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Abstract
Recent research has turned to Reinforcement Learning (RL)
to solve challenging decision problems, as an alternative to
hand-tuned heuristics. RL can learn good policies without the
need for modeling the environment’s dynamics. Despite this
promise, RL remains an impractical solution for many real-
world systems problems. A particularly challenging case oc-
curs when the environment changes over time, i.e. it exhibits
non-stationarity. In this work, we characterize the challenges
introduced by non-stationarity and develop a framework for
addressing themtotrainRLagents in livesystems.Suchagents
must explore and learn new environments, without hurting
the system’s performance, and remember them over time. To
this end, our framework (1) identi�es di�erent environments
encountered by the live system, (2) explores and trains a sep-
arate expert policy for each environment, and (3) employs
safeguards to protect the system’s performance.We apply our
framework to straggler mitigation, and evaluate it against a
variety of alternative approaches using real-world. We show
that each component of our framework is necessary to cope
with non-stationarity.

CCS Concepts: •Networks!Network algorithms; •Com-
putingmethodologies!Reinforcement learning.

Keywords: Reinforcement Learning, Non-stationary, System
Optimization, LoadBalancing,Machine Learning for Systems,
Multiple experts, Safety, Context detection

1 Introduction
— The only constant is change. (Heraclitus 500 B.C.)

Deep Reinforcement Learning (RL) has been proposed
as a powerful solution to complex decision making prob-
lems [37, 49]. In systems, it has recently been applied to a
wide variety of tasks, such as adaptive video streaming [31],
congestion control [24], query optimization [28, 34], sched-
uling [33], resource management [30], device placement [17],
and others. Reinforcement learning is particularlywell-suited
to these problems due to the abundance of data and its ability
to automatically learn a good policy in the face of complex
dynamics and objectives.

Fundamentally, reinforcement learning trains an agent by
giving it feedback for decisions it makes while interacting
with an environment. This interaction can occur in a con-
trolled environment, such as a simulation or testbed, or in a
real environment, such as a live deployment. While using a

controlled environment seems like an attractive choice—e.g.,
it is data-e�cient and less invasive—policies trained in this
manner do not fare well in the real world [54]. This is not
surprising, because creating a controlled environment for a
complex, evolving system can be as large an undertaking as
building the system itself [7, 16], making this approach prone
to modeling mismatches that bias the �nal policy [16].
A mismatch can occur when the live system encounters

an environment that is previously unseen in the controlled
setting or in prior data. This is common in real-world systems,
which are time-varying, non-stationary environments subject
to considerable changes: for example, shifting read/write pat-
terns in databases, �uctuating bandwidth in video streaming,
resizes or migrations in cloud resources, churn in competing
�ows in datacenter networks, and so on1. To circumvent this
mismatch, therefore, it is appealing to carryout reinforcement
learning in-situ, i.e., by interacting with the live system. How-
ever, training an agent on a live system introduces several
challenges.
First, an agent interacting with a new environment will

inevitably incur suboptimal performance, as it has not trained
on the environment before. This could endanger the system
and lead to catastrophic performance loss. Second, adapting
to new environments requires continual reinforcement learn-
ing, which is non-trivial [26]—simply retraining the agent on
new data is not su�cient. Reinforcement learning follows a
two stage training procedure: during exploration, di�erent
actions are evaluated to learn their associated rewards, and
during exploitation, this evaluation is used to make optimal
decisions. If the environment is constantly changing, then
an RL agent must also continually explore. But the agent is
only bene�cial in exploitation. Furthermore, training in a new
environment may lead to forgetting older ones, also known
as catastrophic forgetting [35]. Left unattended, this would ne-
cessitate retraining the agent on every change in the system,
even on environments that have been observed and trained
on numerous times before.
An ideal reinforcement learning agent would explore ex-

actly as much as necessary, and exploit thereafter, until the
environment shifts to a new dynamic. It would retain all of its
knowledge forever, and never need to retrain on the same en-
vironment twice. We aim to mimic this ideal agent as closely

1There is another form of non-stationarity in multi-agent RL settings, where
training one agent changes the environment from the perspective of other
agents. However, in our problem, training can not a�ect non-stationarity.
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as possible. Concretelywe aim tominimize online exploration
and transient and/or disastrous performance loss, all while
maximizing long-term performance. This is a highly restric-
tive ideal, but it imbues the �exible online learning process
with properties (safety, robustness, e�ciency) that make it
competitive against traditional approaches.

Wepropose a framework to realize this goal (§5).Our frame-
work includes an environment detector that identi�es new
environments, and triggers exploration when necessary. To
retain knowledge about all environments, the framework
trains an ensemble of expert policies, each tailored to a spe-
ci�c environment. To protect the system during exploration,
the framework uses a safety monitor to check for a given un-
safe condition, and reverts to a default policy (that is known
to be safe) when this condition arises. These techniques have
appeared individually in prior work (§2). However, our goal is
to synthesize a complete framework for online reinforcement
learning and understand how well it performs in practical
system optimization problems.

We evaluate our framework on a challenging system prob-
lem, using real-world data: straggler mitigation in job sched-
uling (§6). We �nd that our framework captures and avoids
notable failure modes, resulting in a robust decision learn-
ing paradigm. We believe a successful application of rein-
forcement learning in the wild must address the challenges
discussed in this paper.

2 RelatedWork
Non-stationarity inRL:Non-stationarityhas beenexplored
in RL in various contexts with varying assumptions, but a
general solution has not been proposed [26]. One class of
methods train meta models prior to deployment, and use
few-shot learning to adapt after deployment [3, 38, 39]. How-
ever, suchmethods require access to the environments before
deployment, which we do not assume. Some methods have
been proposed for detecting environment changes in discrete
state spaces [11], piece-wise stationary environments with
Gaussian transition dynamics [4], assigning responsibility
signals through a �xed number of learned models [14] and
identifying separate environments over time by assuming a
stationary latent Markovian context and learning a model
for the generalized MDP [42]. For a comprehensive review of
non-stationary RL, refer to [26].

Safety in RL: Safe RL takes on many de�nitions [18]. Our
focus is on avoiding disastrous performance outcomes in a
live systemwhile exploring or exploiting. [32] use a safeguard
policywhen safety conditions are violated,while imposing lit-
tle to no bias on the agent’s training. [44] use several forecast
signals and revert to a default policy whenever the agent is
prone to mistakes. [12] use logged data to learn when a set of
constraints can be violated, and disallow the agent from tak-
ing such actions in deployment. Several approaches attempt
to keep safety by assuming regularity [1] or smoothness [8]

in the system. Another model-based RL approach uses active
learning andGaussian Processes for exploration and avoiding
safety violations [10]. For a full review of safety in RL, refer
to [18]. Using logged interaction data from a deployed policy,
one could bootstrap a safe policy for deployment [18, 52].
However, even assuming logged data provides full coverage
over the state space, such methods are prone to distributional
shifts caused by train/test mismatch in environments [29].

Catastrophic forgetting (CF) in RL: Learned models are
prone to catastrophically forgetting their previous knowl-
edge when training sequentially on new information [35, 40].
Recently, interest has piqued concerning CF in RL problems.
Three general approaches exist for mitigation [40]: (1) regu-
larizingmodel parameters so that sequential training does not
causememory loss [25, 27]; (2) selectively trainingparameters
for each task and expandingwhennecessary [46]; (3) using ex-
perience replayor rehearsalmechanisms to refreshpreviously
attained knowledge [5, 23, 43]; or combinations of these tech-
niques [48]. For a full reviewof these approaches, refer to [40].

3 Preliminaries
Markov Decision Process (MDP):An RL problem consists
of an environment,which is adynamiccontrol systemmodeled
as anMDP [50], and an agent, which is the entity a�ecting the
environment through a sequence of decisions. The agent ob-
serves the environment’s state, and decides on an action that is
suitable to take in that state. The environment responds to the
action with a reward and then transitions to a new state. For-
mally, at time step C the environment has state BC 2S, where
S is the space of possible states. The agent takes action0C 2A
from the possible space of actionsA, and receives feedback in
the form of a scalar reward AC (BC ,0C ) :S⇥A!R. The environ-
ment’s state and the agent’s action determine the next state,
BC+1, according to a transition kernel,) (BC+1 |BC ,0C ) Finally, 30
de�nes the initial state (B0) distribution. AnMDP is de�ned by
the tupleM= (S,A,) ,30,A )2. The goal of the agent is to opti-
mize the return, i.e. a discounted sumof rewards'0=

Õ1
C=0W

CAC .
RL algorithm: In this paper we focus on twomodel-free

RL algorithms [50]. Model-free algorithms are the most com-
mon approach in RL-based systems, since they avoid the need
to model the environment’s dynamics, which is di�cult (and
often infeasible) in real-world systems [30]. Here we focus
on two classes of model-free RL algorithms: on-policy and
o�-policy algorithms.

To train an RL agent with an on-policy method, we start by
deploying an initial policy to interact with the system. Each
interaction creates a sample experience (a tuple comprising
of a state, action, reward, and next state), and once enough
samples are collected, the agent is trained for a single step. Im-
portantly, the collected samplesarediscardedafter eachpolicy

2In many problems, the agent cannot observes the full state BC of the
environment and observes a limited observation >C instead. These problems
can bemodeled as Partially ObservableMarkov Decision Process (POMDP)s.
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update, which is the main limitation of on-policy methods: a
policy can only be trained on samples created by the same pol-
icy.Operationally, suchmethods require a substantial amount
of interaction with the live system for training, and they are
inherently prone to forgetting past behaviors because they
discard old experience data. However, they are known to be
less prone to unstable training, suboptimal results, and hyper-
parameter sensitivity than o�-policy methods [15, 19, 20],
which can train on stale interactions as well. In this paper, we
considerAdvantageActorCritic (A2C), aprominenton-policy
algorithm [36] based on policy gradients.
Unlike on-policy methods, o�-policy approaches can use

samples from a policy di�erent from the one being trained.
Thus, we can use historical data to train, despite this data
coming from a di�erent policy (e.g., an earlier policy used
during training). O�-policymethodsmaintain a record of pre-
vious interactions (also called anexperience replaybu�er) and
use them for training. The most popular o�-policy deep RL
method is theDeepQNetwork (DQN) algorithm [37]; we con-
sider avariantof it in thispaper.Werefer the reader to the tech-
nical report [21] for a brief explanation of these approaches.

4 Challenges of Non-stationary RL
This section explores the key challenges that arise when us-
ing RL to train an agent in a time-varying, or non-stationary,
environment. As a motivating example, we consider the prob-
lem of mitigating stragglers in an online service by "hedging"
requests—i.e., replicating a request when a response doesn’t
arrive within a timeout, covered in depth in §6. For the sake
of this section, the important fact is that the system is subject
to time-varyingworkloads, as illustrated in Figure 1a. These
workloads determine how the agent’s decisions a�ect the
system: e.g., a certain timeout threshold for request hedging
may be bene�cial for one workload, but lead to congestion
in another. The active workload in each period of time is in-
dicated at the bottom of Figure 1a. The curves in the �gure
show the tail of job latencies over time (note the logarithmic
scale), with the objective of minimizing this latency.
O�line training is insu�cient: Suppose we obtain a

faithful simulator for the system, use it to train a policy, and
deploy the policy in the live system.We can compare such a
pre-trained o�ine policy to a hypothetical “oracle" RL policy,
which knows the workload that will appear in each interval,
and uses a policy trained speci�cally for that workload ahead
of time. Figure 1a demonstrates that the pre-trained o�ine
agent performs signi�cantly worse than this oracle: 188%
higher tail latency in one workload and 38% in another. This
is due to di�erences between the training and deployment
environments [9, 47]; in this example, pre-trained o�ine was
trained on a di�erent workload (OneStore, see the technical
report [21] for details). Although one can try to create repre-
sentative training datasets, it is di�cult, if not impossible, to

anticipate and capture every behavior that can occur in a live
system [54].
Online RL requires safeguards: In principle, one can

avoid these issues by training an RL agent online in the live
system, adapting it on the go. But this introduces other prob-
lems. As discussed earlier, RL training involves two phases:
exploration and exploitation. In exploration, the agent aims
to test and evaluate a wide range of actions, including both
good and bad actions. It then exploits what it has learned to
select favorable actions.
Online exploration in a live system can degrade perfor-

mance, andpossibly drive the system to disastrous states. This
is shown by the “online training without safeguards" curve
in Figure 1a. Without a safety mechanism to keep things in
check, the tail latency can shoot up and even growwithout
bound. Recent work has proposed using safeguards to mit-
igate the damage of online exploration and the instabilities
that can occur during RL training [32]. A simple safeguard
in Figure 1a is to disable hedging when tail latency exceeds
a certain threshold (see §6 for details). Using this method,
“online training with safeguards" attains stable exploration:
the tail latency remains bounded throughout.

Learning new behaviors without forgetting the past:
To learn new behaviors when the environment (workload)
changes, we need to explore again. However, perpetually ex-
ploring on every change is not desirable, because even with
safeguards, exploration incurs a performance cost. Ideally, we
should explore sparingly, i.e., once for each new workload. In
Figure 1a, “online training with safeguards" tracks environ-
ment changes and initiates an exploration phase that lasts for
one)2 (period of convergence, see Figure 1a) the �rst time
it encounters a newworkload. Accordingly, the tail latency
initially degrades when a new workload begins, and then
improves as the agent shifts from exploration to exploitation.

Figure 1a shows another challenge for online RL, however.
Ideally, when workload B appears a second time, the agent
should be able to immediately exploit its past knowledge. But
the results show that “online training with safeguards" fails
to remember what it had learnt. This is rooted in the fact that
neural network-based policies forget the past when learning
sequentially [5, 35, 40]. Speci�cally, when a neural network is
updated based on experiences derived from one workload for
a long time, it tends to over�t to the data distribution of that
workload, and forgets behaviors learned from earlier data.
This problem is called catastrophic forgetting (CF).

5 Framework Overview
Successful deployment of RL in non-stationary systems is
challenging, as evident in §4. In this section, we outline a
framework, visualized in Figure 1b, that serves as a blueprint
for trainingRLagents ina livesystem.Our frameworkconsists
of three keymodules: a safetymonitor, a default policy, and an
environment detector, all de�ned by the system designer. The
safetymonitor checks for violation of a safety condition as the
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Figure 1. (a) An example demonstrating the challenges of learning a straggler mitigation policy in an environment with
time-varying workloads. Curves denote the 95th percentile job latency over 5 minutes windows.)⇠ denotes the convergence
time when training on a stationary workload. Active workloads are marked and colored below the curves and vertical dashed
lines denote workload changes. (b) Framework overview for non-stationary RL. Green components mitigate catastrophic
forgetting, Blue components concern per-environment exploration, and Red components deal with safety.

agent interacts with the environment. The default policy is an
existing scheme that, when activated in an unsafe regime, can
return the system to safe operation. The environment detector
aims to detect which environment is active at any given time.
It typically uses a small set of features (selected by the system
designer) to detect changes in the environment. For instance,
to detect changes in theworkload, wemight use features such
as job arrival rates and job types. We now discuss how our
framework addresses the three challenges described in §4.
Safety: Safety is handled in a straightforward way in our

framework.As showninFigure1b, the safetymonitor controls
whether the agent or the default policy decides thenext action.
When in an unsafe state, the default policy is activated, which
drives the system to a safe region before control is given back
to theRLagent to resumetraining.This limits theperformance
impact of exploration or other misbehaviors by the RL agent
(e.g., transient policy problems during training).

Per-Environment Exploration: As each environment
has its own dynamics, knowledge attained by exploring in
one environmentmay not generalize to others. Thus, for each
observed environment, we initiate a one-time exploration.
The choice to explore can be driven by the environment de-
tection signal, as shown in Figure 1b.We believe that in many
systems, lifelong performance improvements justify the cost
of per-environment exploration (with safeguards). As the
agent collectsmore experience, we expect it to encounter new
environments less frequently, and thus mostly exploit past
knowledge.We considered an alternative strawman approach
that employed a small level of exploration all the time. How-
ever, prior work [2] and our initial experiments showed that
this leads to poor policies and is di�cult to tune appropriately.

Catastrophicforgetting: Forgettingpastknowledgestems
from training a single policy with recent data that is devoid
of old experiences. We adopt a simple solution that avoids
this problem altogether by training di�erent policies for each

environment, also referred to as multiple “experts” [45]. We
select the appropriate expert to use and train in each environ-
ment using the environment detector.Our results suggest that
this approach is quite e�ective, even when the environment
detector isn’t perfect andmakesmistakes.We also investigate
an alternate approach that uses o�-policy RL to train a single
model based on an experience replay bu�er. While this ap-
proach can also mitigate CF (since the bu�er allows the agent
to replay past experiences), we found it to be less robust than
the multi-expert approach.

6 Case Study: StragglerMitigation
We consider a simulated request proxy with hedging (Fig-
ure 2). In this environment, a proxy receives and forwards
requests to one of==10 servers. The servers process requests
in their queues one by one. To load balance, the proxy sends
the request to the server with the shortest queue. To respond
to a request, the server launches a job that requires a nominal
processing time, which we will refer to as its size. The size of
a job is not known prior to it being processed. Henceforth we
will use the terms “request” and “job” interchangeably.

In a real system, some jobsmay incur a slow down and take
longer than the nominal time, e.g., due to unmet dependen-
cies, IO failure, periodic events such as garbage collection [13],
noisy neighbours [41], etc. These slowdowns also a�ect other
jobs further in the queue. The e�ect is especially pronounced
at the tail of job latency, which is the time between the job’s
arrival and its completion. To simulate such behaviors in our
environment, we in�ate the processing time of a job relative
to the nominal value by a factor of : with a small probability
? . We use : =10 and ? =0.1 in our experiments.
To mitigate the e�ect of slowdowns, if a job has not com-

pleted by a timeout, the proxy “hedges” it by sending a dupli-
cate request to another server. This duplication only happens
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Figure 2. Illustration of a request proxy with hedging.

once per job. The job completes when either request (the orig-
inal or its duplicate) �nishes. If the hedged request �nishes
faster than the original one, the job’s latency is reduced. Our
goal is tominimize the 95th percentile latency, and our control
decision is the hedging timeout. The hedging policy gets to
pick among a set of six timeout values, ranging from 3<B to
300<B , or alternatively to do no hedging.
There is an inherent trade o� in selecting a hedging time-

out. A low timeout leads to more jobs being hedged, possibly
reducing their latency, but it also creates more load on the
system, resulting in bigger queues. An RL agent can learn the
optimal threshold, which depends on the workload (e.g., the
job arrival rate and job sizes) and the amount of congestion
(e.g., queue sizes) in the system. Since these change over time,
this environment is non-stationary.

Asnothing is knownabout jobs prior to processing, individ-
ual decisions on a per-job basis do not help. Instead, the agent
chooses one hedging timeout for all jobs that arrive within a
timewindow (500ms in our experiments). Itmakes these deci-
sions using the following observations: (a) instantaneous and
time-averaged server queue sizes, (b) average and max of job
processing times and arrival rate within<=4 time windows,
(c) average load in the last window, and (d)whether a safe-
guard is active (more details below). The reward is the negated
95th percentile latency of jobs in that window. The order in
which queue sizes (a) appear in the observation vector does
not matter. We exploit this and reduce the sample complexity
of training, with a neural network architecture invariant to
permutations. [55]. The technical report [21]has a full descrip-
tion of our training setup, neural networks and environment.
Safeguard: We use a safeguard [32] to improve transient

performance and stabilize training. The safeguard overrides
the agent when at least one queue builds up past a threshold
(50) and disables hedging thereafter. It relinquishes control
back to the agent once all queue sizes are below a safe level (3).
Workloads: We use traces from a production web frame-

work cluster at AnonCo, collected from a single day in Febru-
ary 2018. The framework services high-level web requests to
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Figure 3. Tail latency vs. time in workload C, when a safe
guard reduced performance loss in exploration, andwhen not.
Shades denote min-to-max tail latency in 3 random seeds.
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Figure 4. Tail latency distribution after convergence; Each
box represents one workload. Whiskers show 99 and 1
percentiles. Upper, middle and lower edge of boxes show 75,
50, and 25 percentiles. Each workload is given enough time
to converge ()BF =2.25)2 ).

di�erent websites and storefront properties and routes them
to various backend services (e.g., product catalogs, billing,
etc.). The traces are noisy, heavily temporally-correlated, and
change considerably over time. See the technical report [21]
for more details about these workloads.

For experiments in non-stationary settings, we consider a
scenario where several workloads (Workload A, B and C from
the technical report [21]) change according to a schedule.
Speci�cally, workloads change in a periodic and cyclic man-
ner, each active for a period of)BF at a time. In all experiments,
we run this scenariowith di�erent permutations ofworkloads
(e.g.,ABC,BCA,CBA, etc.), as the order ofworkloads cana�ect
RL training schemes. The period between switches,)BF is rela-
tive to convergence time)2 of anRL agent trained for only one
workload.While not particularly realistic, periodic andabrupt
workload changes provide a simple setting to understand the
strengths and weakness of di�erent online RL strategies.
Evaluationmetric: For evaluation, we calculate the 95th

percentile latency in 5 minute windows. We use this tail la-
tency metric in all experiments, by either plotting it as a
timeseries, or by visualizing its distribution with boxplots.
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Figure 5. Tail latency distribution after convergence, when either a single model is used or multiple, and when workload
statistics are observed or not. (Top))BF =)2 (Slow workload switching), (Bottom))BF =0.001)2 (Fast workload switching).

6.1 Experiments
Safeguards bound performance degradation during ex-
ploration:As discussed before, training online in a live sys-
tem requires online exploration, which leads to transient per-
formance loss.While ourmain priority is strong eventual per-
formance, bounding transient degradation while exploring
is a secondary but important goal. We achieve this with safe-
guard policies, as explained in §5. Figure 3 demonstrates the
e�ect.Without safeguards, latencies can be an order ofmagni-
tude higher than theworst case performancewith safeguards.
We observed that occasionally training sessions without

safeguards failed to learnatall andqueuesgrewbeyond tensof
thousands of jobs. Figure 1a showed an example of such a fail-
ure mode. This occurs because when queues exceed a certain
bound, all jobs will take longer than the maximum hedging
timeout (300 ms) and get duplicated. In such a situation, the
only way to drain the queues is to disable hedging entirely.
Butwhile the agent tries to learn this behavior, the queues con-
tinue to grow and the system repeatedly reaches states that
the agent has never seen before. Hence, the agent is not able
to spend enough time exploring the same region of the state
space to learn a stabilizing policy and a vicious cycle forms.
Exploration is critical with new workloads: In §5 we
stated that every time the workload changes, we need to ex-
plore again. This requires designing an environment detector
and switching to the exploration phase whenever a change is
observed. In this environment, detecting changes is relatively
simple. We use two features: the job arrival rate and the job
sizes to characterize the workload (as shown in the techni-
cal report [21]). By tracking these features, we can cluster
our workloads and train a classi�er for them. Of course, the
classi�er may not be perfect, e.g., the clusters may overlap
and not be completely separable. But our experiments show

that this simple approach is adequate. It is possible to design
more complex features and clustering schemes, but the exact
approach to designing an environment detector is not our
focus in this work.

Figure 4 demonstrates the e�ect of exploring once for each
workload. Each boxplot shows tail latency distributions for
one of threeworkloads (across di�erent experiments inwhich
we permute the workload order). The boxes show the 25th,
median and 75th percentiles of the distributions and whiskers
denote 1st and 99th. While one-time exploration (for)2 time)
fails to handle newworkloads, per-environment exploration
converges to a good policy for each workload.
Catastrophic Forgetting: The largest obstacle to online
learning is CF. As observed in Figure 1a, sequential training
will cause a single model to forget its previous training. We
evaluate two techniques tomitigate CF: (1) Providing features
as part of the agent’s observation that enable it to distinguish
between di�erent workloads. By adding these features, the
agent can potentially use a single model while learning dif-
ferent behaviors for di�erent workloads. For this scheme, we
use the same features used by our workload classi�er. (2) Em-
ploying multiple experts, each trained and used for a unique
workload, as explained in §5. Ideally the expert for workload
Awill never be used for and trained inworkload B, thus never
forgetting the policy it learned forworkloadA. In practice, the
environment detector will however make mistakes, but we
found that even a 10% error ratewill not degrade performance.
In Figure 5, we evaluate multiple experts vs. a single one,

and the impact of providing workload features in the obser-
vation. We consider two di�erent switching periods between
workloads:)BF =)2 (slow switching) and)BF =0.001)2 (fast
switching). As a baseline, we also include results for Oracle
RL that uses trained policies speci�c to each workload.
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Time

Scen. II

TswScen. I

4Tsw

2TswScen. III

Figure 6.We evaluate three non-stationary scenarios. Sce-
nario I: the system cycles through three di�erent workloads,
each active for)BF at a time. Scenario II: twoworkloads occur
periodically for a long time, then a newworkload shows up.
Scenario III: the system cycles through three workloads, one
of which becomes inactive for a long time, then reoccurs.

Figure 5a concerns situations where workload changes
occur at long periods. Here, multiple experts signi�cantly
outperform a single expert, even whenworkload information
is included in the observations. Workload features don’t help
in this case since they remain roughly constant throughout
the convergence interval of the RL algorithm. On the other
hand in Figure 5b where workloads change rapidly, the sin-
gle model with workload features matches multiple experts.
When workloads change at a fast pace, the agent gets to ob-
serve samples fromall environments (with di�erentworkload
features) as the RL algorithm converges. Note that in this case
the multiple-expert scheme’s performance is worse without
workload information; this is due to environment classi�ca-
tion errors caused by stale information. However, multiple
experts with workload information manages to performwell
despite theseerrors sinceeachexpert learns tohandleobserva-
tions fromnon-matchingworkloads aswell. Overall, multiple
experts with workload information is robust in all cases.

There are a rich variety of solutions to CF [6, 27, 46]. Such
methods might enable sharing knowledge learned from one
workload for another. However, multiple experts has the ad-
vantage of being robust and simple to design and interpret.
Canweavoidcatastrophicforgettingwithasinglemodel
with o�-policy methods? As explained in §3, o�-policy
methods such as DQN can train on historical samples using
an experience replay bu�er. Therefore perhaps an o�-policy
approach can avoid CF even with a single model. Using a sin-
gle model simpli�es the agent and could accelerate learning
by enabling shared learning across workloads.3
While appealing, o�-policy schemes have their own chal-

lenges. In particular, their performance is sensitive to the sam-
ples saved in the experience bu�er, which must be selected
carefully to match the mixture of workloads experienced by
the agent over time. Further, using a single model (the Q-
network in DQN) across di�erent workloads requires reward
3Note that we still need a workload detection scheme for per-environment
exploration.
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Figure 7. Tail latency distribution after convergence in
Scenario I, when)BF =)2 (similar to Figure 5). DQN with a
small bu�er forgets past workloads.
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Figure 8. Tail latency distribution after convergence in
Scenario II, when)BF = 0.5)2 . Left and middle plot concern
remembering common workloads after training on a new
one. Right plot shows performance on a newworkload, after
convergence time ()2 ). Large and small bu�ers fail while
long-term short-term uses the best of both to fare best.

scaling to ensure some workloads with large rewards do not
drown out others.
In the following experiments, we examine DQNwith sev-

eral bu�ering strategies and compare them to oracle base-
lines and the on-policy multiple-expert approach: a (1) Large
Bu�er that is akin to saving every sample, a (2) SmallBu�er,
which inherently prioritizes recent samples, (3) Long-term
short-term that saves experiences in two bu�ers, one large
and one small [23], and samples from them equally during
training to combine data from the entire history with recent
samples, and (4)Multiplebu�ers thatkeepsa separatebu�er
for each workload and samples them equally during training.
Our evaluations use three workload schedules shown in

Figure 6. In the on-policy experimentswe focused on scenario
Iwhereworkloads change in a cyclicmanner, but herewe also
consider cases where some workloads might be encountered
rarely. Notably, wewill �nd that unlike the on-policymethod,
the o�-policy approach can be sensitive to the schedule.

Figure 7 demonstrates the results for scenario I. Unsurpris-
ingly, a small bu�er does not fare well; it loses experience
samples of previous workloads and the agent forgets them,
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Figure 9. Tail latency distribution after convergence in
Scenario III, when)BF = 0.5)2 . This plot concerns how well
an agent remembers a rarely occurring workload. Long-term
short-term is outperformed by multiple bu�ers.

leading to CF. Also, in workload C, the DQN-based oracle
fares slightly better than all other DQN methods that train
simultaneously onmultiple workloads. A similar observation
arises in Figure 5, when using a single model with workload
info at a fastworkload switching setting.Webelieve this slight
loss is due to shared learning, which can sometimes dimin-
ish performance instead of improving it when using a single
neural network model for diverse tasks [51].

Figure 8 shows the same set of schemes in scenario II,where
a rare workload does not come up until well into training.We
use workload C as this rare workload and A and B as the
common ones. The evaluations in this plot show performance
after workload C converges (a region shown by the red box in
scenario II in Figure 6). In chronological order, the results for
workload C show the large bu�er struggling; a large bu�er
will amass a high volume of samples after a long time and a
newworkloadwill have aminuscule share of bu�er and train-
ing samples. The results for workloads A and B on the other
hand exhibit the forgetfulness of a small bu�er, similar to the
previous experiment. Contrary to both methods, long-term
short-term performs well.

Finally, Figure9showsresults for scenario III,whichdemon-
strateshowwell anapproachcan remembera rarelyoccurring
workload (shown by the red box in Figure 6). Here long-term
short-term does not cope well; the small bu�er forgets work-
load C and the large one favors more common ones. Multiple
bu�ers performed well here, but it is worse than long-term
short-term in scenario II (Figure 8).Overall, these results show
that none of these schemes can be a universal strategy that
performs well in all circumstances. By contrast, the on-policy
multiple-expert approach is more robust.
A further nuance with the o�-policy approach, is reward

scaling. Since the Q-value networkwill train on samples from
multiple workloads with di�erent magnitudes (latency in one
workload can be 10<B while 500<B in another), workloads
with larger rewards will be overemphasized in the L2 loss in
training. Therefore, the rewardsmust be normalized but done
so consistently. Figure 10 shows the e�ect; If scaling is not
performed, workloads with smaller rewards (latencies), such
as workloads A and C are sacri�ced for superior performance
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Figure 10. Tail latency distribution after convergence in
Scenario I, when )BF = )2 (similar to Figure 5). Without
considering rewards scales, DQN favors workloads with high
magnitude rewards at the expense of others.

in workloads with large rewards. Besides manual normal-
ization, methods exist for automatic adaptation to reward
scales [22, 53].

7 Conclusion
We investigated the challenges of online RL in non-stationary
systems environments, and proposed a framework to address
these challenges. Our work shows that an RL agent must
be augmented with several components in order to learn ro-
bustly while minimally impacting system performance. In
particular, we propose an environment detector to control
exploration and select an appropriate model for each environ-
ment; andwe also propose a safetymonitor and default policy
that protect the system when it enters an unsafe condition.
Our evaluation on a straggler mitigation problem shows that
applying our framework leads to policies that performwell
in each environment and remember what they have learned.

References
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017.

Constrained Policy Optimization. arXiv:1705.10528 [cs.LG]
[2] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale

Schuurmans. 2019. Understanding the impact of entropy on policy
optimization. arXiv:1811.11214 [cs.LG]

[3] Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor
Mordatch, and Pieter Abbeel. 2018. Continuous Adaptation via
Meta-Learning in Nonstationary and Competitive Environments.
arXiv:1710.03641 [cs.LG]

[4] Lucas N Alegre, Ana LC Bazzan, and Bruno C da Silva. 2021. Minimum-
Delay Adaptation in Non-Stationary Reinforcement Learning via
Online High-Con�dence Change-Point Detection. In Proceedings of the
20th International Conference on Autonomous Agents and MultiAgent
Systems. 97–105.

[5] Craig Atkinson, Brendan McCane, Lech Szymanski, and Anthony
Robins. 2021. Pseudo-rehearsal: Achieving deep reinforcement
learning without catastrophic forgetting. Neurocomputing 428 (Mar
2021), 291–307. h�ps://doi.org/10.1016/j.neucom.2020.11.050

[6] Craig Atkinson, Brendan McCane, Lech Szymanski, and Anthony
Robins. 2021. Pseudo-rehearsal: Achieving deep reinforcement learning
without catastrophic forgetting. Neurocomputing 428 (2021), 291–307.

https://arxiv.org/abs/1705.10528
https://arxiv.org/abs/1811.11214
https://arxiv.org/abs/1710.03641
https://doi.org/10.1016/j.neucom.2020.11.050


How Reinforcement Learning Systems Fail andWhat to do About It EuroMLSys ’22, April 5th, 2022, Rennes, France

[7] Mihovil Bartulovic, Junchen Jiang, Sivaraman Balakrishnan, Vyas
Sekar, and Bruno Sinopoli. 2017. Biases in Data-Driven Networking,
andWhat to Do About Them. In Proceedings of the 16th ACMWorkshop
on Hot Topics in Networks. ACM, 192–198.

[8] Yash Chandak, Scott M. Jordan, Georgios Theocharous, MarthaWhite,
and Philip S. Thomas. 2020. Towards Safe Policy Improvement for
Non-Stationary MDPs. arXiv:2010.12645 [cs.LG]

[9] Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor
Blackwell, Joshua Tobin, Pieter Abbeel, andWojciech Zaremba. 2016.
Transfer from Simulation to RealWorld through LearningDeep Inverse
Dynamics Model. arXiv:1610.03518 [cs.RO]

[10] Alexander Cowen-Rivers, Daniel Palenicek, Vincent Moens,
Mohammed Abdullah, Aivar Sootla, Jun Wang, and Haitham
Bou Ammar. 2022. SAMBA: safe model-based active rein-
forcement learning. Machine Learning 111 (01 2022), 1–31.
h�ps://doi.org/10.1007/s10994-021-06103-6

[11] Bruno C. da Silva, EduardoW. Basso, Ana L. C. Bazzan, and Paulo M.
Engel. 2006. Dealing with Non-Stationary Environments Using
Context Detection. In Proceedings of the 23rd International Conference
on Machine Learning (Pittsburgh, Pennsylvania, USA) (ICML ’06).
Association for Computing Machinery, New York, NY, USA, 217–224.
h�ps://doi.org/10.1145/1143844.1143872

[12] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester,
Cosmin Paduraru, and Yuval Tassa. 2018. Safe exploration in
continuous action spaces. arXiv preprint arXiv:1801.08757 (2018).

[13] Je�rey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56 (2013), 74–80. h�p://cacm.acm.org/magazines/2013/2/160173-
the-tail-at-scale/fulltext

[14] Kenji Doya, Kazuyuki Samejima, Ken-ichi Katagiri, and Mitsuo
Kawato. 2002. Multiple model-based reinforcement learning. Neural
computation 14, 6 (2002), 1347–1369.

[15] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
2016. Benchmarking deep reinforcement learning for continuous con-
trol. In International conference onmachine learning. PMLR, 1329–1338.

[16] SallyFloydandVernPaxson. 2001. Di�culties in simulating the Internet.
IEEE/ACM Transactions on Networking (ToN) 9, 4 (2001), 392–403.

[17] Yuanxiang Gao, Li Chen, and Baochun Li. 2018. Spotlight:
Optimizing Device Placement for Training Deep Neural Net-
works. In Proceedings of the 35th International Conference on
Machine Learning (Proceedings of Machine Learning Research,
Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 1676–1684.
h�ps://proceedings.mlr.press/v80/gao18a.html

[18] Javier Garcıa and Fernando Fernández. 2015. A comprehensive survey
on safe reinforcement learning. Journal of Machine Learning Research
16, 1 (2015), 1437–1480.

[19] Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner,
and Sergey Levine. 2016. Q-prop: Sample-e�cient policy gradient with
an o�-policy critic. arXiv preprint arXiv:1611.02247 (2016).

[20] TuomasHaarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018.
Soft actor-critic: O�-policy maximum entropy deep reinforcement
learning with a stochastic actor. In International conference on machine
learning. PMLR, 1861–1870.

[21] Pouya Hamadanian, Malte Schwarzkopf, Siddartha Sen, andMoham-
madAlizadeh. 2022. Reinforcement Learning in Time-Varying Systems:
an Empirical Study. arXiv:2201.05560 [cs.LG]

[22] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki,
Simon Schmitt, and Hado van Hasselt. 2018. Multi-task Deep
Reinforcement Learning with PopArt. arXiv:1809.04474 [cs.LG]

[23] David Isele and Akansel Cosgun. 2018. Selective Experience Replay
for Lifelong Learning. arXiv:1802.10269 [cs.AI]

[24] Nathan Jay, Noga H. Rotman, P. Brighten Godfrey, Michael Schapira,
and Aviv Tamar. 2019. Internet Congestion Control via Deep
Reinforcement Learning. arXiv:1810.03259 [cs.NI]

[25] Christos Kaplanis, Murray Shanahan, and Claudia Clopath. 2018.
Continual Reinforcement Learning with Complex Synapses.
arXiv:1802.07239 [cs.AI]

[26] KhimyaKhetarpal,MatthewRiemer, Irina Rish, andDoina Precup. 2020.
Towards continual reinforcement learning: A review and perspectives.
arXiv preprint arXiv:2012.13490 (2020).

[27] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago
Ramalho, Agnieszka Grabska-Barwinska, et al. 2017. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national
academy of sciences 114, 13 (2017), 3521–3526.

[28] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein,
and Ion Stoica. 2019. Learning to Optimize Join Queries With Deep
Reinforcement Learning. arXiv:1808.03196 [cs.DB]

[29] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. 2020.
O�ine Reinforcement Learning: Tutorial, Review, and Perspectives
on Open Problems. arXiv:2005.01643 [cs.LG]

[30] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kan-
dula. 2016. Resourcemanagementwith deep reinforcement learning. In
Proceedings of the 15th ACMworkshop on hot topics in networks. 50–56.

[31] Hongzi Mao, Ravi Netravali, andMohammad Alizadeh. 2017. Neural
adaptive video streamingwith pensieve. InProceedings of theConference
of the ACM Special Interest Group on Data Communication. 197–210.

[32] Hongzi Mao, Malte Schwarzkopf, Hao He, andMohammad Alizadeh.
2019. Towards safe online reinforcement learning in computer systems.

[33] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan,
Zili Meng, and Mohammad Alizadeh. 2019. Learning Scheduling
Algorithms for Data Processing Clusters. In Proceedings of the ACM
Special Interest Group on Data Communication (Beijing, China)
(SIGCOMM ’19). Association for Computing Machinery, New York, NY,
USA, 270–288. h�ps://doi.org/10.1145/3341302.3342080

[34] RyanMarcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad
Alizadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019.
Neo: A learned query optimizer. arXiv preprint arXiv:1904.03711 (2019).

[35] Michael McCloskey and Neal J. Cohen. 1989. Catastrophic In-
terference in Connectionist Networks: The Sequential Learning
Problem. Psychology of Learning and Motivation 24 (1989), 109–165.
h�ps://doi.org/10.1016/S0079-7421(08)60536-8

[36] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning. PMLR,
1928–1937.

[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013.
Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013).

[38] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S. Fearing, Pieter
Abbeel, Sergey Levine, and Chelsea Finn. 2019. Learning to Adapt in
Dynamic, Real-World Environments Through Meta-Reinforcement
Learning. arXiv:1803.11347 [cs.LG]

[39] Anusha Nagabandi, Chelsea Finn, and Sergey Levine. 2019. Deep
Online Learning via Meta-Learning: Continual Adaptation for
Model-Based RL. arXiv:1812.07671 [cs.LG]

[40] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan,
and Stefan Wermter. 2019. Continual lifelong learning with
neural networks: A review. Neural Networks 113 (2019), 54–71.
h�ps://doi.org/10.1016/j.neunet.2019.01.012

[41] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh,
and Calton Pu. 2010. Understanding Performance Interference of
I/O Workload in Virtualized Cloud Environments. 2010 IEEE 3rd
International Conference on Cloud Computing (2010), 51–58.

[42] Hang Ren, Aivar Sootla, Taher Ja�erjee, Junxiao Shen, JunWang, and
Haitham Bou Ammar. 2022. Reinforcement Learning in Presence of

https://arxiv.org/abs/2010.12645
https://arxiv.org/abs/1610.03518
https://doi.org/10.1007/s10994-021-06103-6
https://doi.org/10.1145/1143844.1143872
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
https://proceedings.mlr.press/v80/gao18a.html
https://arxiv.org/abs/2201.05560
https://arxiv.org/abs/1809.04474
https://arxiv.org/abs/1802.10269
https://arxiv.org/abs/1810.03259
https://arxiv.org/abs/1802.07239
https://arxiv.org/abs/1808.03196
https://arxiv.org/abs/2005.01643
https://doi.org/10.1145/3341302.3342080
https://doi.org/10.1016/S0079-7421(08)60536-8
https://arxiv.org/abs/1803.11347
https://arxiv.org/abs/1812.07671
https://doi.org/10.1016/j.neunet.2019.01.012


EuroMLSys ’22, April 5th, 2022, Rennes, France Pouya Hamadanian, Malte Schwarzkopf, Siddartha Sen, andMohammad Alizadeh

Discrete Markovian Context Evolution.
[43] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap,

and Greg Wayne. 2019. Experience Replay for Continual Learning.
arXiv:1811.11682 [cs.LG]

[44] Noga H Rotman, Michael Schapira, and Aviv Tamar. 2020. Online
Safety Assurance for Learning-Augmented Systems. In Proceedings
of the 19th ACMWorkshop on Hot Topics in Networks. 88–95.

[45] Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre,
Guillaume Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr
Mnih, Koray Kavukcuoglu, and Raia Hadsell. 2016. Policy Distillation.
arXiv:1511.06295 [cs.LG]

[46] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert
Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and
Raia Hadsell. 2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671 (2016).

[47] Andrei A. Rusu, Mel Vecerik, Thomas Rothörl, Nicolas Heess, Razvan
Pascanu, and Raia Hadsell. 2018. Sim-to-Real Robot Learning from
Pixels with Progressive Nets. arXiv:1610.04286 [cs.RO]

[48] Jonathan Schwarz, Jelena Luketina, Wojciech M. Czarnecki, Agnieszka
Grabska-Barwinska, YeeWhye Teh, Razvan Pascanu, and Raia Hadsell.
2018. Progress & Compress: A scalable framework for continual
learning. arXiv:1805.06370 [stat.ML]

[49] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan

Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science 362,
6419 (2018), 1140–1144. h�ps://doi.org/10.1126/science.aar6404
arXiv:https://www.science.org/doi/pdf/10.1126/science.aar6404

[50] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning:
An Introduction. A Bradford Book, Cambridge, MA, USA.

[51] Matthew E. Taylor and Peter Stone. 2011. An Introduction to Intertask
Transfer for Reinforcement Learning. AI Magazine 32, 1 (Mar. 2011),
15. h�ps://doi.org/10.1609/aimag.v32i1.2329

[52] Philip S Thomas. 2015. Safe reinforcement learning. Ph. D. Dissertation.
University of Massachusetts Libraries.

[53] Hado van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and
David Silver. 2016. Learning values across many orders of magnitude.
arXiv:1602.07714 [cs.LG]

[54] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James
Hong, Keyi Zhang, Philip Levis, and Keith Winstein. 2020. Learning
in situ: a randomized experiment in video streaming. In 17th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
20). 495–511.

[55] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas
Poczos, Ruslan Salakhutdinov, and Alexander Smola. 2018. Deep Sets.
arXiv:1703.06114 [cs.LG]

https://arxiv.org/abs/1811.11682
https://arxiv.org/abs/1511.06295
https://arxiv.org/abs/1610.04286
https://arxiv.org/abs/1805.06370
https://doi.org/10.1126/science.aar6404
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aar6404
https://doi.org/10.1609/aimag.v32i1.2329
https://arxiv.org/abs/1602.07714
https://arxiv.org/abs/1703.06114

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Challenges of Non-stationary rl
	5 Framework Overview
	6 Case Study: Straggler Mitigation
	6.1 Experiments

	7 Conclusion
	References

