Demystifying the Adversarial Robustness of Random Transformation Defenses

Chawin Sitawarin, Zachary Golan-Strieb, David Wagner

EECS Department, University of California, Berkeley
chawins @berkeley.edu, zacharyjgs @berkeley.edu, daw @cs.berkeley.edu

Abstract

Current machine learning models suffer from evasion at-
tacks (i.e., adversarial examples) raising concerns in security-
sensitive settings such as autonomous vehicles. While many
countermeasures may look promising, only a few withstand
rigorous evaluation. Recently, defenses using random trans-
formations (RT) have shown impressive results, particularly
BaRT (Raff et al. 2019) on ImageNet. However, this type
of defense has not been rigorously evaluated, leaving its ro-
bustness properties poorly understood. The stochasticity of
these models also makes evaluation more challenging and
many proposed attacks on deterministic models inapplicable.
First, we show that the BPDA attack (Athalye, Carlini, and
Wagner 2018) used in BaRT’s evaluation is ineffective and
likely overestimates its robustness. We then attempt to con-
struct the strongest possible RT defense through the informed
selection of transformations and Bayesian optimization for
tuning their parameters. Furthermore, we create the strongest
possible attack to evaluate our RT defense. Our new attack
vastly outperforms the baseline, reducing the accuracy by 83%
compared to the 19% reduction by the commonly used EoT
attack (4.3 x improvement). Our result indicates that the RT
defense on Imagenette dataset (ten-class subset of ImageNet)
is not robust against adversarial examples. Extending the study
further, we use our new attack to adversarially train RT defense
(called AdvRT). However, the attack is still not sufficiently
strong, and thus, the AdvRT model is no more robust than
its RT counterpart. In the process of formulating our defense
and attack, we perform several ablation studies and uncover
insights that we hope will broadly benefit scientific communi-
ties studying stochastic neural networks and their robustness
properties.

1 Introduction

Today, deep neural networks are widely deployed in safety-
critical settings such as autonomous driving and cybersecu-
rity. Despite their effectiveness at solving a wide-range of
challenging problems, they are known to have a major vulner-
ability. Tiny crafted perturbations added to inputs (so called
adversarial examples) can arbitrarily manipulate the outputs
of these large models, posing a threat to the safety and privacy
of the millions of people who rely on existing ML systems.
The importance of this problem has drawn substantial atten-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion, and yet we have not devised a concrete countermeasure
as a research community.

Adversarial training (Madry et al. 2018) has been the fore-
most approach for defending against adversarial examples.
While adversarial training provides increased robustness, it
results in a loss of accuracy on benign inputs. Recently, a
promising line of defenses against adversarial examples has
emerged. These defenses randomize either the model parame-
ters or the inputs themselves (Lecuyer et al. 2019; He, Rakin,
and Fan 2019; Raff et al. 2019; Liu et al. 2019; Xie et al.
2018; Zhang and Liang 2019; Bender et al. 2020; Liu et al.
2018; Cohen, Rosenfeld, and Kolter 2019; Dhillon et al. 2018;
Guo et al. 2018). Introducing randomness into the model can
be thought of as a form of smoothing that removes sinuous
portions of the decision boundary where adversarial exam-
ples frequently lie (He, Li, and Song 2018). Among these
randomization approaches, Raff et al. (2019) propose Bar-
rage of Random Transforms (BaRT), a new defense which
applies a large set of random image transformations to clas-
sifier inputs. They report a 24 x increase in robust accuracy
over previously proposed defenses.

Despite these promising results, researchers still lack a
clear understanding of how to properly evaluate random de-
fenses. This is concerning as a defense can falsely appear
more robust than it actually is when evaluated using sub-
optimal attacks (Athalye, Carlini, and Wagner 2018; Tramer
et al. 2020). Therefore, in this work, we improve existing
attacks on randomized defenses, and use them to rigorously
evaluate BaRT and more generally, random transformation
(RT) defenses. We find that sub-optimal attacks have led to
an overly optimistic view of these RT defenses. Notably, we
show that even our best RT defense is much less secure than
previously thought, formulating a new attack that reduces
its security (from 70% adversarial accuracy found by the
baseline attack to only 6% on Imagenette).

We also take the investigation further and combine RT
defense with adversarial training. Nevertheless, this turns out
to be ineffective as the attack is not sufficiently strong and
only generates weak adversarial examples for the model to
train with. The outcomes appear more promising for CIFAR-
10, but it still lacks behind deterministic defense such as
Madry et al. (2018) and Zhang et al. (2019). We believe
that stronger and more efficient attacks on RT-based models
will be necessary not only for accurate evaluation of the

stochastic defenses but also for improving the effectiveness
of adversarial training for such models.
To summarize, we make the following contributions:

* We show that non-differentiable transforms impede opti-
mization during an attack and even an adaptive technique
for circumventing non-differentiability (i.e., BPDA (Atha-
lye, Carlini, and Wagner 2018)) is not sufficiently ef-
fective. This reveals that existing RT defenses are likely
non-robust.

* To this end, we suggest that an RT defense should only
use differentiable transformations for reliable evaluations
and compatibility with adversarial training.

* We propose a new state-of-the-art attack for RT defense
that improves over EoT (Athalye et al. 2018) in terms of
both the loss function and the optimizer. We explain the
success of our attack through the variance of the gradients.

* Improve the RT scheme by using Bayesian optimization
for hyperparameter tuning and combining it with adver-
sarial training which uses our new attack method instead
of the baseline EoT.

2 Background and Related Works
2.1 Adversarial Examples

Adversarial examples are carefully perturbed inputs designed
to fool a machine learning model (Szegedy et al. 2014; Biggio
et al. 2013; Goodfellow, Shlens, and Szegedy 2015). An
adversarial perturbation J is typically constrained to be within
some £,-norm ball with a radius of €. The £,-norm ball is a
proxy to the “imperceptibility” of ¢ and can be thought of as
the adversary’s budget. In this work, we primarily use p = co
and only consider adaptive white-box adversary. Finding the
worst-case perturbation 6* requires solving the following
optimization problem:

Tagy = T + 0% =z + argmax L(z + 0,y) M
&:[18]l,,<e

where L : R x R® — R is the loss function of the target
model which, in our case, is a classifier which makes predic-
tions among C classes. Projected gradient descent (PGD) is
often used to solve the optimization problem in Eqn. 1.

2.2 Randomization Defenses

A number of recent papers have proposed defenses against
adversarial examples which utilize inference-time random-
ization. One common approach is to sample weights of the
network from some probability distribution (Liu et al. 2018;
He, Rakin, and Fan 2019; Liu et al. 2019; Bender et al. 2020).
In this paper, we instead focus on defenses that apply random
transforms to the input (Raff et al. 2019; Xie et al. 2018;
Zhang and Liang 2019; Cohen, Rosenfeld, and Kolter 2019),
many of which claim to achieve state-of-the-art robustness.
Unlike prior evaluations, we test these defenses using a wide
range of white-box attacks as well as a novel stronger at-
tack. A key issue when evaluating these schemes is that PGD
attacks require gradients through the entire model pipeline,
but many defenses use non-differentiable transforms. As we
show later, this can cause evaluation results to be misleading.

Transformed input

| Neural — .
Network -l F{na?
L prediction
Random Neural
Image - . @ -
Transforms
Neural -
Network

Figure 1: An illustration of a random transformation (RT)
defense against adversarial examples. Transformations of dif-
ferent types and parameters are sampled and applied sequen-
tially to multiple copies of the input. All of the transformed
inputs are then passed to a single neural network, and the
outputs are combined to make the final prediction.

Output distribution

Different works have tried applying different random trans-
formations to their inputs. Xie et al. randomly resize and pad
images (Xie et al. 2018). While this defense ranked second in
the NeurIPS 2017 adversarial robustness competition, their
security evaluation did not consider adaptive attacks where
the adversary has full knowledge of the transformations.

Zhang et al. (Zhang and Liang 2019) add Gaussian noise
to the input and then quantize it. They report that this defense
outperforms all of the NeurIPS 2017 submissions. For their
attack, Zhang et al. approximate the gradient of the transform,
which could lead to a sub-optimal attack. In this paper, we
use the exact gradients for all transformations when available.

More recently, Raff et al. (Raff et al. 2019) claim to achieve
a state-of-the-art robust accuracy 24 x better than adversar-
ial training using a random transformation defense known
as Barrage of Random Transforms (BaRT). BaRT involves
randomly sampling a large set of image transformations and
applying them to the input in a random order. Because many
transformations are non-differentiable, BaRT evaluates their
scheme using an attack that approximates the gradients of the
transforms. In Section 4, we show that this approximation is
ineffective, giving overly optimistic impression of BaRT’s
robustness, and we re-evaluate BaRT using a stronger attack
which utilizes exact transform gradients.

3 Random Transformation Defense

Here, we introduce notations and the design of our RT de-
fense, formalizing the BaRT defense.

3.1 Decision Rules

RT repeatedly applies a randomly chosen transform to the
input, uses a neural network to make a prediction, and then
averages the softmax prediction scores:

9(x) = Eop(o) o (f (t(2:0)))] 2)

where o(-) is the softmax function, f : R? — R a neural
network (C' is the number of classes), and the transformation
t(-;0) : RY — R? is parameterized by a random variable 0
drawn from some distribution p(6).

In practice, we approximate the expectation in Eqn. 2 with

n Monte Carlo samples per one input x:

o (f(t(z;0:))) (3)

1

9(x) = gn(x) =

n

7

We then define the final prediction as the class with the largest
softmax probability: §(z) = argmax.cic) [gn(7)]c. Note
that this decision rule is different from most previous works
that use a majority vote on hard labels, i.e., Jmaj(z) =

argmax.cc; Yoiq 1 {c = arg max;¢(c fj(x)} (Raff
et al. 2019; Cohen, Rosenfeld, and Kolter 2019). We later
show in Appendix D.1 that our rule is empirically superior
to the majority vote. From the Law of Large Numbers, as
n increases, the approximation in Eqn. 3 converges to the
expectation in Eqn. 2. Fig. 1 illustrates the structure and the
components of the RT architecture.

3.2 Parameterization of Transformations
Here, ¢(-; 0) represents a composition of S different image

transformations where # = {#(1), ..., 6(5)} and #(*) denotes
the parameters for the s-th transformation, i.e.,
t(ac; 9) =tg(s) O ty(s—1) 0 --- 0y (CB) (@)

Each () is a random variable comprised of three compo-
nents, i.e., 0) = {7(5), 3(5) ()}, which dictate the prop-
erties of a transformation:

1. Type 7 of transformation to apply (e.g., rotation, JPEG
compression), which is uniformly drawn, without re-
placement, from a pool of K transformation types: 7 ~
Cat(K,1/K).

2. A boolean 3 indicating whether the transformation will
be applied. This is a Bernoulli random variable with prob-
ability pg: 5 ~ Bern (p).

3. Strength of the transformation (e.g., rotation angle, JPEG
quality) denoted by «, sampled from a predefined distri-
bution (either uniform or normal): o ~ p(a).

Specifically, for each of the n transformed samples, we
sample a permutation of size S out of K transformation
types in total, i.e. {7(1), ..., 79} € Perm(K, S). Then the
boolean and the strength of the s-th transform are sampled:
B) ~ Bern (p,) and a'®) ~ p(a, (). We abbreviate this
sampling process as 6 ~ p(6) which is repeated for every
transformed sample (out of n) for a single input.

Assuming that the K transformation types are fixed,
an RT defense introduces, at most, 2K hyperparameters,
{p1,...,px}and {a1,...,ax}, that can be tuned. It is also
possible to tune by selecting K’ out of K transformation
types, but this is combinatorially large in K. In Appendix C,
we show a heuristic for “pruning” the transformation types
through tuning p and a (e.g., setting p = 0 is equivalent to
removing that transformation type).

3.3 Choices of Transformations

In this work, we use a pool of K = 33 different im-
age transformations including 19 differentiable and 2 non-
differentiable transforms taken from the 30 BaRT trans-
forms (Raff et al. 2019) (counting each type of noise injection

as its own transform). We replace non-differentiable transfor-
mations with a smooth differentiable alternative (Shin and
Song 2017). The transformations fall into seven groups: noise
injection (7), blur filtering (4), color-space alteration (8), edge
detection (2), lossy compression (3), geometric transforma-
tion (5), and stylization (4). All transforms are described in
Appendix A.1.

4 Evaluating Raff et al. (2019)’s BaRT

Backward-pass differentiable approximation (BPDA) was
proposed as a heuristic for approximating gradients of non-
differentiable components in many defenses to make gradient-
based attacks applicable (Athalye, Carlini, and Wagner 2018).
It works by first approximating the function with a neural net-
work and backpropagate through this network instead of the
non-differentiable function. Evaluations of BaRT in Raff et al.
(2019) have considered BPDA as some transformations are
innately non-differentiable or have zero gradients almost ev-
erywhere (e.g., JPEG compression, precision reduction, etc.).
To approximate a transformation, we train a model #, that
minimizes the Euclidean distance between the transformed
image and the model output:

N
win 3, B MeCwid) — o), 6

We evaluate the BPDA approximation below in a series of
experiments that compare the effectiveness of the BPDA
attack to an attack that uses exact gradients.

4.1 Experiment Setup

Our experiments use two datasets: CIFAR-10 and Ima-
genette (Howard 2021), a ten-class subset of ImageNet.
While CIFAR-10 is the most common benchmark in the
adversarial robustness domain, some image transformations
work poorly on low-resolution images. We choose Imagenette
because BaRT was created on ImageNet, but we do not have
resources to do thorough investigation on top of adversarial
training on ImageNet. Additionally, the large and realistic
images from Imagenette more closely resemble real-world
usage All Imagenette models are pre-trained on ImageNet
to speed up training and boost performance. Since RT mod-
els are stochastic, we report their average accuracy together
with the 95% confidence interval from 10 independent runs.
Throughout this work, we consider the perturbation size
of 16/255 for Imagenette and 8/255 for CIFAR-10. Ap-
pendix A.2 has more details on the experiments (network
architecture, hyperparameters, etc.).

4.2 BPDA Attack is Not Sufficiently Strong

We re-implemented and trained a BaRT model on these
datasets, and then evaluated the effectiveness of BPDA at-
tacks against this model.! First, we evaluate the full BaRT
model in Table 1, comparing an attack that uses a BPDA
approximation (as Raff et al. (2019)) vs an attack that
uses the exact gradient for differentiable transforms and

!'The authors have been very helpful with the implementation
details but cannot make the official code or model weights public.

Transforms used

Adversarial accuracy w/ gradient approximations

Clean accuracy

Exact BPDA Identity Combo
BaRT (full) 88.10 £0.16 n/a 52.324+0.22 3649+£0.25 25.241+0.16
BaRT (only differentiable) 87.43+£0.28 26.06+0.21 6528+0.25 41.25+0.26 n/a

Table 1: Comparison of attacks with different gradient approximations. “Exact” directly uses the exact gradient. “BPDA” uses

the BPDA gradient for most transforms and the identity for a few. “Identity” backpropagates as an identity function, and “Combo

39

uses exact gradient for differentiable transforms and BPDA gradient otherwise. Full BaRT uses a nearly complete set of BaRT
transforms (K = 26), and “BaRT (only differentiable)” uses only differentiable transforms (KX = 21). We use PGD attack with

EoT and CE loss (e = 16/255, 40 steps).

(c) BPDA crop

(a) Original (b) Exact crop
Figure 2: Comparison of crop transform output and output of
BPDA network trained to approximate crop transform.

BPDA for non-differentiable transforms, denoted “BPDA”
and “Combo”, respectively. Empirically, we observe that at-
tacks using BPDA are far weaker than the equivalent attack
using exact gradient approximations. Similarly, on a vari-
ant BaRT model that uses only the subset of differentiable
transforms, the BDPA attack is worse than an attack that
uses the exact gradient for all transforms. BPDA is surpris-
ingly weaker than even a naive attack which approximates
all transform gradients with the identity. There are a few pos-
sible explanations for the inability of BPDA to approximate
transformation gradients well:

1. AsFig. 2 illustrates, BPDA struggles to approximate some
transforms accurately. This might be partly because the
architecture Raff et al. (2019) used (and we use) to approx-
imate each transform has limited functional expressivity:
it consists of five convolutional layers with 5x5 kernel and
one with 3x3 kernel (all strides are 1), so a single output
pixel can only depend on the input pixels fewer than 11
spaces away in any direction (5- 5] +1-|3] = 11). Con-
sidering the inputs for Imagenette are of size 224 x 224,
some transforms like “crop” which require moving pixels
much longer distances are impossible to approximate with
such an architecture.

2. The BPDA network training process for solving Eqn. 5
may only find a sub-optimal solution, yielding a poor
approximation of the true transformation.

3. During the attack, the trained BPDA networks are given
partially transformed images, yet the BPDA networks are
only trained with untransformed inputs.

4. Since we are backpropagating through several transforms,
one poor transform gradient approximation could ruin the
overall gradient approximation.

Appendix A.3 has more details on these experiments. These

results show that BaRT’s evaluation using BPDA was overly
optimistic, and BaRT is not as robust as previously thought.

Since BPDA is unreliable for approximating gradients of
non-differentiable image transformations, we recommend
that other ensuing RT-based defenses only use differen-
tiable transformations. For the rest of this paper, we only
study the robustness of RT defenses with differentiable trans-
forms to isolate them from an orthogonal line of research on
non-differentiable defenses (e.g., with approximate gradients
or zero-th order attacks). Additionally, differentiable mod-
els can also boost their robustness further when combined
with adversarial training. We explore this direction further
in Section 7. Even without non-differentiable transforms, we
still lack reliable evaluation on stochastic defenses apart from
EoT. In the next section, we show that applying an EoT attack
on RT defense results in a critically sub-optimal evaluation.
After that, we propose a stronger attack.

5 Hyperparameter Tuning on RT Defenses

Before investigating attacks, we want to ensure we evalu-
ate on the most robust RT defense possible. We found that
BaRT is not robust, but it could be because of the chosen
transformations and their hyperparameters which they do
not provide any justification for. Finding the most robust
RT defense is, however, challenging because it consists of
numerous hyperparameters including the K transformation
types, the number of transformations to apply (.5), and their
parameters (a and p). A typical grid search is intractable
since we have 33 transformations, and trying to optimize the
parameters directly with the reparameterization trick does
not work as most transforms are not differentiable w.r.t. their
parameters.

We systematically address this problem by using Bayesian
optimization (BO) (Snoek, Larochelle, and Adams 2012), a
well-known black-box optimization technique used for hyper-
parameter search, to fine-tune a and p. In short, BO optimizes
an objective function that takes in the hyperparameters (a and
p in our case) as inputs and outputs adversarial accuracy. This
process, which is equivalent to one iteration in BO, is compu-
tationally expensive as it involves training a neural network
as a backbone for an RT defense and evaluating it with our
new attack. Consequently, we have to scale down the problem
by shortening the training, using fewer training/testing data
samples, and evaluating with fewer attack steps. Essentially,
we have to trade off precision of the search for efficiency.
Because BO does not natively support categorical or integral

Datasets Attacks Adv. Accuracy
Baseline 70.79 £0.53
Imagenette AutoAttack 85.46 £0.43
Our attack 6.34 £ 0.35
Baseline 33.83£0.44
CIFAR-10 AutoAttack 61.13 £0.85
Our attack 29.91 £ 0.35

Table 2: Comparison between the baseline EoT attack (Atha-
lye et al. 2018), AutoAttack (Croce and Hein 2020), and our
attack on the RT defense whose transformation parameters
have been fine-tuned by Bayesian Optimization to maximize
the robustness. For AutoAttack, we use its standard version
combined with EoT. For Imagenette, we use e = 16/255, for
CIFAR-10, e = 8/255.

Algorithm 1: Our best attack on RT defenses

Input: Set of K transformations and distributions of their
parameters p(#), neural network f, perturbation size
¢, max. PGD steps T, step size {7: }1—, and
AggMo’s damping constants {z} ;.

Output: Adversarial examples Zadv

Data: Test input = and its ground-truth label y

// Initialize x_adv and velocities

1 Tadv < T +u~U[—€ €, {vp}t; < 0

2 fort < 1to7 do

3| {8} ~p(0)

// Compute a gradient estimate with
linear loss on logits
(Section 6.2) and with SGM
(Section 6.3)

4 Grn < VLLinear (Zz 1 f(Tadv; 0))7?})

5 G — sign(G,) // Use signed gradients

// Update velocities and x_adv with
AggMo (Section 6.4)

6 for b < 1to B do

7 vaeub-vb—l—@n

B
8 L Tadv < Tadv + % Zb:l Vb

9 return x,qv

variables, we experiment with different choices for K and S
without the use of BO. The full details of this procedure are
presented Appendix C.

6 State-of-the-Art Attack on RT Defenses

We propose a new attack on differentiable RT defenses that
leverages insights from previous literature on transfer at-
tacks as well as recent stochastic optimization algorithms.
Our attack is immensely successful and shows that even the
fine-tuned RT defense from Section 5 shows almost no ad-
versarial robustness (Table 2). We summarize our attack in
Algorithm 1 before describing the setup and investigating the
three main design choices that make this attack successful
and outperform the baseline from Athalye et al. (2018) by a
large margin.

6.1 Setup: Stochastic Gradient Method

First, we describe the setup and explain intuitions around
variance of the gradient estimates. Finding adversarial ex-
amples on RT defenses can be formulated as the following
stochastic optimization problem:

&HrgﬁfgeH(é) = Eg [h(5;0)] (6)
= &lgl@geﬂie [L(f(t(x+6;0)),y)] (D

for some objective function L. Note that we drop dependence
on (z,y) to declutter the notation. Since it is not possible to
evaluate the expectation or its gradients exactly, the gradients
are estimated by sampling {6; } C1 similarly to how we obtain
a prediction g,,. Suppose that H is smooth and convex, and
variance of the gradient estimates is bounded by o2, i.e.,

E[IVR:6) - VHO)*| <o® @®

O~p(0)

the error of SGD after T iterations is O (1/T + CT/\/T)

for an appropriate step size (Ghadimi and Lan 2013). This
result suggests that small o or low-variance gradient speeds
up convergence which is highly desirable for attackers and
defenders alike. Specifically, it leads to more efficient and
more accurate evaluation as well as a stronger attack to use
during adversarial training, which in turn, could yield a better
defense (we explore this in Section 7).

As aresult, the analyses on our attack will be largely based
on variance and two other measures of spread of the gradi-
ents. Specifically, we measure (1) the dimension-averaged
variance in Eqn. 8, (2) cosine similarity and (3) a percentage
of matching signs between mean gradient and each gradient
sample. Since all three metrics appear to be highly correlated
in theory and in practice, we only report the variance in the
main paper. For the other metrics and their mathematical
definitions, please see Appendix B.3.

EoT Baseline. We compare our attack to the baseline which
is exactly taken from Athalye et al. (2018). This attack takes
on the same form as Eqn. 7 and its gradients are averaged
over n gradient samples:

HET (5 325 (t(x+6;0;),y) ()
j=1

3

It is important to note that this approximation does not exactly
match the decision rule of RT defenses as the expectation
should be in front of f but behind the loss function (see
Eqn. 2). While the gradient estimates from Eqn. 9 are unbi-
ased, they may have high variance as each gradient sample
is equivalent to computing the loss on g, withn = 1. In
the next section, we will compare other options for objective
functions and decision rules and show that there are better
alternatives to the original EoT.

Signed gradients. All of the attacks used in this study in-
cluding ours and the baseline use signs of gradients instead
of the gradients themselves. This is a common practice for
gradient-based ¢ -attacks, and we have also empirically con-
firm that it leads to much stronger attacks. This is also the

=@ Bascline —@— Lin+MB
780 @~ CE (softmax) 80 —¥="LintLinBP
] Linear (logits)] Lin+SGM
75 8 75
3 - g Lin+TG
<70 <70
e =
565 5 65
§ 60 é 60
55 55
500 200 400 600 800 500 200 400 600 800
Number of Attack Steps Number of Attack Steps
80 80
a e T
ET5 | g~ =TT £7 &N
s 8
<70 <70
E E
§ 65 § 65
5 5
5 60 Z 60
< <
33 5 10 15 20 3 5 10 15 20

Number of Transformed Samples (n) Number of Transformed Samples (n)

(a) Comparison among loss func- (b) Comparison among transfer
tions and decision rules attack techniques

Figure 3: Comparison of PGD attack’s effectiveness with (a)
different loss functions and decision rules, and (b) different
attack variants with improved transferability. The error bars
are too small to see with the markers so we report the numer-
ical results in Table 4. “Baseline” refers to EoT with CE loss
in Eqn. 9.

reason that we measure sign matching as a measure of spread
of the gradient estimates. In addition to the /..-constraint,
using signed gradients as well as signed momentum is also
beneficial as it has been shown to reduce variance for neural
network training and achieve even faster convergence than
normal SGD in certain cases (Bernstein et al. 2018).

6.2 Adversarial Objectives and Decision Rules

Here, we propose new decision rules and loss functions for
the attacks as alternatives to EoT. Note that this need not be
the same as the rule used for making prediction in Eqn. 2.
First, we introduce softmax and logits rules:

Hsoftmax((s) = L (E [o‘ (f (t(,r + 4; 9)))] ,y) (10)

0~p(0)

HY85(5) = [(E [f (t(z+5;0))] ,l/) (11)

0~p(0)

H#ftmax o Joss of the expected softmax probability, is the
same rule as the decision rule of RT defenses (Eqn. 2). It was
also used by Salman et al. (2019) where L is cross-entropy
loss. H'°81* or an expected logits, is similar to F75°fmax pyt
without the softmax function to avoid potential vanishing
gradients from softmax.

In addition to the rules, we experiment with two choices
of £ commonly used for generating adversarial examples:
cross-entropy loss (CE) and linear loss (Linear). The linear
loss is defined as the difference between the largest logit of

0.98
8 0.97 Q =@~ Loss functions
El N Transfer attacks
g 0.96 \\
2 095 \
2 0.94 . <
5] ~
3093 @
0.92 S S N .
RS\ ak) LA P M
‘5353\ ce (50%““ \)‘\(*\’\’“\ \)\(\"fS \)\“Jr

Figure 4: Comparison of dimension-normalized variance of
the gradient estimates across (blue) different loss functions
and decision rules and (yellow) transferability-improving
attacks. Strong attacks are highly correlated with low variance
of their gradient estimates, i.e., Lin+SGM. Note that Lin+MB
or Momentum Boosting is not shown here because it does
not modify the gradients.

the wrong class and logit of the correct class:

LLinear(xay) = maXFj_Fy (12)
J#Y

where F = E [f(t(z;6))] (13)
O~p(8)

The advantage of the linear loss is that its gradient estimates
are unbiased, similarly to EoT, meaning that the expectation
can be moved in front of £ due to linearity. However, this is
not the case for CE loss.

Attack evaluation and comparison. We evaluate the at-
tacks by their effectiveness in reducing the adversarial ac-
curacy (lower means stronger attack) on the RT defense ob-
tained from Section 5. In our settting, the adversarial exam-
ples are generated once, and then they are used to compute
the accuracy 10 times, each with a different random seed on
the RT defense. We report the average accuracy over these
10 runs together with the 95%-confidence interval. Alterna-
tively, one can imagine a threat model that counts at least
one misclassification among a certain number of trials as
incorrect. This is an interesting and perhaps more realistic in
some settings, but the optimal attack will be very different
from EoT as we care a lot less about the expectation. This,
however, is outside of the scope of our work.

In Fig. 3a, we compare the effectiveness of four attacks,
each using a different pair of losses and decision rules with
varying numbers of PGD steps and samples n. The widely
used EoT method performs the worst of the four. CE loss
on mean softmax probability performs better than EoT, con-
firming the observation made by Salman et al. (Salman et al.
2019). Linear loss and CE loss on average logits are even
better and are consistently the strongest attacks, across all hy-
perparameters. For the rest of this paper, we adopt the linear
loss with mean logits as the main objective function.

Connection to variance. As we predicted in Section 6.1, a
stronger attack directly corresponds to lower variance. This
hypothesis is confirmed by Fig. 4. For instance, the EoT base-
line has the highest variance as well as the worst performance
according to Fig. 5. On the other hand, the linear loss (Lin)

has the lowest variance among the three loss functions (blue)
and hence, it performs the best. The other three points in
orange will be covered in the next section.

6.3 Ensemble and Transfer Attacks

RT can be regarded as an ensemble with each member sharing
the same neural network parameters but applying different
sets of transformations to the input (i.e., different 6’s from
random sampling). Consequently, we may view a white-box
attack on RT defenses as a “partial” black-box attack on an
ensemble of (infinitely) many models where the adversary
wishes to “transfer” adversarial examples generated on some
subset of the members to another unseen subset.

Given this interpretation, we apply four techniques de-
signed to enhance the transferability of adversarial examples
to improve the attack success rate on RT defense. The tech-
niques include momentum boosting (MB) (Dong et al. 2018),
modifying backward passes by ignoring non-linear activation
(LinBP) (Guo, Li, and Chen 2020) or by emphasizing the gra-
dient through skip connections of ResNets more than through
the residual block (SGM) (Wu et al. 2020), and simply using
a targeted attack with the linear loss function (TG) (Zhao,
Liu, and Larson 2021). In Fig. 3b, we compare these tech-
niques combined with the best performing loss and decision
rule from Section 6.2 (i.e., the linear loss on logits). Only
SGM improves the attack success rate at all settings while
the rest result in weaker attacks than the one without any of
the techniques (denoted by “Linear (logits)” in Fig. 3a).

SGM essentially normalizes the gradients and scales ones
from the residual blocks by some constant less than 1 (we
use 0.5) to reduce its influence and prioritize the gradients
from the skip connection. Wu et al. (2020) explain that SGM
leads to better transferability because gradients through skip
connections preserve “low-level information” which tends
to transfer better. Intuitively, this agrees with our variance
explanation as the increased transferability implies a stronger
agreement among gradient samples and hence, less spread or
lower variance.

6.4 Stochastic Optimization Algorithm

While most attacks on deterministic models can use naive
PGD to solve Eqn. 1 effectively, this is not the case for
stochastic models like the RT defense. Here, the adversary
only has access to noisy estimates of the gradients, making it
a strictly more difficult problem, and techniques used in the
deterministic case may no longer apply.

As mentioned in Section 6.1, high-variance gradient es-
timates undermine the convergence rate of SGD. Thus, the
attack should benefit from optimization techniques aimed
at reducing the variance or speeding up the convergence of
SGD. We first experiment with common optimizers such as
SGD and Adam (Kingma and Ba 2015) with different hy-
perparameters, e.g., momentum, Nesterov acceleration, and
learning rate schedules, to find the best setting for the linear
loss with SGM. Based on this experiment, we found that a
momentum term with an appropriate damping constant plays
an important role in the attack success rate. Momentum is
also well-known to accelerate and stabilize training of neural
networks (Sutskever et al. 2013). Fig. 10a reports adversarial

=@= Bascline == AggMo
i SGD AggMo (B =6)

3‘ 80 [9 === Adam
g - ——————————g
Q
9 60
<
=
Yt
5 40
9)
>
k)
< 20

0

0 500 1000 1500 2000 2500 3000
Number of Attack Steps

Figure 5: Comparison of the optimizers for attacking an RT
defense with e = 16/255,n = 10 on Imagenette dataset.
All but the baseline (CE loss with EoT) use the linear loss
with SGM, and all but AggMo (B = 6) use the default
hyperparameters. AggMo with B = 6 outperforms the other
algorithms in terms of both the convergence rate and the
final adversarial accuracy obtained. This result is not very
sensitive to B as any sufficiently large value (> 4) yields the
same outcome.

accuracy at varying attack iterations and indicates that higher
momentum constant leads to faster convergence and a higher
attack success rate. However, the results seem highly sensi-
tive to this momentum constant which also varies from one
setting to another (e.g., number or types of transformations,
dataset, etc.).

To mitigate this issue, we introduce another optimizer.
AggMo is exactly designed to be less sensitive to choices
of the damping coefficient by aggregating B momentum
terms with different constants instead of one (Lucas et al.
2019). After only a few tries, we found a wide range of
values of B where AggMo outperforms SGD with a fine-
tuned momentum constant (see Fig. 10b). Fig. 5 compares
the attacks using different choices of the optimizers to the
baseline EoT attack. Here, the baseline can only reduce the
adversarial accuracy from 89% to 70% while our best attack
manages to reach 6% or over 4.3 X improvement. This
concludes that the optimizer plays a crucial role in the success
of the attack, and the RT defense, even with a carefully and
systematically chosen transformation hyperparameters,
is not robust against adversarial examples.

Furthermore, we note that without our loss function and
only using AggMo, the accuracy only goes down to 23% at a
much slower rate. Conversely, when the linear loss and SGM
are used with SGD (no momentum), the accuracy drops to
51%. This signifies that all three techniques we deploy play
important roles to the attack’s effectiveness.

6.5 Comparison with AutoAttack

AutoAttack (Croce and Hein 2020) was proposed as a stan-
dardized benchmark for evaluating deterministic defenses
against adversarial examples. It uses an ensemble of four
different attacks that cover weaknesses of one another, one

Imagenette
Defenses g

CIFAR-10

Clean Accuracy

Adv. Accuracy

Clean Accuracy Adv. Accuracy

Normal model 95.41 0.00 95.10 0.00
Madry et al. (2018) 78.25 37.10 81.90 45.30
Zhang et al. (2019) 87.43 33.19 81.26 46.89
RT defense 89.04 £0.34 6.34 +0.35 81.12 £ 0.54 29.91 £0.35
AdvRT defense 88.83 + 0.26 8.68 £ 0.52 80.69 + 0.66 41.30 £ 0.49

Table 3: Comparison of RT and AdvRT defenses to prior robust deterministic models and a normally trained model. Both the
RT and the AdvRT models on Imagenette lack the adversarial robustness. Conversely, the RT defense on CIFAR-10 does bring
substantial robustness, and combining it with adversarial training boosts the adversarial accuracy further. Nonetheless, they still
fall behind the previously proposed deterministic models including Madry et al. (2018) and Zhang et al. (2019). The largest

number in each column is in bold.

of which does not use gradients. AutoAttack has been proven
to be one of the strongest attack currently and is capable of
catching defenses with false robustness caused by gradient
obfuscation (Athalye, Carlini, and Wagner 2018).

While not particularly designed for stochastic models, Au-
toAttack can be used to evaluate them when combined with
EoT. We report the accuracy on adversarial examples gener-
ated on AutoAttack with all default hyperparameters in the
“standard” mode and 10-sample EoT in Table 2. AutoAttack
performs worse than the baseline EoT and our attack on both
Imagenette and CIFAR-10 by a large margin. One of the
reasons is that AutoAttack is optimized for efficiency and so
each of its attacks is usually terminated once a misclassifica-
tion occurs. This is applicable to deterministic models, but
for stochastic ones such as an RT defense, the adversary is
better off finding the adversarial examples that maximize the
expected loss instead of ones that are misclassified once.

To take this property into account, we include the accuracy
reported by AutoAttack that treats a sample as incorrect if it
is misclassified at least once throughout the entire process.
For Imagenette, the accuracies after each of the four attacks
(APGD-CE, APGD-T, FAB, and Square) is applied sequen-
tially are 82.03, 78.81, 78.03, and 77.34, respectively. Note
that this is a one-time evaluation so there is no error bar here.
Needless to say, the adversarial accuracy computed this way
is strictly lower than the one we reported in Table 2 and vio-
lates our threat model. However, it is still higher than that of
the baseline EoT and our attack, suggesting that AutoAttack
is ineffective against randomized models like RT defenses.
AutoAttack also comes with a “random” mode for random-
ized models which only use APGD-CE and APGD-DLR with
20-sample EoT. The adversarial accuracies obtained from this
mode are 85.62 and 83.83 or 88.62 £ 0.46 for single-pass
evaluation as in Table 2. This random mode performs worse
than the standard version.

7 Combining with Adversarial Training

To deepen our investigation, we explore the possibility of
combining RT defense with adversarial training. However,
this is a challenging problem on its own. For normal de-
terministic models, 10-step PGD is sufficient for reaching
adversarial accuracy close to best known attack or the opti-
mal adversarial accuracy. However, this is not the case for

RT defenses as even our new attack still requires more than
one thousand iterations before the adversarial accuracy starts
to plateau. Ultimately, the robustness of adversarially trained
models largely depends on the strength of the attack used to
generate the adversarial examples, and using a weak attack
means that the obtained model will not be robust. A similar
phenomenon is observed by Tramer et al. (2018) and Wong,
Rice, and Kolter (2020) where an adversarially trained model
overfits to the weak FGSM attacks but has shown to be non-
robust with the accurate evaluation. To test this hypothesis,
we adversarially train the RT defense from Section 5 using
our new attack with 50 iterations (already 5x the common
number of steps) and call this defense ”AdvRT.” The attack
step size is also adjusted accordingly to ¢/8.

In Table 3, we confirm that training AdvRT this way re-
sults in a model with virtually no robustness improvement
over the normal RT on Imagenette. On the other hand, the
AdvRT trained on CIFAR-10 proves to be more promising
even though it is still not as robust as deterministic models
trained with adversarial training or TRADES (Zhang et al.
2019). Based on this result, we conclude that a stronger
attack on RT defenses that converge within a much fewer
iterations will be necessary to make adversarial training
successful. In theory, it might be possible to achieve a robust
RT model with 1,000-step attack on Imagenette, but this is
too computationally intensive for us to verify, and it will not
to scale to any realistic setting.

8 Conclusion

While recent papers report state-of-the-art robustness with
RT defenses, our evaluations show that RT generally under-
performs existing defenses like adversarial training when met
with a stronger attack, even after fine-tuning the hyperpa-
rameters of the defense. Through our experiments, we found
that non-differentiability and high-variance gradients can se-
riously inhibit adversarial optimization, so we recommend
using only differentiable transformations along with their
exact gradients in the evaluation of future RT defenses. In
this setting, we propose a new state-of-the-art attack that im-
proves significantly over the baseline (PGD with EoT) and
show that RT defenses as well as their adversarially trained
counterparts are not as robust to adversarial examples as they
were previously believed to be.

A Experiment Details
A.1 Details on the Image Transformations

The exact implementation of RT models and all the trans-
formations will be released. Here, we provide some details
on each of the transformation types and groups. Then, we
describe how we approximate some non-differentiable func-
tions with differentiable ones.

Noise injection

* Erase: Set the pixels in a box with random size and loca-
tion to zero.

Gaussian noise: Add Gaussian noise to each pixel.
Pepper: Zero out pixels with some probability.

Poisson noise: Add Poisson noise to each pixel.

Salt: Set pixels to one with some probability.

Speckle noise: Add speckle noise to each pixel.
Uniform noise: Add uniform noise to each pixel.

Blur filtering

* Box blur: Blur with randomly sized mean filter.

¢ Gaussian blur: Blur with randomly sized Gaussian filter
with randomly chosen variance.

* Median blur: Blur with randomly sized median filter.

¢ Motion blur: Blur with kernel for random motion angle
and direction.

Color-space alteration

e HSV: Convert to HSV color-space, add uniform noise,
then convert back.

* LAB: Convert to LAB color-space, add uniform noise,
then convert back.

* Gray scale mix: Mix channels with random proportions.

* Gray scale partial mix: Mix channels with random pro-
portions, then mix gray image with each channel with
random proportions.

* Two channel gray scale mix: Mix two random channels
with random proportions.

¢ One channel partial gray: Mix two random channels
with random proportions, then mix gray image with other
channel.

* XYZ: Convert to XYZ color-space, add uniform noise,
then convert back.

* YUV: Convert to YUV color-space, add uniform noise,
then convert back.

Edge detection

» Laplacian: Apply Laplacian filter.
* Sobel: Apply the Sobel operator.

Lossy compression

* JPEG compression: Compress image using JPEG to a
random quality.

 Color precision reduction: Reduce color precision to a
random number of bins.

* FFT perturbation: Perform FFT on image and remove
each component with some probability.

Geometric transforms

* Affine: Perform random affine transformation on image.

* Crop: Crop image randomly and resize to original shape.

» Horizontal flip: Flip image across the vertical.

* Swirl: Swirl the pixels of an image with random radius
and strength.

* Vertical flip: Flip image across the horizontal.

Stylization
* Color jitter: Randomly alter the brightness, contrast, and
saturation.
* Gamma: Randomly alter gamma.
» Sharpen: Apply sharpness filter with random strength.
* Solarize: Solarize the image.

Non-differentiable (for BPDA Tests Only)

» Adaptive histogram: Equalize histogram in patches of
random kernel size.

* Chambolle denoise: Apply Chambolle’s total variation
denoising algorithm with random weight (can be imple-
mented differentiably but was not due to time constraints).

* Contrast stretching: Pick a random minimum and max-
imum pixel value to rescale intensities (can be imple-
mented differentiably but was not due to time constraints).

» Histogram: Equalize histogram using a random number
of bins.

Unused transforms from BaRT

* Seam carving: Algorithm used in Raff et al. (2019) has
been patented and is no longer available for open-source
use.

* Wavelet denoising: The implementation in Raff et al.
(2019) is incomplete.

» Salt & pepper: We have already used salt and pepper
noise separately.

* Non-local means denoising: The implementation of NL
means denoising in Raff et al. (2019) is too slow.

A.2 Experiment Details

All of the experiments are evaluated on 1000 randomly cho-
sen test samples. Since we choose the default n to be 20
for inference and 10 for the attacks, the experiments are at
least 10 times more expensive than usual, and we cannot
afford enough computation to run a large number of experi-
ments on the entire test set. The networks used in this paper
are ResNet-34 (He et al. 2016a) for Imagenette and Pre-
activation ResNet-20 (He et al. 2016b) for CIFAR-10. In all
of the experiments, we use a learning rate of 0.05, batch size
of 128, and weight decay of 0.0005. We use cosine annealing
schedule (Loshchilov and Hutter 2017) for the learning rate
with a period of 10 epochs which also doubles after every
period. All models are trained for 70 epochs, and we save the
weights with the highest accuracy on the held-out validation
data (which does not overlap with the training or test set).
For adversarially trained RT defenses, the cosine annealing
step is set to 10 and the training lasts for 70 epochs to reduce
the computation. To help the training converge faster, we
pre-train these RT models on clean data before turning on
adversarial training as suggested by Gupta, Dube, and Verma
(2020).

Figure 6: Fully-convolutional BPDA network from Raff et al.
(2019). The network has six convolutional layers. All layers
have a stride of 1. The first five layers have kernel size of 5
and padding size of 2, and the last layer has a kernel size of
3 and padding size of 1. The input consists of more than 5
channels, 3 of which are for the image RGB channels, 2 of
which are CoordConv channels that include the coordinates of
each pixel at that pixel’s location, and the remaining channels
are the parameters for the transformation copied at each pixel
location. The network contains a skip connection from the
input to each layer except the final layer.

A.3 Details on BPDA Experiments

We used the following setup for the differentiability related
experiments conducted in Section 4.2:

» Each accuracy is an average over 10 trials on the same set
of 1000 Imagenette images.

* The defense samples S = 10 transforms from the full set
of K transforms.

* The image classifier uses a ResNet-50 architecture like in
Raff et al. (2019) trained on transformed images for 30
epochs.

¢ The attack uses 40 PGD steps of size 4/255 with an € =
16/255 to minimize the EoT objective.

The BPDA network architecture is the same used by Raff
et al. (2019) and is outlined in Fig. 6. Here are more details
on BPDA training:

* All BPDA networks were trained using Adam with a
learning rate of 0.01 for 10 epochs.

* All networks achieve a per-pixel MSE below 0.01. The
outputs of the BPDA networks are compared to the true
transform outputs for several different transform types in
Fig. 7.

The specific set of transforms used in each defense are the
following:

* BaRT (all): adaptive histogram, histogram, bilateral blur,
box blur, Gaussian blur, median blur, contrast stretching,
FFT, gray scale mix, gray scale partial mix, two channel
gray scale mix, one channel gray scale mix, HSV, LAB,
XYZ, YUV, JPEG compression, Gaussian noise, Pois-
son noise, salt, pepper, color precision reduction, swirl,
Chambolle denoising, crop.

¢ BaRT (only differentiable): all of the BaRT all trans-
forms excluding adaptive histogram, histogram, contrast
stretching, and Chambolle denoising.

B Details of the Attacks
B.1 Differentiable Approximation

Some of the transformations contain non-differentiable op-
erations which can be easily approximated with differen-
tiable functions. Specifically, we approximate the rounding

function in JPEG compression and color precision reduc-
tion, and the modulo operator in all transformations that re-
quire conversion between RGB and HSV color-spaces (HSV
alteration and color jitter). Note that we are not using the
non-differentiable transform on the forward pass and a differ-
entiable approximation on the backward pass (like in BPDA).
Instead, we are using the differentiable version both when
performing the forward pass and when computing the gradi-
ent.

We take the approximation of the rounding function from
Shin and Song (2017) shown in Eqn. 14.

|_qﬂapprox = |_«T—| + (.’E — |_$C—|)3 (14)

For the modulo or the remainder function, we approximate it
using the above differentiable rounding function as a basis.

=[]
mod(z) = {x Cla]+1

if x> |z

15
otherwise (as)

To obtain a differentiable approximation, we can replace
the rounding operator with its smooth version in Eqn. 14.
This function (approximately) returns decimal numbers or a
fractional part of a given real number, and it can be scaled to
approximate a modulo operator with any divisor.

Note that these operators are step functions and are dif-
ferentiable almost everywhere, like ReLU. However, their
derivatives are always zero (unlike ReL.U), and so a first-order
optimization algorithm would still fail on these functions.

B.2 Effect of the Permutation of the
Transformations

We mentioned in Section 3.2 that a permutation of the trans-
forms {7(*)}%_, is randomly sampled for each of the n sam-
ples. However, we found that in practice, this leads to high-
variance estimates of the gradients. On the other hand, fixing
the permutation across n samples in each attack iteration
(i.e., T is fixed but not « or [3) results in lower variance and
hence, a stronger attack, even though the gradient estimates
are biased as 7 is fixed. For instance, with fixed permutation,
adversarial accuracy achieved by EoT attack is 51.44 where
the baseline EoT with completely random permutation is
70.79. The variance also reduces from 0.97 to 0.94.

Additionally, the fixed permutation reduces the computa-
tion time as all transformations can be applied in batch. All
of the attacks reported in this paper, apart from the baseline,
use this fixed permutation.

B.3 Variance of Gradients

We have described how we compute the sample variance of
the gradients in Section 6.1. Here, we provide detailed calcu-
lations of the other three metrics. First, the unbiased variance
is computed as normal with an additional normalization by
dimension.

1 ~
pn == VG (16)

7)

AR

(a) Original

Figure 7: Comparison of the true transformed outputs (top row) and outputs of respective BPDA networks (bottom row) for six
different transformation types.

Adv. acc. with varying attack steps (n = 10)

Adv. acc. with varying n (attack steps = 200)

Attacks

50 200 800 5 10 20
Baseline 82.34 +0.43 73.36 £ 0.37 71.70 £0.39 74.81 +0.47 74.46 +£0.55 76.06 +0.29
CE (softmax) 82.37 £0.39 71.05 £ 0.36 65.06 + 0.39 73.82 +0.35 70.71 £0.53 68.51 £0.33
Linear (logits) 80.67 £ 0.50 66.11 & 0.58 58.26 4+ 0.62 70.67 £ 0.41 66.59 £ 0.57 62.48 +0.41
Linear+MB 78.51 £ 0.45 72.66 £ 0.50 65.28 +0.41 72.47 +0.39 72.51 £0.55 71.06 £ 0.32
Linear+LinBP 82.90 + 0.50 70.57 £0.32 65.15 + 0.43 75.24 +0.35 72.73+£0.40 70.02+0.31
Linear+SGM 80.10 £0.43 63.75+0.21 51.68+0.35 66.93+0.43 62.57+0.31 59.61+£0.55
Linear+TG 80.78 + 0.56 68.70 £ 0.34 59.69 £+ 0.57 71.72+0.41 67.84 +£0.50 65.63+0.50

Table 4: Comparison of different attack techniques on our best RT model. Lower means stronger attack. This table only shows

the numerical results plotted in Fig. 3.

0.220 0.562
%0215 0.560 //
20210 20558 /.
£ 0205 g ’
@0 = 0556 ’
£ 0200 5 /
3 @ 0.554 7

0.195

- 4
0.190 0.552 T
Baseline CE (softmax) Lin (logits) Baseline CE (softmax) Lin (logits)

(a) Cosine Similarity (b) Sign Matches
Figure 8: (a) Cosine similarity and (b) percentage of sign
matches for three pairs of attack loss functions and decision
rules: CE loss with EoT “Baseline”, CE loss on mean softmax
probability “CE (softmax)”, and linear loss on logits “Lin
(logits)”.

0.570 !
= 0235 0.568 AN
£0.230 £ 0.566 /l N
Eoxs S 0564 / N
2 = /
£0.220 50562 LY 7 \.
S “0.560 ~ ’
0215 So
0558

30 A aBP 3 G
(5 i \;\“*\/“\B \‘_\“*SUN\ \’.\“ﬂ

(b) Sign Matches

<aB® G G
\;\“»(\,\“v’ \;“\A—SUN\ Naa

(a) Cosine Similarity

Figure 9: (a) Cosine similarity and (b) percentage of sign
matches for the linear loss and its combinations with three
transfer attack techniques: Linear Backward Pass “LinBP”,
Skip Gradient Method “SGM”, and targeted “TG”.

where (7 is the signed gradients where the loss is estimated
with one sample as defined in Algorithm 1.

The cosine similarity is computed between the mean gra-
dient and all n samples and then averaged.

n <é1,j’ﬂn>

— T (18)
s HGl,jH2 gl

cos,, =

Lastly, the sign matching percentage is
1 n 1 d
sign_match,,. .= - Jz:; p ; {[G1,]i = [pn)i} (19)

Fig. 8 and Fig. 9 plot the cosine similarly and the sign
matching for varying loss functions and varying transfer at-
tacks, respectively. Similarly to Fig. 4, better attacks result
in less spread of the gradient samples which corresponds to
higher cosine similarity and sign matching percentage.

C Details on Bayesian Optimization

One major challenge in implementing an RT defense is se-
lecting the defense hyperparameters which include the K
transformation types, the number of transformations to apply
(S), and their parameters (a and p). To improve the robust-
ness of RT defense, we use Bayesian optimization (BO), a
well-known black-box optimization technique, to fine-tune
a and p (Snoek, Larochelle, and Adams 2012). In this case,
BO models the hyperparameter tuning as a Gaussian process
where the objective function takes in a and p, trains a neural
network as a backbone for an RT defense, and outputs adver-
sarial accuracy under some pre-defined /,-budget € as the
metric used for optimization.

Since BO quickly becomes ineffective as we increase the
dimensions of the search space, we choose to tune either a
or p, never both, for each of the K transformation types. For
transformations that have a tunable a, we fix p = 1 (e.g.,
noise injection, affine transform). For the transformations
without an adjustable strength a, we only tune p (e.g., Lapla-
cian filter, horizontal flip). Additionally, because BO does
not natively support categorical or integral variables, we ex-
periment with different choices for K and S without the use
of BO. Therefore, our BO problem must optimize over K
(up to 33) variables, far more than are typically present when
doing model hyperparamter tuning using BO.

100 == Bascline == SGD:M-0.99
: SGD-M:0 SGD-M-0.999
—F—SGD-M:0.9
2 801 @
[+ ~
= e —
3 \
< 60 N
=)
g
2 40
(]
>
2
20
0

0 500 1000 1500 2000 2500 3000
Number of Attack Steps

(a) SGD with varying momentum constants

100 == Baseline == AggMo (B=4)
AggMo (B=2) AggMo (B=6)
> R ——AgeMo(B=3) AgeMo (B=38)
] 80 .’.
=1 ~
3 - —— == —— g
Q
< 60{ i
=
3 _
g 40 Yo v . -
>
2 &
20 \<\"\”\'
‘\"
0

0 500 1000 1500 2000 2500 3000
Number of Attack Steps

(b) AggMo with varying B’s

Figure 10: Effectiveness of the optimizers, (a) SGD and (b)
AggMo, with varying momentum parameters. Increasing B
for AggMo in this case monotonically reduces the final ad-
versarial accuracy until B = 4 where it plateaus. This is
more predictable and stable than increasing the momentum
constant in SGD.

Mathematically, the objective function v is defined as
Y :[0,1]% = Reoc €0,1] (20)

where the input is K real numbers between 0 and 1, and R e
denotes the adversarial accuracy or the accuracy on Z,q4y as
defined in Eqn. 1. Since v is very expensive to evaluate as it
involves training and testing a large neural network, we em-
ploy the following strategies to reduce the computation: (1)
only a subset of the training and validation set is used, (2) the
network is trained for fewer epochs with a cosine annealing
learning rate schedule to speed up convergence (Loshchilov
and Hutter 2017), and (3) the attack used for computing R
is weaker but faster. Even with these speedups, one BO run
still takes approximately two days to complete on two GPUs
(Nvidia GeForce GTX 1080 Ti). We also experimented with

Algorithm 2: Tuning and training RT defense.

Input: Set of transformation types, n, p, €
Output: g"(-), R, Rp,e
Data: Training data (X ™, Y*"*"), test data
(‘X-test7 Ytest)
// Starting Bayesian optimization (BO)
Sub-sample (X" Y and split it into BO’s training
data (XB&™, Y56™) and validation data (X85, Y38).

[

2 Ry« 0 // Best adversarial accuracy
3 {(p:7af)}f<:1 <0 // Best RT
hyperparameters
4 for step < 0 to MAX_BO_STEPS do
// Running one trial of BO

5 BO specifies {(p:, a;)} 1< to evaluate.

6 Train an RT model on (ngi“, YB”OE““) with
hyperparameters { (p:, ;) }7<; to obtain g.

7 Test g by computing R, on (X5, Y58) usinga
weak but fast attack.

8 if Rpe > Ry . then

9 Rpe + Rp.e

10 L {(pjta;k) szl <_{(p“Oé’b)}zK:1

1 else if No improvement for some steps then

12 |_ break;

// Full training of RT
3 Train an RT model on (Xtmi“, Y"ai") with best
hyperparameters {(p}, o})}, to obtain g*.
14 Evaluate g* by computing R and R, on (X pest YteSt)
using a strong attack.

—

other sophisticated hyperparameter-tuning algorithms based
on Gaussian processes (Bergstra, Yamins, and Cox 2013;
Kandasamy et al. 2020; Falkner, Klein, and Hutter 2018) but
do not find them more effective. We summarize the main
steps for tuning and training an RT defense in Algorithm 2.

We use the Ray Tune library for RT’s hyperparameter tun-
ing in Python (Liaw et al. 2018). The Bayesian optimization
tool is implemented by Nogueira (2014), following analyses
and instructions by Snoek, Larochelle, and Adams (2012)
and Brochu, Cora, and de Freitas (2010). As mentioned in
Section 5, we sub-sample the data to reduce computation
for each BO trial. Specifically, we use 20% and 10% of the
training samples for Imagenette and CIFAR-10 respectively
(Algorithm 2, line 1) as Imagenette has a much smaller num-
ber of samples in total. The models are trained with the same
transformations and hyperparameters used during inference,
and here, n is set to 1 during training, just as is done during
standard data augmentation. We use 200 samples to evaluate
each BO run in line 7 of Algorithm 2 with only 100 steps and
n = 10.

One BO experiment executes two BO’s in parallel. The
maximum number of BO runs is 160, but we terminate the
experiment if no improvement has been made in the last
40 runs after a minimum of 80 runs have taken place. The
runtime depends on S and the transformation types used. In
our typical case, when all 33 transformation types are used
and S = 14, one BO run takes almost an hour on an Nvidia

@) | == Majority vote
Avg. softmax probs

Avg. logits

10 20 30 40 50 60 70 80
Number of Monte Carlo Samples (n)

Figure 11: Clean accuracy of our best RT model computed
with three decision rules for obtaining the final prediction
from the n output samples. The rules are majority vote (red),
average softmax probability (blue), and average logits (green).
The shaded areas represent the 95% confidence interval for
each decision rule.

GeForce GTX 1080 Ti for Imagenette. One BO experiment
then takes about two days to finish.

In line 13 and 14 of Algorithm 2, we now use the full train-
ing set and 1000 test samples as mentioned earlier. During the
full training, n is set to four which increases the training time
by approximately four times. We find that using a larger n is
beneficial to both the clean and the adversarial accuracy, but
n larger than four does not make any significant difference.

C.1 Details on the Final RT Model

We run multiple BO experiments (Algorithm 2) on different
subsets of transformation types to identify which transforma-
tions are most/least effective in order to reduce K as well as
the number of hyperparameters our final run of BO has to
tune. We then repeat Algorithm 2 initialized with the input-
output pairs from the prior runs of BO to obtain a new set
of hyperparameters. Finally, we remove the transformations
whose p or a has been set to zero by the first run of BO, and
we run BO once more with this filtered subset of transfor-
mations. At the end of this expensive procedure, we obtain
the best and final RT model that we use in the experiments
throughout this paper. For Imagenette, the final set of 18
transformation types used in this model are color jitter, erase,
gamma, affine, horizontal flip, vertical flip, Laplacian filter,
Sobel filter, Gaussian blur, median blur, motion blur, Poisson
noise, FFT, JPEG compression, color precision reduction,
salt noise, sharpen, and solarize. S is set to 14.

D Additional Experiments on the RT Model
D.1 Decision Rules and Number of Samples

Fig. 11 and Fig. 12 compare three different decision rules
that aggregate the n outputs of the RT model to produce the
final prediction §j(x) given an input . We choose the average
softmax probability rule for all of our RT models because it

98]
[\

=== ""Majority vote
Avg. softmax probs
N Avg. logits

——

—_

e

Adversarial Accuracy
[\ [\ N [OV) w
oo O

~

[\
(@)}

10 20 30 40 50 60 70 80
Number of Monte Carlo Samples (n)

Figure 12: Adversarial accuracy (e = 16/255) of our best
RT model computed with three decision rules for obtaining
the final prediction from the n output samples. The rules are
majority vote (red), average softmax probability (blue), and
average logits (green). The shaded areas represent the 95%
confidence interval for each decision rule.

Table 5: RT’s performance when only one of the transfor-
mation groups is applied. The attack is Linear+Adam+SGM
with 200 steps and n = 20.

Used Transformations Clean Acc. Adv. Acc.
Noise injection 80.93£0.44 8.35+0.20
Blur filter 97.32 £0.20 0.00 £ 0.00
Color space 94.40 £ 0.53 0.00 £ 0.00
Edge detection 97.64 £ 0.09 0.00 £ 0.00
Lossy compression 83.56 £ 0.66 3.56 = 0.26
Geometric transforms 88.42 +0.28 0.83£0.21
Stylization 98.31 £ 0.09 0.00 = 0.00

provides a good trade-off between the clean accuracy and the
robustness. Majority vote has poor clean accuracy, and the
average logits have poor robustness.

D.2 Importance of the Transformation Groups

Choosing the best set of transformation types to use is a
computationally expensive problem. There are many more
transformations that can be applied outside of the 33 types
we choose, and the number of possible combinations grows
exponentially. BO gives us an approximate solution but is
by no means perfect. Here, we take a step further to under-
stand the importance of each transformation group. Table 5
gives an alternative way to gauge the contribution of each
transformation group. According to this experiment, noise
injection appears most robust followed by lossy compression
and geometric transformations. However, this result is not
very informative as most of the groups have zero adversarial
accuracy, and the rest are likely to also reduce to zero given
more attack steps. This result also surprisingly follows the
commonly observed robustness-accuracy trade-off (Tsipras
et al. 2019).

901
z\. 70 1
s 60- —@— Clean accuracy
§ Adv. accuracy
< 50

40

301

5 6 7 8 9 10 11
Number of Transformations Applied (S)

Figure 13: Adversarial accuracy of RT models obtained after
running Algorithm 2 for different values of .S on CIFAR-10

D.3 Number of Transformations

We test the effect of the transform permutation size .S on the
clean and the robust accuracy of RT models (Fig. 13). We
run Bayesian optimization experiments for different values
of S using all 33 transformation types, and all of the models
are trained using the same procedure. Fig. 13 shows that
generally more transformations (larger .S increase robustness
but lower accuracy on benign samples.

Acknowledgements

The first author of this paper was supported by the Hewlett
Foundation through the Center for Long-Term Cybersecurity
(CLTC), by the Berkeley Deep Drive project, by the Na-
tional Science Foundation under Award CCF-1909204, and
by generous gifts from Open Philanthropy and Google Cloud
Research Credits program under Award GCP19980904.

References

Athalye, A.; Carlini, N.; and Wagner, D. 2018. Obfuscated
Gradients Give a False Sense of Security: Circumventing
Defenses to Adversarial Examples. In Dy, J.; and Krause,
A., eds., Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, 274-283. Stockholmsmaéssan, Stockholm
Sweden: PMLR.

Athalye, A.; Engstrom, L.; Ilyas, A.; and Kwok, K. 2018.
Synthesizing Robust Adversarial Examples. In Dy, J.; and
Krause, A., eds., Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, 284-293. Stockholmsmaéssan,
Stockholm Sweden: PMLR.

Bender, C.; Li, Y.; Shi, Y.; Reiter, M. K.; and Oliva, J. 2020.
Defense through Diverse Directions. In III, H. D.; and Singh,
A., eds., Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine
Learning Research, 756-766. PMLR.

Bergstra, J.; Yamins, D.; and Cox, D. D. 2013. Making a Sci-
ence of Model Search: Hyperparameter Optimization in Hun-

dreds of Dimensions for Vision Architectures. In Proceed-
ings of the 30th International Conference on International
Conference on Machine Learning - Volume 28, ICML’13,
I-115-1-123. Atlanta, GA, USA: JMLR.org.

Bernstein, J.; Wang, Y.-X.; Azizzadenesheli, K.; and Anand-
kumar, A. 2018. signSGD: Compressed Optimisation for
Non-Convex Problems. In Dy, J.; and Krause, A., eds., Pro-
ceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning
Research, 560-569. PMLR.

Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; grndié, N.;
Laskov, P.; Giacinto, G.; and Roli, F. 2013. Evasion Attacks
against Machine Learning at Test Time. In Blockeel, H.;
Kersting, K.; Nijssen, S.; and Zelezn}’/, F., eds., Machine
Learning and Knowledge Discovery in Databases, 387—402.
Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-
642-40994-3.

Brochu, E.; Cora, V. M.; and de Freitas, N. 2010. A Tuto-
rial on Bayesian Optimization of Expensive Cost Functions,
with Application to Active User Modeling and Hierarchical
Reinforcement Learning. arXiv:1012.2599 [cs].

Cohen, J.; Rosenfeld, E.; and Kolter, Z. 2019. Certified Ad-
versarial Robustness via Randomized Smoothing. In Chaud-
huri, K.; and Salakhutdinov, R., eds., Proceedings of the 36th
International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, 1310-1320.
PMLR.

Croce, F.; and Hein, M. 2020. Reliable Evaluation of Adver-
sarial Robustness with an Ensemble of Diverse Parameter-
Free Attacks. In III, H. D.; and Singh, A., eds., Proceedings
of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research,
2206-2216. PMLR.

Dhillon, G. S.; Azizzadenesheli, K.; Bernstein, J. D.; Kos-
saifi, J.; Khanna, A.; Lipton, Z. C.; and Anandkumar, A.
2018. Stochastic Activation Pruning for Robust Adversarial
Defense. In International Conference on Learning Represen-
tations.

Dong, Y.; Liao, F; Pang, T.; Su, H.; Zhu, J.; Hu, X.; and Li,
J. 2018. Boosting Adversarial Attacks with Momentum. In
2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE.

Falkner, S.; Klein, A.; and Hutter, F. 2018. BOHB: Ro-
bust and Efficient Hyperparameter Optimization at Scale.
In Dy, J.; and Krause, A., eds., Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, 1437-1446.
Stockholmsmaéssan, Stockholm Sweden: PMLR.

Ghadimi, S.; and Lan, G. 2013. Stochastic First- and Zeroth-
Order Methods for Nonconvex Stochastic Programming.
SIAM Journal on Optimization, 23(4): 2341-2368.
Goodfellow, I.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and Harnessing Adversarial Examples. In International
Conference on Learning Representations.

Guo, C.; Rana, M.; Cisse, M.; and van der Maaten, L. 2018.
Countering Adversarial Images Using Input Transformations.
In International Conference on Learning Representations.

Guo, Y.; Li, Q.; and Chen, H. 2020. Backpropagating Lin-
early Improves Transferability of Adversarial Examples. In
NeurIPS.

Gupta, S.; Dube, P.; and Verma, A. 2020. Improving the
Affordability of Robustness Training for DNNs. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 770-
778.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity Map-
pings in Deep Residual Networks. In European Conference
on Computer Vision, 630-645. Springer.

He, W.; Li, B.; and Song, D. 2018. Decision Boundary Anal-
ysis of Adversarial Examples. In International Conference
on Learning Representations.

He, Z.; Rakin, A. S.; and Fan, D. 2019. Parametric Noise
Injection: Trainable Randomness to Improve Deep Neural
Network Robustness against Adversarial Attack. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 588-597.

Howard, J. 2021. Fastai/Imagenette. fast.ai.

Kandasamy, K.; Vysyaraju, K. R.; Neiswanger, W.; Paria, B.;
Collins, C. R.; Schneider, J.; Poczos, B.; and Xing, E. P. 2020.
Tuning Hyperparameters without Grad Students: Scalable
and Robust Bayesian Optimisation with Dragonfly. Journal
of Machine Learning Research, 21(81): 1-27.

Kingma, D. P;; and Ba, J. 2015. Adam: A Method for Stochas-
tic Optimization. In Bengio, Y.; and LeCun, Y., eds., 3rd In-
ternational Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings.

Lecuyer, M.; Atlidakis, V.; Geambasu, R.; Hsu, D.; and Jana,
S. 2019. Certified Robustness to Adversarial Examples with
Differential Privacy. In 2019 IEEE Symposium on Security
and Privacy (SP), 656-672.

Liaw, R.; Liang, E.; Nishihara, R.; Moritz, P.; Gonzalez,
J. E.; and Stoica, 1. 2018. Tune: A Research Platform for
Distributed Model Selection and Training. arXiv preprint
arXiv:1807.05118.

Liu, X.; Cheng, M.; Zhang, H.; and Hsieh, C.-J. 2018. To-
wards Robust Neural Networks via Random Self-Ensemble.
In ECCV (7), 381-397.

Liu, X.; Li, Y.; Wu, C.; and Hsieh, C.-J. 2019. Adv-BNN: Im-
proved Adversarial Defense through Robust Bayesian Neural
Network. In International Conference on Learning Repre-
sentations.

Loshchilov, I.; and Hutter, F. 2017. SGDR: Stochastic Gradi-
ent Descent with Warm Restarts. In International Conference
on Learning Representations.

Lucas, J.; Sun, S.; Zemel, R.; and Grosse, R. 2019. Aggre-
gated Momentum: Stability through Passive Damping. In
International Conference on Learning Representations.

Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and Vladu,
A. 2018. Towards Deep Learning Models Resistant to Ad-
versarial Attacks. In International Conference on Learning
Representations.

Nogueira, F. 2014. Bayesian Optimization: Open Source
Constrained Global Optimization Tool for Python.

Raff, E.; Sylvester, J.; Forsyth, S.; and McLean, M. 2019.
Barrage of Random Transforms for Adversarially Robust
Defense. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 6521-6530. Long Beach,
CA, USA: IEEE. ISBN 978-1-72813-293-8.

Salman, H.; Li, J.; Razenshteyn, I.; Zhang, P.; Zhang, H.;
Bubeck, S.; and Yang, G. 2019. Provably Robust Deep
Learning via Adversarially Trained Smoothed Classifiers. In
Wallach, H.; Larochelle, H.; Beygelzimer, A.; dAlché-Buc,
F.; Fox, E.; and Garnett, R., eds., Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates,
Inc.

Shin, R.; and Song, D. 2017. JPEG-Resistant Adversarial Im-
ages. In Machine Learning and Computer Security Workshop
(Co-Located with NeurIPS 2017). Long Beach, CA, USA.

Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practi-
cal Bayesian Optimization of Machine Learning Algorithms.
In Pereira, F.; Burges, C. J. C.; Bottou, L.; and Weinberger,
K. Q., eds., Advances in Neural Information Processing Sys-
tems, volume 25. Curran Associates, Inc.

Sutskever, I.; Martens, J.; Dahl, G.; and Hinton, G. 2013.
On the Importance of Initialization and Momentum in Deep
Learning. In Dasgupta, S.; and McAllester, D., eds., Pro-
ceedings of the 30th International Conference on Machine
Learning, volume 28 of Proceedings of Machine Learning
Research, 1139-1147. Atlanta, Georgia, USA: PMLR.

Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.;
Goodfellow, L.; and Fergus, R. 2014. Intriguing Properties of
Neural Networks. In International Conference on Learning
Representations.

Tramer, F.; Carlini, N.; Brendel, W.; and Madry, A. 2020.
On Adaptive Attacks to Adversarial Example Defenses. In
Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.; and
Lin, H., eds., Advances in Neural Information Processing
Systems, volume 33, 1633—-1645. Curran Associates, Inc.

Tramer, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.; Boneh,
D.; and McDaniel, P. 2018. Ensemble Adversarial Train-
ing: Attacks and Defenses. In International Conference on
Learning Representations.

Tsipras, D.; Santurkar, S.; Engstrom, L.; Turner, A.; and
Madry, A. 2019. Robustness May Be at Odds with Accuracy.
In International Conference on Learning Representations.

Wong, E.; Rice, L.; and Kolter, J. Z. 2020. Fast Is Better
than Free: Revisiting Adversarial Training. In International
Conference on Learning Representations.

Wu, D.; Wang, Y.; Xia, S.-T.; Bailey, J.; and Ma, X. 2020.
Skip Connections Matter: On the Transferability of Adver-
sarial Examples Generated with ResNets. In International
Conference on Learning Representations.

Xie, C.; Wang, J.; Zhang, Z.; Ren, Z.; and Yuille, A. 2018.
Mitigating Adversarial Effects through Randomization. In
International Conference on Learning Representations.
Zhang, H.; Yu, Y.; Jiao, J.; Xing, E. P.; Ghaoui, L. E.; and Jor-
dan, M. L. 2019. Theoretically Principled Trade-off between
Robustness and Accuracy. In International Conference on
Machine Learning.

Zhang, Y.; and Liang, P. 2019. Defending against White-
box Adversarial Attacks via Randomized Discretization. In
Chaudhuri, K.; and Sugiyama, M., eds., Proceedings of Ma-
chine Learning Research, volume 89 of Proceedings of Ma-
chine Learning Research, 684—693. PMLR.

Zhao, Z.; Liu, Z.; and Larson, M. 2021. On Success and
Simplicity: A Second Look at Transferable Targeted Attacks.
arXiv:2012.11207 [cs].

