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AbstractÐWe propose an over-the-air learning framework
for collaborative decision making in wireless sensor networks.
The low complexity framework leverages low-latency sensor
transmission for a decision server to coordinate measurement
sensors for hypothesis testing through over-the-air aggregation
of sensor data over a multiple-access channel. We formulate
several collaborative over-the-air hypothesis testing problems
under different practical protocols for collaborative learning and
decision making. We develop hypothesis tests for these network
protocols and deployment scenarios including channel fading.
We provide performance benchmark for both basic likelihood
ratio test and generalized likelihood ratio test under different
deployment conditions. Our results clearly demonstrate gain
provided by increasing number of collaborative sensors.

Index TermsÐInternet of Things, federated learning, hypoth-
esis testing.

I. INTRODUCTION

Internet of Things (IoT) broadly cover a variety of tech-

nologies that effectively deploy and integrate a wide range

of devices and sensors to advance a myriad of applica-

tions, including smart cities and environmental protection.

One important class of IoT applications involve the detection

of an underlying critical event based on local observation

measured by distributed nodes. Such collaborative learning is

a special type of federated learning which, by definition, is

machine learning technique that optimizes an algorithm across

multiple decentralized devices holding local data samples

without exchanging them. In this paper, we study collaborative

learning for joint decision making through over-the-air data

aggregation in multiple access channel by distributed low-

complexity wireless sensors.

Traditional grant-based access networks feature a server

node coordinates data transmission by sensor nodes by issuing

access grant to facilitate orthogonal channel access. Such cen-

tralized orthogonal multiple access (OMA) network consumes

significant bandwidth resources, and leads to longer latency.

On the other hand, grant-free networks require effective signal

separation of multiple sensor transmissions, which is difficult

for large number of sensors. Recent works leveraged blind

signal recovery by utilizing multiple receive antennas [1]±

[3]. However, such approaches are computationally costly and

require larger number of receive antennas than the number of

participating nodes for multi-sensor signal separation.

However, in many collaborative learning applications it is

unnecessary to recover the data of each participating sensor

This material is based upon work supported by the National Science
Foundation under Grants No. 1824553, No. 2009001 and No. 2029027.

node. Recent works have considered collaborative learning

from distributed sources. In particular, Federated Learning

(FL) has gained much attention as a joint learning framework

[4], [5] for distributed nodes to jointly train a shared learning

model by using their own local data without data sharing to

protect privacy. In the most popular form of FL, a server

collects local gradients to update a shared deep learning neural

network (DLN). As such, FL avoids revealing private data

and potentially reduces local storage. However, in the context

of mobile systems, the need to transmit local updates in a

typically large DLN learning model would require complex

protocols for wireless access and coordination, and consume

large amounts of bandwidth. Such complexity and resource

demand make such FL setup less appealing for IoT.

Taking a broader view beyond the resource inefficient DLN

framework, different collaborative learning can positively im-

pact the performance and other operational characteristics

of an IoT system, such as improving bandwidth efficiency,

reduced network coordination, or increased energy efficiency.

Applications such as environmental monitoring, where the

network distributively senses an underlying event from multi-

ple sensor observations, can be formulated as a collaborative

decision making problem that asks multiple sensors for their

local measurement and aggregate all the sensor observations

to make a decision. In particular, techniques such as over-the-

air computation (AirComp) [6], [7] can effectively improve

the spectrum efficiency instead of relying on resource-hungry

OMA protocols. AirComp based collaborative learning frame-

work takes advantages of the low complexity of IoT nodes,

requires simple access protocol, and improves the overall

reliability of joint decision making. In particular, AirComp

exploits the natural superposition of multiple simultaneous

signals, and yields an aggregated signal for the server node to

more reliably detect the underlying event in a well formulated

hypothesis testing problem with low latency, high bandwidth

efficiency, and modest computational load.

In this work, we focus on the collaborative decision making

IoT framework as a special case of federated learning. We

formulate the collaborative learning process as a hypothesis

testing based on over-the-air signal aggregation techniques to

reduce latency, simplify network access, improve spectrum

efficiency, and improve the accuracy of the decision making

process by exploiting the aggregation of multiple sensor data.

Section II presents a general system model for AirCompCL.

In Section III we study an scenario where sensors precode their

transmitted signals to counter channel phase. Section IV shows







depending on the knowledge of parameters G, P and ω2.

A. Known access channel parameters

Consider first the case of known G, P and ω2 at the server.

Under hypotheses H0 : m = m0 vs H1 : m = m1 > m0

with known sensor noise variance, we may refer back to

Section III-A. We use the statistic t3(y) = Re(G∗
1
Ty)/|G|,

and establish the Neyman-Pearson (NP) test of size α

δ3(y, α) : t3(y)
H1

⋛
H0

η3 = νQ−1(α) +G∗m0. (18)

For a given size α, the power of the test is

PD(α) = 1−Q

(

√
K|G|(m1 −m0)√

Pσ2 + ω2
−Q−1(α)

)

. (19)

B. Unknown access channel parameters

Similarly to the case of Section III-B, as the server does not

know the phase of G, it is not possible to obtain an UMP(I)

for testing different means unless one of them is zero. Hence,

we again test sensor means, i.e. H0 : m = m0 = 0 vs.

H0 : m1 ̸= m0, with G unknown. If either σ2, P or ω2

are unknown, the hypotheses are composite. This detection

problem is invariant under the group of complex scalar trans-

formations (i.e. rotations and scalar multiplication), as for any

c ∈ C ̸= 0, we have that µ′ = cµ and ν′ = |c|ν yields the

same problem. For this test, the GLRT approach using ML

estimates of all unknown parameters reduces to

δ4(y, α) : t4(y) =
|1Ty|√
K∥y∥

H1

⋛
H0

η4. (20)

As in Section III-B, this test is UMPI for testing H1 against

H0. The difference with t2(y) from (15) is that y is now

complex such that |1Ty| denotes magnitude. Hence, t4 under

H0 is the magnitude of a complex t-distribution random

variable with K − 1 DoF. Under H1, t4 corresponds to the

magnitude of a noncentral complex-t random variable with

K − 1 DoF and mean
√
KGm1/ν̂ML [12].

V. FADING ACCESS CHANNELS

In the previous sections, we considered that the server

obtained K snapshots of local measurements of one short burst

transmission from the sensors, during which the fading chan-

nels do not change. Nevertheless, the server could also obtain

observations occurring in different bursts, subject to different

channel realizations regardless of channel precompensation.

In this section, we study the effect of accumulating a single

observation per burst from K > 1 bursts, and in particular,

focus on the case with no precompensation from Section IV,

in the hopes of being able to counter the effect of channel

phase with different channel realizations.

We now consider K transmission bursts with non-

precompensated transmissions, where during the k-th burst

the sensors transmit a signal xi[k] = ϕ(ui[k]) = ui[k], and

the server collects one snapshot per burst. Moreover, each

burst experiences random i.i.d. channel realizations following

a Rayleigh distribution, i.e. gi[k] ∼ CN (0, 1). To counter

channel realizations, the server makes a decision over the K
samples obtained in K distinct bursts. Let y = [y1 · · · yK ]T

be the vector that collects the single snapshot of each burst,

and the received signal follows the model

yk =
∑

i∈S

gi[k] · ui[k] + nk , (21)

where the k-th snapshot of ui follows a complex Gaussian dis-

tribution with mean m and variance σ2, and n is multivariate

circularly symmetric AWGN with variance ω2I .

Let zi,k = gi[k]ui[k] denote the product of the i-th channel

realization with their corresponding signal during the k-th

burst. For Rayleigh channels, the distribution of each zi,k
follows a product-of-Gaussians distribution, and given that the

channels have zero mean, the resulting PDF [13]±[15] is

zi,k|Hj ∼
2|zi,k|
πσ2

e−κ2

j

∞
∑

n=0

κ2n
j

(n!)2
|zi,k|n
σn

Kn

(

2|zi,k|
σ2

)

, (22)

where Kv is the Bessel function of the second kind of order

v and κj = |mj |/σ. The distribution of zk corresponds to

the convolution of S different copies of distribution (22),

convolved with the AWGN distribution. In [16] the authors

derive the characteristic function of the inner product of com-

plex Gaussian vectors, which corresponds to the characteristic

function of the complex random variable zk =
∑

i∈S
zi,k:

Φzk(jζ)|Hj =

(

1 +
∥ζ∥2σ2

4

)−S

exp

(

−
∥ζ∥2Sm2

j

4 + ∥ζ∥2σ2

)

,

whose PDF can be expressed in the form of a doubly infinite

series of Whittaker functions [17], but is not helpful to derive

and study the LR in closed form. Moreover, the AWGN still

needs to be considered, with a resulting characteristic function

Φy(jζ)|Hj

=

(

1 +
∥ζ∥2σ2

4

)−S

exp

(

−
∥ζ∥2Sm2

j

4 + ∥ζ∥2σ2
− ∥ζ∥2ω2

4

)

. (23)

To obtain the LR, one can perform numerical inversion

of (23) for different hypotheses and use spline interpolation,

to then construct the LR. Regrettably, such process does not

provide analytical insights that helps to design decision tests.

However, numerical simulations show that the distribution of

zk resembles a zero-mean Gaussian distribution. As every

observation zk is obtained by the sum of S non-compensated

sensor averages and AWGN, the Central Limit Theorem (CLT)

allows us to approximate the distribution of yk as

fy(y|Hj) ≈ CN (0, ν2j ) , (24)

where ν2j = ω2 + S(σ2 + |mj |2), thanks to the independence

of the i-th channel and signal in each burst [17]. Using these

CLT approximations, we can test for different sensor signal

means by performing tests for different variances of zero-mean

Gaussian received signals over K bursts.

Formally, we test different sensor mean magnitudes H0 :
|m| = |m0| vs. H : |m| = |m1| > |m0| with equal sensor



variances, by redefining the detection problem as detecting

H0 : ν2 = ν20 vs. H : ν2 = ν21 > ν20 assuming zero-mean

Gaussian signals, which we call the approximate problem. As-

suming known ω2 and σ2, we use the statistic t5(y) = ∥y∥2,

which under each hypothesis follows a χ2 distribution with

2K DoF after normalization by the corresponding variance

ν2j . Hence, the test

δ5(y, η5) : t5(y)
H1

⋛
H0

η5 = ν20Ω
−1(α), (25)

where Ω is the CDF of a χ2
2K distribution, is UMP of size α

for the approximate problem, with power

PD

(

α
)

= exp
(

− ν20
ν21

Ω−1(α)
)

2K−1
∑

m=0

1

m!

(

− ν20
ν21

Ω−1(α)
)m

.

VI. NUMERICAL RESULTS

This section presents analytical and numerical simulations

for the different tests analyzed earlier in the paper. In par-

ticular, we study the effect of sensor aggregation in our

AirCompCL problem for different numbers of collaborative

sensors. In our simulations, we test Rayleigh channels, i.e.

gi ∼ CN (0, 1), and for analytical results, we set

E{A} = S

√
π

2
, E{P} = S, E{G} = 0, E{|G|} =

√
Sπ

2
.

Figs. 3 and 4 show the analytical performance for test-

ing different means with and without channel compensation,

respectively. Figs. 3a and 4a show the receiver operating

characteristic (ROC) of the tests δ1 and δ3, under channel

SNR of -15dB and -5dB respectively, with different values

of sensor confidence and number of users. As expected, the

probability of detection increases significantly with the number

of users that collaborate in the decision making process, even

when that also increases the total sensor uncertainty observed

by the server. Nevertheless, for low channel SNR and only

K = 1 samples, the effect of sensor confidence is small for

compensated signals (Fig. 3a). Without channel compensation,

the effect of both channel SNR and sensor confidence is

stronger, and for low sensor confidence the performance gain

of sensor aggregation diminishes. Figs. 3b and 4b show

the probability of detection for varying values of channel

SNR, at a fixed probability of false alarm of 10%. At low

channel SNR, sensor uncertainty does not have strong impact.

However, for high channel SNR, sensor uncertainty becomes

more dominant in the decision process, especially for non-

compensated channels. Importantly, larger number of sensors

lowers the required channel SNR to achieve high probability

of detection even under significant sensor uncertainty. The use

of channel precompensation greatly increases the performance

of the tests across parameter values, as expected.

Fig. 5 shows the performance of tests when access channel

parameters are unknown. We show the analytical and empirical

ROC of precompensated transmissions (test δ2 of Sec. III-B),

and empirical ROC of non-compensated transmissions (test δ4
of Sec. IV-B. In both cases, performance increases with the

number of sources, even for low channel SNR γ = −5 dB

and low number of samples K = 2. As expected, the

test enjoys significantly worse results with non-compensated

transmissions. This is evident given the additional challenge

of unknown channel gain (that could be destructive or con-

structive) and unknown channel phase.

Finally, Fig. 6 shows the ROC of the test δ5 for differ-

ent means under the protocol of Section V. We simulate

the protocol with a single sample from K = 2 different

bursts, with low channel SNR and low sensor confidence. We

show the empirical ROC obtained using the statistic ∥z∥2,

the empirical ROC using the LRT computed by numerical

inversion of (23), and the analytical ROC using the proposed

Gaussian approximation via CLT. For all practical purposes,

our analytical Gaussian approximation coincides with both the

Monte Carlo simulations of the LRT obtained by numerical

inversion of (23), and our empirical tests using the statistic

∥z∥2. Moreover, the test improves with increasing number of

sources, even in conditions with low channel SNR and sensor

confidence, and using only K = 2 samples to average over

varying channels.

VII. CONCLUSION

This work investigates over-the-air computation for collabo-

rative detection in wireless IoT networks. We consider low cost

sensors in distributed measurement for simultaneous transmis-

sion over a shared access channel. The proposed over-the-

air collaborative learning framework achieves high spectrum

efficiency and enhances decision making through very simple

access protocols. We devise three protocols and corresponding

hypothesis tests for AirCompCL: (1) sensors that can prec-

ompensate their signals and counter channel phase thanks to

TDD reciprocity; (2) sensors that do not compensate signals;

and (3) sensors that send non-compensated signals across

different channel realizations. Our results of the designed tests

show significant performance improvement with the number

of participating sensors, even when accounting for local sensor

noise affecting the measurement accuracy and uncompensated

access channel phases. Future work include the study of

AirCompCL with local sensor decisions, extensions to M -ary

hypothesis testing, consider different sensor noise models, and

perform practical experiments in testbed networks.
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