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Abstract—We propose an over-the-air learning framework
for collaborative decision making in wireless sensor networks.
The low complexity framework leverages low-latency sensor
transmission for a decision server to coordinate measurement
sensors for hypothesis testing through over-the-air aggregation
of sensor data over a multiple-access channel. We formulate
several collaborative over-the-air hypothesis testing problems
under different practical protocols for collaborative learning and
decision making. We develop hypothesis tests for these network
protocols and deployment scenarios including channel fading.
We provide performance benchmark for both basic likelihood
ratio test and generalized likelihood ratio test under different
deployment conditions. Our results clearly demonstrate gain
provided by increasing number of collaborative sensors.

Index Terms—Internet of Things, federated learning, hypoth-
esis testing.

I. INTRODUCTION

Internet of Things (IoT) broadly cover a variety of tech-
nologies that effectively deploy and integrate a wide range
of devices and sensors to advance a myriad of applica-
tions, including smart cities and environmental protection.
One important class of IoT applications involve the detection
of an underlying critical event based on local observation
measured by distributed nodes. Such collaborative learning is
a special type of federated learning which, by definition, is
machine learning technique that optimizes an algorithm across
multiple decentralized devices holding local data samples
without exchanging them. In this paper, we study collaborative
learning for joint decision making through over-the-air data
aggregation in multiple access channel by distributed low-
complexity wireless sensors.

Traditional grant-based access networks feature a server
node coordinates data transmission by sensor nodes by issuing
access grant to facilitate orthogonal channel access. Such cen-
tralized orthogonal multiple access (OMA) network consumes
significant bandwidth resources, and leads to longer latency.
On the other hand, grant-free networks require effective signal
separation of multiple sensor transmissions, which is difficult
for large number of sensors. Recent works leveraged blind
signal recovery by utilizing multiple receive antennas [1]-
[3]. However, such approaches are computationally costly and
require larger number of receive antennas than the number of
participating nodes for multi-sensor signal separation.

However, in many collaborative learning applications it is
unnecessary to recover the data of each participating sensor
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node. Recent works have considered collaborative learning
from distributed sources. In particular, Federated Learning
(FL) has gained much attention as a joint learning framework
[4], [5] for distributed nodes to jointly train a shared learning
model by using their own local data without data sharing to
protect privacy. In the most popular form of FL, a server
collects local gradients to update a shared deep learning neural
network (DLN). As such, FL avoids revealing private data
and potentially reduces local storage. However, in the context
of mobile systems, the need to transmit local updates in a
typically large DLN learning model would require complex
protocols for wireless access and coordination, and consume
large amounts of bandwidth. Such complexity and resource
demand make such FL setup less appealing for IoT.

Taking a broader view beyond the resource inefficient DLN
framework, different collaborative learning can positively im-
pact the performance and other operational characteristics
of an IoT system, such as improving bandwidth efficiency,
reduced network coordination, or increased energy efficiency.
Applications such as environmental monitoring, where the
network distributively senses an underlying event from multi-
ple sensor observations, can be formulated as a collaborative
decision making problem that asks multiple sensors for their
local measurement and aggregate all the sensor observations
to make a decision. In particular, techniques such as over-the-
air computation (AirComp) [6], [7] can effectively improve
the spectrum efficiency instead of relying on resource-hungry
OMA protocols. AirComp based collaborative learning frame-
work takes advantages of the low complexity of IoT nodes,
requires simple access protocol, and improves the overall
reliability of joint decision making. In particular, AirComp
exploits the natural superposition of multiple simultaneous
signals, and yields an aggregated signal for the server node to
more reliably detect the underlying event in a well formulated
hypothesis testing problem with low latency, high bandwidth
efficiency, and modest computational load.

In this work, we focus on the collaborative decision making
IoT framework as a special case of federated learning. We
formulate the collaborative learning process as a hypothesis
testing based on over-the-air signal aggregation techniques to
reduce latency, simplify network access, improve spectrum
efficiency, and improve the accuracy of the decision making
process by exploiting the aggregation of multiple sensor data.

Section II presents a general system model for AirCompCL.
In Section III we study an scenario where sensors precode their
transmitted signals to counter channel phase. Section IV shows



the test design for networks where sensors do not precode
their signals. Section V presents the case where non-precoded
signals are collected over multiple transmission bursts that are
affected by different, random channel realizations. Section VI
shows numerical results and Section VII summarizes our work.

Notations: We denote vectors and matrices using lowercase
and uppercase bold letters, respectively. Re(a) and |a| denote
the real part and magnitude of scalar a, respectively. We denote
transpose, conjugate, and conjugate transpose of z as z', z*,
and 2", respectively. 1 and I are a vector of ones and the
identity matrix of appropriate size. || - || denotes ¢2 norm and
E{-} denotes expectation.

II. SYSTEM MODEL

Consider a TDD wireless system of single-antenna nodes,
where a server node hosts S sensors. In each slot, sensors
simultaneously transmit (analog) signals to the server over a
shared wireless channel. We assume that all sensors have ac-
quired network timing and are synchronized at the server, e.g.,
via round-trip delay information, such that their transmitted
signals would aggregate synchronously at the receiving server.
Furthermore, we assume that each burst duration is below the
coherence time of wireless channel such that channel gains
remain constant within each transmission slot.

AirComp aims to compute an estimation or decision from a
nomographic function of distributed data collected locally by
participating sensors. Each sensor transmits an analog signal
x;(t), for i € S = {1,...,S}, corresponding to a local pre-
processing function ¢; of the collected signal w;(t), i.e.

i(t) = ¢i(ui(t)), i€S. (0

The server node receives all wireless signals simultaneously
over shared channel with individual gains g; € C as:

y(t) =Y giwi(t) + n(t), )
i€S
where n(t) is circularly symmetric complex AWGN with
power density w?, independent of all channels and signals.

In the particular problem of over-the-air hypothesis testing,
the server decides on an hypothesis using K samples of the
received signal Eq.(2). A major distinction is whether the
sensors directly send their measurements to the server, or
if they perform local hypothesis testing and send their own
decision to the server. In this work we focus on a centralized
decision at the server using the direct transmission of the local
measurements of sensors.

Without loss of generality, we focus on binary hypothe-
sis testing as an initial Over-the-Air Collaborative Learning
(AirCompCL) framework. Let Hy and H; be two underlying
hypotheses regarding the measured events. The ¢-th sensor
observes waveform wu; for duration 7" under Hy and H; as

Hj : ui(t):sj(t)eri(t), 0§t<777 (3)

where w;(t) represents white Gaussian measurement noise
with power density 012-, independent of s;(¢) and independent
from other sensor noises. Each sensor may transmit x;(¢) in
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Fig. 1: AirCompCL system using channel precompensation, owing to channel
reciprocity. The server node broadcasts pilots that allow sensors to estimate
channel and precode their signals.

K (1 £ K) opportunities. By using a classic matched filter
s1(t) — s(t) at the receiver for the general binary hypothesis
[8, Chapter 2], we obtain an equivalent vector representation
of K discrete samples for data signals [9, Chapter 2]:

wi|Hj ~ N (m;1,071). 4)

The server aims to make a decision based on the col-
lective observation of m;. Hence, throughout this work we
assume that sensor variances are equal in both hypotheses, i.e.
a% = 0% = o2, and define sensor confidence as the squared
normalized Gaussian distance, & = |m; —mg|? /o2, and sensor
uncertainty as its reciprocal.

Let X € CK*% be a matrix such that its i-th column
corresponds to ¢;(u;), and let g = [g; - -- , gs]". Hence, the
samples of the received signal are collected in

y=Xg+n &)

with n representing the corresponding receiver noise vector.
We also define the channel SNR v = E{|g;|*}|m|?/w?, in
terms of a single sensor.

For a set of samples y, binary hypothesis testing is based

in comparing the likelihood ratio (LR) L(y) with a threshold
Hy

7 in a likelihood ratio test (LRT) L(y) z T.
Hg
We can now study this formulation for AirCompCL under
different system settings. In particular, we classify different
scenarios according to whether there exists TDD channel
reciprocity.

III. AIRCOMPCL WITH CHANNEL PRECOMPENSATION

We first describe our over-the-air protocol under TDD
channel reciprocity, in Fig.l. The server broadcasts time-
stamps and pilots that allow sensors to estimate reciprocal
uplink channel phase and to estimate time-advance. Sensors
may precompensate channel phase in their transmission, i.e.,
¢i(u) = gF/|gi| - u. Owing to precompensation and time-
advance, the server receives over-the air sum of signals

y=>_lgl -ui+n. 6)

€S



Without loss of generality, we consider y under hypothesis
H; to follow a real K-dimensional Gaussian distribution
N (pl,v2I|H;) with

Hj:M|Hj=Z|gi|-mj:A-mj, (7a)
i€s

V2= "gil* 0 + 05w = P 0 + 0.5w%. (7b)
=

Note that E{A} = S - E{|g;|} and E{P} = S - E{|¢:|*}.
The LR over K samples for a binary hypothesis testing is

ly — poll®  |ly — pal]?
L(y) = _ .
(y) = exp < 5,2 5,2 (8

During uplink, the server may estimate the reception param-
eters A, P and/or w2, depending on protocol. However, note
that A > 0 and P > 0. In fact, A = P = 0 when no sensors
transmit signals. In the following, we study several detection
problems depending on the knowledge of the relevant access
channel parameters A, P and w?.

A. Server with known access channel parameters

We consider the case that the server node has estimated A,
P and w?. This simple setting serves as baseline to compare
with cases where (some of) these parameters are unknown.

First, consider the simple but well known case with Hy :
m = mg vs Hy; : m = mq, with m; > mg. We assume known
sensor variance o2, which implies known V2. Hence, the LR

A(my —m AZ(m2 — mAK
L(y) = exp < ( 11/2 0) 1Ty _ ( 02V2 1) ) (9)

is monotone increasing function of statistic ¢;(y) = 1Ty.
Invoking the Karlin-Rubin theorem [10] and setting the prob-
ability of false alarm Pp (t1(y) > n1|Ho) = o, the test

b1(y, @) : t1(y) zzl m=vQ (a)+Amg  (10)
0
is UMP of size « for testing Hy vs. H; with power
Pp(a) =1-Q(d— Q7 '(a)), (1D
by defining a normalized distance
d— VE Amy — mo| (12)

VP2 +0.5u2

As expected, d grows with the number of sensors at a rate /S
and decreases with noise and aggregated sensor uncertainty.

B. Server with unknown access channel parameters

Here we study the case when the server fails to estimate
some or all access channel parameters. Hence, we now design
a test for sensor means, i.e. Hy : m = mg vs Hy : m =
m1 > mg with unknown A > 0. Regrettably, no UMP test
exists for arbitrary mg because the test statistic and size would
depend on A. However, it is possible to obtain an UMPI for
this detection problem for the special case of my = 0. Let us
design a test to decide Hyp : m = 0 vs. H; : my # 0 with

unknown A > 0. If either 62, P or w? are unknown, /2 is
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Fig. 2: AirCompCL system with no precompensation. Sensors send their data
directly, and server receives signals with channels that could have constructive
or destructive mixing.

unknown, and thus both hypotheses are composite. Hence, we
rely on ML estimates of mean and variance:

R 1 . 1 R
fmL = ?11-% L = ?Hy — 1%

The generalized LRT (GLRT) yields

(13)

L( ): fy(y|/ll\/1LalA/l%/IL)
fy(y‘ovﬁf/[L)
2 o 1 2 Hy
SN (ERTET RIS S
Hy

) 2
VyL VyL

and reduces to the test

1Ty D
t(y) = —=— = n,
VEK|yll

which is a UMPI test for testing H; against Hp, as is
invariant under the group composed of scale transformations
and the group of symmetries with respect to the hyperplane
orthonormal to 1, and the LR is a monotone increasing
function of t5(y) [9]. The distribution of t5(y) is derived in
[9] using hyperspherical coordinates, but equivalently, {5 under
Hy follows a central folded-t distribution with K —1 degrees of
freedom (DoF), and under H; follows a folded-¢ distribution
with K —1 DoF and noncentral parameter VK Amg /i, [11].

d2(y,m2) : (15)

IV. AIRCOMPCL WITHOUT CHANNEL COMPENSATION

In IoT deployment where sensors do not utilize channel reci-
procity for precompensation, it would be natural for sensors
to simply transmit ¢;(u) = u for ¢ € S, as depicted in Fig. 2.
In this scenario, y is a vector of independent complex random
variables with distribution under H; as CN (ul, v2I|Hj),
where

i = p|Hj; = Zgi -mj = Gm;, GeC, (16a)
i€S

vt = Z gi]? - 0% + w? = Po® +w?.  (16b)
i€S

In this case, sum of channel gains G at the server can be
constructive or destructive. This setting is akin to classical
signal detection with unknown gain under Gaussian noise, with
the difference being the presence of local sensor noise further
scaled by access channel gains. Because of access channel
phase, the LR corresponds to

_ 2 _ 2
L(y) = exp (”y MO]-” . ||y ,ul]-” >, (17)

V2 V2




depending on the knowledge of parameters G, P and w?.

A. Known access channel parameters

Consider first the case of known G, P and w? at the server.
Under hypotheses Hy : m = mqg vs Hy : m = my > mg
with known sensor noise variance, we may refer back to
Section III-A. We use the statistic t3(y) = Re(G*1Ty)/|G|,
and establish the Neyman-Pearson (NP) test of size a

H;

53(yva) : t3(y> ; N3 = VQil(OZ) =+ G*mo.
Ho

(18)

For a given size «, the power of the test is

VE|G|(my — m)
VPo? 4+ w?

B. Unknown access channel parameters

PD(a)zl—Q( —Q_l(a)) 19)

Similarly to the case of Section III-B, as the server does not
know the phase of G, it is not possible to obtain an UMP(I)
for testing different means unless one of them is zero. Hence,
we again test sensor means, i.e. Hy : m = mg = 0 vs.
Hy : my # mgp, with G unknown. If either o2, P or w?
are unknown, the hypotheses are composite. This detection
problem is invariant under the group of complex scalar trans-
formations (i.e. rotations and scalar multiplication), as for any
¢ € C # 0, we have that ¢/ = cu and v/ = |c|v yields the
same problem. For this test, the GLRT approach using ML
estimates of all unknown parameters reduces to

1Ty T
t = — = 1. 20
4(y) \/T(HyH I§0774 ( )
As in Section III-B, this test is UMPI for testing H; against
Hy. The difference with ¢2(y) from (15) is that y is now
complex such that |17y| denotes magnitude. Hence, ¢4 under
Hy is the magnitude of a complex ¢-distribution random
variable with K — 1 DoF. Under H;, t4 corresponds to the
magnitude of a noncentral complex-f random variable with
K — 1 DoF and mean \/FGml/ﬁML [12].

04y, ) :

V. FADING ACCESS CHANNELS

In the previous sections, we considered that the server
obtained K snapshots of local measurements of one short burst
transmission from the sensors, during which the fading chan-
nels do not change. Nevertheless, the server could also obtain
observations occurring in different bursts, subject to different
channel realizations regardless of channel precompensation.
In this section, we study the effect of accumulating a single
observation per burst from K > 1 bursts, and in particular,
focus on the case with no precompensation from Section IV,
in the hopes of being able to counter the effect of channel
phase with different channel realizations.

We now consider K transmission bursts with non-
precompensated transmissions, where during the k-th burst
the sensors transmit a signal z;[k] = ¢(u;[k]) = w;[k], and
the server collects one snapshot per burst. Moreover, each
burst experiences random i.i.d. channel realizations following

a Rayleigh distribution, i.e. g;[k] ~ CN(0,1). To counter
channel realizations, the server makes a decision over the K
samples obtained in K distinct bursts. Let y = [y -+ yx]|T
be the vector that collects the single snapshot of each burst,
and the received signal follows the model

Yk = Zgz[k] k] 4+ ng
i€S

2

where the k-th snapshot of u; follows a complex Gaussian dis-
tribution with mean m and variance o2, and n is multivariate
circularly symmetric AWGN with variance w?I.

Let z; , = g;[k]u;[k] denote the product of the i-th channel
realization with their corresponding signal during the k-th
burst. For Rayleigh channels, the distribution of each z;
follows a product-of-Gaussians distribution, and given that the
channels have zero mean, the resulting PDF [13]-[15] is

o0

2n
2 K"z 2|z 1|
K3 J s 5
Y G e Kl Tor ) @

n=0

2|Zi,l~c

zik [ Hj ~ o2
where K, is the Bessel function of the second kind of order
v and k; = |m;|/o. The distribution of z; corresponds to
the convolution of S different copies of distribution (22),
convolved with the AWGN distribution. In [16] the authors
derive the characteristic function of the inner product of com-
plex Gaussian vectors, which corresponds to the characteristic
function of the complex random variable z; = Zie s Zik:

: _ I¢]Po\ ™ 1¢][2Sm?
¢Zk<]C)|H]’ = (1 + 4) exp <_ 4+|C”2;2>7

whose PDF can be expressed in the form of a doubly infinite
series of Whittaker functions [17], but is not helpful to derive
and study the LR in closed form. Moreover, the AWGN still
needs to be considered, with a resulting characteristic function

Oy (jC)IH,;

_ I1¢]2o? Y ® IIPSms  ||¢)%w?
~(1+E5) e (- e ) @

To obtain the LR, one can perform numerical inversion
of (23) for different hypotheses and use spline interpolation,
to then construct the LR. Regrettably, such process does not
provide analytical insights that helps to design decision tests.
However, numerical simulations show that the distribution of
z resembles a zero-mean Gaussian distribution. As every
observation zj, is obtained by the sum of S non-compensated
sensor averages and AWGN, the Central Limit Theorem (CLT)
allows us to approximate the distribution of yj as

fy(ylH; ) = CN(0,v5)

(24)

where v} = w® + S(0 + |m,|?), thanks to the independence
of the ¢-th channel and signal in each burst [17]. Using these
CLT approximations, we can test for different sensor signal
means by performing tests for different variances of zero-mean
Gaussian received signals over K bursts.

Formally, we test different sensor mean magnitudes Hy :
|m| = |mo| vs. H : |m| = |mq| > |mg| with equal sensor



variances, by redefining the detection problem as detecting
Hoy:v? =3 vs. H: v? = v} > 13 assuming zero-mean
Gaussian signals, which we call the approximate problem. As-
suming known w? and o2, we use the statistic t5(y) = ||y||?,
which under each hypothesis follows a 2 distribution with
2K DoF after normalization by the corresponding variance

1/]2. Hence, the test
H,

55(y,m5) + ts(y) = 15 =150 (),
Ho

(25)

where () is the CDF of a 3 distribution, is UMP of size
for the approximate problem, with power
2K -1

Pp(a) = exp (— Z?Q_l(a)) Z::O %(— Zgﬂ_l(a))n?

VI. NUMERICAL RESULTS

This section presents analytical and numerical simulations
for the different tests analyzed earlier in the paper. In par-
ticular, we study the effect of sensor aggregation in our
AirCompCL problem for different numbers of collaborative
sensors. In our simulations, we test Rayleigh channels, i.e.
gi; ~ CN(0,1), and for analytical results, we set

E{A} = Sg, E{P} =S, E{G} =0, E{|G|} = g

Figs. 3 and 4 show the analytical performance for test-
ing different means with and without channel compensation,
respectively. Figs. 3a and 4a show the receiver operating
characteristic (ROC) of the tests ; and d3, under channel
SNR of -15dB and -5dB respectively, with different values
of sensor confidence and number of users. As expected, the
probability of detection increases significantly with the number
of users that collaborate in the decision making process, even
when that also increases the total sensor uncertainty observed
by the server. Nevertheless, for low channel SNR and only
K = 1 samples, the effect of sensor confidence is small for
compensated signals (Fig. 3a). Without channel compensation,
the effect of both channel SNR and sensor confidence is
stronger, and for low sensor confidence the performance gain
of sensor aggregation diminishes. Figs. 3b and 4b show
the probability of detection for varying values of channel
SNR, at a fixed probability of false alarm of 10%. At low
channel SNR, sensor uncertainty does not have strong impact.
However, for high channel SNR, sensor uncertainty becomes
more dominant in the decision process, especially for non-
compensated channels. Importantly, larger number of sensors
lowers the required channel SNR to achieve high probability
of detection even under significant sensor uncertainty. The use
of channel precompensation greatly increases the performance
of the tests across parameter values, as expected.

Fig. 5 shows the performance of tests when access channel
parameters are unknown. We show the analytical and empirical
ROC of precompensated transmissions (test do of Sec. III-B),
and empirical ROC of non-compensated transmissions (test d4
of Sec. IV-B. In both cases, performance increases with the

number of sources, even for low channel SNR v = —5dB
and low number of samples K = 2. As expected, the
test enjoys significantly worse results with non-compensated
transmissions. This is evident given the additional challenge
of unknown channel gain (that could be destructive or con-
structive) and unknown channel phase.

Finally, Fig. 6 shows the ROC of the test d5 for differ-
ent means under the protocol of Section V. We simulate
the protocol with a single sample from K = 2 different
bursts, with low channel SNR and low sensor confidence. We
show the empirical ROC obtained using the statistic ||z||?,
the empirical ROC using the LRT computed by numerical
inversion of (23), and the analytical ROC using the proposed
Gaussian approximation via CLT. For all practical purposes,
our analytical Gaussian approximation coincides with both the
Monte Carlo simulations of the LRT obtained by numerical
inversion of (23), and our empirical tests using the statistic
||z||2. Moreover, the test improves with increasing number of
sources, even in conditions with low channel SNR and sensor
confidence, and using only K = 2 samples to average over
varying channels.

VII. CONCLUSION

This work investigates over-the-air computation for collabo-
rative detection in wireless IoT networks. We consider low cost
sensors in distributed measurement for simultaneous transmis-
sion over a shared access channel. The proposed over-the-
air collaborative learning framework achieves high spectrum
efficiency and enhances decision making through very simple
access protocols. We devise three protocols and corresponding
hypothesis tests for AirCompCL: (1) sensors that can prec-
ompensate their signals and counter channel phase thanks to
TDD reciprocity; (2) sensors that do not compensate signals;
and (3) sensors that send non-compensated signals across
different channel realizations. Our results of the designed tests
show significant performance improvement with the number
of participating sensors, even when accounting for local sensor
noise affecting the measurement accuracy and uncompensated
access channel phases. Future work include the study of
AirCompCL with local sensor decisions, extensions to M-ary
hypothesis testing, consider different sensor noise models, and
perform practical experiments in testbed networks.
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