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Abstract—The wide deployment of IoT devices has resulted in a
critical shortage of spectrum resources. Many IoT devices coexist
on the same spectrum band, where the network performance is
always degraded. As a promising solution, the Cross-Technology
Communication (CTC) enables the direct communication among
heterogeneous IoT devices. Unfortunately, the emerging cross-
technology attacks have demonstrated their high success rates
in terms of spoofing the end IoT devices or jamming the
communication channels. In this paper, we investigate a novel
cross-technology jamming issue for a distributed heterogeneous
IoT system. Compared with traditional jamming methods, the
cross-technology jammer has a much higher jamming power,
wider jamming bandwidth, and stronger stealthiness, all of
which deserve a complete re-thinking of defensive mechanisms.
Therefore, we propose a hybrid anti-jamming scheme that jointly
considers frequency hopping and power control techniques.
Specifically, we model the anti-jamming process as a Markov
Decision Process (MDP) and adopt Deep Q-Network (DQN) to
find the optimal strategy. Extensive real-world experiments show
that the goodput (payload data) of our anti-jamming scheme
can achieve up to 2X and 1.39X than the passive and random
anti-jamming approaches, respectively. In particular, our anti-
jamming scheme provides 78% of goodput with the presence of
a cross-technology jammer, outperforming existing passive and
random anti-jamming scheme designs at 37.6% and 54.1%.

Index Terms—Cross-Technology Jamming, Anti-jamming,
Deep Q-Network, Markov Decision Process, Internet of Things

I. INTRODUCTION

Recent years have witnessed the increasing deployment of
Internet-of-Thing (IoT) in our daily life, including smart home,
healthcare, smart city, and smart manufacturing. According to
Statista, the number of IoT devices worldwide will be 38.6
billion by 2025 [1] for supporting a broader range of future
applications. Current mainstream IoT protocols, such as Wi-Fi,
ZigBee, and Bluetooth/Bluetooth Low Energy (BLE), heavily
overlap on the 2.4GHz Industrial, Scientific, and Medical
(ISM) bands. Apparently, the coexistence of a large number
of heterogeneous [oT devices brings significant challenges for
coordinating each transmission link given limited spectrum
resources. Although many link layer protocols have been
widely adopted, such as CSMA/CA, those schemes become
less effective in handling heterogeneous IoT devices with a
dense deployment, e.g., future warehouses for smart manu-
facturing. The coexistence of heterogeneous IoT devices may
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not only increase the chance of experiencing cross-technology
interference (CTI) [2], [3], but also incur serious security
concerns (e.g., jamming attacks or spoofing attacks). Due to
the protocol incompatibility, existing defensive methods will
fail to detect and mitigate them.

As one of the most promising communication paradigms,
the Cross-Technology Communication (CTC) [4], [5] has
achieved the direct communication among IoT devices with
different protocols. Although it potentially relieves the long-
term coexistence problem, it brings significant threats to the
current [oT systems, especially for the crowded 2.4GHz ISM
band. For example, attackers can go far beyond just simply
sending interference signals [6]-[9], instead, sending a CTC
spoofing signal can bypass the victim’s security protocol and
finally compromise the entire system. Recent works [10]-
[12] elaborate that using CTC signals can spoof end IoT
devices from a further distance, and severely degrade the
packet delivery ratio (PDR). Instead of just spoofing an
individual IoT device, in this paper, we investigate a crucial
yet less-investigated problem, i.e., how fo defend against
cross-technology jamming attacks in IoT networks? Although
there have been a few works on mitigating cross-technology
jamming [11], [13], [14], the proposed schemes either par-
tially recover the collided/interfered packets or only have a
marginal gain on increasing PDR (< 2%), falling far short of
fundamentally defending against the jamming attack.

In this paper, we consider a Wi-Fi-enabled jammer that
intends to attack a ZigBee network. Compared with a con-
ventional ZigBee jammer, this cross-technology jammer has
stronger stealthiness, wider jamming bandwidth, and higher
attacking power, all of which bring significant challenges for
anti-jamming scheme design. Specifically, we focus on a smart
jammer that can sweep all available channels and choose
the suitable power to attack. Meanwhile, the jammer has a
faster sweep cycle and can jam up to 4 consecutive ZigBee
channels, leading to a lower success rate of transmission if
simply adopting existing anti-jamming schemes.

To defend against the cross-technology jamming (CTJ)
attack, we employ both the frequency hopping and power con-
trol to develop the anti-jamming strategy. The anti-jamming
process is modeled as a Markov Decision Process (MDP),
in which new states other than conventional anti-jamming
schemes [15] are introduced. Then, we adopt Deep Q-Network



(DQN) to find the optimal defense strategy about how to
select the channel and signal strength properly. The main
contributions of this paper are as follows:

o We identify a new but real CTJ attack in the heteroge-
neous IoT environment, where a Wi-Fi-emulated ZigBee
signal is able to achieve up to 4 times higher jamming
performance compared with a conventional Zigbee jam-
mer.

o We model the anti-jamming process as an MDP process
and prove the existence of the optimal strategy. To
better understand the competition process, we also study
the variation trend of the optimal strategy with various
parameters.

o« We further adopt DQN to find the optimal defense
strategy. Based on extensive experiments, we demonstrate
that our proposed scheme can successfully defend against
CTJ and maintain a high success rate of transmission.

The rest of the paper is organized as follows. In Section II,
we introduce the motivation and feasibility of CTJ. Then, we
model the competition process into an MDP and adopt DQN
to find the optimal defense strategy in Section III. Section IV
shows the performance of our defense strategy, followed by
the state-of-the-art discussion in Section V. Finally, Section
VI concludes the paper.

II. PRELIMINARIES AND MOTIVATION

In this section, we first briefly introduce the malicious CTJ
signal generation process, and further elaborate on how the
signal can compromise the ZigBee network performance.

A. Generating the Jamming Signal

1) Cross-technology Signal ~ Emulation: Existing
approaches [4], [5], [16] have been proposed to emulate
ZigBee signals using the Wi-Fi device. As shown in Fig. 1,
the emulation process can be regarded as the inverse process
of the WiFi physical layer, because the jammer needs to
know the bit stream that can generate the desired waveforms.
However, existing designs fail to provide precise emulation
because the 64-QAM constellation diagram is usually not
fully utilized.
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Fig. 1. Emulation Process

For this work, we will modify the quantization process to
make better use of the 64-QAM constellation diagram. With
this design, the emulated waveforms will be more similar to
the designed waveforms. In what follows, we formulate the
above quantization process as an optimization problem in order
to minimize the distance between the 64-QAM points and the
corresponding constellation points of the ZigBee signals, as
shown in (1) and (2),

BE(e) = Y10 min{(aP; — P)?li € [1,64]} (1)

a = argmin F(a) (2)
in which E(«) depicts the overall quantization error, and « is
a scalar to scale the size of 64-QAM constellation diagram. P;
is a complex number that denotes the ¢-th constellation point
among 64 predefined constellation points, whereas P; is the
j-th constellation point that will be used to emulate signals.
M 1is the total number of constellation points. Eq. (2) depicts
the objective of our optimization, which is to find a proper o
that can minimize (1). Since E(a)” = Zjle 2P% >0, E(a)
in (1) is a convex function and has the global minimum, which
can be acquired in O(M log M) for M FFT points if using
the binary search algorithm.

2) Experimental Validation: To verify our idea, we conduct
an experiment to test the jamming effect of different signals.
We use four TI CC26X2R1 LaunchPads (ZigBee mode) to
build a star-like ZigBee IoT network (Fig. 2(a)), in which
one of them acts as the hub, the rest act as peripheral nodes.
The Listen-Before-Talk (LBT) mechanism is adopted to avoid
collisions. Then, we use a USRP N210 as the jammer. For
each time, the jammer sends different jamming signals (i.e.,
WiFi, ZigBee, and Emulated ZigBee) at different distances.
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(a) Experiment Scenario
Fig. 2. Effect Verification

(b) Jamming Effect of Different Signals

We evaluate the throughput and packet error rate (PER)
of this network under different types of jamming attacks, as
shown in Fig. 2(b). It can be seen that with the increase of
jamming distance, the PER continuously decreases while the
throughput increases. More importantly, in most cases, the
rank in terms of the jamming effect is as follows: Emulated
ZigBee (EmuBee)>ZigBee>WiFi. The main reason is that
EmuBee is generated by a WiFi device, which has a higher
signal strength than that of ZigBee devices. This superiority
is more significant when the jamming distance is long (i.e.,
> 10m). On the other hand, the WiFi jammer is the weakest
one because the IoT network regards it as noises and the direct-
sequence spread spectrum (DSSS) mechanism of ZigBee de-
vices has a very good effect on dealing with noises. Another
advantage of using EmuBee as the jamming signals is that the
EmuBee has a better stealthiness, because it is not necessary to
obey the format of ZigBee packets, which will be more diffi-
cult to be detected by ZigBee devices. Specifically, a complete
ZigBee packet consists of preamble (0x00000000), start-
of-packet delimiter (0x72), PHY header (1 octets) and PHY
payload, as shown in Fig. 3. If a ZigBee packet does not obey
the above format, the ZigBee receiver will not able to get



useful information from it, although it still tries to decode it.
For example, if a ZigBee packet only has the preamble (i.e.
the delimiter and rest part are missing), the ZigBee receiver
will process it into the decoding state. However, over a period
of time, nothing can be decoded. Meanwhile, the hardware
resource is being occupied and cannot be used to process other
packets. Therefore, using EmuBee to launch a jamming attack
is very hard to be detected by ZigBee receivers.
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Fig. 3. ZigBee Packet Format

B. Motivation of Cross-Technology Jamming

According to the above experimental result, CTJ outper-
forms the conventional jamming attacks using the same-
protocol jamming signals. Specifically, CTJ has the following
advantages that make it as an ideal attacker in the heteroge-
neous IoT system.

o Higher jamming power. EmuBee adopts the Wi-Fi
protocol to launch the attack, whose RF power can be up
to 100mW. However, ZigBee concerns more about energy
efficiency, whose RF power can be as low as 1mW. For
the same reason, the attack range of WiFi is also wider.

e Wider jamming bandwidth. The bandwidth of a WiFi
channel (i.e. 20MHz) is 10 times more than that of a
ZigBee channel (i.e. 2MHz). According to the spectral
overlap of WiFi and ZigBee, a WiFi jammer can scan
and jam up to 4 ZigBee channels at a time. Thus, a
wider bandwidth indicates that the jammer can jam more
ZigBee devices as well as find them faster.

o Stronger stealthiness. Based on the analysis of the
stealthiness, EmuBee uses the ZigBee waveform but does
not need to follow the ZigBee packet format, resulting
in the “meaningless” decoding at the victim IoT device.
Compared with traditional jammers where the jamming
signal is either standard ZigBee signal or noise, EmuBee
can fool the victim IoT device for decoding, and thus is
hidden from being detected as a jammer.

C. Adversarial Model

1) Cross-Technology Jammer’s Capability: The jammer
(Jx) adopts the time-slotted frequency-sweeping to find the
victim. It can sweep and jam m consecutive channels at a
time (m < K, K is the number of channels that can be
used). Jx will send EmuBee signals only when the victim
is using the channel, thus, the victim is not able to detect
Jx by measuring the received signal strength. The strength of
the jamming signal is adjustable with different power levels
Py ={p{,pd,...,p]}. For each time, Jx chooses a power level
to send jamming signals. We define two modes for the Jx: (1)
high-performance mode: in this mode, the major objective of
the Jx is to jam transmission as much as possible. Therefore, Jx
always picks the largest power level to send jamming signals;
(2) hidden mode: in this mode, the major objective of the
Jx is to avoid being perceived by the victim. It should not

jam too much transmission, which may lead to the victim
no longer using this channel. Therefore, Jx randomly picks a
power level to send jamming signals. The Jx is able to know
whether the jamming is successful by monitoring whether the
victim is still using the channel at the beginning of each time
slot. Alternatively, the Jx can passively listen to the feedback
information, such as ACK/NACK message.

For the victim, they also adopt the time-slotted working
mode. At the beginning of each time slot, the hub decides
which channel and power level will be used, and then sends
this information to peripheral nodes. During the process of
running, peripheral nodes will send data to the hub. If the
power level of Jx is higher than that of peripheral nodes, the
peripheral nodes will be not able to transmit data correctly.

2) Attacking Process: Once the Jx initiates, it will begin to
sweep the channels with the speed of m channels/time-slot,
i.e., 4 ZigBee channels for Wi-Fi attacker using EmuBee. On
the 2.4GHz frequency band, there are 16 available ZigBee
channels in total, so the Jx only needs to spend [16/4]| = 4
time slots (a.k.a. sweep cycle) on sweeping the whole channels
to find the victim.

If the victim IoT device is found, Jx no longer sweeps other
channels, instead, it begins to jam the victim’s channel. The
victim will then notice the throughput drop. Once the error
rate exceeds a certain threshold, the victim will decide to hop
to another channel or select a higher power to transmit data. In
the case when the hub cannot contact peripheral nodes using
the current channel, we assume the existence of a control
channel for negotiating the communication channel. If the Jx
finds that the victim no longer uses the current channel, the
Jx will continue to sweep other channels for seeking the next
opportunity of launching an attack.

III. DEEP LEARNING-BASED ANTI-JAMMING SCHEME

To defend against the proposed jamming attack, we pro-
pose a hybrid anti-jamming approach that jointly considers
frequency hopping and power control mechanisms.

A. Problem Formulation

First of all, we formulate the interaction between the Jx and
the Zigbee 10T devices as an MDP, in which the future state
only depends on the current state and action.

1) State Space: We define the state space as

X ={1,2,...[K/m] — 1, Ty, J}, 3)

where n € {1,2,...,[K/m] — 1} denotes that the legitimate
ZigBee transmitter (Tx) has been continuously successful in
transmitting data on the current channel for n time slots.
The Jx sweeps through the K channels and can jam up to
m (m < K) consecutive channels at once. T; denotes that
the transmission is jammed but not successfully (i.e., the
transmission is still successful, because the jamming signal
power is not enough to completely compromise the commu-
nication). We use J to represent that the current transmission
is completely jammed.



2) Action Space: The action space for any state in X is as
follows:

A={(s,p]), s (s,080): (hyp )y (Bp3g)} (D)

where (s,p?), i € M denotes the action that Tx stays on
the current channel with the transmission power p;. Similarly,
(h,pl), i € M is the action that Tx hops to a new channel
and uses p; for transmission.

3) Immediate Reward: The immediate reward of moving
from the state = to 2’ with an action a is defined as below,

—Lyr —L; a=(s,p),2' =]
—L.r a:(spT) e X\J
N p"' ’ 1 )
U(z,a,2")= —Ly —Ly—Ly a=(hp]),a' =J 3)
_LpT — LH a = (h7piT)7m/ € X\J

i

where LpiT denotes the loss of using power p! to send
packets; Ly is the loss due to a successful jamming; and
Lyz is used to quantify the loss due to the frequency hopping
(since frequency hopping will lead to packet loss or increased
latency).

4) Transition Probabilities: Let P(z'|x,a) denote the tran-
sition probability to x’ given that the current state is x, the
Tx chooses action a € A. Then, the state transition mainly
involves the following cases:

Case 1: The Tx is not jammed in the current time slot, after
choosing (s,p!) as the action, the Tx is still not jammed in
the next time slot. In this case, we have

1

[Kjm]—n ©

P(n+1|n,s,pf)=1-—
where n € {1,2, ..., [K/m] — 2}.
Case 2: Similar to Case 1, the Tx is jammed unsuccess-
fully/successfully in the next time slot can be expressed as

1
P(TJ|n757P¢T):m x P(pi >7) (D
1
where n € {1,2,...,[K/m] — 1}.

Case 3: Given the Tx is not jammed in the current time
slot, it is also not jammed in the next time slot due to taking
(h,pl) as the action can be expressed as

[K/m]—-n-1
([K/m | = D([K/m ] —mn)
where n € {1,2, ..., [K/m] — 1}.

Case 4: Similar to Case 3, the Tx is jammed unsuccess-
fully/successfully in the next time slot is represented by

P(1|n, h,p]) =1— )

_ [K/m ]-n—1
(TK/m 1-1)([K/m -n)

_ [K/m ]—-n—1
(TK/m 1-D(TK/m T-n)
where n € {1,2, ..., [K/m] — 1}.
Case 5: Different to the previous four cases, the Tx is
jammed unsuccessfully/successfully in the current time slot.

P(Tyln, h,pl) x P(pf >7) (10)

P(J|n, h,pl) x P(pl <7) (11)

After choosing (s,p!) as the action, the Tx is jammed
unsuccessfully/successfully in the next time slot. We have

P(Ty|z,s,p]) = P(p] > 1) (12)
P(Jlz,s,p]) = P(p] <7) (13)

where z € {Ty, J}.
Case 6: Similar to Case 5, the Tx is not jammed in the next
time slot after taking (h,p!) as the action is expressed as

P(l|z,h,pl) =1 (14)
where z € {Ty, J}.

B. Analysis of MDP

1) Existence of Optimal Policies: Before trying to solve the
MDP, it is of great importance to prove the existence of the
optimal policy.

Theorem III.1. For any finite MDP, there exists an optimal
policy ™ such that it is better than or equal to every other
possible policy .

Proof. See the proof in the Appendix. O

2) Calculation Method of Optimal Policies: For an MDP,
a policy m(a|x) is the probability of taking action a at state
z. The state-value function of a state x under a policy 7 is

defined as
Ve(w) = > w(al2)Qx(x,a)

a

15)

Similarly, the action-value function of taking action a in state
z is defined as

Qr(z,a) =U(z,a) + ’yZP(x’|x, a)Vy(x')

x!

(16)

where v € [0,1] is the discount factor that quantifies how
much importance we give for future rewards. When solving
an MDP, we need to find the optimal value functions, which
are defined as follows:

Vi(z) = max V()
Qi(z,a) = max Qr(z,a)

The optimal policy is referred to as the optimal value func-
tions. To find the optimal policy, we pick the action that gives
us the maximum Q. (z, a),

a7)
(18)

r(ale) = {1 ifa= arginaXQ*(J;, a) 19)
0 otherwise
Thus, the following results can be derived.
Vi(x) = max Q. (z, a)
’ (20)

=maxU(z,a) + Z P2 |z, a)Vi(x)

Qu(w,0) = U(w,a) +7 Y P(a/|z, a)max Qu(a',a') 1)
The above equation is called Bellman optimality equation [17],
which is a recursive equation. We can get the optimal policy
as well as the optimal value functions by solving this equation.



3) Features of MDP: The aforementioned process is a
general method to solve an MDP. To better understand our
MDP model, we also study our own features, i.e., how the
action-value function as well as the optimal policy vary
with various influence factors. Our constructed MDP has the
following features:

Lemma IIL2. Q (n, (s,pl)) is a decreasing function on n =
1,2, ... [K/m] — 1.

Proof. We can prove this by showing Q.(n,(s,pl)) <
Qi(n—1,(s,p])).
Q«(n, (57pf)) —Q«(n—1, (SvplT))

U(n,a) +~ Z P(n[n, a)max Q. (n’, a’)
a’

(22)
- |:U(n —1l,a)+7v Z P((n—1)|n— 1,a)n}quQ*((n - l)'.a'):l
(n—1y’
From (5), (6), (7), (8), it is easy to show
Pl <r
E[U(na (Sap?)>] = _LP - LJ% (23)

ie, U(n,(s,pl)) is decreasing in n. Thus, U(n,a) <
U(n—1,a).
When n = [K/m] — 1,

n}za/x Q*(TL/, a,) = II?([]E}X {Q*(J7 a,)7 Q* (TJv a/)}
< ma Q. (1), Qu(Ty,0)).Qu(n.)} = max Q. ((n — 1))

Ths, Qu (1, (5,p7)) < Qu(n — 1, (5, 57)).

Similarly, we can also show Q.(n — 1,(s,pl)) <
Q«(n — 2,(s,p)). This process can go all the way up
to Q«(2,(s,p1)) < Q.(1,(s,pl)), leading to a conclusion
that Q. (n, (s,p])) is a strictly decreasing function with the
increase of n. O

Lemma IIL3. ) (n, (h, pZT)) is an increasing function on n =
1,2, ..., [K/m] — L

Proof. We can prove lemma 2 by showing Q. (n, (h,p!)) >
Q*(n - 17 (hapzT))
From (5), (9), (10), (11), it is easy to show

E[U (n, (h, p7))] = —Lp — Lur — Ly Gt bt =r=d

(TK/m]-1)(TK/m]—n) (24)

ie., U(n,(h,pl)) is increasing in n. Thus, U(n,a) >
U(n—1,a).
In addition, we have

i Q. (o, ') = max {Q.(, '), Qu(Ty. ), (1)}
— max Qu((n — 1)/,
Thus, Q.(n,(h,p)) > Q.(n — 1,(h,pl)), ie.,

Q«(n, (h,pT)) is a strictly increasing function with the
increase of n. O

Based on lemma III.2 and lemma III.3, the optimal policy
has the following structure stated in Theorem III.4.

Theorem II1.4. The optimal policy can be characterized by
a threshold n* € {1,2,...,[K/m]}, ie.,

. (s,0])
a*=7"(n) = {(h’z;f)

Proof. Since Q (n7 (s,p?)) is decreasing and Q (n, (h,plT))
is increasing, there must exist an intersection point be-
tween them except two extreme cases. One is Q([K/m] —
1, (s,pF)) > Q([K/m] — 1, (h,pl)), where we can set n*
as [K/m]. The other is Q(1, (s,pl)) < Q(1, (h,pl)), where
we can set n* as 1. O

if n<n*

otherwise (25)

Theorem IIL.5. The threshold n* decreases with the increase
of Ly, and increases with the increase of Ly or [K/m)].

Proof. From (23) and (24), it is easy to show

LyP(p] <)

U(’VL, (5,}7?)) - U(n -1, (SvpzT)) =- (TK/m]—n)([K/m]—n+1) (26)
U(n, (}LsPT)) -U(n-1, (hspzT)) = ((K/m}_1)((%]/%%77;;;)(K/7n}—n+1) (27)

Substitute (26) in to (22), we can get that Q.(n, (s,p})) —
Q«(n — 1,(s,pl)) decreases with the increase of L;. In
other words, the function graph of Q.(n,(s,p!)) will move
down with the increase of L ;. From (27), we can infer that
the function graph of Q. (n, (h,p!)) will move up with the
increase of L ;. Therefore, their interaction point will move
left, i.e., the threshold n, decreases with the increase of L.

Similarly, we can also find that the function graph of
Q«(n, (5,p7)) (Q«(n, (h,pl))) will move up (down) with the
increase of [K/m]. Thus, the threshold n,. increases with the
increase of [K/m].

From (23) and (24), we know that U(n, (s,pl)) is not
impacted by Ly, whereas U(n, (h,pl)) decreases with the
increase of L. Thus, the interaction point of Q. (n, (s,p?))
and Q. (n, (h,plT)) will move right, i.e., the threshold n.
increases with the increase of L. O

From the above analysis, we can conclude that there exists
a turning point, before which (s,pl) should be chosen as
the action, and after that (h,p!) will be the optimal policy.
Meanwhile, the turning point can be adjusted by setting L ;,
Ly and [K/m] properly.

C. DON based Anti-jamming Scheme

Although the optimal policy can be acquired by solving the
MDP, the derived result cannot be directly used in an IoT
network, because the Tx does not exactly know its current
state . The state z not only depends on the Tx, but also
depends on the Jx. However, in the practical setting, the Jx
is hardly able to be synchronized with the Tx. Therefore, the
derived result is idealized. We still need to get an adaptive
frequency hopping as well as a power control scheme, which
has the function of self-correction in a real-time way according
to the external environment. Reinforcement learning (RL) is
a suitable technique that can be used to acquire an optimal
communication policy via trial-and-error. The advantage of
RL is that it does not depend on any model. Even if we do



not know the model of the competition process, we can still
use RL to get an optimal policy.

For this work, we use a deep Q-network (DQN) to acquire
an optimal communication policy. Compared with other RL
techniques (such as Q-learning), the learning speed of DQN
will not suffer from the curse of high-dimensionality, i.e.,
the convergence time will not significantly increase with the
dimension of state space and action space. As shown in Fig.
4, we adopt a 4-layer deep neural network (DNN) to train
the anti-jamming scheme. Note that other neural networks
architectures (e.g. RNN) can also be adopted, since our
scenario is not a large-scale problem, adopting the simple
and fully-connected DNN is sufficient to solve it. The input
layer has 3 x I neurons, which correspond to the state (i.e.,
success or failure) and action (i.e., channel and power level)
of the Tx in previous I time slots because these three indexes
are observable to the victim. The output layer has C' x Py,
neurons, where C, P; are the number of available channels
and power levels of the Tx, respectively. We also adopt 2
fully connected layers and use ReLU as the activation function,
since 2 fully connected layers are sufficient to solve nonlinear
problems. To avoid that the DQN stays at a local maximum,
we choose the communication policy based on the e-greedy
algorithm. Specifically, the optimal communication policy with
the highest Q-value is chosen with a high probability 1—¢, and
other feasible strategies are chosen with a small probability

£ / (C X P, — 1)
Hidden Hidden
Input Layer1  Layer2

3xI
neurons

Cx Py

Fig. 4. Neural Network Architecture of DQN Fig. 5. Experiment Setting

IV. PERFORMANCE EVALUATION

To evaluate the anti-jamming scheme design, we will con-
duct both simulations and real-world field experiments.

A. Experiment Settings

1) Simulation Settings: We use Matlab as the tool to train
and evaluate the DQN. To best describe the WiFi and ZigBee
coexistence scenario, (1) we set the sweep cycle to 4 (i.e.,
[K/m] = 4), because a WiFi device is able to scan all
available ZigBee channels in 4 time slots; (2) we provide
10 different power levels for the victim and the attacker,
respectively, ie., L1 € [6,15], L7 € [11,20]. It can be
seen that the max power of Jx is higher than that of Tx,
which ensures that Jx is able to jam Tx. For the sake of
simplicity, we believe that the transmission will be successful
if LT > L7 (3) Ly = 50, i.e., the loss of frequency hopping
(FH) is higher than that of adopting power control (PC),
because conducting FH will take some time for negotiation

and affect the throughput; (4) L; = 100, because the loss
of being jammed should be significantly higher than that of
FH and PC, so that the system will be encouraged to take
measures to avoid being jammed.

TABLE I
EVALUATION METRICS

Evaluation Metrics
Success rate of
transmission (S7)
Adoption rate of

Description
The proportion of time slots that transmit data
successfully
The ratio of time slots adopting FH to the total

FH (Ag) number of time slots
Success rate of FH The ratio of time slots that transmit data suc-
(SH) cessfully due to adopting FH to the number of

time slots that adopting FH
The ratio of time slots adopting PC to the total

Adoption rate of

PC (Ap) number of time slots
Success rate of PC The ratio of time slots that transmit data suc-
(Sp) cessfully due to adopting PC to the number of

time slots that adopting PC

The detailed evaluation metrics are shown in Table I. The
St denotes the proportion of time slots that can be used to
transmit data successfully. The Ag evaluates the proportion
of time slots that adopt FH. A good anti-jamming strategy
should adopt FH as few as possible because FH is time-
consuming. Similarly, the Sy evaluates the proportion of use-
ful FH, because some of the FHs are adopted for preventative
purposes, which are actually unnecessary. Meanwhile, Ap,
Sp are similar to Ay, Sy, respectively. We will measure the
above-mentioned metrics in two scenarios, where the Jx adopts
either (1) the max power mode or (2) the random power mode.
For each time, the experiment lasts for 20000 time slots to get
the average value.

2) Field Experiments Settings: For the field experiment,
two USRP N210 and multiple TI CC26X2R1 LaunchPads
(ZigBee mode) are used to verify the effectiveness and effi-
ciency of our scheme, as shown in Fig. 5. The targeted ZigBee
IoT network is composed of 4 nodes, in which one node acts
as the hub and the others act as peripheral nodes. The trained
DQN is loaded into the hub to decide the channel and power
level that should be used in the next time slot. Then, the hub
will notify peripheral nodes of the FH and PC information
in advance. The transmitted information can be encrypted to
prevent eavesdropping. If they cannot contact each other (e.g.,
the current channel is jammed unexpectedly), we also assign
a control channel to exchange information. Two USRPs are
used as the jammer to send jamming signals and eavesdrop
on the current channel, respectively. Note that the Tx and Rx
function can also be integrated to one USRP, but the jamming
effect will degrade because it has to switch between two modes
frequently.

B. Training of DON

We use more than 120000 data blocks from historical
information to train the DQN, in which each data block
contains the channel, power level and state (success or failure)
information of the Tx. The training process lasts on average of
20min unless the training goal has been achieved in advance
(i.e., the average reward reaches a certain threshold). The
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training results are a series of matrices, which contain 10664
float numbers with 42.7KB memory. Those parameters will be
loaded to the IoT devices before the experiment starts.

C. Simulation-based Experimental Results

1) Success Rate of Transmission: The success rate of
transmission (S7) is the most important metric to evaluate the
effectiveness of an anti-jamming approach. In a time-slotted
system, St can be defined as the proportion of time slot
numbers that can be used to transmit data successfully. Various
parameters can influence the St during the training process.
In what follows, we mainly study the impact of L;, sweep
cycle, Ly and L T on St.

Impact of L. A larger Ly will let the agent be more active
in mitigating jamming attacks. Fig. 6(a) shows that the Sp
increases with the increase of L ;. When the L; < 15 (note
that 15 is the upper limit of L;Fi ), the success rate is maintained
at 0. The main reason is the L; is not very large, which is
unworthy of adopting FH or PC. When the L; > 50 (i.e.,
50 is defined as the loss of FH), the St is stabilized around
78%. Here, we consider that if St > 75%, the anti-jamming
scheme is effective because the random jamming rate is set as
25% from the predetermined sweep cycle 1/ [K/m] = 0.25.
We also notice that when 15 < Lj; < 50, the St in the
random power mode increases earlier than that in the max
power mode, because a certain anti-jamming scheme usually
has a better effect on defending against jamming attacks whose
signal strength is relatively low.

Sweep Cycle. Given a longer sweep cycle, the Tx will less
likely to get jammed. Fig. 6(b) shows that the St increases
with the increase of sweep cycle. Two modes have almost an

identical tendency except when sweep cycle = 2. In this case,
the random sweep is degraded into an alternate sweep, which
is easier to be predicted.
Impact of Ly. A large Ly will result in the agent being
reluctant to adopt FH in mitigating jamming attacks. In Fig.
6(c), the St decreases with the increase of Ly. The St in
the random mode has a significant decrease when Ly > 85,
because within this range, the loss caused by jamming is close
to that caused by FH, the agent does not tend to use FH.
However, the St in the max mode does not have this feature,
because FH is the only effective way to avoid being jammed,
which must be adopted.
Impact of Lpz“. We evaluate whether the scope of power level
has some impact on strategy selection. Fig. 6(d) shows the
variation of Sp with L,r. The scope of LT varies from [6, 15]
to [15,24]. When 6 < L r <9, the S in both modes increase
slowly. When L,r > 11 the St in both modes maintain at
100%, because the Tx can ensure SN R > 7 within this range.
2) Adoption Rate of FH and PC: Adoption Rate refers to
the ratio of the number of time slots adopting FH or PC to
the total number of time slots. A good strategy should take
actions as few as possible based on the premise of ensuring
the success rate of transmission.
Impact of L ;. Fig. 7(a) shows that the Ay increases with the
increase of L;. Ly = 35 is an inflection point, before which
the Ay maintains at 0, and then, the Ay gradually increases
to 50%. Similarly, the variation of Ap with L is shown in
Fig. 7(b). There are significant differences between the two
modes. When 15 < L; < 35, for the max mode, adopting PC
has no effect on improving St (because the max power of Jx
is always larger than that of Tx). Thus, the agent is less likely
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to adopt PC. However, for the random mode, PC is adopted
extensively, because the cost of PC is less than FH.

Sweep Cycle. Fig. 7(c) and Fig. 7(d) show that both Ay and
Ap decrease with the increase of sweep cycle, which indicates
that the larger sweep cycle, the less necessary to take anti-
jamming actions. From Fig. 7(d), it can be seen that the Ap
in the random mode is usually higher than that in the max
mode, which also demonstrates that the agent does not intend
to adopt PC due to its low effectiveness in the max mode.
Impact of L. The increase of Ly will lead to the decrease
of Ay, as shown in Fig. 7(e). However, there is an obvious
difference between the two modes when Lz > 85. In Fig. 7(f),
this feature also exists, because FH is the only effective way
in the max mode, which must be adopted. For the random
mode, it can be abandoned (since PC can undertake the
responsibility).

Impact of L, T The increase of L, T will result in the decrease
of Ay and the increase of Ap, as shown in Fig. 7(g) and
Fig. 7(h). L,r = 11 is an inflection point, after which the
PC is sufﬁc1ent to avoid being jammed and FH is no longer
necessary.

To sum up, the PC adoption rate is usually higher in the
random mode instead of the max mode. However, the FH
adoption rate does not have an obvious difference between
the two modes. The relatively low PC adoption rate in the
max mode can avoid unnecessary and meaningless energy
waste, which is of great importance to energy-constrained
applications. For users who are concerned about the energy
consumption, they can choose a relatively large L, r to train
the neural network, so that the PC adoption rate W111 decrease
and the goal of energy conservation will be achieved.

3) Success Rate of FH and PC: 1t refers to the ratio of
the number of successful transmissions using FH or PC to the
total number of trials that adopt FH or PC, for which a higher
value of Sy or Sp indicates the corresponding actions are
useful in anti-jamming.

Impact of L ;. With the increase of L, Sy shows a rapid
increase (when 35 < Lj < 55), as shown in Fig. 8(a). This
feature indicates that most of the actions are useful. When
Lj; > 55, the Sy decreases slowly, because the agent will

adopt FH more frequently to avoid being jammed. Sp has a
similar feature in Fig. 8(b), except that when 15 < L; < 55,
two modes are significantly different. This result also verifies
that PC is more effective in the random mode.

Sweep Cycle. Fig. 8(c) and 8(d) show that both Sy and
Sp decrease with the increase of sweep cycle. FH is the
dominant approach that has a high success rate (varies between
77.82% and 20.6%), whereas, for the same sweep cycle, PC
has a relatively low success rate (varies between 19.47% and
1.32%).

Impact of Ly. Fig. 8(e) and Fig. 8(f) shows the variation
of Sy and Sp with Ly, respectively. A notable feature is
that in both figures, when Ly > 85, two modes have a
marked difference. In the random mode, PC replaces FH as
the dominant approach when Ly gets larger, but in the max
mode, FH is irreplaceable.

Impact of L, T Fig. 8(g) and Fig. 8(h) show the variation
of Sy and S p with L, T, respectively, who have the opposite
trend. This trend 1ndlcates that PC replaces FH as the dominant
approach when Lpz“ is relatively large, because, with the
increase of Lp?, Tx will be able to defeat Jx so that FH is no
longer necessary.

To draw a conclusion, the results in Fig. 8 demonstrate that
in the case of limited transmission power, FH is more useful
than PC and its success rate is also significantly higher than
that of PC.

D. Real-World Field Experiments

In the real-world experiment, we need to select a set of
proper parameters to train the DQN, and load the training re-
sult into the TI CC26X2R1 LaunchPad. We choose L; = 100,
sweep cycle = 4, Ly = 50 and L] € [6,15] as the pa-
rameters, because these parameters have a better performance
according to the simulation results and they are consistent
with the WiFi-jamming-ZigBee scenario. After implementing
the DQN on the hardware platform, we then (1) evaluate the
performance of our anti-jamming scheme in terms of time
consumption and goodput; (2) compare its performance with
other schemes; and (3) analyze factors that may influence the
performance.



1) Time Consumption: This is a key metric needed to be
concerned during the design procedure of the IoT network.
It is related to whether multiple nodes can work compatibly
with each other. As shown in Fig. 9(a), we measure the time
consumption of four typical functions (i.e. the running of the
neural network, data transmission, data processing, and FH
negotiation). Each function has been tested 100 trials.
Performing DQN. At the beginning of each time slot, the hub
needs to use DQN to decide the frequency and power level
that should be used, which usually takes 9ms.

Round Trip Time. Sending data and waiting for ACK are
the basic task of each peripheral node. A long waiting time
will result in a decrease of the data rate. Our result shows that
a peripheral node usually has to wait 0.9ms to get the ACK
from the hub. Thus, the ACK timeout can be set as a multiple
of 0.9ms to ensure the correct receiving of ACK.

Data Processing. After receiving a packet from a peripheral
node, the hub also needs some time to process data before it
can begin the next round of channel listening. The processing
time usually takes 0.6ms. Thus, the overall data rate of
peripheral nodes should not be over the limit of 1pkt/0.6ms.

Polling Mode. At the beginning of each time slot, the hub also
needs to announce the channel and power level information
to each peripheral node, which adopts the polling mode.
After ensuring that all peripheral nodes have received the
information correctly, the hub will notify them to change
frequency (if needed) together. The above procedure usually
takes 13.1ms for each node.
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Since the polling procedure is significantly time-consuming,
we also conduct an experiment to evaluate how much time it
will take when the network size is increasing. As shown in
Fig. 9(b), the time consumption of negotiation increases with
the increase of the number of nodes. In some cases, it can
be several seconds, because some nodes may not be in the
correct channel, and we need to wait for them to go back
to the control channel. The above result can also be used as
guidance when designing the size of time slots according to
the size of the network.

2) Goodput: Goodput [18] refers to the useful information
(i.e., payload data instead of ACKs or other control frames)
that is delivered to the hub per unit of time. With the increase
of time slot duration, the goodput should increase, which
has been verified by Fig. 10(a). In particular, the number
of received packets per time slot increases from 148 to 806
gradually. Meanwhile, since the IoT network needs to nego-
tiate the FH and PC information per time slot, the proportion

of negotiation time will decrease with the increase of time
slot duration. This conclusion is verified by Fig. 10(b). It can
be seen that the utilization rate of time slots increases from
91.75% to 98.58% gradually. Each time slot, the system still
needs to spend about 0.07s for FH negotiation.
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3) Anti-jamming Effect Comparison: We implement three
different anti-jamming schemes (i.e. RL FH, Rand FH, and
PSV FH) and compare their efficiency under the same jam-
ming scenario. The implementation of these anti-jamming
schemes is not strictly in accordance with any specific litera-
ture, we mainly extract the principle features of anti-jamming
schemes from some common methods (e.g. [15], [19]). Fig.
11(a) shows the results: (1) Passive FH: Passive FH is a
type of common anti-jamming scheme. It adopts FH or PC
only when the communication has been jammed. Experiment
results show that in our jamming scenario, passive FH can
achieve a goodput of 216 packets/time-slot. (2) Rand FH:
Rand FH randomly selects FH or PC at the beginning of each
time slot. It changes more frequently, thus, it has a higher
goodput than passive FH, which is 311 packets/time-slot. (3)
RL FH: our scheme has the best performance among these
three schemes. It can achieve a goodput of 431 packets/time-
slot, which is 2 times/1.39 times that of passive FH/random
FH, respectively. In addition, the goodput is 78.5% of that
in the normal scenario (i.e., without jamming, whose goodput
can reach 575 packets/time-slot). By contrast, passive FH and
random FH can only achieve 37.6% and 54.1% of the goodput
of the normal scenario, respectively.
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4) Discussion of other practical factors: In addition to the
anti-jamming scheme itself, some other factors may also have
an impact on the anti-jamming effect, e.g. the relationship
between Jx time slot and Tx time slot. If the Jx time slot is
shorter than that of Tx, Jx will be able to detect and jam Tx in a
quick manner, resulting in the decrease of Tx goodput. If the Jx
time slot is longer than that of Tx, the following phenomenon
may appear: Jx is staying at and jamming a certain channel
while Tx hops back to this channel multiple times, which
will also result in the decrease of goodput. To verify this



conclusion, we set the Tx time slot as 3s and vary the Jx time
slot (from 0.5s to 5s) to see the variation of goodput. Fig. 11(b)
shows the result. It can be seen that when the duration of the
Jx time slot is also 3s, the anti-jamming scheme has the best
performance, whose goodput can reach 421 packets/time-slot.
However, when Jx has a larger or smaller time slot duration,
the performance of the anti-jamming scheme will degrade. Due
to the limitation of hardware, the time slot cannot be too small
(i.e., <0.5s), otherwise, FH negotiation will occupy the whole
time slot and there is no sufficient time to transmit data.
Based on our experimental results, our scheme can suc-
cessfully defend against the jamming attack and outperform
existing schemes. It can reach 2 times / 1.39 times more than
the goodput of passive and random anti-jamming designs.

V. RELATED WORKS
A. Cross-Technology Jamming

JamCloak [13] propose a reactive jamming attack over CTC
links. They extract essential features to classify the CTC traffic
and then, design jamming signals that can effectively attack
the specific CTC protocol. SamBee [20] implement a parallel
spoofing system that can spoof the ZigBee devices operating
in two different channels or jam the ZigBee devices operating
in five distinct channels simultaneously only using a single
WiFi frame. In [11], the author proposes a new attack that an
adversary pretends to be a legitimate WiFi device and sends
out WiFi packets to prevent ZigBee devices’ communication
or colliding with ZigBee’s packets. DeepJam [14] proposes
a stealthy jamming strategy to jam ZigBee traffic. It relies
on deep learning techniques to capture the temporal pattern
of the past wireless traffic and predict the future wireless
traffic. Wi-attack [21] proposes an impersonation attack that
uses WiFi devices to attack iBeacon services, which can
bring an average distance error of up to 20 meters in a
common fingerprint-based localization system. In [12], [22],
[23], the authors propose several cross-technology attacking
and defensive approaches to deal with the scenario that a WiFi
device overhear and emulate the ZigBee waveform to attack
ZigBee IoT devices.

B. Anti-jamming Techniques

Various techniques have been proposed to defend against
jamming attack, such as: channel hopping [24]-[26], spreading
spectrum [27], [28], MIMO-based technique [29], [30], cod-
ing technique [31], power control [32], [33], reinforcement
learning-based technique [34], [35], or a combination of
multiple methods [15], [36].

Tri-CH [24] is a channel hopping algorithm for CRNs,
which adopts a random jump pattern to achieve a high
security level and stay pattern to guarantee bounded time
to rendezvous. RD-DSSS [27] is a Randomized Differential
DSSS (RD-DSSS) scheme to achieve anti-jamming broadcast
communication without shared keys. It encodes data using the
correlation of unpredictable spreading codes. In [29], Yan et
al. present a MIMO-based anti-jamming scheme that exploits
interference cancellation and transmit precoding capabilities

10

of MIMO technology. In [31], Yue et al. present two coding
schemes for recovering lost packets transmitted through paral-
lel channels. In [15], [36], Hanawal et al. propose a scheme to
mitigate jamming by jointly optimizing the frequency hopping
and rate adaptation techniques.

VI. CONCLUSION

In this paper, we demonstrate a new type of cross-
technology jamming attack in a heterogeneous IoT system,
which has a better attacking effect and a stronger stealthi-
ness. To deal with the jamming attack, we propose an anti-
jamming approach that jointly uses frequency hopping and
power control techniques. The optimal strategy of choosing
channel and power level is acquired by applying deep Q-
learning. Extensive experiments show that our approach can
achieve 2 times/1.39 times the goodput of passive FH/random
FH, respectively. In addition, its goodput can achieve 78% that
of normal scenario (i.e. no jammer).
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APPENDIX
Proof of Theorem III.1

Proof. To prove this proposition, we need to use the Banach’s
fixed point theorem and some related concepts, as shown in
theorem A.1, definition 1 and 2.

Theorem A.1. (Banach’s Fixed Point Theorem) Let (M, d) be
a complete metric space, and [ be a contraction mapping on
M. Then, there exists a unique fixed-point x* € M such that
f(z*) = x*. Furthermore the x* can be found as follows:

at = f(f(f(f()..)).

Definition 1. (Metric Space) A metric space is an ordered
pair (M,d) where M is a set and d is a metric on M, i.e.,
a function d : M x M — R such that for any z,y,z € M,
the following holds: (1) d(z,y) =0 < z =y, (2) d(z,y) =
d(y,x); (3) d(z,z) < d(z,y) +d(y, 2).

Definition 2. (Contraction Mapping) A function f defined on
the metric space (M, d) is a contraction mapping if there exists
some constant v € [0, 1) such that for any two elements .,y €

M, d(f(z), f(y)) < ~d(z,y).

If we can show that the Bellman optimality equation V()
is a contraction mapping for some metric space (M, d), then,
by the Banach fixed point theorem, we can conclude that the
repeated application of the Bellman optimality equation will
eventually give a unique optimal state-value function, using
which the optimal policy can be derived.

We use the L-infinity norm as the metric shown below,

X100 (28)

= max | X}
?

according to which, the distance between the two elements is
equal to the highest element-wise absolute difference between
the two. Since the results of repeatedly applying V' (s) always
stay in the real space, the metric space is complete.

Then, we can prove that the V (s) is a contraction mapping
in the metric space (Xl ) as follows:

Vi)~ Va(a)|
max (U (z,a) +72 y
—max (U x,a" +'yz P(z'|z,a*)Va
< Hmax (U T, a +WZ
—max ( z,a) +’yz
= ngx ( 2|z, a)(Vi(z")
< ymax Z |z, a) |Vi(a') —
=7l - ( ol
Since (X, ) is a complete metric space, and V(x) is a

contraction mapping, we conclude that there exists a unique
optimal state-value function V, (z) for every MDP. O

(@' |x,a)Vi(2

(2|2, a)Vi (2

)
@)
)

)
)]

(29)
2|z, a)Va(z'

Va(2)|



