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Abstract

The null space of the k-th order Laplacian L, known as the k-th homology vector
space, encodes the non-trivial topology of a manifold or a network. Understanding
the structure of the homology embedding can thus disclose geometric or topolog-
ical information from the data. The study of the null space embedding of the
graph Laplacian £ has spurred new research and applications, such as spectral
clustering algorithms with theoretical guarantees and estimators of the Stochastic
Block Model. In this work, we investigate the geometry of the k-th homology
embedding and focus on cases reminiscent of spectral clustering. Namely, we
analyze the connected sum of manifolds as a perturbation of the direct sum of
their homology embeddings. We propose an algorithm to factorize the homol-
ogy embedding into subspaces corresponding to a manifold’s simplest topological
components. The proposed framework is applied to the shortest homologous loop
detection problem, a problem known to be NP-hard in general. Our spectral loop
detection algorithm complements existing methods of topological data analysis. It
scales better than existing methods with no assumptions on the structure of data
and is effective on diverse data such as point clouds and images.

1 Motivation

The k-th homology vector space H;, provides rich geometric information on manifolds/networks.
For instance, the zeroth, the first, and the second homology vector spaces identify the connected
components, the loops, and the cavities in the manifold, respectively. Topological Data Analysis
(TDA) [24, 58] (as well as other early works in this field) has found wide use in analyzing biological
[31, &7], human behavior [, 4], or other complex systems [5X]. Even though they easily generalize
to k > 1, additional efforts are needed to extract topological features (e.g., instances of loops)
besides ranks due to the combinatorial complexity of the structures that support them.

Spectral methods based on k-Laplacians (L), by contrast, investigate #j, in a linear algebraic
manner; abundant geometric information can be extracted from the homology embedding Y (the
null space eigenvectors of L) of Hjy. Analysis of the eigenfunctions (of Hg) [I[4, 37, 40, Y] of
the graph Laplacian L is pivotal in providing guarantees for spectral clustering and community
detection algorithms in well-separated datasets. Recent advances in this field [8, 12, &¥] extend the
existing spectral algorithms based on L to k& > 1; however, the theoretical analysis of Y of H,
unlike spectral clustering, is less developed, in spite of intriguing empirical results by [ZT]. Here,
we put these observations on a formal footing based on the concepts of connected sum and prime
decomposition of manifolds (Section [ and B). We examine these operations through the lens of the
(subspace) perturbation to the homology embedding Y of the discrete k-Laplacian L, (an estimator
of the continuous k-Hodge Laplacian operator Ay) on finite samples (Section H). This framework
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finds applications in, i.e., identifying the shortest homologous loops (Section B). Lastly, we support
our theoretical claims with numerous empirical results from point clouds and images.

2 Background in Hodge theory and topology

Simplicial and cubical complex. An abstract complex is a natural extension of a graph designed
to capture higher-order relationships between its vertices. A simplicial k-complex (used when the
data are point clouds or networks) is a tuple SC;, = (X, -, Xk), with Xy being a set of ¢ di-
mensional simplices, such that every face of a simplex o € ¥, is in 3y for £ < k. As a side
note, a graph G = (V, E)) is an SCy; and SCy = (V, E, T'), which is commonly used in edge flow
learning [, 48], is obtained by adding a set of 3-cliques (triangles) T" of G. This procedure extends
to defining X, as the set of all ¢-cliques of G, with the resulting complex called a clique complex
of the graph G. This complex is also known as a Vietoris-Rips (VR) complex if G is the e-radius
neighborhood graph used in the manifold learning literature [I2, T4, 53], The cubical k-complex
CBy = (Ko, ,K}) is a complex widely used with image data. The difference between this
complex and the SCy, is that a CBy, is a collection of sets of /-cubes, for ¢ < k. Note that we write
Y9 = Ko = V the vertex set and X1 = K; = E the edge set. X9 = T" and K5 = R are the triangle
and rectangle set, respectively. Additionally, we define ny = || (or = |K|) to be the cardinality of
the ¢-dimensional cells and let n = nq for simplicity. For more information about building various
complexes on different datasets please refer to Otter et al. [A3].

k-cochain. By choosing an orientation for every k-simplex oy ; € X (or K}), one can define a
finite-dimensional vector space C, (k-cochain space™). An element w), = > wWi(0k,i)ok,i € Cy is
called a k-cochain; one can further express wy, as wy = (W1, , Wk, ) € R™ by identifying
each oy, ; with the standard basis vector e; € R™*. Functions on nodes and edge flows, for example,
are elements of Cy and C;, respectively.

Boundary matrix. The k-th boundary matrix By [BS] maps a k-cochain of k-cells (sim-
plices/cubes) oy, to the (k — 1)-cochain of its faces, i.e., By : Cp — Cr_1. By € {0, £1}™-1%"k jg
a sparse binary matrix, with the sign of the non-zero entries o;_1, o), given by the orientation of oy,
w.r.t. its face o_1. Hence, different SC or CB will induce different By.. For k£ = 1 on either the SC
or CB, the boundary map is the graph incidence matrix, i.e., (B1)[3],(z,y] = 1, (B1)y],[z.y] = — 1
and zero otherwise; for k& = 2, each column of By contains the orientation of a triangle/rectangle
w.rt. its edges. Specifically, for an SC, (B2)(zy),[z.y,2] = (B2).2ljw.2] = L (B2)[w,2] 2y,2] =
—1, and 0 otherwise; for a CB, (BQ)[a:,y],[m,y,z,w] = (BQ)[y,z]t[a:,y,z,w] = (BZ)[z,w},[a:,y,z,w] =1,
(BQ)[z,w],[w’%z’w] = —1, and 0 otherwise. Simplex o1 is a coface of oy, iff oy, is a face of o411
let coface(o) be the set of all cofaces of oi.. The (k — 1)-th coboundary matrix B, (adjoint of Bj,)
maps ox_1, as a (k — 1)-cochain, to the k-cochain of coface(oy_1).

k-Hodge Laplacian. Let W, be a diagonal non-negative weight matrix of dimension ny, with
[W/]s,» representing the weight of the ¢-simplex/cube o and w; «+ diag(W,). The weighted
k-Hodge Laplacian'z [26] is defined as

Li=AJA,+ Ay AL, where Ag = W, '°B,W,’? for £ =k, k+ 1. (1)

The weights capture combinatorial or geometric information and must satisfy the consistency rela-
tion wy(oy) = Zmlecoface(w) Wot1(0¢+1) (in matrix form: wy = |Byyq|wyyq) for & =k k — 1.
Hence Ay can be seen as normalized boundary matrix. To determine the weight for the (k + 1)-
simplices, one can selected w1 to be constant [28] or based on (a product of) pairwise distance
kernel (for £ = 0, 1) so that the large sample limit exists [[2, I4]. The first and second terms of
() are called respectively the down (LZ‘,iOW“ = AkTAk) and up (L,° = A;HlAkTH) Laplacians.
For k = 0, the down component disappears and the resulting Ly is the symmetric normalized graph
Laplacian used in spectral clustering [53] and Laplacian Eigenmap [5].

"We use chain and cochain interchangeably, see Lim [B3] for the distinction between them.
2In this paper, these matrices are also called the k-Laplacian for simplicity.



k-th homology vector space and embedding. The homology vector space Hy, is a subspace of
Ci (loop space) such that every k-cycle (expressed as a k-cochain) in y, is not the boundary of
any (k + 1)-cochain. In mathematical terms, Hy, := ker(Ay)/im(Ay.1). The rank of the subspace
is called the k-th Betti number 8, = dim(#y), which counts the number of “loops” (homology
classes) in the SC. Hy, is equivalent to the null space of L, [33, AR]; therefore, a basis of Hj, can be
obtained by the eigenvectors Y = [y, -+ ,yz,] € R"* *Br of L}, with eigenvalue 0. The homology

embedding maps a k-simplex 0, 0 Yo, . = [y, (%), -y, (0k)] T € RP*. Note that the basis Y is
only identifiable up to a unitary transformation; hence, individual homology embedding coordinates
might change with a different basis Y.

Continuous operators on manifolds. The k-cochains are the discrete analogues of k-forms [59].
For k = 1, the following path integral [59] (along the geodesic ’y( ) Connecting x and y) relates
a l-cochain w to a 1-form v (vector field): w( f Y '(t)dt. To estimate a vector
field from w, one can solve a least-squares problem [I 21, Wthh 1s the inverse operation of the path
integral (e.g., the vector fields in Figure [ are estimated from Y). Similarly, one can define the
differential d and codifferential 6 operators which are analog to BZ 11 and By, respectively. The
(continuous) k-Hodge Laplacian operators, which act on k-forms, can be defined for manifolds too,
i.e.,, by Ap = di_18% + dk+1di. The homology group (the continuous version of Hy,) is defined as
the null of A. Its elements are harmonic k-forms (i, computed by solving Ay, = 0 with proper
boundary conditions; they represent the continuous version of the discrete homology basis Y.

Connected sum and manifold (prime) decomposition. The connected sum [B3] of two d di-
mensional manifolds M = MM, is built from removing two d dimensional “disks” from each
manifold M1, M5 and gluing together two manifolds at the boundaries (technical details in [33]).
The analog of the connected sum for the abstract complexes will be defined in Section B. The
connected sum is a core operation in topology and is related to the concept of manifold (prime)
decomposition. Informally speaking, the prime decomposition aims to factorize a manifold M into
 smaller building blocks (M = M- - M) so that each M, cannot be further expressed as a
connected sum of other manifolds. The well-known classification theorem of surfaces [3] states that
any oriented and compact surface is the finite connected sum of manifolds homeomorphic to either
acircle St, a sphere S2, or a torus T2. Classification theorems for d > 2 are currently unknown; for-
tunately, the uniqueness of the prime decomposition for d = 3 (up to homeomorphism) was shown
(Kneser-Milnor theorem [BY9]). Recently, Bokor et al. [U] (Corollary 2.5) showed the existence of
factorizations of manifolds with d > 5, even though they might not be unique.

In this paper, we are interested in the following: given finite samples from M, which is a x-fold
connected sum of M, can this decomposition be recovered from the discrete homology embedding
Y of M? Namely, we would like to understand how Y relates to the homology embedding of each
prime manifold M,.

3 Definitions, theoretical/algorithmic aims, and prior works

Definitions. We assume that the data X is sampled from a d-dimensional oriented manifold M
that can be decomposed into « prime manifolds (M = Mif---§M,). Let Z; be an index set of
the data points in X sampled from M;, for i = 1,...k. Denote by SCy, Ly, Hr(M), and Sy
the simplicial complex, the k-Laplacian, the k-homology space, and the k-th Betti number of X

sampled from M. Furthermore, let sio,(j) = (i((f), i E( )) LZ,E”) Hy (M), Br(M,;) be the same
quantities for manifold M; (supported on Z; for i < k). SCk and le (without superscript ¢) are
the comparable notations for the disjoint manifolds M,’s, i.e. SC = Us S/a(b) = (f]o, R ,f)k)

with ig = Uleflg’) for ¢ < k, and Zk is a block diagonal matrix with the ¢-th block being Z',,(c”)
Additionally, let Y and Y (both in R™ *Px) be the homology basis of £}, and Zk, respectively. Let
S; be the index set of columns of Y corresponding to homology subspace Hi(M;), with §;NS; = 0
fori # j, |Si| = Be(M;),and Sy U---US, = {1, -+, Bx}. Since Y is the homology embeddmg of

a block diagonal matrix Zk, we choose it so that [Y]a m equals the homology embedding of L’, L



s EA]S) with column m € S; and is zero otherwise. Namely, Y lies in the direct sum of subspaces
Hyp(M;) fori < k.

Theoretical aim. We are interested in the geometric properties of the null space eigenvectors Y,
and specifically in recovering the homology basis Y of the prime manifolds. Hence, we aim to
bound the distance between the spaces spanned by Y and Y. Under a small perturbation, one can
provide an analogous argument to the orthogonal cone structure [21], B9] in spectral clustering (the
zeroth homology embedding). The main technical challenge is that the connected sum of manifolds
is a highly localized perturbation; namely, most cells are not affected at all, while those involved in
the gluing process gain or lose O(1) (co)faces. Without properly designing £ and L}, one might
get a trivial bound.

st . nd . rd . th .
1 coordinate 2 coordinate 3 coordinate 4 coordinate
- ' )

Algorithmic aim. We exemplify the algo-
rithmic aim using k = 1, d = 2, and k = 2,
particularly the genus-2 surface shown in Fig-
ure [. The null space basis Y of Ly, is only
identifiable up to a unitary matrix due to the
multiplicity of the zero eigenvalues. For in-
stance, the top and bottom rows of Figure [
are both valid bases for the harmonic edge
flows in H;. However, the basis vector fields
in the second row of Figure [ are more inter-
pretable than those in the top row because Y (the first row) is a linear combination of Z (the second
row), with each basis (column in the figure) corresponding to a single homology class (loop). There-
fore, here we propose a data-driven approach to obtain the optimal basis Z such that the coupling
from other manifolds/subspaces is as weak as possible. Being able to obtain Z from an arbitrary Y
can support numerous applications (more in Section B); however, it is difficult to design a criterion
for finding the optimal Z without knowing the geometric structure of the embedding of Hy.

Figure 1: Harmonic vector fields obtained by solv-
ing a least-squares [I2] with Y (top) and Z (bottom).

Prior work. The shape of the embedding by the principal eigenvectors of the graph Laplacian
L is pivotal for showing the guarantees of spectral clustering algorithms for point cloud data or the
inference algorithms for the stochastic block model. The analyses used either the matrix perturbation
theory [40, 55, B6] or assume a mixture model [49]. For the higher-order k-Laplacian, it is reported
empirically that the homology embedding is approximately distributed on the union (directed sum)
of subspaces [Z1]; subspace clustering algorithms [30] were applied to partition edges/triangles
under their framework.

On the application side, the eigen-embedding of Ly, is used implicitly or explicitly in graph signal
processing [77, &4, A5] and in learning algorithms utilizing Hodge decomposition [I2, Z¥, 67]. They
use the gradient/curl cochains (which correspond to the images of [f,iown and L, respectively) in

addition to the homology embedding (ker(Ly,)); hence, our framework is intrinsically different from
these works.

4 Main result: connected sum as a matrix perturbation

In this section, we analyze the geometric structure of Y by viewing the operation of connected
sum through the lens of matrix perturbation theory [51]. We show that, under certain conditions,

the homology embedding Y of the joint Laplacian L, is approximated by Y for the simplices in
Yk N Y. In matrix terms, we show that Y ~ Y O (Theorem ) with O a unitary transformation.
We first prepare our assumptions suited for SC built from point clouds. Most of the assumptions

(except Assumption [ for which the connected sum might not be defined) can be extended to the
clique complex (for networks) or cubical complex (for images) without too many modifications.

Assumption 1. The point cloud X € R"*P is sampled from a d-dimensional oriented and com-
pact manifold M C RP; the homology vector spaces Hy.(SC) formed by the simplicial complex
constructed from X are isomorphic to the homology group Hi,(M) of M, i.e., Hi(SC) ~ Hp(M).

Furthermore, assume that M = Mq4---§ M, and that ’Hk(S/(\](Z)) ~ Hp(M;) fori=1,--- k.



This assumption is the minimal assumption needed for the analysis of the embedding of the Ly; it
states that any procedure to construct the simplicial complex or weight function for Ly, is accepted as
long as the isomorphic condition holds. The construction of the SC from the point cloud is out of the
scope of this manuscript (see, e.g., Chen et al. [2] for building £, from X with an analyzable limit
and Latschev’s theorem [32] on VR complexes). The last condition requires that the manifold M can
be decomposed; this is most likely true, except for the known hard case of M with d = 4 discussed
in Section D. Note that Assumption [ is similar to those used in the multi-manifold clustering [54],
where they required the manifold to be constructed by a x-fold union M = M; U --- U M,. The
goal of our framework is to analyze the homology embedding of k-Laplacian. By contrast, Trillos
et al. [54] are interested in identifying each manifold with the notion of clustering (H).

Assumption [ is for points sampled from manifold M only. To make this assumption hold for
networks or images, one can require that the £, constructed from these two datasets can be roughly
factorized into block-diagonal entries. Below we provide two other assumptions that are valid for
both SC and CB (with some modifications): the first one controls the eigengap and the second one
ensures a small perturbation in the spectral norm of L, — Zk By construction, L, is positive semi-
definite; since we are interested in the stability of its null space, we define, for any matrix L > 0,
the eigengap as the smallest non-zero eigenvalue of L and denote it A\, (L).

Assumption 2. We denote the set of non-intersecting simplices be N, = X N ik. Let the set
of destroyed and created k-simplices during connected sum by Dy, and €y, respectively; they are

defined by €, = X \MNy and Dy = ik\‘ﬂk. We have: (1) no k-homology class is created
during the connected sum process, i.e., B;(SC) = D7, Bk (ga(?)) (2) The eigengaps of E%’Q
and ng are bounded away from the eigengaps ofﬁ,(ji), i.e., min{ Apin (L5, )\min(Zf’@)} >
min{dy, -, 0}, where §; is the eigengap ofﬁgi).

The first condition requires that the intersecting simplices ©j; U € do not create or destroy any
k-th homology class; this holds, for instance, when the manifold M has dimension d > k. Under
this condition, we have Hj(M1§Ms) ~ Hi(M;) @ Hi(Ms) [B3]. A counterexample for this
condition is, e.g., inspecting the cavity space (kK = 2) of a genus-2 surface built from gluing two
tori together. That is, 32 of a genus-2 surface is 1, while the sum of 5 of two tori is 2. The second
condition requires that the principal submatrix of L, described by the block of € U D has large
eigengap. This happens, e.g., when €, and D, are cliques and are contained in small balls.

Assumption 3 (Informal). Let V~Vk = |Bk.+1[9"(k,‘ﬁk+1]|wk+1, Wk—l = |Bk[:, ‘ﬁk]|v~vk Fortl =k
or k — 1, we have max,cq, {we(c)/Wwe(c) — 1} < ey, maxgem, {We(0)/We(0) — 1} < €, and
maxyen, {|we(o)/We(o) — 1|} < €. Assumption K1 is the formal version of this assumption.

For k = 1, it states that not too many triangles are being created or destroyed during connected sum.
For this assumption to hold, the sampling density in the connected sum region should be smaller than
in other regions, i.e., the manifold M should be sparsely connected (e.g., Figure Pla). Empirically,
we observed that the perturbation is small even when M is not sparsely connected (more discussions
in Section B). Note also that €, < ¢, for ¢} represents the net change in the degree after connected
sum. It might be possible to obtain a tighter bound fully by €}’s, which do not depend on the relative
density between the connected sum region and the remaining manifolds; we leave it as future work.

Theorem 1. Let DiffL{""" (DiffL}?) be the modified difference (defined in Supplement &) of L5°"™
~down ~u
and Eko (respectively L. and Ekp ). Under Assumptions -3 with notations defined as before
2 2
and N = k42, if [P | < (20 + e+ (14 VD) Jeh +AvaT] Ay and

HDiffL}:f’H2 < [2v/€ + €, + 2e + 4\/5]2 A2, then there exists a unitary matrix O € RPx*Pr
such that

86 {HDifngown
min{dy, -, 0.}

2 2
+ HDifFLZpH }
2

N 2
HYm’“’: - Ym’“:OHF =

The proof (in Supplement @) is based on bounding the error between L and Zk with £, (the
Laplacian after removal of k-simplices during connected sum), the use of a variant of the Davis-



Kahan theorem [b1], and the bound of the spectral norm of Ly for a simplicial complex, i.e.,
[Lkll2 < Ak =k + 2 [26].

The LHS of () contains only the simplices in
My because Y is not defined on ;. (similar for .
Y and ¢). Nonetheless, (B) makes sure that Imput :SC,k, weights Wy,

the (unbounded) perturbations in the embedding 1 B, Bxi1 = BOUNDARYMAPS(SC, k)
of €, U D} do not propagate to the rest of the > in Algorithm B2
simplices. The bound in (I) can be extended to for ¢ =k, k —1do

CB (Corollary D) by changing the A; value from :

(k+2) to 2k+2. The 2k+2 term here is the maxi- L Wee d1ag{_|1l?25+1 \Wz+11/12n[+1}
mum eigenvalue of the £, built from any cubical App1 = W, B Wil
complex (Proposition 83). 5 L) = AkTAk + Ak+1AkT+1
Corollary 2 (For Ly, built from a CB). UnderAs- ¢ Y € R™*Pr < NULLSPACE(L})
sumptions B-B with DiffL}” as well as DiffL{o" 7 Z « ICANOPREWHITE(Y)

defined in Theorem Wl and A, = 2k + 2, there  Return :Independent basis Z

exists a unitary matrix O such that (Q) holds.

Algorithm 1: Subspace identification

W N

4

Subspace # (M) identification. We propose to approximately recover Y from the columns of
the coupled basis Y by blind source separation, as described by Algorithm 0. Specifically, the
independent basis Z is obtained by Infomax ICA [6] on Y of L, with a modification (Line @) that
preserves the necessary properties of harmonic cochains (i.e., they are divergence-free and curl-free,
see also Proposition B). Algorithm 0 works for CB as well by using the appropriate By, Bjy1
construction method (Line ). Each column of the obtained Z is now approximately supported on a
single prime manifold M.

5 Applications: homologous loops detection, clustering, and visualization

Homologous loop detection. In ad-
dition to the rank information, one
might find it beneficial to extract the Input :Z = [z;,--- 23], V, E, edge distance d
shortest cycle of the corresponding 1 fori=1,--- 5, do
‘Hj. generator. This application is 2 E:r «{(s,t) : (s,t) € E and [z](5,4) > 0}
found useful in domains including 3 E «+ {(t,s): (s,t) € Eand [Z,]( < 0}
. .« . . . 7 9 . ) tl(s,

ﬁndmg minimum energy trajectories 7 < PERCENTILE(|z;],1 — 1/51)
in molecular dynamics datasets, tra- % L z

5 EX«{e€ ETUE; :|[z]| <7}

6

7

8

9

Algorithm 2: Spectral homologous loop detection

jectory inference in RNA single-cell

sequencing [46], and segmenting cir- Ei Ez+ UE;\E]

cular structures in medical images G; + (V, E;), with weight of e € E; being [d].
[60]. We propose a spectral short- dmin = inf

est homologous loop detection algo- for e = (t,50) € E; do
rithm (Algorithm D) based on the

x 7% _ _
shortest path algorithm (Dijkstra) as 10 P d" DHKSTR?(G% from=so, to=t)
follows: for each dimension i = P Note that P* = [sg,s1, " ,1]
1,---, B3, the algorithm reverses ev- 1 if d* < dyin then
ery edge e having negative [z;]. to 12 L Ci + [t,80,81, " ,1]

generate a weighted digraph G; = L
(V, E;) (Lines @), with the weight Return: Cy,---,Cs,
of edge e = (j,j') € E; equal to the
Euclidean distance [d](; j:y = [|x; — X;||2. The algorithm finds a shortest (in terms of d) loop on
this weighted digraph for each ¢ and outputs it as the homologous loop representing the ¢-th class.
We present the following proposition (with the proof in Supplement Bl) to support Algorithm [; it
implies that if each coordinate of Z extracted from Algorithm [ corresponds to a homology class,
then the detected homologous loop for each homology class is the shortest.

Proposition 3. Let z; for i = 1,---, 31 be the i-th homology basis that corresponds to the i-th
homology class. For everyi = 1,--- 31, (1) there exist at least one cycle in the digraph G; such
that every vertex v € V can traverse back to itself (reachable); (2) the corresponding cycle will
enclose at least one homology class (no short-circuiting).



Since every vertex is reachable from itself, we are guaranteed to find a loop for any starting/ending
pair (Lines B-I2). Additionally, there will be no short-circuiting for any loop; each loop we found
from Dijkstra is guaranteed to be non-trivial. However, there is one caveat from the second property:
even though the i-th loop is non-trivial, it might not always be corresponding to the i-th homology
class due to the noise in small [z;].. Namely, loops that do not represent i-th homology class can
be formed with edges e having small [z;]., resulting in the instability and the (possible) duplication
of the identified loops. To address the issue, we propose a heuristic thresholding, by which we keep
the ny /31 edges with the largest absolute value in |[z;].| (Lines B-H). We chose to keep n1 /31 by
treating each homology class equally, i.e., each class has roughly n/3; edges. Unlike Theorem
0 or Algorithm [, Algorithm I cannot be extended to the case when k > 2 because the Dijkstra
algorithm is employed. We leave its generalization to extract higher-order cavities as future work.

Compared with the previous approach that finds the shortest loops [T6] combinatorially, our ap-
proach has better time complexity; specifically, the algorithm by Dey et al. [[[&] has time complexity
O(nn$ + nn?ny), whereas Algorithm B runs in time O(n2-37" + $2n; + Byninlogn). The first,
second, and third terms correspond to the time complexity of eigendecomposition of £, the Info-
max ICA, and the Dijkstra algorithm on every digraph G;, respectively. Note that if the simplicial
complex is built from point clouds, the number of triangles no may be large; this dependency on ny
makes the algorithm [T6] hard to scale. On the other hand, our framework requires that z, are each
supported on one homology class; therefore, loops can only be correctly identified using Algorithm
D if the manifold is sparsely connected (Assumptions [-3). Additional comparisons between our
algorithm and other methods that pose special requirements on the analyzed data can be found in
Supplement D27

Classifying any 2-dimensional manifold. The Betti number /3; of a torus is 2, which is equal to
that of two disjoint circles; hence one cannot distinguish these two manifolds only by rank informa-
tion. Fortunately, they can be categorized using the homology embedding Z. By the classification
theorem [B], any 2D surface is the connected sum of circles S! and tori T!; therefore, Theorem [
indicates that embedding lies approximately in the directed sum of homology subspace of S and/or
T?2. The homology embedding of S' is a line since it is in R. On the other hand, any loop in a torus
can be a convex combination of the two homology classes, implying that the intrinsic dimension of
the homology embedding is 2. It is hard to obtain Z of any arbitrary torus; we present the homology
embedding of the flat m-torus below by expressing the null space basis (1-cochains) as the path
integrals of the corresponding harmonic 1-forms [, 5Y].

Proposition 4. The envelope of the first homology embedding (1-cochain) induced by the harmonic
1-form on the flat m-torus T™ is an m-dimensional ellipsoid.

The proof (in Supplement B) is straightforward thus is omitted here. Proposition B and the classifi-
cation theorem suggest that the first homology embedding is either a line, a disk, or a combination
of the two (with replacement). See an example for the genus-2 surface in Figures [lj and K.

Note that it is possible to classify any 2-manifold with higher-dimensional homology groups; for
instance, one can distinguish T2 from S'#S' by the second homology group. However, our approach
scales better in computation or memory usage since inspecting s needs at least the calculation and
storage of tetrahedrons from the neighborhood graph.

Other applications. As pointed out earlier, one can visualize the basis of the harmonic vector
fields (of Hj) by overlaying the columns of Y onto the original dataset (Figure ). Being able
to successfully extract a decoupled basis Z increases the interpretability of Hj, as shown in the
second row of Figure [. Theorem [ also supports the use of subspace clustering algorithm in the
higher-order simplex clustering framework [21].

6 Experiments

We demonstrate our approach by computing Y, Z and the shortest loops for five synthetic mani-
folds: two of them are prime manifolds (TORUS forus, 3-TORUS three-torus) and three (PUNCTPLANE
punctured plane with two holes, GENUS-2 genus-2, and TORI-CONCAT concatenation of 4 tori) are
factorizable manifolds. Furthermore, five additional real point clouds (ETH and MDA from chemistry,
PANCREAS from biology, 3D-GRAPH from 3D modeling, and ISLAND from oceanography) are ana-



i) ) (k) 0]

Figure 2: (a) The first homology embedding of PUNCTPLANE. The harmonic vector fields are overlaid
on the data in the inset plots; green, blue, red, and yellow arrows correspond to y, ¥, Z1, and zo,
respectively. (b), (c), (e), (i), and (1) are the detected loops using Dijkstra on Z for PUNCTPLANE
(colors are in (a)), TORUS, 3-TORUS, GENUS-2, and TORI-CONCAT, respectively. (g) and (k) represent
the identified loops on the coupled embedding Y for GENUS-2 and TORI-CONCAT, respectively. (d),
(), (h), and (j) present the embeddings used to detect loops in (c), (e), (g), and (i), respectively.

lyzed under this framework. For all the point clouds, we build the VR complex SC from the CkNN
kernel [8] so that the resulting £, is sparse and the topological information is preserved. Note that
other methods for building an SC from X can also be used as long as Hy, is successfully identified
(Assumption ). Lastly, we illustrate the efficacy of our framework to a non-manifold data: RETINA
from medical imaging. Please refer to Supplement O for detailed discussions on procedures to gen-
erate, preprocess, and download these datasets. All experiments are replicated more than five times
with similar results. We perform our analysis on a desktop running Linux with 32GB RAM and an
8-Core 4.20GHz Intel® Core™ i7-7700K CPU; every experiment completes within 3 minutes (1-2
minutes on eigendecomposition of £, and around 30 seconds on both ICA and Algorithm D).

Synthetic manifolds. The results for the synthetic manifolds are in Figure . Figure Da (the har-
monic embedding of PUNCTPLANE) confirms Theorem [ that Y is approximately distributed on two
subspaces (yellow and red), with each loop parametrizing a single hole (inset of Figure Da). As
discussed previously in Figure [, the harmonic vector bases (green and blue) are mixtures of the
separate subspaces; therefore, these bases have poor interpretability compared with the independent
subspace Z identified by Algorithm 0. The shortest loops (Figure Bb) corresponding to z; (yellow),
Zy (red) are obtained by running Dijkstra on the digraphs induced by z; and z, separately (Algo-
rithm D). Figures Dc—0f show the results of the two simple prime manifolds: TORUS and 3-TORUS.
The harmonic embeddings of TORUS (Figure @d) and 3-TORUS (Figure Df) are a two-dimensional
disk and a three-dimensional ellipsoid, respectively; this confirms the conclusion from Proposition
B. The shortest loops obtained from Algorithm D for these two datasets are in Figures Dc and De,
showing that these loops travel around the holes in TORUS (or 3-TORUS). Note that we plot 3-TORUS
in the intrinsic coordinate because a three torus can not be embedded in 3D without breaking neigh-
borhood relationships. Three lines in De are indeed loops due to the periodic boundary condition,
i.e., 0 = 2, in the intrinsic coordinate. Figures Dh and [j show the embedding of the coupled
harmonic basis (Y) and that corresponding to the independent subspace (Z) obtained by Algorithm
. Compared with Y, each coordinate of Z corresponds to a subspace, i.e., the left or right handle of
GENUS-2, and does not couple with other homology generators. Z is thus a union of two 2D disks,
with each disk approximating the harmonic embedding of a torus (see Figure K1 for more detail).
Compared with the loops obtained by running Algorithm D on Y (Figure Dg), each loop in Figure D
identified from Z parameterizes the corresponding homology generator without being homologous
to other loops. Similar results on TORI-CONCAT are in Figures Pk and D, which correspond to the
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Figure 3: (a) and (b) are the detected loops of ETH using Dijkstra on Z (in (¢)) in the torsion space
(inset of (a)) and in the PCA space, respectively. (d)—(f) are the results for MDA that are similar
to those for ETH in (a)—(c). (g)—(j) show the identified loops using Z for PANCREAS, 3D-GRAPH,
ISLAND, and RETINA, respectively.

loops obtained from Y and Z, respectively. The pairwise scatter plots of the eight-dimensional Z (or
Y) are in Figure 52 of Supplement . Note that PUNCTPLANE is an example of a sparsely connected
manifold (see the low-density area in the middle), with €; = 0.035 and ¢y ~ 0.038. Manifolds of
other synthetic/real datasets might not be sparsely connected due to the (approximately) constant
sampling densities; nevertheless, the perturbations to the subspaces remain small for these datasets.

Small molecule data [13]. Figures Ba—Bc and Bd-Bf show our analysis on ETH and MDA, respec-
tively. These two small molecule datasets, whose ambient dimensions are D = 102 and D = 98,
are suggested to be noisy non-uniformly sampled tori [57]; the harmonic embeddings of these two
datasets (Figures Bc and Bf ) confirm this idea. Finding the minimum trajectories corresponding to
a specific bond torsion is of interest in chemistry; in these two molecular dynamics systems, this
problem can be translated into finding the homologous loops in the point cloud. The homologous
loops found by Algorithm [ overlaid on the first three principal components (PCs) for these two
datasets can be found in Figures Bb (for ETH) and Be (for MDA). The same homologous loops plotted
in the bond torsion space (with definition in the insets) based on our prior knowledge are in Figures
Ba and Bd. Similar to the discussion for 3-TORUS (Figure De), the yellow/red trajectories form loops
due to the periodic boundary condition of the bond torsions.

RNA single-cell sequencing data [7]. The trajectory inference methods [26] for analyzing the
RNA single-cell sequencing datasets aim to order the cells (points in high-dimensional expression
space) along developmental trajectories, which are inferred from the structure of the point clouds.
Identifying loops in the dataset can serve as a building block for delineating a correct trajectory,
especially for determining cell cycle and cell differentiation. To illustrate the idea, we compute
the 1-Laplacian on the CkNN kernel [R] constructed on the UMAP [36] embedding (Algorithm ).
Figure Bg shows the identified loops from Algorithm D, with the green loop being the cycle of ductal
cells and yellow/red loops representing a trifurcation (endocrine cell differentiation).

Additional point cloud datasets. 3D-GRAPH [I5] is a 3D model of a Buddha statue with a pre-
computed triangulation. We treat the 3D model as a point cloud and subsample 3000 farthest points
from the original dataset; £ is obtained from the VR complex of the CkNN kernel. Note that with
this small sample size, two smaller loops near the waist of the statue are not detectable. Hence, the
number of zero eigenvalues of £, is 3, with the corresponding homology generators shown in Fig-
ure Bh. ISLAND [23], which contains ocean buoys around the Tasman sea, is the other point cloud in



our analysis. The estimated /3; is 3, with the detected loops being the North Island of New Zealand,
the South Island of New Zealand, and the main island of Tasmania (Figure Bi).

Non-manifold dataset. Our framework for identifying subspaces is still valid for cubical com-
plexes built from images (by Corollary ). We demonstrate the idea on RETINA, a medical retinal
image [?5]. The cubical complex is constructed by intensity thresholding (also called the sub-level
set method in TDA [B8]) and then applying morphological closing on the binary image to remove
small cavities. The weight for every rectangle wo (o) is set to 1; the estimated null space dimension
of the £, built from CB is $; = 12, with the identified homologous loops in Figure Bj. The result
shows the robustness of the proposed framework even for large ;.

7 Conclusion and broader impact

Our contributions in the emerging field of spectral algorithms for k-Laplacians £y, [I2, 21, 35, 4R]
are summarized as follows. (i) We extend the study of the homology embedding of vertices by the
graph Laplacian L (spectral clustering) to those of higher-order simplices by L. Specifically, the
k-th homology embedding can be approximately factorized into parts, with each corresponding to a
prime manifold given a small perturbation (small ¢, and €}, for £ = k, k—1). (ii) The analysis is made
possible by expressing the x-fold connected sum as a matrix perturbation. This convenient property
of the homology embedding supports (iii) the use of ICA to identify each decoupled subspace and
motivates (iv) the application to the shortest homologous loop detection problem. The proposed
framework opens up numerous future directions for us to explore. For instance, one can extend
our framework to investigate the generalization of the loosely connected clusters, i.e., when the null
space H, eigenvalues are not strictly zero; it applies to the case when analyzing the noisy topological
structures in the data manifold. Moreover, the connections of our framework to the recent advances
in spectral TDA and representation learning can be further explored; they include the persistent
spectral method [BR, 57] and the disentanglement of representation [63] in generative modeling.

Broader impact. Our analysis provides insight into the structure of the k-th harmonic embedding.
This framework can inspire researchers in developing spectral topological data analysis algorithms
(e.g., visualization, clustering, tightest higher-order cycles for k > 2 [0, B7]) similar to those
that were inaugurated by spectral clustering two decades ago. These applications are especially
beneficial to scientists (chemists, biologists, oceanographers, etc.) who use high-dimensional data
analysis techniques for studying complex systems. Similar to the limitation of other unsupervised
learning algorithms, practitioners without solid understandings of both the analyzed datasets and the
used algorithm might draw controversial conclusions (see, e.g., discussions in [2, &11]). Possible ap-
proaches to mitigate the negative consequences are to design proper validation and causal inference
algorithms for this framework; we leave them as potential directions we will explore.
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