to recruit 916 first-year engineering students to take 

ECTD Beta. This survey had some better psychometric 

properties, including having positive correlation coefficients 

between all pairs of items. Unfortunately, only four 

eigenvalues were found to be greater than 1.0, indicating that 

the survey was measuring four factors instead of the five it was 

designed to measure.  As with ECTD Alpha, only one or two 

questions were loaded onto three factors, with a single factor 

having most of the questions loaded. These problems were 

found in both the A and B versions of ECTD Beta.  Since the 

psychometric properties of the diagnostic did not match the 

desired design goal, more modifications were necessary. 

 

To improve the psychometric properties of the diagnostic, a 

subset of the items in the A and B versions of ECTD Beta were 

combined into ECTD Gamma. Four questions were selected 

for each factor based on measured psychometric properties. 

Hence, ECTD Gamma has twenty questions. Questions were 

shortened and simplified to improve clarity and reduce 

wordiness. In addition, questions were re-examined to remove 

possible cultural bias, for example, by providing contextual 

information that some students such as international students or 

students of low socio-economic status might not have. The 

revision process for a question is shown in Table II. The 

exponent in the original question was changed to the whole 

number 125 because exponentiation is not critical to 

understanding or solving the problem. The concept of traversal 

was replaced with counting, which is simpler and more direct. 

In addition, we added another label for block 26 to help 

students see that decomposition to layers might be helpful. 

III. METHOD 

The purpose of this research phase was to explore the 

psychometric characteristics of ECTD Gamma for engineering 

students, such as evidence of construct validity and reliability.   

 

 



 

TABLE II: DECOMPOSITION PROBLEM FROM ECTD BETA 

 
The Rubik’s cube in the figure is composed of 53 (5 to the third 
power) blocks. A program counts the number of blocks traversed 
from the origin to the desired block by first traversing along the 
x-axis, then the y-axis, and finally the z-axis. For example, the 
block labeled 6 is the 6th block accessed. How many blocks are 
traversed to get to the block with the frog icon? 

 
 a) 6 b) 11 c) 18 d) 78 e) 86 

 
The Rubik’s cube in the figure is composed of 125 blocks. A 
program counts the number of blocks from the origin of the 
coordinate system to a given block by counting the blocks along 
the x-axis, then along the y-axis, and finally along the z-axis. For 
example, the block labeled 6 is the sixth block counted and the 
block labeled 26 is the twenty-sixth block counted. How many 
blocks have been counted by the program when it arrives at the 
frog icon? 

 
a) 6 b) 11 c) 18 d) 78 e) 86 

 

These research questions guided the work.  

 Does construct validity of the ECTD Gamma hold for 

engineering students? 

 Does internal consistency and reliability of the ECTD 

Gamma version exist for engineering students? 

A. Participants 

Study participants were recruited through email at three 

institutions previously described: a small private Great Lakes 

university (Institution A), a large midwestern public institution 

(Institution B), and a large public southwestern university 

(Institution C). Recruitment response rates were lower than 

expected, likely due to COVID-19 fatigue. Table III shows the 

demographic characteristics of the participants. The average 

age of the 191 students was 19.09 years old with SD = 1.49. 

 

 

TABLE III: PARTICIPANT DEMOGRAPHICS 

Sub 
categories 

A B C Total 

n % n % n % n % 

Sex 
Female 0 0.0 9 50.0 63 37.1 72 37.7 

Male 3 100 8 44.4 105 61.8 117 60.7 

Other/No 
Answer 

0 0.0 1 5.6 2 1.2 3 1.6 

Race/Ethnicity 

Hispanic 0 0.0 2 11.1 32 18.8 34 17.8 

Non-
Hispanic 

        

Asian 1 33.3 4 22.2 42 24.7 47 24.6 

Black 0 0.0 0 0.0 1 0.6 1 0.5 

Multi-
racial 

0 0.0 2 11.1 10 5.9 12 6.3 

White 2 66.7 8 44.4 78 45.9 88 46.1 

First Generation 
Yes 1 33.3 2 11.1 20 11.8 23 12.0 

No 1 33.3 16 88.9 146 85.9 163 85.3 

First Time in College 
Yes 3 100 16 88.9 155 91.2 174 91.9 

No 0 0.0 2 11.1 15 8.8 17 8.9 

Residency 
Intl. 0 0.0 2 11.1 7 4.1 9 4.7 

USA 3 100 16 88.9 163 95.9 182 95.3 

Student Level 
Year 1 3 100 10 55.6 120 70.6 133 69.6 

Year 2 0 0.0 6 33.3 20 11.8 26 13.6 

Year 3 0 0.0 0 0 28 16.5 28 14.7 

Year 4 0 0.0 2 11.1 2 1.2 4 2.1 

Totals 3 100 18 100 170 100 191 100 

Note. Due to unspecified responses, category totals do may not add up to 
100%. 

B. Data Analysis Approach 

Student responses on the questions were coded binary, 0 for 

incorrect and 1 for correct answers. This binary coding is 

naturally categorical and the distribution of responses for each 

item was skewed and did not follow a normal distribution. 

Therefore, robust weighted least squares (WLSMV) employed 

in Mplus 7.11 was utilized as an estimator to obtain parameter 

estimates for factor analyses with categorical data [14]. 

First, an exploratory factor analysis (EFA) was conducted 

to identify underlying factor structure and irrelevant items that 

did not fit into any factors that exist in the scale. Eigenvalues 

and factor loadings after oblique rotation of GEOMIN, which 

is the default rotation of Mplus, were calculated to judge the 

number of factors and items for each factor. Second, as we 

identified a factor structure and items for ECTD Gamma from 

the EFA, we calculated the reliability coefficient of internal 

consistency, Cronbach’s α, using SPSS Statistics Version 25 to 

investigate how items are inter-related within each factor, 

subfactor, and the overall instrument [15]. Finally, we explored 

item level characteristics, such as item difficulty and 

discrimination. 

IV. RESULTS 

A. Exploratory Factory Analysis 

Tetrachoric correlation coefficients among the 20 items, 

which are binary categorical variables, revealed that the 



coefficients were positively correlated, and ranged from 0.082 

to 0.845. Multicollinearity (strong correlations over 0.85) did 

not exist between items except 0.856 between Items 18 and 19, 

implying that most of the items do not measure the same aspect 

of engineering computational thinking ability. Four eigen 

values (10.4, 1.5, 1.2, and 1.1) were over 1.0, but we extracted 

the number of factors underlying the data based on the point of 

inflection of the curve in the scree plot [12]. This yielded one 

factor considered for inclusion in a putative factor structure for 

the ECTD Gamma version. According to Stevens’ guideline 

about the relationship between sample size and cutoff factor 

loading, we considered items with a factor loading greater than 

0.40 significant for the designated factor [16]. This cutoff 

usually functions to suppress any irrelevant items that do not fit 

well into the designated factor. This resulted in all 20 items that 

had statistically significant factor loadings onto the one factor, 

general computational thinking ability incorporating the five 

categories of (a) Abstraction, (b) Algorithmic Thinking, (c) 

Decomposition, (d) Data Representation and Organization, and 

(e) Impact of Computing, indicating each item’s unique 

contribution to the factor. Table IV shows factor loadings of 20 

items and their item characteristics, such as item difficulty and 

item discrimination based on the classical test theory. 

B. Item Analysis 

Item Difficulty. Here, item difficulty index is defined as the 

ratio of the number of correct responses to the number of total 

responses on each item. A higher item difficulty value 

indicates the easiest item. Among the 20 ECTD Gamma items, 

Item 1 was the easiest question as 90% of the participants got 

the question correct and Item 16 was the hardest as only 39% 

of the participants got the question correct. 
 

Table IV: Exploratory Factor Analysis 
Category Question Factor 

Loading 
Item 
Difficulty 

Item 
Discrim. 

Abstraction 1. Number of lines 0.640 0.90 0.37 

2. Factorials 0.589 0.66 0.41 

3. Sigma 0.570 0.68 0.41 

4. Arrays 0.651 0.59 0.51 

Algorithmic 
Thinking 

5. Find value of w 0.765 0.88 0.52 

6. Variable max 0.877 0.80 0.63 

7. Factor and max 0.505 0.73 0.34 

8. Printed sum 0.683 0.52 0.50 

Decompose 9.Dashboard  0.796 0.85 0.51 

10. Program  0.738 0.76 0.52 

11. Rubik’s cube 0.783 0.53 0.56 

12. Test engineer 0.719 0.78 0.53 

Represent 
Data 

13. Natural number 0.765 0.70 0.56 

14. New phone app 0.919 0.82 0.67 

15. Weather data 0.527 0.67 0.39 

16. Bridges 0.434 0.39 0.29 

Impact of 
Computing 

17. Self-driving cars 0.554 0.82 0.32 

18. Social media 0.840 0.79 0.60 

19. Smart phones 0.904 0.86 0.60 

20. Website 0.781 0.74 0.57 

 
 

Item Discrimination: Item discrimination index, which is 

referred to as item-test correlation or as point-biserial 

correlation for dichotomously scored items, means the 

correlation between the item score and the total score. Even 

though the correlation is dependent on item difficulty, high 

item correlation is desired because it indicates that high ability 

respondents tend to get the item correct while low ability 

respondents tend to get the item incorrect [17]. Therefore, 

among the 20 items on ECTD Gamma, Item 14 has the highest 

discrimination and Item 16 has the lowest discrimination. 

Internal Consistency Reliability: The overall reliability of 

the ECTD Gamma with 20 items was Cronbach’s α = 0.878. 

All ECTD Gamma items were worthy of inclusion because 

removal of any items would not increase the score reliability 

for any construct and ECTD Gamma as a whole [18]. 

 Subgroups: Table VI presents results from independent 

samples t-test between several subgroups. There was a 

statistically significant sex difference on the ECTD Gamma 

with a medium effect size (0.324) that favors male students. 

Similarly, there was a statistically significant difference in 

representation on the ECTD Gamma that favors White and 

Asian students over those from other systemically marginalized 

racial/ethnic groups with a large effect size. However, there 

was no difference by student level (first year versus all other 

years). 

Table VI: Subgroup Comparisons of Scores on ECTD Gamma 
 
 Sub- 

cate- 

gory 

N M SD Hedges 
g 

 

t df P 

Sex 
Female 72 13.50 4.98 0.324 -2.2 186 0.031 

Male 116 15.04 4.58     

Representation 

URM 47 12.98 5.38 0.785 -2.4 69.236 0.017 

ORM 135 15.11 4.45     

Student Level 

Year 1 133 14.80 4.63 0.245 1.6 189 0.120 

Year 2 + 58 13.64 5.01     
Note: URM = underrepresented racial/ethnic group, ORM = overrepresented 

V. DISCUSSION  

Results show items clustering in one factor establishing that 

such factor is the desired computational thinking construct. We 

recognize the difficulty of discriminating factors within the 

overall construct since they are highly correlated; these factors 

are closely intertwined.  

We plan to conduct another iteration of validation during 

the Fall of 2021. Fall semesters tend to have better response 

rates, especially since the three institutions are planning to have 

in-person instruction instead of online instruction this year. We 

expect that this next validation will show the five desired 

factors. If it does not, we will begin another round of refining 

questions until the desired model is achieved. 

Our survey results are consistent with the many previous 
studies that show White/Asian advantage over students from 
systemically marginalized racial/ethnic groups in 
computational thinking skills. Similarly, male students were 
found to have an advantage over female students. The absence 
of difference in computational thinking skills by student levels 
is an indication that the instrument may capture an ability that 



does not change simply because of exposure to college classes, 
even in engineering. 

The limitations of the study include a high chance of 

sampling bias, considering the low response rates across all 

three institutions. Second, due to the small sample size of 191, 

we were only able to conduct EFA. CFA modeling is planned 

using the data collected in this fall. Third, even though ECTD 

was designed to assess the five categories, they were not 

captured as latent factors from the EFA. This could be a result 

from a low power due to the small sample size. Fourth, for the 

generalizability of the ECTD, there is a need to test 

psychometric characteristics of the ECTD using the data 

collected from additional institutions.  
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