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Abstract

Current machine learning models suffer from evasion at-
tacks (i.e., adversarial examples) raising concerns in security-
sensitive settings such as autonomous vehicles. While many
countermeasures may look promising, only a few withstand
rigorous evaluation. Recently, defenses using random trans-
formations (RT) have shown impressive results, particularly
BaRT (Raff et al. 2019) on ImageNet. However, this type
of defense has not been rigorously evaluated, leaving its ro-
bustness properties poorly understood. The stochasticity of
these models also makes evaluation more challenging and
many proposed attacks on deterministic models inapplicable.
First, we show that the BPDA attack (Athalye, Carlini, and
Wagner 2018) used in BaRT’s evaluation is ineffective and
likely overestimates its robustness. We then attempt to con-
struct the strongest possible RT defense through the informed
selection of transformations and Bayesian optimization for
tuning their parameters. Furthermore, we create the strongest
possible attack to evaluate our RT defense. Our new attack
vastly outperforms the baseline, reducing the accuracy by 83%
compared to the 19% reduction by the commonly used EoT
attack (4.3× improvement). Our result indicates that the RT
defense on Imagenette dataset (ten-class subset of ImageNet)
is not robust against adversarial examples. Extending the study
further, we use our new attack to adversarially train RT defense
(called AdvRT). However, the attack is still not sufficiently
strong, and thus, the AdvRT model is no more robust than
its RT counterpart. In the process of formulating our defense
and attack, we perform several ablation studies and uncover
insights that we hope will broadly benefit scientific communi-
ties studying stochastic neural networks and their robustness
properties.

1 Introduction

Today, deep neural networks are widely deployed in safety-
critical settings such as autonomous driving and cybersecu-
rity. Despite their effectiveness at solving a wide-range of
challenging problems, they are known to have a major vulner-
ability. Tiny crafted perturbations added to inputs (so called
adversarial examples) can arbitrarily manipulate the outputs
of these large models, posing a threat to the safety and privacy
of the millions of people who rely on existing ML systems.
The importance of this problem has drawn substantial atten-
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tion, and yet we have not devised a concrete countermeasure
as a research community.

Adversarial training (Madry et al. 2018) has been the fore-
most approach for defending against adversarial examples.
While adversarial training provides increased robustness, it
results in a loss of accuracy on benign inputs. Recently, a
promising line of defenses against adversarial examples has
emerged. These defenses randomize either the model parame-
ters or the inputs themselves (Lecuyer et al. 2019; He, Rakin,
and Fan 2019; Raff et al. 2019; Liu et al. 2019; Xie et al.
2018; Zhang and Liang 2019; Bender et al. 2020; Liu et al.
2018; Cohen, Rosenfeld, and Kolter 2019; Dhillon et al. 2018;
Guo et al. 2018). Introducing randomness into the model can
be thought of as a form of smoothing that removes sinuous
portions of the decision boundary where adversarial exam-
ples frequently lie (He, Li, and Song 2018). Among these
randomization approaches, Raff et al. (2019) propose Bar-
rage of Random Transforms (BaRT), a new defense which
applies a large set of random image transformations to clas-
sifier inputs. They report a 24× increase in robust accuracy
over previously proposed defenses.

Despite these promising results, researchers still lack a
clear understanding of how to properly evaluate random de-
fenses. This is concerning as a defense can falsely appear
more robust than it actually is when evaluated using sub-
optimal attacks (Athalye, Carlini, and Wagner 2018; Tramer
et al. 2020). Therefore, in this work, we improve existing
attacks on randomized defenses, and use them to rigorously
evaluate BaRT and more generally, random transformation
(RT) defenses. We find that sub-optimal attacks have led to
an overly optimistic view of these RT defenses. Notably, we
show that even our best RT defense is much less secure than
previously thought, formulating a new attack that reduces
its security (from 70% adversarial accuracy found by the
baseline attack to only 6% on Imagenette).

We also take the investigation further and combine RT
defense with adversarial training. Nevertheless, this turns out
to be ineffective as the attack is not sufficiently strong and
only generates weak adversarial examples for the model to
train with. The outcomes appear more promising for CIFAR-
10, but it still lacks behind deterministic defense such as
Madry et al. (2018) and Zhang et al. (2019). We believe
that stronger and more efficient attacks on RT-based models
will be necessary not only for accurate evaluation of the





n Monte Carlo samples per one input x:

g(x) ≈ gn(x) :=
1

n

n
∑

i=1

σ (f(t(x; θi))) (3)

We then define the final prediction as the class with the largest
softmax probability: ŷ(x) = argmaxc∈[C] [gn(x)]c. Note

that this decision rule is different from most previous works
that use a majority vote on hard labels, i.e., ŷmaj(x) =

argmaxc∈[C]

∑n
i=1 ✶

{

c = argmaxj∈[C] fj(x)
}

(Raff

et al. 2019; Cohen, Rosenfeld, and Kolter 2019). We later
show in Appendix D.1 that our rule is empirically superior
to the majority vote. From the Law of Large Numbers, as
n increases, the approximation in Eqn. 3 converges to the
expectation in Eqn. 2. Fig. 1 illustrates the structure and the
components of the RT architecture.

3.2 Parameterization of Transformations

Here, t(·; θ) represents a composition of S different image

transformations where θ = {θ(1), . . . , θ(S)} and θ(s) denotes
the parameters for the s-th transformation, i.e.,

t(x; θ) = tθ(S) ◦ tθ(S−1) ◦ · · · ◦ tθ(1)(x) (4)

Each θ(s) is a random variable comprised of three compo-

nents, i.e., θ(s) = {τ (s), β(s), α(s)}, which dictate the prop-
erties of a transformation:

1. Type τ of transformation to apply (e.g., rotation, JPEG
compression), which is uniformly drawn, without re-
placement, from a pool of K transformation types: τ ∼
Cat(K,1/K).

2. A boolean β indicating whether the transformation will
be applied. This is a Bernoulli random variable with prob-
ability pβ : β ∼ Bern (p).

3. Strength of the transformation (e.g., rotation angle, JPEG
quality) denoted by α, sampled from a predefined distri-
bution (either uniform or normal): α ∼ p(a).

Specifically, for each of the n transformed samples, we
sample a permutation of size S out of K transformation

types in total, i.e. {τ (1), . . . , τ (S)} ∈ Perm(K,S). Then the
boolean and the strength of the s-th transform are sampled:

β(s) ∼ Bern (pτ (s)) and α(s) ∼ p(aτ (s)). We abbreviate this
sampling process as θ ∼ p(θ) which is repeated for every
transformed sample (out of n) for a single input.

Assuming that the K transformation types are fixed,
an RT defense introduces, at most, 2K hyperparameters,
{p1, . . . , pK} and {a1, . . . , aK}, that can be tuned. It is also
possible to tune by selecting K ′ out of K transformation
types, but this is combinatorially large in K. In Appendix C,
we show a heuristic for ªpruningº the transformation types
through tuning p and a (e.g., setting p = 0 is equivalent to
removing that transformation type).

3.3 Choices of Transformations

In this work, we use a pool of K = 33 different im-
age transformations including 19 differentiable and 2 non-
differentiable transforms taken from the 30 BaRT trans-
forms (Raff et al. 2019) (counting each type of noise injection

as its own transform). We replace non-differentiable transfor-
mations with a smooth differentiable alternative (Shin and
Song 2017). The transformations fall into seven groups: noise
injection (7), blur filtering (4), color-space alteration (8), edge
detection (2), lossy compression (3), geometric transforma-
tion (5), and stylization (4). All transforms are described in
Appendix A.1.

4 Evaluating Raff et al. (2019)’s BaRT

Backward-pass differentiable approximation (BPDA) was
proposed as a heuristic for approximating gradients of non-
differentiable components in many defenses to make gradient-
based attacks applicable (Athalye, Carlini, and Wagner 2018).
It works by first approximating the function with a neural net-
work and backpropagate through this network instead of the
non-differentiable function. Evaluations of BaRT in Raff et al.
(2019) have considered BPDA as some transformations are
innately non-differentiable or have zero gradients almost ev-
erywhere (e.g., JPEG compression, precision reduction, etc.).
To approximate a transformation, we train a model t̃ϕ that
minimizes the Euclidean distance between the transformed
image and the model output:

min
ϕ

N
∑

i=1

E
θ∼p(θ)

∥

∥t̃ϕ(xi; θ)− t(xi; θ)
∥

∥

2
(5)

We evaluate the BPDA approximation below in a series of
experiments that compare the effectiveness of the BPDA
attack to an attack that uses exact gradients.

4.1 Experiment Setup

Our experiments use two datasets: CIFAR-10 and Ima-
genette (Howard 2021), a ten-class subset of ImageNet.
While CIFAR-10 is the most common benchmark in the
adversarial robustness domain, some image transformations
work poorly on low-resolution images. We choose Imagenette
because BaRT was created on ImageNet, but we do not have
resources to do thorough investigation on top of adversarial
training on ImageNet. Additionally, the large and realistic
images from Imagenette more closely resemble real-world
usage All Imagenette models are pre-trained on ImageNet
to speed up training and boost performance. Since RT mod-
els are stochastic, we report their average accuracy together
with the 95% confidence interval from 10 independent runs.
Throughout this work, we consider the perturbation size ϵ
of 16/255 for Imagenette and 8/255 for CIFAR-10. Ap-
pendix A.2 has more details on the experiments (network
architecture, hyperparameters, etc.).

4.2 BPDA Attack is Not Sufficiently Strong

We re-implemented and trained a BaRT model on these
datasets, and then evaluated the effectiveness of BPDA at-
tacks against this model.1 First, we evaluate the full BaRT
model in Table 1, comparing an attack that uses a BPDA
approximation (as Raff et al. (2019)) vs an attack that
uses the exact gradient for differentiable transforms and

1The authors have been very helpful with the implementation
details but cannot make the official code or model weights public.





Datasets Attacks Adv. Accuracy

Imagenette
Baseline 70.79± 0.53
AutoAttack 85.46± 0.43
Our attack 6.34± 0.35

CIFAR-10
Baseline 33.83± 0.44
AutoAttack 61.13± 0.85
Our attack 29.91± 0.35

Table 2: Comparison between the baseline EoT attack (Atha-
lye et al. 2018), AutoAttack (Croce and Hein 2020), and our
attack on the RT defense whose transformation parameters
have been fine-tuned by Bayesian Optimization to maximize
the robustness. For AutoAttack, we use its standard version
combined with EoT. For Imagenette, we use ϵ = 16/255, for
CIFAR-10, ϵ = 8/255.

Algorithm 1: Our best attack on RT defenses

Input: Set of K transformations and distributions of their
parameters p(θ), neural network f , perturbation size

ϵ, max. PGD steps T , step size {γt}
T
t=1, and

AggMo’s damping constants {µb}
B
b=1.

Output: Adversarial examples xadv

Data: Test input x and its ground-truth label y
// Initialize x adv and velocities

1 xadv ← x+ u ∼ U [−ϵ, ϵ], {vb}
B
b=1 ← 0

2 for t← 1 to T do
3 {θi}

n
i=1 ∼ p(θ)

// Compute a gradient estimate with

linear loss on logits

(Section 6.2) and with SGM

(Section 6.3)

4 Gn ← ∇LLinear

(

1

n

∑n

i=1
f(t(xadv; θi)), y

)

5 Ĝn ← sign(Gn) // Use signed gradients

// Update velocities and x adv with

AggMo (Section 6.4)

6 for b← 1 to B do

7 vb ← µb · vb + Ĝn

8 xadv ← xadv + γt

B

∑B

b=1
vb

9 return xadv

variables, we experiment with different choices for K and S
without the use of BO. The full details of this procedure are
presented Appendix C.

6 State-of-the-Art Attack on RT Defenses

We propose a new attack on differentiable RT defenses that
leverages insights from previous literature on transfer at-
tacks as well as recent stochastic optimization algorithms.
Our attack is immensely successful and shows that even the
fine-tuned RT defense from Section 5 shows almost no ad-
versarial robustness (Table 2). We summarize our attack in
Algorithm 1 before describing the setup and investigating the
three main design choices that make this attack successful
and outperform the baseline from Athalye et al. (2018) by a
large margin.

6.1 Setup: Stochastic Gradient Method

First, we describe the setup and explain intuitions around
variance of the gradient estimates. Finding adversarial ex-
amples on RT defenses can be formulated as the following
stochastic optimization problem:

max
δ:∥δ∥

∞
≤ϵ

H(δ) := max
δ:∥δ∥

∞
≤ϵ

Eθ [h(δ; θ)] (6)

:= max
δ:∥δ∥

∞
≤ϵ

Eθ [L(f(t(x+ δ; θ)), y)] (7)

for some objective function L. Note that we drop dependence
on (x, y) to declutter the notation. Since it is not possible to
evaluate the expectation or its gradients exactly, the gradients
are estimated by sampling {θi}ni=1 similarly to how we obtain
a prediction gn. Suppose that H is smooth and convex, and
variance of the gradient estimates is bounded by σ2, i.e.,

E
θ∼p(θ)

[

∥∇h(δ; θ)−∇H(δ)∥2
]

≤ σ2, (8)

the error of SGD after T iterations is O
(

1/T + σ/
√
T
)

for an appropriate step size (Ghadimi and Lan 2013). This
result suggests that small σ or low-variance gradient speeds
up convergence which is highly desirable for attackers and
defenders alike. Specifically, it leads to more efficient and
more accurate evaluation as well as a stronger attack to use
during adversarial training, which in turn, could yield a better
defense (we explore this in Section 7).

As a result, the analyses on our attack will be largely based
on variance and two other measures of spread of the gradi-
ents. Specifically, we measure (1) the dimension-averaged
variance in Eqn. 8, (2) cosine similarity and (3) a percentage
of matching signs between mean gradient and each gradient
sample. Since all three metrics appear to be highly correlated
in theory and in practice, we only report the variance in the
main paper. For the other metrics and their mathematical
definitions, please see Appendix B.3.

EoT Baseline. We compare our attack to the baseline which
is exactly taken from Athalye et al. (2018). This attack takes
on the same form as Eqn. 7 and its gradients are averaged
over n gradient samples:

HEoT
n (δ) :=

1

n

n
∑

j=1

L (f (t(x+ δ; θj)) , y) (9)

It is important to note that this approximation does not exactly
match the decision rule of RT defenses as the expectation
should be in front of f but behind the loss function (see
Eqn. 2). While the gradient estimates from Eqn. 9 are unbi-
ased, they may have high variance as each gradient sample
is equivalent to computing the loss on gn with n = 1. In
the next section, we will compare other options for objective
functions and decision rules and show that there are better
alternatives to the original EoT.

Signed gradients. All of the attacks used in this study in-
cluding ours and the baseline use signs of gradients instead
of the gradients themselves. This is a common practice for
gradient-based ℓ∞-attacks, and we have also empirically con-
firm that it leads to much stronger attacks. This is also the







Defenses
Imagenette CIFAR-10

Clean Accuracy Adv. Accuracy Clean Accuracy Adv. Accuracy

Normal model 95.41 0.00 95.10 0.00
Madry et al. (2018) 78.25 37.10 81.90 45.30
Zhang et al. (2019) 87.43 33.19 81.26 46.89

RT defense 89.04± 0.34 6.34± 0.35 81.12± 0.54 29.91± 0.35
AdvRT defense 88.83± 0.26 8.68± 0.52 80.69± 0.66 41.30± 0.49

Table 3: Comparison of RT and AdvRT defenses to prior robust deterministic models and a normally trained model. Both the
RT and the AdvRT models on Imagenette lack the adversarial robustness. Conversely, the RT defense on CIFAR-10 does bring
substantial robustness, and combining it with adversarial training boosts the adversarial accuracy further. Nonetheless, they still
fall behind the previously proposed deterministic models including Madry et al. (2018) and Zhang et al. (2019). The largest
number in each column is in bold.

of which does not use gradients. AutoAttack has been proven
to be one of the strongest attack currently and is capable of
catching defenses with false robustness caused by gradient
obfuscation (Athalye, Carlini, and Wagner 2018).

While not particularly designed for stochastic models, Au-
toAttack can be used to evaluate them when combined with
EoT. We report the accuracy on adversarial examples gener-
ated on AutoAttack with all default hyperparameters in the
ªstandardº mode and 10-sample EoT in Table 2. AutoAttack
performs worse than the baseline EoT and our attack on both
Imagenette and CIFAR-10 by a large margin. One of the
reasons is that AutoAttack is optimized for efficiency and so
each of its attacks is usually terminated once a misclassifica-
tion occurs. This is applicable to deterministic models, but
for stochastic ones such as an RT defense, the adversary is
better off finding the adversarial examples that maximize the
expected loss instead of ones that are misclassified once.

To take this property into account, we include the accuracy
reported by AutoAttack that treats a sample as incorrect if it
is misclassified at least once throughout the entire process.
For Imagenette, the accuracies after each of the four attacks
(APGD-CE, APGD-T, FAB, and Square) is applied sequen-
tially are 82.03, 78.81, 78.03, and 77.34, respectively. Note
that this is a one-time evaluation so there is no error bar here.
Needless to say, the adversarial accuracy computed this way
is strictly lower than the one we reported in Table 2 and vio-
lates our threat model. However, it is still higher than that of
the baseline EoT and our attack, suggesting that AutoAttack
is ineffective against randomized models like RT defenses.
AutoAttack also comes with a ªrandomº mode for random-
ized models which only use APGD-CE and APGD-DLR with
20-sample EoT. The adversarial accuracies obtained from this
mode are 85.62 and 83.83 or 88.62 ± 0.46 for single-pass
evaluation as in Table 2. This random mode performs worse
than the standard version.

7 Combining with Adversarial Training

To deepen our investigation, we explore the possibility of
combining RT defense with adversarial training. However,
this is a challenging problem on its own. For normal de-
terministic models, 10-step PGD is sufficient for reaching
adversarial accuracy close to best known attack or the opti-
mal adversarial accuracy. However, this is not the case for

RT defenses as even our new attack still requires more than
one thousand iterations before the adversarial accuracy starts
to plateau. Ultimately, the robustness of adversarially trained
models largely depends on the strength of the attack used to
generate the adversarial examples, and using a weak attack
means that the obtained model will not be robust. A similar
phenomenon is observed by Tramèr et al. (2018) and Wong,
Rice, and Kolter (2020) where an adversarially trained model
overfits to the weak FGSM attacks but has shown to be non-
robust with the accurate evaluation. To test this hypothesis,
we adversarially train the RT defense from Section 5 using
our new attack with 50 iterations (already 5× the common
number of steps) and call this defense ºAdvRT.º The attack
step size is also adjusted accordingly to ϵ/8.

In Table 3, we confirm that training AdvRT this way re-
sults in a model with virtually no robustness improvement
over the normal RT on Imagenette. On the other hand, the
AdvRT trained on CIFAR-10 proves to be more promising
even though it is still not as robust as deterministic models
trained with adversarial training or TRADES (Zhang et al.
2019). Based on this result, we conclude that a stronger
attack on RT defenses that converge within a much fewer
iterations will be necessary to make adversarial training
successful. In theory, it might be possible to achieve a robust
RT model with 1,000-step attack on Imagenette, but this is
too computationally intensive for us to verify, and it will not
to scale to any realistic setting.

8 Conclusion

While recent papers report state-of-the-art robustness with
RT defenses, our evaluations show that RT generally under-
performs existing defenses like adversarial training when met
with a stronger attack, even after fine-tuning the hyperpa-
rameters of the defense. Through our experiments, we found
that non-differentiability and high-variance gradients can se-
riously inhibit adversarial optimization, so we recommend
using only differentiable transformations along with their
exact gradients in the evaluation of future RT defenses. In
this setting, we propose a new state-of-the-art attack that im-
proves significantly over the baseline (PGD with EoT) and
show that RT defenses as well as their adversarially trained
counterparts are not as robust to adversarial examples as they
were previously believed to be.



A Experiment Details

A.1 Details on the Image Transformations

The exact implementation of RT models and all the trans-
formations will be released. Here, we provide some details
on each of the transformation types and groups. Then, we
describe how we approximate some non-differentiable func-
tions with differentiable ones.

Noise injection

• Erase: Set the pixels in a box with random size and loca-
tion to zero.

• Gaussian noise: Add Gaussian noise to each pixel.
• Pepper: Zero out pixels with some probability.
• Poisson noise: Add Poisson noise to each pixel.
• Salt: Set pixels to one with some probability.
• Speckle noise: Add speckle noise to each pixel.
• Uniform noise: Add uniform noise to each pixel.

Blur filtering

• Box blur: Blur with randomly sized mean filter.
• Gaussian blur: Blur with randomly sized Gaussian filter

with randomly chosen variance.
• Median blur: Blur with randomly sized median filter.
• Motion blur: Blur with kernel for random motion angle

and direction.

Color-space alteration

• HSV: Convert to HSV color-space, add uniform noise,
then convert back.

• LAB: Convert to LAB color-space, add uniform noise,
then convert back.

• Gray scale mix: Mix channels with random proportions.
• Gray scale partial mix: Mix channels with random pro-

portions, then mix gray image with each channel with
random proportions.

• Two channel gray scale mix: Mix two random channels
with random proportions.

• One channel partial gray: Mix two random channels
with random proportions, then mix gray image with other
channel.

• XYZ: Convert to XYZ color-space, add uniform noise,
then convert back.

• YUV: Convert to YUV color-space, add uniform noise,
then convert back.

Edge detection

• Laplacian: Apply Laplacian filter.
• Sobel: Apply the Sobel operator.

Lossy compression

• JPEG compression: Compress image using JPEG to a
random quality.

• Color precision reduction: Reduce color precision to a
random number of bins.

• FFT perturbation: Perform FFT on image and remove
each component with some probability.

Geometric transforms

• Affine: Perform random affine transformation on image.
• Crop: Crop image randomly and resize to original shape.
• Horizontal flip: Flip image across the vertical.
• Swirl: Swirl the pixels of an image with random radius

and strength.
• Vertical flip: Flip image across the horizontal.

Stylization

• Color jitter: Randomly alter the brightness, contrast, and
saturation.

• Gamma: Randomly alter gamma.
• Sharpen: Apply sharpness filter with random strength.
• Solarize: Solarize the image.

Non-differentiable (for BPDA Tests Only)

• Adaptive histogram: Equalize histogram in patches of
random kernel size.

• Chambolle denoise: Apply Chambolle’s total variation
denoising algorithm with random weight (can be imple-
mented differentiably but was not due to time constraints).

• Contrast stretching: Pick a random minimum and max-
imum pixel value to rescale intensities (can be imple-
mented differentiably but was not due to time constraints).

• Histogram: Equalize histogram using a random number
of bins.

Unused transforms from BaRT

• Seam carving: Algorithm used in Raff et al. (2019) has
been patented and is no longer available for open-source
use.

• Wavelet denoising: The implementation in Raff et al.
(2019) is incomplete.

• Salt & pepper: We have already used salt and pepper
noise separately.

• Non-local means denoising: The implementation of NL
means denoising in Raff et al. (2019) is too slow.

A.2 Experiment Details

All of the experiments are evaluated on 1000 randomly cho-
sen test samples. Since we choose the default n to be 20
for inference and 10 for the attacks, the experiments are at
least 10 times more expensive than usual, and we cannot
afford enough computation to run a large number of experi-
ments on the entire test set. The networks used in this paper
are ResNet-34 (He et al. 2016a) for Imagenette and Pre-
activation ResNet-20 (He et al. 2016b) for CIFAR-10. In all
of the experiments, we use a learning rate of 0.05, batch size
of 128, and weight decay of 0.0005. We use cosine annealing
schedule (Loshchilov and Hutter 2017) for the learning rate
with a period of 10 epochs which also doubles after every
period. All models are trained for 70 epochs, and we save the
weights with the highest accuracy on the held-out validation
data (which does not overlap with the training or test set).
For adversarially trained RT defenses, the cosine annealing
step is set to 10 and the training lasts for 70 epochs to reduce
the computation. To help the training converge faster, we
pre-train these RT models on clean data before turning on
adversarial training as suggested by Gupta, Dube, and Verma
(2020).
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