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Abstract

This paper proposes a new eXplanation framework,
called OrphicX, for generating causal explanations for
any graph neural networks (GNNs) based on learned la-
tent causal factors. Specifically, we construct a distinct
generative model and design an objective function that en-
courages the generative model to produce causal, compact,
and faithful explanations. This is achieved by isolating the
causal factors in the latent space of graphs by maximizing
the information flow measurements. We theoretically analyze
the cause-effect relationships in the proposed causal graph,
identify node attributes as confounders between graphs and
GNN predictions, and circumvent such confounder effect by
leveraging the backdoor adjustment formula. Our frame-
work is compatible with any GNNs, and it does not require
access to the process by which the target GNN produces
its predictions. In addition, it does not rely on the linear-
independence assumption of the explained features, nor re-
quire prior knowledge on the graph learning tasks. We
show a proof-of-concept of OrphicX on canonical classifi-
cation problems on graph data. In particular, we analyze
the explanatory subgraphs obtained from explanations for
molecular graphs (i.e., Mutag) and quantitatively evaluate
the explanation performance with frequently occurring sub-
graph patterns. Empirically, we show that OrphicX can ef-
fectively identify the causal semantics for generating causal
explanations, significantly outperforming its alternatives.

1. Introduction

Graph neural networks (GNNs) have found various ap-
plications in many scientific domains, including iamge
classification [10], 3D-shape analysis [!7], video analy-
sis [36], speech recognition [6], and social information sys-
tems [9, 12]. The decisions of powerful GNNs for graph-
structural data are difficult to interpret. In this paper, we
focus on providing post-hoc explanations for any GNN

by parameterizing the process of generating explanations.
Specifically, given a pre-trained GNN of interest, an expla-
nation model, or called explainer, is trained for generating
compact subgraphs, leading to the model outcomes. How-
ever, learning the explanation process can be difficult as
no ground-truth explanations exist. If an explanation high-
lights subjectively irrelevant subgraph patterns of the input
instance, this may correctly reflect the target GNN’s unex-
pected way of processing the data, or the explanation may
be inaccurate.

Recently, a few recent works have been proposed
to explain GNNs via learning the explanation process.
XGNN [34] was proposed to investigate the graph patterns
that lead to a specific class by learning a policy network.
PGExplainer [ 4] was proposed to learn a mask predictor to
obtain the edge masks for providing explanations. However,
XGNN fails to explain individual instances and therefore
lacks local fidelity [22], while PGExplainer heavily relies
on the learned embeddings of the target model, and has the
restrictive assumption of having domain knowledge over the
learning tasks (e.g., the explicit subgraph patterns are pro-
vided). The closest to ours is Gem [ | ], wherein an explainer
is learned based on the concept of Granger causality. The
distillation process of ground-truth explanation naturally im-
plies the independent assumptions of the explained features',
which might be problematic as the graph-structured data is
inherently interdependent [31].

In this work, we define a distinct generative model as an
explainer that can provide interpretable explanations for any
GNNs through the lens of causality, in particular from the
notion of the structural causal model (SCM) [19,29]. In
principle, generating causal explanations require reasoning
about how changing different concepts of the input instance
— which can be thought of as enforcing perturbations or inter-
ventions on the input — affects the decisions over the target
model (or the response of the system) [15]. Different from

'We are aware of the drawbacks of reusing the term “feature.” Specifi-
cally, nodes and edges are the explained features in an explanatory subgraph.



prior works quantifying the causal influence from the data
space (e.g., Gem [ | 1]), we propose to identify the underlying
causal factors from latent space. By doing so, we can avoid
working with input spaces with complex interdependency.
The intuition is that if the latent features® can untwist the
causal factors and the spurious factors between the input
instance and the corresponding output of the target GNN,
generating causal explanations is possible.

For this purpose, we first present a causal graph that mod-
els both causal features and spurious features to the GNN’s
prediction. The causal features causing the prediction might
be informative to generate a graph-structural mask for the
explanation. Our causal analysis shows that there exists a
confounder from the data space while considering the cause-
effect relationships between the latent features and the GNN
outcome [4,27,28]. Specifically, when interpreting graph-
structural data, node features/attributes can be a confounder
that affects both the generated graph structures and corre-
sponding model outcomes. The existence of the confounder
represents a barrier to causal quantification [19]. To this end,
we adopt the concept of information flow [1], along with the
backdoor adjustment formula [20], to bypass the confounder
effect and measure the causal information transmission from
the latent features to the predictions.

Then we instantiate our explainer with a variational graph
auto-encoder (VGAE) [8], which consists of an inference
network and a generative network (shown in Figure 1). The
inference network seeks a representation of the input, in
which the representation is learned in such a way that a sub-
set of the factors with large causal influence, i.e. the causal
features, can be identified. The generative network is to map
the causal features into an adjacency mask for the explana-
tion. Importantly, the generative network ensures that the
learned latent representations (the causal features and the
spurious features together) are within the data distribution.

In a nutshell, our main contributions are highlighted as
follows. We propose a new explanation technique, called
OrphicX, that eXplains the predictions of any GNN by iden-
tifying the causal factors in the latent space. We utilize
the notion of information flow measurements to quantify
the causal information flowing from the latent features to
the model predictions. We theoretically analyze the causal-
effect relationships in the proposed causal model, identify a
confounder, and circumvent it by leveraging the backdoor
adjustment formula. We empirically demonstrate that the
learned features with causal semantics are indeed informa-
tive for generating interpretable and faithful explanations for
any GNNs. Our work improves model interpretability and
increases trust in GNN model explanation results.

2Features and factors are used interchangeably, e.g., causal features are
equivalent to causal factors.

2. Method
2.1. Notations and Problem Setting

Notations. Given a pre-trained GNN (the target model
to be explained), denoted as f : G — ), where G is
the space of input graphs to the model and ) is the label
space. Specifically, the input graph G = (V, E) of the
GNN includes the corresponding adjacency matrix (A €
RIVI*IV1) and a node attribute matrix (X € RIVI*P). We
use Z = [Z,Zs] € RIVIX(DetDs) o denote the latent
feature matrix, where Z.. is the causal feature sub-matrix and
Z, is the spurious feature sub-matrix. Correspondingly for
each node, we denote its node attribute vector by x (one row
of X)), its causal latent features by z., and its spurious latent
features by z;.

The desiderata for GNN explanation methods. An es-
sential criterion for explanations is fidelity [22]. A faithful
explanation/subgraph should correspond to how the target
GNN behaves in the vicinity of the given graph of interest.
Stated differently, the outcome of feeding to the explana-
tory subgraph to the target GNN should be similar to that
of the graph to be explained. Another essential criterion
for explanations is human interpretability, which implies
that the generated explanations should be sparse/compact in
the context of graph-structured data [21]. In other words, a
human-understandable explanation should highlight the most
important part of the input while discarding the irrelevant
part. In addition, an explainer should be able to explain any
GNN model, commonly known as “model-agnostic” (i.e.,
treat the target GNN as a black box).

Problem setting. Therefore, our ultimate goal is to ob-
tain a generative model as an explainer, denoted as J, that
can identify which part of the input causes the GNN predic-
tion, while achieving the best possible performance under
the above criteria. Consistent with prior works [1 1, 14,34],
we focus on explanations on graph structures. We consider
the black-box setting where we do not have any informa-
tion about the ground-truth labels of the input graphs and
we specifically do not require access to, nor knowledge of,
the process by which the target GNN produces its output.
Nevertheless, we are allowed to retrieve different predic-
tions by performing multiple queries, and we assume that
the gradients of the target GNN are provided.

2.2. OrphicX

Overview. In this paper, we propose a generative model
as an explainer, called OrphicX, that can generate causal
explanations by identifying the causal features leading to
the GNN outcome. In particular, we propose to isolate the
causal features and the spurious features from the latent
space. For this purpose, we first propose a causal graph
to model the relationships among the causal features, the
spurious features, the input graph, and the prediction of the



)
latent space
Inference causal | | spurious
Network features | features
e —

—

Generative
Network

causal explanation

reconstruction

Figure 1. Illustration of OrphicX. We instantiate our explainer with a variational graph auto-encoder (VGAE), which consists of an inference
network and a generative network. The causal features along with the spurious features can be used to reconstruct the graph structure
within the data distribution, while the causal features are mapped to a graph-structured mask for the causal explanation. The target GNN is
pre-trained, and the parameters would not be changed during the training of OrphicX.
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Figure 2. Illustration of the causal graph. The causal features
are a set of factors in the latent space. The causal features and
the spurious features together form the representation of the input
graph. The graph structure is reconstructed based on the latent
representation; it forms the input of the target GNN, along with the
feature matrix. y denotes the predicted label of the GNN target.

target model. Then we show how to train OrphicX with a
faithful causal-quantification mechanism based on the notion
of information flow along with the backdoor adjustment
formula. With the identified causal features, we are able to
generate a graph-structured mask for the explanation.

Information flow for causal measurements. Recall
that, our objective is to generate compact subgraphs as the
explanations for the pre-trained GNN. The explanatory sub-
graph is causal in the sense that it tends to be independent
of the spurious aspects of the input graph while holding
the causal portions contributing to the prediction of the
target GNN. One challenge, therefore, is how to quantify
the causal influence of different data aspects in the latent
space, so as to identify the portion with large causal influ-
ence, denoted by Z.. To address this issue, we leverage
recent work on information-theoretic measures of causal in-
fluence [1]. Specifically, we measure the causal influence of
Z . on the model prediction y using the information flow, de-
noted as I (Z. — y), between them. Here information flow
can be seen as the causal counterpart of mutual information
L(Zc;y).

Succinctly, our framework attempts to isolate a subset

of the representation from the hidden space, denoted as Z..,
such that the information flow from Z, to y is maximized.
In what follows, we will show how to quantify this term
corresponding to our causal model.

Causal analysis. Throughout this paper, we assume the
causal model in Figure 2. Specifically, the causal features
and the spurious features together form the representation
of the input graph, which can be used to reconstruct the
graph structure, denoted as A. This ensures that the learned
latent features still reflect the same data distribution as the
one captured by the target GNN. The graph structure A,
along with the node attribute X, contributes to the model
prediction y. Stated differently, X is a confounder when we
consider the cause-effect relationships between the latent
features (i.e. causal features and spurious features) and the
model prediction. Consequently, directly ignoring X can
lead to inaccurate estimates of the causal features. To ad-
dress this issue, we leverage the classic backdoor adjustment
formula [20] and have:

P(yldo(Zc)) = > P(y|Ze, X) P(X). (1)
X

Eqn. 1 is crucial to circumvent the confounder effect in-
troduced by node attributes and compute the informa-
tion flow I(Z. — y), which is the causal counter-
part of mutual information [1]. Intuitively, Eqn. 1 goes
through different versions of X while keeping Z. fixed
to estimate the causal effect Z. has on y. Note that
P(y|do(Z.)) = > x P(y|Z.,X)P(X) is different from
P(y|Z.) = >"x P(y|Z.,X)P(X|Z,); the former samples
from the marginal distribution P(X), while the latter sam-
ples X from the conditional distribution P(X|Z,). In causal
theory, P(y|do(Z.)) = > x P(y|Z.,X)P(X) is referred
to as the backdoor adjustment formula [20]. Our Theo-
rem 2.1 below provides a way of computing the information
flow I(Z. — y).

Theorem 2.1 (Information flow between Z. and y) The
information flow between the causal factors Z. and the



prediction y can be computed as

I(Z: —y)

P(y|do(Zc))
/ P(Z.) ZP y|do(Z.)) log T P(y\do(Zc))chdZC

P(Z) 303 P2 X)P(X)

log Zx (y|Ze, X)P(X)
fz > x P(y|Z¢, X)P(X)dZ,

dZ.

Note that due to the confounder X, I(Z. — y) is
not equal to the mutual information I(Z.;y). The term
> -x P(y|Z.,X) comes from Eqn. 1 and can be estimated
efficiently. Specifically, we have

P(y|do(Z ZP Y|Ze, X)P(X) ©)

:ZZ/ P(y|A,X)P(A|Zs, Ze) P(Zs|Ze, X) P(X)dZs
X A

i Z Z P(y|A®Im) X 8)), 3)

NINsNZk 1j=1n=1

Here k indexes the N, sampled node attribute matrices
X®) from the dataset; j indexes the N samples for each
X®) ie., Z8 ~ P(Z|Ze, X®); n indexes the N, sam-
pled graphs for each ngj), ie., AKin) o p(A|Z., ngj)).
Note that in practice we use the variational distribution
q(Z4|A,X*)) to approximate the true posterior distribu-
tion P(ZS|ZC,X("’>), and that in Eqn. 3, X, Z., and Z,
do not necessarily belong to the same graph in the original
dataset. Intuitively this is to remove the confounding effect
of X on Z. and Z;. Consequently we have

/ P(Z.)P(y|do(Z
-, ZZ/

Z: X A

))dZ, @)

(y|A, X)P(A|Zs, Z,) (5)
P(Z|Z0, X)P(X)P(Z.)dZ,dZ.,
N. N, N, N.
P |A(zk]n) X
k=1j=1n=1

NNNNE; )(6)

Similarly, ¢ indexes the N. samples from Z.’s marginal
distribution, i.e., zﬁ“ ~ P(Z.); k indexes the N, sam-
pled node attribute matrices from X’s marginal distribu-
tion X*) ~ P(X); j indexes the N, samples of Z, for
each pair (Zg),X(k)), ie., Z(FD P(ZS|Z£i),X(k)); n
indexes the N, sampled graphs for each pair (Zg)7 YA )),
ie., AUkin) p(A|Zg), ngj)). Note that in practice we
use the variational distribution ¢(Zg|A, yAZ X)) to ap-
proximate the true posterior distribution P(Z, |Z£i)7 X)),
Put together, we have
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Graph generative model as an explainer. Our frame-
work, OrphicX, leverages the latent space of a variational
graph auto-encoder (VGAE) to avoid working with input
spaces with complex interdependency. Specifically, our
VGAE-based framework (shown in Figure 1) consists of
an inference network and a generative network. The former
is instantiated with a graph convolutional encoder and the
latter is a multi-layer perceptron equipped with an inner prod-
uct decoder. More concretely, the inference network seeks a
representation — a latent feature matrix Z of the input graph,
of which the causal features Z., a sub-matrix with large
causal influence, can be isolated. The generative network
serves two purposes: (1) it maps the causal sub-matrix into
an adjacency mask, which is used as the causal explanation,
and (2) it ensures that the causal features, merged with the
spurious features, can reconstruct the graphs within the data
distribution characterized by the target GNN.

Learning OrphicX. Learning of OrphicX can be cast as
the following optimization problem:

min —1I (Z, — y) + ALvGAE, @)

where Lygakg is the negative evidence lower bound
(ELBO) loss term that encourages the latent features Z to
stay in the data manifold [8], and Z, is the causal sub-matrix
of Z. A detailed description of the ELBO term of the VGAE
is provided in Appendix. Our empirical results suggest that
the ELBO term helps learn a sub-matrix that embeds more
relevant information leading to the GNN prediction.

Recall that, our objective is to generate explanations that
can provide insights into how the target GNN truly computes
its predictions. An ideal explainer should fulfill the three
desiderata presented in Section 2.1: high fidelity (faithful),
high sparsity (compact), and model agnostic. Therefore,
apart from the objective function Eqn. 7, we further enforce
the fidelity and sparsity criteria through regularization specif-
ically tailored to such explainers. Concretely, we denote the
generated explanatory subgraph as G and the corresponding
adjacency matrix as A.. The sparsity criterion is measured
by ‘Il IIZCI II ‘11 , where || - ||1 denotes the I; norm of the adjacency
matrix. The fidelity criterion implies that the GNN outcome
corresponding to the explanatory subgraph should be ap-
proximated to that of the target instance, i.e. f(G.) = f(G),




where f(-) is the probability distribution over the classes —
the outcome of the target GNN. For this purpose, we intro-
duce a Kullback—Leibler (KL) divergence term to measure
how much the two outputs differ.

Therefore, the optimization problem can be reformulated

as: . | Acll1
min —I (Z. — y) + MiLveake + X2 Al

+)\3KL (f(Gc)7 f(G)) )

where \; (i € {1,2,3}) controls the associated regularizer
terms. To understand OrphicX comprehensively, a series of
ablation studies for the loss function are performed. Note
that, the parameters of the target GNN (shown in Figure 1)
are pre-trained and would not be changed during the training
of OrphicX. OrphicX only works with the model inputs and
the outputs, rather than the internal structure of specific
models. Therefore, our framework can be used to explain
any GNN models as long as their gradients are admitted.

3. Experiments
3.1. Datasets and Settings

Datasets. We conducted experiments on benchmark
datasets for interpreting GNNs: 1) For the node classification
task, we evaluate different methods with synthetic datasets,
including BA-shapes and Tree-cycles, where ground-truth
explanations are available. We followed data processing in
the literature [32]. 2) For the graph classification task, we use
two datasets in bioinformatics, MUTAG [2] and NCI1 [26].
Note that the model architectures for node classification [5]
and graph classification [30] tasks are different (more de-
tails of the dataset descriptions and corresponding model
architectures are provided in Appendix A.2).

Comparison methods. We compare our approach
against various powerful interpretability frameworks for
GNNs. They are GNNExplainer [32], PGExplainer [14], and
Gem [11]°. Among others, PGExplainer and Gem explain
the target GNN via learning an explainer. As for GNNEx-
plainer, there is no training phase, as it is naturally designed
for explaining a given instance at a time. Unless otherwise
stated, we set all the hyperparameters of the baselines as
reported in the corresponding papers.

Hyperparameters in OrphicX. For all datasets on differ-
ent tasks, the explainers share the same model structure [8].
For the inference network, we applied a three-layer GCN
with output dimensions 32, 32, and 16. The generative model
is equipped with a two-layer MLP and an inner product
decoder. We trained the explainers using the Adam opti-
mizer [7] with a learning rate of 0.003 for 300epochs. For all
experiments, we set N, =5, N, =2, N. = 25, N, = 100,
D, =3, =0.1, Ay = 0.1, and A3 = 0.2. The results

3We use the source code released by the authors.

reported in the paper correspond to the best hyperparame-
ter configurations. With this testing setup, our goal is to
fairly compare best achievable explanation performance of
the methods. Detailed implementations, including our hy-
perparameter search space are given in Appendix A.2.

Evaluation metrics. We evaluate our approach with two
criteria. 1) Faithfulness*/fidelity: are the explanations indica-
tive of “true” model behaviors? 2) Sparsity: are the explana-
tions compact and understandable? Below, we address these
criteria, proposing quantitative metrics for evaluating fidelity
and sparsity and qualitative assessment via visualizing the
explanations.

To evaluate fidelity, we generate explanations for the test
set’ according to OrphicX, Gem, PGExplainer, and GN-
NExplainer, respectively. We then evaluate the explanation
accuracy of different methods by comparing the predicted
labels of the explanatory subgraphs with the predicted labels
of the input graphs using the pre-trained GNN [11]. An
explanation is faithful only when the predicted label of the
explanatory subgraph is the same as the corresponding in-
put graph. To evaluate sparsity, we use different evaluation
metrics. Specifically, in Mutag, the type and the size of
explainable motifs are various. We measure the fraction of
edges (i.e., edge ratio denoted as R) selected as “important”
by different explanation methods for Mutag and NCI1. For
the synthetic datasets, we use the number of edges (denoted
as K), as did in prior works [11,32]. A smaller fraction of
edges or a smaller number of edges selected implies a more
compact subgraph or higher sparsity.

To further check the interpretability, we use the visual-
ized explanations to analyze the performance qualitatively.
However, we do not know the ground-truth explanations for
the real-world datasets. For Mutag®, we ask an expert from
Biochemical Engineering to label the explicit subgraph pat-
terns as our explanation ground truth (i.e., carbon rings with
chemical groups such as the azo N=N, NO, and NH> for
the mutagenic class). Specifically, 739/933 instances con-
taining the subgraph patterns fall into the mutagenic class
in the entire dataset, which corroborates that these patterns
are sufficient for the ground-truth explanation. Figure 3 de-
scribes the detailed distribution of instances with various
occurring subgraph patterns. With these occurring subgraph
patterns, we can evaluate the explanation performance on
Mutag with edge AUC. The evaluation intuition is elaborated
in the Section 3.2.

3.2. Empirical Results

Explanation performance. We first report the expla-
nation performance for synthetic datasets and real-world

“In the context of model interpretability, “faithfulness” means high
fidelity [13], which is different from the meaning used in causal discovery.

5The detailed data splitting is provided in the Appendix.

©As we cannot obtain the ground-truth explanations for NCI1, we focus
on the quantitative evaluation for this dataset.
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Figure 3. The frequency of occurring subgraph patterns indicates
that it is reasonable to treat the labeled motifs/subgraph patterns
as the explanation ground truth, i.e., carbon rings with chemical
groups such as N=N, NO2, and NH3 for the mutagenic class.

Table 1. Explanation Accuracy on Synthetic Datasets (%).

K BA-SHAPES TREE-CYCLES

#ofedges| S |6 |7 | 81967 |8]09]10
OrphicX /82.4/97.1(97.1|97.1| 100 ||85.7|91.4| 100 | 100 | 100
Gem 64.7|194.1(91.2(91.2(91.2/|74.3/88.6| 100 | 100 | 100
GNNExp. ||67.6(67.6/82.4(88.2(85.3(|20.0|54.3|74.3|88.6(97.1
PGExp. ||59.5/59.5(59.559.5|64.3||76.2|81.5|91.3(95.4/97.1

datasets. In particular, we evaluate the explanation accu-
racy under various sparseness constraints (i.e., various R
for the real-world datasets and various K for the synthetic
datasets). Table 1 and Table 2 report the explanation accu-
racy of different methods specifically. A smaller number
of edges (denoted as K) or a smaller value of edge ratio
(denoted as R) indicates that the explanatory subgraphs are
more compact. As observed, OrphicX consistently outper-
forms baselines across various sparseness constraints over
all datasets. As the model architectures for node and graph
classification [30] tasks are different, the performance cor-
roborates that our framework is model architecture-agnostic
(see the model architectures in the Appendix).

Following existing works [1 1, 18], we also evaluate the
Log-odds difference to illustrate the fidelity of generated ex-
planations in a more statistical view. Log-odds difference
describes the resulting change in the pre-trained GNNs’ out-
come by computing the difference (the initial graph and the
explanation subgraph) in log odds. The detailed definition
of Log-odds difference is elaborated in Appendix A.2. Fig-
ure 4 depicts the distributions of log-odds difference over
the entire test set for synthetic datasets. We can observe
that the log-odds difference of OrphicX is more concentrated

Table 2. Explanation Accuracy on Real-World Datasets (%).

R Muta NCI1
edge ratio| 0.5 [ 0.6 0.7 0.8 0.9/ 0.5] 0.6 07 | 0.8 | 09
OrphicX ||71.4]71.2|77.2|78.8(83.2((66.9|72.7|77.1|81.3|85.4

Gem 66.4(67.7|71.4|76.5|81.8/(61.8/68.6|70.6|74.9|83.9
GNNEK«xp.||65.0(66.6|66.4|71.0|78.3||64.2|65.7/68.6|75.2|81.8
PGExp. /59.3|58.9|65.1|70.3|74.7(|57.7|60.8/65.2{69.3|71.0

around 0, which indicates OrphicX can well capture the most
relevant subgraphs towards the predictions by the pre-trained
GNNSs. As OrphicX exhibits a similar performance trend on
other datasets, we present corresponding evaluation results
in the Appendix.
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Figure 4. Explanation Performance with Log-Odds Difference.
OrphicX consistently achieves the best performance overall (denser
distribution around 0 is better).

For fair comparisons, we also report the explanation fi-
delity of different methods in terms of edge AUC in Ta-
ble 3. We follow the experimental settings of GNNExplainer
and PGExplainer’, where the explanation problem was for-
malized as a binary classification of edge. The mean and
standard deviation are calculated over 5 runs. This metric
works for the datasets with ground-truth explanations (i.e.,
the “house”-structured pattern/motif of BA-shapes and the
labeled subgraph patterns in Mutag). The intuition is that a
good explanation method assigns higher weights to the edges
within the ground-truth subgraphs/motifs. Regarding edge

7We use PGExp. and GNNExp. to represent PGExplainer and GNNEx-
plainer for simplicity.



Table 3. Explanation Accuracy with Edge AUC (* means the rounded estimate of 0.9995 4 0.0006).

DATASETS | OrphicX | GEM | GNNExp. | PGExp. | ATT
BA-SHAPES | 0.988 +0.008 | 0.597 £ 0.001 | 0.956 + 0.001 | 0.924 4+ 0.042 0.815
TREE-CYCLES | 0.988 +0.001 |0.761 +0.002 | 0.961 £ 0.003 | 0.952 £ 0.000 0.824
MUTAG 1.000 £+ 0.001* | 0.988 £ 0.013 | 0.998 + 0.001 | 0.998 £ 0.001 | 0.686 £ 0.098
Original OrphicX Gem GNNExplainer PGExplainer
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Figure 5. Explanation Visualization (MUTAG): p is the corresponding probability of being classified as Mutagenic class by the pre-trained
GNN. The graphs in the first column are the target instances to be explained. The solid edges in other columns are identified as ‘important’
by corresponding methods. The closer the probability to that of the target instance, the better the explanation is.

importance, one might naturally consider the self-attention
mechanism as a feasible solution. Prior works have shown its
performance for model explanations. For clarity, we also re-
port the experimental results of the self-attention mechanism
denoted as ATT in Table 3. The results of synthetic datasets
are from GNNExplainer and PGExplainer. For Mutag, we
evaluate the subgraph patterns labeled by the domain expert.
As might be expected, OrphicX exhibits its superiority in
identifying the most important edges captured by the pre-
trained GNNs. We also observe that the prior causality-based
approach, Gem, does not perform well evaluating with edge
AUC. We conjecture that the explainable subgraph patterns
are destroyed due to the distillation process [ |]. Though the
generated subgraphs with Gem can well reflect the classifi-
cation pattern captured by the pre-trained GNN, it degrades
the human interpretability of the generated explanations.

Explanation visualization. Figure 5 plots the visualized
explanations of different methods. In particular, we focus
on the visualization on Mutag, which can reflect the in-
terpretability quantitatively and qualitatively. The first col-
umn shows the initial graphs and corresponding probabilities
of being classified as “mutagenic” class by the pre-trained
GNN, while the other columns report the explanation sub-
graphs. Associated probabilities belonging to the “muta-
genic” class based on the pre-trained GNN are reported

below the subgraphs. Specifically, in the first case (the first
row), OrphicX can identify the essential subgraph pattern —
a complete carbon ring with a NOy — leading to its label (

“mutagenic”’). Nevertheless, prior works, particularly Gem,

fail to recognize the explainable motif. In the second instance
(the second row), OrphicX can well identify a complete car-
bon ring with a NH,. At the same time, PGExplainer fails
to recognize the NHj, leading to a high probability of being
classified into the wrong class — “non-mutagenic” — by
the target GNN, with a probability of 0.9942. In the third in-
stance (the third row), a complete carbon ring with a N=N is
the essential motif, consistent with the criterion from the do-
main expert. Overall, OrphicX can identify the explanatory
subgraphs that best reflect the predictions of the pre-trained
GNN. The visualization of synthetic datasets and more visu-
alization plots on Mutag are provided in Appendix A.3.

Information flow measurements. To validate Theo-
rem 2.1, we evaluate the information flow of the causal
factors (Z.) and the spurious factors (Zg) corresponding
to the model prediction, respectively. Figure 10a in Ap-
pendix A.3 shows that, as desired, the information flow from
the causal factors to the model prediction is large while the
information flow from the spurious factors to the prediction
is small. We also evaluate the prediction performance while
adding noise (mean is set as 0) to the causal factors and the



Table 4. Prediction Accuracy of the Pre-trained GNN on Mutag
with Various Perturbation (mean is set as 0).

PERTURBATION sSTD| 0.0 | 0.3 | 0.5 | 0.8 | 1.0 | 1.3
CAUSAL FACTORS [0.935/0.926|0.9260.887]0.860|0.826
SPURIOUS FACTORS [0.935]0.936]0.936]0.935|0.934]0.926

spurious factors, respectively. From Table 4, we can observe
that adding perturbations to the causal factors degrades the
prediction performance of the pre-trained GNN significantly
with the increase of the standard deviation of the noise (mean
is set as 0) while adding the perturbations on the spurious
counterparts does not. These insights, in turn, verify the
efficacy of applying the concept of information flow for the
causal influence measurements.

Ablation studies. An ablation study for the information
flow in the hidden space was performed by removing the
causal influence term. From Figure 10b in Appendix A.3, we
can observe that without the causal influence term, the causal
influence to the model prediction is distributed across all
hidden factors. In addition, we also inspect the explanation
performance for our framework as an ablation study for the
loss function proposed. We empirically prove the need for
different forms of regularization leveraged by the OrphicX
loss function. Due to space constraints, the empirical results
are provided in the Appendix.

4. Related Work

We focus on the discussions on causality-based inter-
pretation methods. Other prior works, including GNNEXx-
plainer [32], PGExplainer [14], PGM-Explainer [25], Sub-
graphX [35], GraphMask [23], XGNN [34] and others [21]
are provided in Appendix A.4.

Explanation essentially seeks the answers to the ques-
tions of “what if” and “why,” which are intrinsically causal.
Causality, therefore, has been a plausible language for an-
swering such questions [ |, 18]. There are several viable
formalisms of causality, such as structural causal mod-
els [18, 19], Granger causality [3, | ], and causal Bayesian
networks [19]. While most existing works are designed for
explaining conventional neural networks on image domain,
Gem [ 1] falls into the research line of explaining graph-
structural data. Specifically, Gem framed the explanation
task for GNNss as a causal learning task and proposed a causal
explanation model that can learn to generate compact sub-
graphs towards its prediction. Fundamentally, this approach
monitored the response of the target GNN by perturbing the
input aspects in the data space and naturally impelled the
independent assumption of the explained features. Due to
the interdependence property of graph-structured data and
the non-linear transformation of GNNs, we argue that this
assumption may reduce the efficacy and optimality of the
explanation performance. Different from prior works, we
quantify the causal attribution of the data aspects in the latent

space, and we do not have the independent assumption of
the explained features, as OrphicX is designed to generate
the explanations as a whole.

Graph information bottleneck. Our work is somewhat
related to the work of information bottleneck for subgraph
recognition [33] but different in terms of the problem and
the goals. GIB-SR [33] seeks to recognize maximally in-
formative yet compressed subgraph given the input graph
and its properties (e.g, ground truth label). On the contrary,
our framework is about generating explanations to unveil
the inner working of GNNs, which seeks to understand the
behavior of the target model (the prediction results) rather
than the ground truth labels. More concretely, the model
explanation is to analyze models rather than data [16]. More-
over, our objective maximizes the causal information flowing
from the latent features to the model predictions.

5. Conclusion

In this paper, we propose OrphicX, a framework for
generating causal, compact, and faithful explanations for
any graph neural networks. Our findings remain consistent
across datasets and various graph learning tasks. Our analy-
sis suggests that OrphicX can identify the causal semantics
in the latent space of graphs via maximizing the information
flow measurements. In addition, OrphicX enjoys several
advantages over many powerful explanation methods: it is
model-agnostic, and it does not require the knowledge of
the internal structure of the target GNN, nor rely on the
linear-independence assumption of the explained features.
We show that causal interpretability via isolating the causal
factors in the latent space offers a promising tool for ex-
plaining GNNs and mining patterns in subgraphs of graph
inputs.

Explainability will promote transparency, trust, and fair-
ness in society. It can be very helpful for graphs, including
but not limited to molecular graphs, for example, visual
scene graph — a graph-structured data where nodes are ob-
jects in the scene and edges are relationships between objects.
Explainability can identify subgraphs relevant to a given clas-
sification, e.g., identify a scene as being indoor. In the future,
additional user studies should confirm to what extent expla-
nations in other domains (e.g., visual scene graph) provided
by our OrphicX align with the needs and requirements of
practitioners in real-world settings.

Potential negative impact. The privacy risks of model ex-
planations have been empirically characterized for deep neu-
ral networks for non-relational data (with respect to graph-
structured data) [24]. We conjecture that the generated ex-
planation for GNNs may also expose private information of
the training data. This will pose risks for deploying GNN-
based Al systems across various domains that value model
explainability and privacy the most, such as finance and
healthcare.



6. Acknowledgement

The authors thank the reviewers/AC for the constructive
comments to improve the paper. This project is supported
by the Internal Research Fund at The Hong Kong Polytech-
nic University P0035763. HW is partially supported by
NSF Grant IIS-2127918 and an Amazon Faculty Research
Award.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

(13]

Nihat Ay and Daniel Polani. Information Flows in Causal
Networks. Advances in Complex Systems, 11(1):17-41, 2008.
2,3

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi
Debnath, Alan J Shusterman, and Corwin Hansch. Structure-
Activity Relationship of Mutagenic Aromatic and Heteroaro-
matic Nitro Compounds. Correlation with Molecular Orbital
Energies and Hydrophobicity. Journal of Medicinal Chem-
istry, 34(2):786-797, 1991. 5, 11

Clive WJ Granger. Investigating Causal Relations by Econo-
metric Models and Cross-Spectral Methods. Econometrica:
Journal of the Econometric Society, pages 424-438, 1969. 8
Shantanu Gupta, Hao Wang, Zachary Lipton, and Yuyang
Wang. Correcting exposure bias for link recommendation. In
ICML,2021. 2

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
Representation Learning on Large Graphs. In Proc. Advances
in Neural Information Processing Systems, 2017. 5
Hengguan Huang, Fuzhao Xue, Hao Wang, and Ye Wang.
Deep Graph Random Process for Relational-Thinking-Based
Speech Recognition. In ICML, 2020. 1

Diederik P Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In Proc. International Conference
for Learning Representations, 2015. 5, 11

Thomas N Kipf and Max Welling. Variational Graph Auto-
Encoders. In Proc. NIPS Bayesian Deep Learning Workshop,
2016. 2,4,5, 12

Wanyu Lin, Zhaolin Gao, and Baochun Li. Guardian: Evalu-
ating Trust in Online Social Networks with Graph Convolu-
tional Networks. In Proc. IEEE International Conference on
Computer Communications, 2020. 1

Wanyu Lin, Zhaolin Gao, and Baochun Li. Shoestring: Graph-
based Semi-Supervised Classification with Severely Limited
Labeled Data. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4174—
4182, 2020. 1

Wanyu Lin, Hao Lan, and Baochun Li. Generative Causal Ex-
planations for Graph Neural Networks. In Proc. International
Conference on Machine Learning, 2021. 1,2,5,6,7, 8, 11
Wanyu Lin and Baochun Li. Medley: Predicting Social Trust
in Time-Varying Online Social Networks. In Proc. IEEE In-
ternational Conference on Computer Communications, 2021.
1

Scott M Lundberg and Su-In Lee. A Unified Approach to
Interpreting Model Predictions. In Proc. Advances in Neural
Information Processing Systems, pages 4765-4774, 2017. 5

(14]

(15]

(16]

(171

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu,
Bo Zong, Haifeng Chen, and Xiang Zhang. Parameterized
Explainer for Graph Neural Network. In Proc. Advances in
Neural Information Processing Systems, 2020. 1,2, 5,8, 15
Chengzhi Mao, Amogh Gupta, Augustine Cha, Hao Wang,
Junfeng Yang, and Carl Vondrick. Generative Interventions
for Causal Learning. In CVPR, 2021. 1

Christoph Molnar. Interpretable Machine Learning. Lulu.
com, 2020. 8

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele
Rodola, Jan Svoboda, and Michael M Bronstein. Geomet-
ric Deep Learning on Graphs and Manifolds using Mixture
Model CNNs. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, pages 5115-5124,2017. 1
Matthew O Shaughnessy, Gregory Canal, Marissa Connor,
Mark Davenport, and Christopher Rozell. Generative Causal
Explanations of Black-Box Classifiers. In Proc. Advances in
Neural Information Processing Systems, 2020. 6, 8

Judea Pearl. Causality. Cambridge University Press, 2009. 1,
2,8,15

Judea Pearl, Madelyn Glymour, and Nicholas P Jewell.
Causal Inference in Statistics: A Primer. John Wiley &
Sons, 2016. 2, 3

Phillip E Pope, Soheil Kolouri, Mohammad Rostami,
Charles E Martin, and Heiko Hoffmann. Explainability Meth-
ods for Graph Convolutional Neural networks. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition,
pages 10772-10781, 2019. 2, 8, 15

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
“Why Should I Trust You?”: Explaining the Predictions of
Any Classifier. In Proc. SIGKDD. ACM, 2016. 1, 2
Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov.
Interpreting Graph Neural Networks for {NLP} With Dif-
ferentiable Edge Masking. In International Conference on
Learning Representations, 2021. 8, 15

Reza Shokri, Martin Strobel, and Yair Zick. On the Privacy
Risks of Model Explanations. In Proc. AAAI/ACM Conference
on Al, Ethics, and Society, pages 231-241, 2021. 8

Minh N Vu and My T Thai. PGM-Explainer: Probabilistic
Graphical Model Explanations for Graph Neural Networks.
In Proc. Advances in Neural Information Processing Systems,
2020. 8, 15

Nikil Wale, Ian A Watson, and George Karypis. Compari-
son of Descriptor Spaces for Chemical Compound Retrieval
and Classification. Knowledge and Information Systems,
14(3):347-375, 2008. 5, 11

Hao Wang and Wu-Jun Li. Online Egocentric Models for
Citation Networks. In IJCAI, 2013. 2

Hao Wang, Xingjian Shi, and Dit-Yan Yeung. Relational Deep
Learning: A Deep Latent Variable Model for Link Prediction.
In AAAI pages 2688-2694, 2017. 2

Yuhao Wang, Vlado Menkovski, Hao Wang, Xin Du, and
Mykola Pechenizkiy. Causal Discovery from Incomplete
Data: A Deep Learning Approach. 2020. 1

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How Powerful are Graph Neural Networks? In International
Conference on Learning Representations, 2018. 5, 6



(31]

(32]

(33]

(34]

(35]

(36]

Zihao Xu, Guang-He Lee, Yuyang Wang, Hao Wang, et al.
Graph-Relational Domain Adaptation. /CLR, 2022. 1
Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik,
and Jure Leskovec. GNNExplainer: Generating Explanations
for Graph Neural Networks. In Proc. Advances in Neural
Information Processing Systems, pages 9244-9255, 2019. 5,
8, 11,15

Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou
Huang, and Ran He. Graph Information Bottleneck for Sub-
graph Recognition. In International Conference on Learning
Representations, 2021. 8

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. XGNN: To-
wards Model-Level Explanations of Graph Neural Networks.
In Proc. SIGKDD. ACM, 2020. 1, 2, 8, 15

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji.
On Explainability of Graph Neural Networks via Subgraph
Explorations. In Proc. International Conference on Machine
Learning, 2021. 8, 15

Yuan Yuan, Xiaodan Liang, Xiaolong Wang, Dit-Yan Yeung,
and Abhinav Gupta. Temporal Dynamic Graph LSTM for
Action-driven Video Object Detection. In /CCV, 2017. 1



A. Appendix

A.l. Derivation of the Estimator in Theorem 2.1
and Eqn. 6
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A.2. Further Implementation Details

Datasets. BA-shapes was created with a base Barabasi-
Albert (BA) graph containing 300 nodes and 80 five-node
“house”’-structured network motifs. Tree-cycles were built
with a base 8-level balanced binary tree and 80 six-node
cycle motifs. Mutag [2] and NCI1 [26] are for graph classi-
fication tasks. Specifically, Mutag contains 4337 molecule
graphs, where nodes represent atoms, and edges denote
chemical bonds. It contains the non-mutagenic and mu-
tagenic class, indicating the mutagenic effects on Gram-
negative bacterium Salmonella typhimurium. NCI1 consists
of 4110 instances; each chemical compound screened for
activity against non-small cell lung cancer or ovarian cancer
cell lines. The statistics of four datasets are presented in
Table 5. Note that, we report the average number of nodes
and the average number of edges over all the graphs for the
real-world datasets.

Model architectures. For classification architectures, we
use the same setting as prior works [11,32]. Specifically,
for node classification, we apply three layers of GCNs with
output dimensions equal to 20 and perform concatenation

Table 5. Data Statistics of Four Datasets.

DATASETS | BA-SHAPES | TREE-CYCLES | MUTAG | NCI1

#GRAPHS 1 1 4,337 | 4,110
#NODES 700 871 29 30
#EDGES 4,110 1,950 30 32
#LABELS 4 2 2 2

Table 6. Model Accuracy of Four Datasets (%).

DATASETS |BA-SHAPES|TREE-CYCLESMUTAG|NCI1
ACCURACY| 94.1 | 97.1 | 88.5 |78.6

to the output of three layers, followed by a linear transfor-
mation to obtain the node label. For graph classification,
we employ three layers of GCNs with dimensions of 20 and
perform global max-pooling to obtain the graph representa-
tions. Then a linear transformation layer is applied to obtain
the graph label. Figure 6 (a) and 6 (b) are the model ar-
chitectures for node classification and graph classification,
receptively.

Figure 6 (c) depicts the model architecture of OphicX
for generating explanations. For the inference network, we
applied a three-layer GCN with output dimensions 32, 32,
and 16. The generative model is equipped with a two-layer
MLP and an inner product decoder. We trained the explainers
using the Adam optimizer [7] with a learning rate of 0.003
for 300epochs. Table 7 shows the detailed data splitting
for model training, testing, and validation. Note that both
classification models and our explanation models use the
same data splitting. See Table 8 for our hyperparameter
search space. Table 6 reports the model accuracy on four
datasets, which indicates that the models to be explained
are performed reasonably well. Unless otherwise stated,
all models, including GNN classification models and our
explanation model, are implemented using PyTorch ® and
trained with Adam optimizer.

Table 7. Data Splitting for Four Datasets.

DATASETS [#OF TRAINING[#OF TESTING#OF VALIDATION

BA-SHAPES 300 50 50
TREE-CYCLES 270 45 45
MUTAG 3,468 434 434
NCI1 3,031 410 411

Negative ELBO term. The negative ELBO term is de-

8https://pytorch.org
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Figure 6. Model architectures.

Table 8. Hyperparameters and Ranges

HYPERPARAMETER RANGE
CAUSAL DIMENSION D, {1,2,3,---,8}
NEGATIVE ELBO \; {0,0.01,0.02,0.05,0.1,0.2,0.5,1
SPARSITY A2 0,0.01,0.02,0.05,0.1,0.2,0.5, 1
FIDELITY A3 0,0.01,0.02,0.05,0.1,0.2,0.5,1

fined as Eqn. 8:

Lvcae = Eqyzx,a)log p(A|Z)]-KL[¢(Z|X, A) || p(Z)],

®)
where KL[q(-) || p(+)] is the Kullback-Leibler divergence
between ¢(-) and p(-). The Gaussian prior is p(Z) =
[L p(zi) = [[;N(z0,1). We follow the reparameteri-
zation trick in [8] for training.

Log-odds difference. We measure the resulting change
in the pre-trained GNNs’ outcome by computing the differ-
ence in log odds and investigate the distributions over the
entire test set. The log-odds difference is formulated as:

Alog-odds = log-odds (f(G)) — log-odds (f(G.)) (9)

where log-odds(p) = log (%), and f(G) and f(G.) are
the outputs of the pre-trained GNN. Figure 7 depicts the

distributions of log-odds difference over the entire test set
for the real-world datasets.

A.3. More Experimental Results

Log-odds difference on the real-world datasets. Fig-
ure 7 depicts the distributions of log-odds difference over
the entire test set for the real-world datasets. We can observe
that the log-odds difference of OrphicX is more concentrated

around 0, which indicates OrphicX can well capture the most
relevant subgraphs towards the predictions by the pre-trained

GNNGs.
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Figure 7. Explanation Performance with Log-Odds Difference.
OrphicX consistently achieves the best performance overall (denser
distribution around 0 is better).

More visualization results. Figure 8 plots the visual-
ized explanations of different methods on BA-shapes. The
“house” in green is the ground-truth motif that determines
the node labels. The red node is the target node to be ex-
plained. By looking at the explanations for a target node
(the instance on the left side), shown in Figure 8, OrphicX
can successfully identify the “house” motif that explains
the node label (“middle-node” in red), when K = 6, while
GNNEXxplainer wrongly attributes the prediction to a node
(in orange) that is out of the “house” motif. For the right
one, OrphicX consistently performs well, while Gem and
GNNE«xplainer both fail when K = 6. Figure 9 plots more
visualized explanations of different methods on Mutag.

Causal evaluation. To further verify that the generated
explanations are causal and therefore robust to distribution
shift in the confounder (i.e., the node attributes X)), we con-
struct harder versions of both datasets. Specifically, we use
k-means (k=2) to split the dataset into two clusters according
to the node attributes. In Mutag, we use the cluster with
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Figure 8. Explanation comparisons on BA-shapes. The “house” in green is the ground-truth motif that determines the node labels. The red

node is the target node to be explained (better seen in color).

Table 9. Causal Evaluation (%).

I Mutag NCI1
R (edgeratio)|| 0.7 0.8 09 ] 07 08 09
original || 77.2 78.8 83.2]|77.1 81.3 85.4
deconfounder || 67.1 71.5 81.5|71.6 79.2 87.3

3671 graph instances for explainer training and validation;
we evaluate the explaining accuracy of the trained explainer
on the other cluster with 665 instances. In NCI1, we use
the cluster with 3197 graph instances to train an explainer,
in which the training set contains 2558 instances and the
validation set contains 639 instances; the explaining accu-
racy is evaluated with the other cluster with 906 instances.
See Table 9 for details. We can observe that our approach is
indeed robust to the distribution shift in the confounder.

Information flow measurements. To validate Theo-
rem 2.1, we evaluate the information flow of the causal
factors (Z. = Z[1 : 3]) and the spurious factors (Zs = Z[4 :

16]) corresponding to the model prediction, respectively. Fig-
ure 10a shows that, as desired, the information flow from
the causal factors to the model prediction is large while the
information flow from the spurious factors to the prediction
is small.

Ablation study. We inspect the explanation performance
for our framework as an ablation study for the loss function
proposed. We empirically prove the need for different forms
of regularization leveraged by the OrphicX loss function. In
particular, we compute the average explanation accuracy of 3
runs. Table 10 shows the explanation accuracy of removing
a particular regularization term for Mutag and NCI1, respec-
tively. We observe considerable performance gains from
introducing the VGAE ELBO term, sparsity, and fidelity
penalty. In summary, these results empirically motivate the
need for different forms of regularization leveraged by the
OrphicX loss function.

Efficiency evaluation. OrphicX, Gem, and PGExplainer
can explain unseen instances in the inductive setting. We
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Figure 9. Explanation Visualization (MUTAG): p is the corresponding probability of being classified as Mutagenic class by the pre-trained
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by corresponding methods. The closer the probability to that of the target instance, the better the explanation is.

Table 10. Ablation Studies for Different Regularization Terms (%).

TYPE | CAUSAL ELBOSPARSITYFIDELITYMUTAG NCI1
INFLUENCE
Orphic v v v v 0.854 0.832
A v v v 0.829 0.633
B v v v 0.804 0.824
C v v v 0.594 0.633

measure the average inference time for these methods. As
GNNExplainer explains an instance at a time, we measure

its average time cost per explanation for comparisons. As
reported in Table 11, we can conclude that the learning-
based explainers such as OrphicX, Gem, and PGExplaienr
are more efficient than GNNExplainer. These experiments
were performed on an NVIDIA GTX 1080 Ti GPU with an
Intel Core 17-8700K processor.

A.4. More related work on GNN interpretation

Several recent works have been proposed to provide ex-
planations for GNNSs, in which the most important features
(e.g., nodes or edges or subgraphs) of an input graph are se-
lected as the explanation to the model’s outcome. In essence,
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Figure 10. Information Flow Measurements. Figure 10a reports
the information flow measurements in the hidden space, where ¢
denotes the ith dimension. Figure 10b reports the ones while the
causal influence term was removed from the loss function.

Table 11. Explanation Time of Different Methods (Per Instance
(ms)).

DATASETS  |BA-SHAPES|TREE-CYCLESMUTAGI|NCI1
OrphicX 0.61 2.31 0.01 |0.02
gEM 0.67 0.50 0.05 [0.03
GNNEXPLAINER|  260.2 206.5 253.2 262.4
PGEXPLAINER 6.9 6.5 5.5 | 54

most of these methods are designed for generating input-
dependent explanations. GNNExplainer [32] searches for
soft masks for edges and node features to explain the pre-
dictions via mask optimization. [21] extended explainability
methods designed for CNNs to GNNs. PGM-Explainer [25]
adopts a probabilistic graphical model and explores the de-
pendencies of the explained features in the form of condi-
tional probability. SubgraphX explores the subgraphs with
Monte Carlo tree search and evaluates the importance of the
subgraphs with Shapley values [35]. In general, these meth-
ods explain each instance individually and can not generalize

to the unseen graphs, thereby lacking a global view of the
target model.

A recent study has shown that separate optimization for
each instance induces hindsight bias and compromises faith-
fulness [23]. To this end, PGExplainer [ 14] was proposed to
learn a mask predictor to obtain edge masks for providing in-
stance explanations. XGNN [34] was proposed to investigate
graph patterns that lead to a specific class. GraphMask [23]
is specifically designed for GNN-based natural language
processing tasks, where it learns an edge mask for each in-
ternal layer of the learning model. Both these approaches
require access to the process by which the target model pro-
duces its predictions. As all the edges in the dataset share
the same predictor, they might be able to provide a global
understanding of the target GNNs. Our work falls into this
line of research, as our objective is to learn an explainer that
can generate compact subgraph structures contributing to the
predictions for any input instances. Different from existing
works, we seek faithful explanations from the language of
causality [19].
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