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Abstract— For a CPU-GPU heterogeneous computing system,
different types of processors have load balancing problems in
the calculation process. What’s more, multitasking cannot be
matched to the appropriate processor core is also an urgent
problem to be solved. In this paper, we propose a task
scheduling strategy for high-performance CPU-GPU
heterogeneous computing platform to solve these problems. For
the single task model, a task scheduling strategy based on load-
aware for CPU-GPU heterogeneous computing platform is
proposed. This strategy detects the computing power of the CPU
and GPU to process specified tasks, and allocates computing
tasks to the CPU and GPU according to the perception ratio.
The tasks are stored in a bidirectional queue to reduce the
additional overhead brought by scheduling. For the multi-task
model, a task scheduling strategy based on the genetic algorithm
for CPU-GPU heterogeneous computing platform is proposed.
The strategy aims at improving the overall operating efficiency
of the system, and accurately binds the execution relationship
between different types of tasks and heterogeneous processing
cores. Our experimental results show that the scheduling
strategy can improve the efficiency of parallel computing as well
as system performance.
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I. INTRODUCTION

With the advance of manufacturing processes, computer
architectures have undergone tremendous changes. The
single-core processor structure is limited by physical design
limits and energy consumption, which will inevitably lead to
the shift of the focus of Moore's Law from the number of
simple transistors to the number of cores that can be
integrated on the chip [1,2]. Therefore, the development
direction of processors has changed from increasing the
computing power of single-core processors, such as
increasing the main frequency, to increase the number of
processors that can be integrated on a single chip. The
processor architecture has evolved from single-core
architectures to multi-core architectures. However, as we
enter the information era, the computation needs to be
processed have also grown exponentially. In the face of
massive data storage and computation, even if there are
dozens of CPUs integrated on the same chip, such a system
still cannot meet the needs of scientific computing. The

isomorphic multi-core processor cannot support such a huge
amount of calculations [3]. Therefore, combining the CPU
and GPU into a heterogeneous computing system has
emerged as an ideal solution. At present, heterogeneous
computing systems have been proposed to include various
computing units such as CPUs, DSPs, GPUs, ASICs, and
FPGAs, using different types of instruction sets and
"integration" of different architectures, allowing various
cores to effectively collaborate and cope with multiple
computing  scenarios[4]. Due to the excellent
performance/cost efficiency ratio of GPUs, the GPU-CPU
heterogeneous architectures become the most commonly
used heterogeneous computing system in high-performance
computing clusters [5]. In such systems, the CPUs and GPUs
belong to different types of computing resources and can
provide powerful computing capabilities, however, in most
current systems, the CPUs are only responsible for assigning
parallel computing tasks to the GPUs. When the GPUs
execute parallel tasks, the CPUs only waiting for the GPUs
to return the results, without participating in the execution of
the parallel tasks. As a result, the computing resources of the
heterogeneous system cannot be fully utilized. Most research
is also focused on accelerating GPU calculations and the
powerful computing power of the CPU is not fully utilized
[6-9]. The performance resources of the system have not been
fully tapped due to unreasonable allocation, and few solutions
can fully utilize the collaborative computing capabilities of
CPU and GPU [10]. It is one of the problems to be solved
urgently in the field of CPU-GPU collaborative computing
by reasonably allocating the computing resources of the
heterogeneous computing system to fully utilize the
computing power of the CPU-GPU heterogeneous computing
system. Therefore, designing an effective task scheduling
algorithm for heterogeneous architectures has become an
important idea to solve this problem.

A. Contributions

In this paper, we investigate the characteristics of
different benchmarks and propose to improve the
performance of heterogeneous computing systems through
task scheduling algorithms. We developed a task scheduling
strategy based on load-aware and a task scheduling strategy
based on the genetic algorithm. Our evaluation results show

2159-3477/20/$31.00 ©2020 IEEE
DOI 10.1109/1SVLSI49217.2020.00063

306

Authorized licensed use limited to: University of North Texas. Downloaded on August 08,2022 at 15:46:44 UTC from IEEE Xplore. Restrictions apply.



that, the scheduling strategies proposed in this paper can
significantly tap the performance limit of the system.

Our contributions can be summarized as follows:

*We propose a task scheduling strategy based on load-
aware for CPU-GPU heterogeneous computing platform
which uses the CPUs and GPUs to work together to complete
parallel computing tasks under the single task model. This
scheduling strategy significantly reduces the uneven load and
only brings a small amount of additional scheduling overhead,
which greatly reduces the idle time after the CPUs and GPUs
finish their respective computing tasks.

*We propose a task scheduling strategy based on the
genetic algorithm for CPU-GPU heterogeneous computing
platform under the multi-task model. The strategy aims at
improving the overall operating efficiency of the system, and
accurately binds the execution relationship between different
types of tasks and heterogeneous processing cores.

*We performed extensive evaluations of the scheduling
strategies proposed in this paper. We show the advantage of
the proposed load-aware scheduling algorithms, compared
with traditional scheduling algorithms, static and dynamic
scheduling algorithms, and hybrid scheduling algorithms.
Compared with the conventional genetic algorithm and
particle swarm algorithm, our optimized genetic algorithm
can quickly reach convergence and can achieve higher
system performance.

B. Organization of the paper

The rest of this paper is organized as follows. Section II
introduces the research trends of task scheduling in
heterogeneous computing systems. Section III introduces the
characteristics of the benchmark applications and the design
of our two parallel task model scheduling strategies. Section
IV presents the results of our experimental evaluation.
Section V concludes the paper and discusses our future work.

II. BACKGROUND

With the advancement of technology, the computing
resources within the system have changed from single-core
to homogeneous multi-core, and then developed into
heterogeneous multi-core. Task scheduling algorithms have
an increasing impact on improving the efficiency of
heterogeneous systems and mining the performance of
heterogeneous systems. On the one hand, loop processing in
scientific computing is the most common parallel task. These
loops, as the most computationally intensive part of the
program, are one of the hot topics in parallel computing
research. This model is a single task parallel loop [10]. On
the other hand, with the complexity of computing scenarios,
there are many single tasks in the system that can be
processed simultaneously, and these single tasks can be
combined into a multi-task model for parallel processing.

A. Single task model

Programmers divide parallel tasks into different parts, and
the CPUs and GPUs process different parts of parallel tasks
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at the same time [11-14]. This type of coordination can avoid
idle time in the computing resources and shorten the task
execution time, and improve the system performance.
Although the CPUs and GPUs have their preference in tasks
processed, collectively, using these two types of processors
to jointly process computing tasks can improve the overall
system performance.

A static scheduling strategy has relatively smaller
scheduling overhead and is easy to implement, but it tends to
cause uneven load allocation [12]. Dynamic scheduling refers
to a scheduling scheme that is performed under uncertain
operating environments and computing tasks [12]. Dynamic
scheduling solves the problem that static scheduling cannot
and can work with flexible CPU-GPU configurations and
large uneven loads, but the resource and time overhead
brought by dynamic scheduling is large, which can have a
significant impact on the overall system performance.

B. Multi-task model

Baruah S demonstrated that multi-task scheduling for
heterogeneous systems is an NP-hard problem [15]. The
swarm intelligence algorithm provides a good solution for
this type of problem, and there are many research results on
multi-task assignment at home and abroad.

Andrew J. Page and others have developed schedulers for
task allocation in dynamic heterogeneous distributed systems
[16]. Experiments show that this algorithm achieves higher
efficiency than other commonly used heuristic algorithms.
The CPU-GPU heterogeneous computing system is a stand-
alone heterogeneous environment. The computing speed of
the two heterogeneous chips is very different, and the task
scheduling algorithm designed for distributed systems is not
applicable. The multi-task scheduling strategy for CPU-GPU
heterogeneous computing systems mostly stays in rewriting
specific applications into methods suitable for heterogeneous
system execution to improve the performance of the system
when executing the application. For example, Li D combined
genetic algorithm and particle swarm optimization to study
an efficient hybrid genetic algorithm and particle swarm
optimization for molecular dynamics simulation on
heterogeneous supercomputer load balancing [17]. Such
solutions are not universal and cannot be adapted to general
applications. And for the multitasking model, load balancing
in some scenarios does not guarantee the strongest system
performance obtained by the scheduling strategy. Therefore,
this article will focus on how to improve the performance of
applications executed on CPU-GPU heterogeneous platforms
by binding the execution relationship between subtasks and
processor cores.

1II. DESIGN OF SCHEDULING STRATEGY FOR CPU-GPU
HETEROGENEOUS COMPUTING SYSTEM

As one of the research hotspots in parallel computing
models, loop processing is the most computationally
intensive part of scientific computing programs. This paper
refers to the parallel task models completed in a cycle as a
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single task model. As the computing scenarios become more
and more complex, there are many simultaneous single-task
parallel loops in the system. These single tasks can be
processed by the system according to a certain scheduling
strategy. Assuming that there are M processor cores in a
heterogeneous system, the system can process M single tasks
at the same time. The multi-task model designed in this paper
includes N single tasks, which are processed by a
heterogeneous system composed of M computing cores. This
paper refers to this type of parallel task model as a multi-task
model.

A. Task scheduling strategy based on load-aware

Load balancing in a CPU-GPU heterogeneous computing
platform means that the computing tasks loaded to the CPU
and GPU are completed at the same time. Assume that the
sum of the data amount of the computing task is S, and the
speed that CPU and GPU calculate the task are
Vepyand Vipy, respectively. The time taken by the CPU and
GPU to participate in the calculation is Tepy and Tgpy ,
respectively. Let §(6 > 0) be the degree of load unevenness
in the system. A lower 9§ indicates that the load unevenness
of the system is small. A can be expressed by formula (1).

T,
s=|1—cru )
Tepu
When Tepy = Tgpy » the load is balanced. Let the ratio

of the amount of data allocated by the CPU and GPU be P,
and the formula in this balanced state is shown in (2).

1+P +P @
There are many factors that affect the stability of the
system performance, and the resource allocation and time
consumption overhead of the dynamic scheduling process can
be prohibitive [19]. In this paper, we propose a task scheduling
strategy based on load-aware.

Before processing parallel tasks, the computing tasks are
stored in a two-way queue. When distributing computing tasks
to different types of processors, the CPU is dispatched from
the head of the queue and the GPU is dispatched from the tail
of the queue. The core component of the strategy is resource
prediction and allocation. Solving V¢py; and Vipy is the key to
the prediction of the strategy. The strategy is implemented
according to the following four steps:

Step 1: Check whether it is the first time that the system
runs the program. If so, 10% of data is equally distributed to
the CPU and GPU to detect the computing capacity of the
heterogeneous computing system. Otherwise, 10% of data is
distributed according to the allocation ratio P stored by the
system, and we evaluate whether the current allocation ratio
is suitable at this time system status. The remaining 90% of
the data volume is calculated in the third stage.

1
Scpy = 0.18 * =0.1S5 * 1P 3

Step 2: According to the CPU calculation time t.p; and
GPU calculation time tspy; of the first stage of the execution,
derive the current state of the system to calculate the

Scpy =S * » Sgpy = S ¥

1+p  Scrv
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performance ratio of the task. When the system runs the
program for the first time, the ratio p is solved by formula (4),
otherwise formula (5).

SCPU/
_ Vepy tepy _ tary

a Vepu a SGPU/tGPU tepy
0.1 * % /
_ Veru _ t

- S
oy, 015 g/
t

C))

S
CPU/tCPU _

t
GPU _ p GPU (5)
tepu

CPU
The degree of load unevenness " in the detection phase

is shown in formula (6). When &' < u, the calculation
amount distribution ratio P is unchanged; When §’ > p, the
calculation amount distribution ratio P is updated as p, where
u is the threshold set by the system.
s =|1— tepy )
tepu

Step 3: Hybrid scheduling. Distribute 80% of the total
data amount to the CPU and GPU according to the ratio
determined in the previous step and the remaining 10% is
dynamically scheduled. The processor that completes the
calculation task first does not need to wait for the processor
that completes later, and directly enters the queue in the
dynamic scheduling stage. The processor that completes later
also enters the queue in the dynamic scheduling stage after
completing its allocated amount of task. This process will
continue until the beginning and end of the queue meet, and
all computing tasks have been completed.

Step 4: Calculate the computing time t;py and tgpy of
the CPU and GPU for static scheduling of computing tasks in
the hybrid scheduling phase. The optimal allocation ratio
P’ for the task of the solving system is shown in formula (7).

7 Q)
tepy

The discrete degree of P and P’ is €, and ¢ is expressed
by formula (8).

1
_ tepy

Pl

P
e=[1-5] ®)
When € > v, update the CPU to GPU load ratio of the
heterogeneous computing system to P’', where v is the

threshold set by the system.

B. Task scheduling strategy based on genetic algorithm

A swarm intelligence algorithm provides a method for
obtaining approximate optimal solutions for NP-hard
problems, but it has the disadvantages, such as too low
efficiency and falling into local optimal solutions. This paper
proposes to improve the genetic algorithm using following
steps.

Step 1: Initialize the genetic algorithm parameters. Each
individual of the initial population represents a task
scheduling scheme. The traditional genetic algorithm
generates the initial population randomly. Considering the
dependencies between tasks in this model, the method of
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generating the initial population needs to be improved. The
optimized population generation method is as follows:

(i) Calculate the height value H(T;) of all tasks according
to the DAG diagram;

(i1) Assigned all tasks to the CPU and GPU randomly;

(iii) Sort the tasks that are assigned randomly on each core
according to the H (T;) obtained in (i) from small to large, and
the ranking result is the execution order of the tasks on the
processing unit;

(iv) If the initial population size meets the requirements
(100), go to step 2; otherwise, switch back to (ii);

Step 2: Calculate the fitness function of all individuals in
the population, and rank all individuals in the population
according to the fitness order. The selection of the fitness
function directly affects the convergence speed of the
algorithm and whether it can find the optimal solution.

Like most intelligent algorithms, genetic algorithms also
judge whether a solution is good or bad based on the value of
the fitness function. Let the scale of the current population be
Sca, and the time required for the execution of the scheduling
scheme S is recorded as Tyy1q;(S), and the total running time
of the current population Ty, is expressed by formula (9).

Tsum = Zfig_l Totar(5),0<S < Sca—1 (9)

The fitness function value of the scheduling scheme S is
defined as formula (10):

Toum — T S
Fit(S) _ sum total( )

Tsum (10)

Step 3: Crossover. Crossover rate is set to 0.5. Cross
operations on the two adjacent chromosomes sorted in step 2
to generate the offspring. Then we recalculate the fitness of
the generated offspring and their parents, and we select a new
one based on the fitness in descending order. Population and
the size of the new population is consistent with the size of the
parent population.

Step 4: Mutation. The choice of mutation probability P,
in the parameters of the genetic algorithm has a great influence
on the behavior and the performance of the genetic algorithm.
Genetic  algorithms perform mutation operations on
individuals at random. When the mutation probability is too
large, it is easy to destroy the genes of excellent individuals
with high adaptability in the population and enter a random
search. However, it is difficult to introduce new genes with a
low mutation rate, which causes the algorithm to stagnate in
later iterations of the algorithm, which leads to the problems
such as precocity and the local optimal solution. The mapping
scheme formed at this time is not the global best solution. If it
is determined through repeated experiments, the value of P,
is cumbersome. This paper proposes an adaptive mutation
strategy. The P, is shown in Equation (11) when Fit,,,, =
Fit, otherwise it is set to 0.8.

Y L an
itmax — Fit

k., is set to 0.2, Fit,,, refers to the largest fitness
function value among all the scheduling schemes in the
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population, Fitg refers to the fitness of the scheduling scheme
S, and Fit refers to the average fitness function value of all
scheduling schemes in the population.

The specific operation of mutation is as follows. For each
individuality, a random number p between [0,1] is generated.
If p is greater than P, , then the individual performs the
mutation operation. The process of mutation of a single
chromosome is: the random position of the chromosome
corresponds to a change in value, and the change of this value
indicates the change of the processor number of the subtask.
Next, we recalculate the fitness of the mutated individuals and
their parents, and select a new population according to the
fitness order. The new population size is consistent with the
parent population size.

Step 5: If the maximum number of iterations (100) is
reached, the task allocation scheme with the largest fitness
function is selected; otherwise, we find the optimal solution of
successive multi-generation populations respectively, and
then determine whether the potential premature convergence
occurs based on the Hamming distance between the optimal
solutions of successive multi-generation populations. If no
premature occurs, then go to step 3; if precocity occurs, then
enable the injection strategy and move to the second step.

We describe the condition for judging premature
convergence: it is judged as premature convergence when the
Hamming distance between the optimal solutions of
successive multi-generational populations is 0. The
mechanism is based on detecting the Hamming distance
between the best solutions of successive generations. If the
best solution remains the same after successive generations,
then the injection strategy is applied.

IV. PERFORMANCE EVALUATION OF THE PROPOSED
SCHEDULING STRATEGY

The computing platform used in our experiments was
Sugon W580-G20, running Linux, and the CPU was Intel
Xeon (R) CPU E5-2620 by Intel; the GPU was NVIDIA Tesla
P100 from Nvidia; the memory was 128Gb and the hard disk
was 2Tb.

This paper selects three sets of loop processing parallel
computing benchmark programs, of which MatMul is a
classic bench program in the field of parallel computing;
Pathfinder and Kmeans are from the latest version of the
Rodinia benchmark suite; for the multi-task model, use the
international general task map generation tool TGFF to
generate random tasks for experiment [20].

A. Results of task scheduling strategy based on load-aware

In this section, we present our evaluation results using the
three benchmark applications. Our results show that the
scheduling strategy leads to a significant performance
improvement in reducing the gap between the CPU and GPU
computing programs of the same order of magnitude. The
scheduling strategy based on load-aware stores the
computation tasks in a bidirectional queue before processing
the parallel tasks. Combined with a dynamic scheduling
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strategy, the load balancing ability is stronger. Among them,
the task scheduling strategy based on load-aware achieves
significantly better performance than the static scheduling
strategy and the hybrid scheduling strategy. For the three sets
of MatMul, Pathfinder and Kmeans benchmarks selected in
this paper, the performance of the systems has been improved
by 29.97%, 27.62% and 26.63% respectively, with an
average increase of 28.08%. Compared with the traditional
scheduling scheme, the other two scheduling schemes
improved performance by 12.96% and 17.30%, respectively.
The performance evaluation is given in Figure 1. From the
same set of examples with different data input sizes, we can
observe that the real-time performance of the system is not
stable, resulting in a large gap between the actual value and
the theoretical value for the performance improvement of the
static scheduling strategy as well as the static and dynamic
scheduling strategy. Under the same environment, the
maximum fluctuation is 9% and 8%, respectively. The
fluctuation of the task scheduling strategy based on load-
aware is less than 4%.
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Fig. 1. Performance of static scheduling strategy (STA),
hybrid scheduling strategy(HY) and load-aware
scheduling strategy(LA). (a) MatMul. (b) Pathfinder. (c)
Kmeans.

To summarize, the scheduling strategies proposed in this
paper perform well for situations where the computing
performance of the CPU and GPU are in the same order of
magnitude. For scenarios where the performance of the CPU
and GPU differ significantly, the improvement is not as
significant as the earlier case. For example, for the Nbody
instance from the official Nvidia test document, the GPU
computing speed of this instance is nearly 2500 times that of
the CPU. Nbody theoretically has a performance
improvement of only 0.01%. The limitations of this type of
instance is determined by the optimization method,
regardless of the scheduling strategy. At the same time, the
overhead in time caused by building task queues and 10%
dynamic scheduling did not have a significant impact on the
system performance.

B. Results of task scheduling strategy based on genetic
algorithm

Convergence speed is one of the key indicators for
evaluating the performance of swarm intelligence algorithms,
and generally refers to the iteration of swarm intelligence
algorithms to obtain the global approximate optimal solution
time. In this subsection, three sets of test cases are created
using TGFF, and then we performed experiments to test the
performance of IM_GA and scheduling strategy. Our results
show that, IM_GA has the fastest convergence speed among
the three swarm intelligence algorithms, followed by a
particle swarm algorithm, and the traditional genetic
algorithm is the slowest.

As shown in Figures 2 and 3, the improved genetic
algorithm in the performance of the scheduling strategy
performs the best. The ranking of performance improvement
of the scheduling strategy using three algorithms in TGFF-1
is GA <PSO <IMGA. IMGA strategy is 10.19% and 8.97%
higher than the GA strategy and the PSO strategy,
respectively. GA and PSO fall into the local optimal solution.
In TGFF-2, the performance of the GA strategy is better than
PSO, but GA and PSO are once again caught in the local
optimal solution, both of which are 9.30% and 11.98% lower
than the performance of the IM_GA strategy, respectively.
For TGFF-3, the PSO strategy and the IM_GA strategy has
the same performance, which is 11.84% higher than GA, and
neither of them falls into the local optimal solution, while the
convergence speed of IM_GA is much faster than PSO.

1)\ GA ®wPSO mIM_GA
0.8
0.6
0.4
0.2
0
TGFF-1 TGFF-2 TGFF-3

Fig. 2. Performance of GA, PSO and IM_GA optimization.
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Fig. 3. Time consumption of FCFS,GA,PSO and IM_GA.

To summarize, the convergence speed of IM_GA is the
fastest among the three algorithms. Moreover, the scheduling
strategy using IM_GA has the best performance of all. In the
three sets of benchmarks, the IM_GA scheduling strategy is
better than GA scheduling strategy, which proves that
IM_GA has a strong ability to jump out of the local optimal
solution, since IM_GA uses an adaptive mutation mechanism
and injection strategy.

Adaptive mutation can effectively retain the good
individuals in the population and ensure that some good new
individuals are effectively generated. The injection strategy
is to inject a user-defined random number of artificial
chromosomes (mapping solution). Whenever a potential
precocity is detected when converging, this injection strategy
will be triggered. It has a powerful complementary diversity
mechanism, which enables the algorithm to jump out of the
local optimal solution more easily, and solves the problem of
premature easiness and avoids falling into the local optimal
of the algorithm.

V. CONCLUSIONS

This paper proposes task scheduling strategies for two
different types of parallel tasks. We first discuss the scientific
calculations used for loop processing and propose a task
scheduling strategy based on load-aware. This strategy can
greatly reduce the waste of resources caused by the uneven
load of heterogeneous processors. We also explore the multi-
task model. A task scheduling strategy based on the genetic
algorithm is proposed, which can bind the execution
relationship between different types of tasks and
heterogeneous processing cores. Our proposed techniques
can achieve better performance than traditional genetic
algorithms. Our experiment results show that the scheduling
strategies in this work can significantly improve system
performance.
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