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Abstract— For a CPU-GPU heterogeneous computing system, 
different types of processors have load balancing problems in 
the calculation process. What’s more, multitasking cannot be 
matched to the appropriate processor core is also an urgent 
problem to be solved. In this paper, we propose a task 
scheduling strategy for high-performance CPU-GPU 
heterogeneous computing platform to solve these problems. For 
the single task model, a task scheduling strategy based on load-
aware for CPU-GPU heterogeneous computing platform is 
proposed. This strategy detects the computing power of the CPU 
and GPU to process specified tasks, and allocates computing 
tasks to the CPU and GPU according to the perception ratio. 
The tasks are stored in a bidirectional queue to reduce the 
additional overhead brought by scheduling. For the multi-task 
model, a task scheduling strategy based on the genetic algorithm 
for CPU-GPU heterogeneous computing platform is proposed. 
The strategy aims at improving the overall operating efficiency 
of the system, and accurately binds the execution relationship 
between different types of tasks and heterogeneous processing 
cores. Our experimental results show that the scheduling 
strategy can improve the efficiency of parallel computing as well 
as system performance.  

Keywords- Heterogeneous Computing System; Load balancing; 
Scheduling Genetic Algorithm  

I.  INTRODUCTION  
With the advance of manufacturing processes, computer 

architectures have undergone tremendous changes. The 
single-core processor structure is limited by physical design 
limits and energy consumption, which will inevitably lead to 
the shift of the focus of Moore's Law from the number of 
simple transistors to the number of cores that can be 
integrated on the chip [1,2]. Therefore, the development 
direction of processors has changed from increasing the 
computing power of single-core processors, such as 
increasing the main frequency, to increase the number of 
processors that can be integrated on a single chip. The 
processor architecture has evolved from single-core 
architectures to multi-core architectures. However, as we 
enter the information era, the computation needs to be 
processed have also grown exponentially. In the face of 
massive data storage and computation, even if there are 
dozens of CPUs integrated on the same chip, such a system 
still cannot meet the needs of scientific computing. The 

isomorphic multi-core processor cannot support such a huge 
amount of calculations [3]. Therefore, combining the CPU 
and GPU into a heterogeneous computing system has 
emerged as an ideal solution. At present, heterogeneous 
computing systems have been proposed to include various 
computing units such as CPUs, DSPs, GPUs, ASICs, and 
FPGAs, using different types of instruction sets and 
"integration" of different architectures, allowing various 
cores to effectively collaborate and cope with multiple 
computing scenarios[4]. Due to the excellent 
performance/cost efficiency ratio of GPUs, the GPU-CPU 
heterogeneous architectures become the most commonly 
used heterogeneous computing system in high-performance 
computing clusters [5]. In such systems, the CPUs and GPUs 
belong to different types of computing resources and can 
provide powerful computing capabilities, however, in most 
current systems, the CPUs are only responsible for assigning 
parallel computing tasks to the GPUs. When the GPUs 
execute parallel tasks, the CPUs only waiting for the GPUs 
to return the results, without participating in the execution of 
the parallel tasks. As a result, the computing resources of the 
heterogeneous system cannot be fully utilized. Most research 
is also focused on accelerating GPU calculations and the 
powerful computing power of the CPU is not fully utilized 
[6-9]. The performance resources of the system have not been 
fully tapped due to unreasonable allocation, and few solutions 
can fully utilize the collaborative computing capabilities of 
CPU and GPU [10]. It is one of the problems to be solved 
urgently in the field of CPU-GPU collaborative computing 
by reasonably allocating the computing resources of the 
heterogeneous computing system to fully utilize the 
computing power of the CPU-GPU heterogeneous computing 
system. Therefore, designing an effective task scheduling 
algorithm for heterogeneous architectures has become an 
important idea to solve this problem. 

A. Contributions 
In this paper, we investigate the characteristics of 

different benchmarks and propose to improve the 
performance of heterogeneous computing systems through 
task scheduling algorithms. We developed a task scheduling 
strategy based on load-aware and a task scheduling strategy 
based on the genetic algorithm. Our evaluation results show 
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that, the scheduling strategies proposed in this paper can 
significantly tap the performance limit of the system. 

Our contributions can be summarized as follows: 
•We propose a task scheduling strategy based on load-

aware for CPU-GPU heterogeneous computing platform 
which uses the CPUs and GPUs to work together to complete 
parallel computing tasks under the single task model. This 
scheduling strategy significantly reduces the uneven load and 
only brings a small amount of additional scheduling overhead, 
which greatly reduces the idle time after the CPUs and GPUs 
finish their respective computing tasks. 

•We propose a task scheduling strategy based on the 
genetic algorithm for CPU-GPU heterogeneous computing 
platform under the multi-task model. The strategy aims at 
improving the overall operating efficiency of the system, and 
accurately binds the execution relationship between different 
types of tasks and heterogeneous processing cores. 

•We performed extensive evaluations of the scheduling 
strategies proposed in this paper. We show the advantage of 
the proposed load-aware scheduling algorithms, compared 
with traditional scheduling algorithms, static and dynamic 
scheduling algorithms, and hybrid scheduling algorithms. 
Compared with the conventional genetic algorithm and 
particle swarm algorithm, our optimized genetic algorithm 
can quickly reach convergence and can achieve higher 
system performance. 

B. Organization of the paper 
The rest of this paper is organized as follows. Section II 

introduces the research trends of task scheduling in 
heterogeneous computing systems. Section III introduces the 
characteristics of the benchmark applications and the design 
of our two parallel task model scheduling strategies. Section 
IV presents the results of our experimental evaluation. 
Section V concludes the paper and discusses our future work. 

II. BACKGROUND 
With the advancement of technology, the computing 

resources within the system have changed from single-core 
to homogeneous multi-core, and then developed into 
heterogeneous multi-core. Task scheduling algorithms have 
an increasing impact on improving the efficiency of 
heterogeneous systems and mining the performance of 
heterogeneous systems. On the one hand, loop processing in 
scientific computing is the most common parallel task. These 
loops, as the most computationally intensive part of the 
program, are one of the hot topics in parallel computing 
research. This model is a single task parallel loop [10]. On 
the other hand, with the complexity of computing scenarios, 
there are many single tasks in the system that can be 
processed simultaneously, and these single tasks can be 
combined into a multi-task model for parallel processing. 

A. Single task model 
Programmers divide parallel tasks into different parts, and 

the CPUs and GPUs process different parts of parallel tasks 

at the same time [11-14]. This type of coordination can avoid 
idle time in the computing resources and shorten the task 
execution time, and improve the system performance. 
Although the CPUs and GPUs have their preference in tasks 
processed, collectively, using these two types of processors 
to jointly process computing tasks can improve the overall 
system performance.  

A static scheduling strategy has relatively smaller 
scheduling overhead and is easy to implement, but it tends to 
cause uneven load allocation [12]. Dynamic scheduling refers 
to a scheduling scheme that is performed under uncertain 
operating environments and computing tasks [12]. Dynamic 
scheduling solves the problem that static scheduling cannot 
and can work with flexible CPU-GPU configurations and 
large uneven loads, but the resource and time overhead 
brought by dynamic scheduling is large, which can have a 
significant impact on the overall system performance. 

B. Multi-task model 
Baruah S demonstrated that multi-task scheduling for 

heterogeneous systems is an NP-hard problem [15]. The 
swarm intelligence algorithm provides a good solution for 
this type of problem, and there are many research results on 
multi-task assignment at home and abroad.  

Andrew J. Page and others have developed schedulers for 
task allocation in dynamic heterogeneous distributed systems 
[16]. Experiments show that this algorithm achieves higher 
efficiency than other commonly used heuristic algorithms. 
The CPU-GPU heterogeneous computing system is a stand-
alone heterogeneous environment. The computing speed of 
the two heterogeneous chips is very different, and the task 
scheduling algorithm designed for distributed systems is not 
applicable. The multi-task scheduling strategy for CPU-GPU 
heterogeneous computing systems mostly stays in rewriting 
specific applications into methods suitable for heterogeneous 
system execution to improve the performance of the system 
when executing the application. For example, Li D combined 
genetic algorithm and particle swarm optimization to study 
an efficient hybrid genetic algorithm and particle swarm 
optimization for molecular dynamics simulation on 
heterogeneous supercomputer load balancing [17]. Such 
solutions are not universal and cannot be adapted to general 
applications. And for the multitasking model, load balancing 
in some scenarios does not guarantee the strongest system 
performance obtained by the scheduling strategy. Therefore, 
this article will focus on how to improve the performance of 
applications executed on CPU-GPU heterogeneous platforms 
by binding the execution relationship between subtasks and 
processor cores. 

III. DESIGN OF SCHEDULING STRATEGY FOR CPU-GPU 
HETEROGENEOUS COMPUTING SYSTEM 

As one of the research hotspots in parallel computing 
models, loop processing is the most computationally 
intensive part of scientific computing programs. This paper 
refers to the parallel task models completed in a cycle as a 
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single task model. As the computing scenarios become more 
and more complex, there are many simultaneous single-task 
parallel loops in the system. These single tasks can be 
processed by the system according to a certain scheduling 
strategy. Assuming that there are  processor cores in a 
heterogeneous system, the system can process  single tasks 
at the same time. The multi-task model designed in this paper 
includes  single tasks, which are processed by a 
heterogeneous system composed of  computing cores. This 
paper refers to this type of parallel task model as a multi-task 
model. 

A. Task scheduling strategy based on load-aware 
Load balancing in a CPU-GPU heterogeneous computing 

platform means that the computing tasks loaded to the CPU 
and GPU are completed at the same time. Assume that the 
sum of the data amount of the computing task is , and the 
speed that CPU and GPU calculate the task are 

, respectively. The time taken by the CPU and 
GPU to participate in the calculation is  and , 
respectively. Let  be the degree of load unevenness 
in the system. A lower  indicates that the load unevenness 
of the system is small.  can be expressed by formula (1). 

 

When  the load is balanced. Let the ratio 
of the amount of data allocated by the CPU and GPU be , 
and the formula in this balanced state is shown in (2).  

 
There are many factors that affect the stability of the 

system performance, and the resource allocation and time 
consumption overhead of the dynamic scheduling process can 
be prohibitive [19]. In this paper, we propose a task scheduling 
strategy based on load-aware. 

Before processing parallel tasks, the computing tasks are 
stored in a two-way queue. When distributing computing tasks 
to different types of processors, the CPU is dispatched from 
the head of the queue and the GPU is dispatched from the tail 
of the queue. The core component of the strategy is resource 
prediction and allocation. Solving  and  is the key to 
the prediction of the strategy. The strategy is implemented 
according to the following four steps: 

Step 1: Check whether it is the first time that the system 
runs the program. If so, 10% of data is equally distributed to 
the CPU and GPU to detect the computing capacity of the 
heterogeneous computing system. Otherwise, 10% of data is 
distributed according to the allocation ratio P stored by the 
system, and we evaluate whether the current allocation ratio 
is suitable at this time system status. The remaining 90% of 
the data volume is calculated in the third stage. 

 
Step 2: According to the CPU calculation time  and 

GPU calculation time  of the first stage of the execution, 
derive the current state of the system to calculate the 

performance ratio of the task. When the system runs the 
program for the first time, the ratio  is solved by formula (4), 
otherwise formula (5).  

 

 

The degree of load unevenness  in the detection phase 
is shown in formula (6). When , the calculation 
amount distribution ratio  is unchanged; When , the 
calculation amount distribution ratio  is updated as , where 

 is the threshold set by the system. 

 

Step 3: Hybrid scheduling. Distribute 80% of the total 
data amount to the CPU and GPU according to the ratio 
determined in the previous step and the remaining 10% is 
dynamically scheduled. The processor that completes the 
calculation task first does not need to wait for the processor 
that completes later, and directly enters the queue in the 
dynamic scheduling stage. The processor that completes later 
also enters the queue in the dynamic scheduling stage after 
completing its allocated amount of task. This process will 
continue until the beginning and end of the queue meet, and 
all computing tasks have been completed. 

Step 4: Calculate the computing time  and  of 
the CPU and GPU for static scheduling of computing tasks in 
the hybrid scheduling phase. The optimal allocation ratio 

for the task of the solving system is shown in formula (7).  

 

The discrete degree of  and  is , and  is expressed 
by formula (8). 

 

When , update the CPU to GPU load ratio of the 
heterogeneous computing system to , where  is the 
threshold set by the system. 

B. Task scheduling strategy based on genetic algorithm 
A swarm intelligence algorithm provides a method for 

obtaining approximate optimal solutions for NP-hard 
problems, but it has the disadvantages, such as too low 
efficiency and falling into local optimal solutions. This paper 
proposes to improve the genetic algorithm using following 
steps. 

Step 1: Initialize the genetic algorithm parameters. Each 
individual of the initial population represents a task 
scheduling scheme. The traditional genetic algorithm 
generates the initial population randomly. Considering the 
dependencies between tasks in this model, the method of 
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generating the initial population needs to be improved. The 
optimized population generation method is as follows: 

(i) Calculate the height value  of all tasks according 
to the  diagram; 

(ii) Assigned all tasks to the CPU and GPU randomly; 
(iii) Sort the tasks that are assigned randomly on each core 

according to the obtained in (i) from small to large, and 
the ranking result is the execution order of the tasks on the 
processing unit; 

(iv) If the initial population size meets the requirements 
(100), go to step 2; otherwise, switch back to (ii); 

Step 2: Calculate the fitness function of all individuals in 
the population, and rank all individuals in the population 
according to the fitness order. The selection of the fitness 
function directly affects the convergence speed of the 
algorithm and whether it can find the optimal solution. 

Like most intelligent algorithms, genetic algorithms also 
judge whether a solution is good or bad based on the value of 
the fitness function. Let the scale of the current population be 

, and the time required for the execution of the scheduling 
scheme  is recorded as , and the total running time 
of the current population  is expressed by formula (9).  

The fitness function value of the scheduling scheme  is 
defined as formula (10):

Step 3: Crossover. Crossover rate is set to 0.5. Cross 
operations on the two adjacent chromosomes sorted in step 2 
to generate the offspring. Then we recalculate the fitness of 
the generated offspring and their parents, and we select a new 
one based on the fitness in descending order. Population and 
the size of the new population is consistent with the size of the 
parent population. 

Step 4: Mutation. The choice of mutation probability  
in the parameters of the genetic algorithm has a great influence 
on the behavior and the performance of the genetic algorithm. 
Genetic algorithms perform mutation operations on 
individuals at random. When the mutation probability is too 
large, it is easy to destroy the genes of excellent individuals 
with high adaptability in the population and enter a random 
search. However, it is difficult to introduce new genes with a 
low mutation rate, which causes the algorithm to stagnate in 
later iterations of the algorithm, which leads to the problems 
such as precocity and the local optimal solution. The mapping 
scheme formed at this time is not the global best solution. If it 
is determined through repeated experiments, the value of  
is cumbersome. This paper proposes an adaptive mutation 
strategy. The  is shown in Equation (11) when 

, otherwise it is set to 0.8.  

 

 is set to 0.2,  refers to the largest fitness 
function value among all the scheduling schemes in the 

population,  refers to the fitness of the scheduling scheme 
, and  refers to the average fitness function value of all 

scheduling schemes in the population.  
The specific operation of mutation is as follows. For each 

individuality, a random number  between  is generated. 
If  is greater than , then the individual performs the 
mutation operation. The process of mutation of a single 
chromosome is: the random position of the chromosome 
corresponds to a change in value, and the change of this value 
indicates the change of the processor number of the subtask. 
Next, we recalculate the fitness of the mutated individuals and 
their parents, and select a new population according to the 
fitness order. The new population size is consistent with the 
parent population size. 

Step 5: If the maximum number of iterations (100) is 
reached, the task allocation scheme with the largest fitness 
function is selected; otherwise, we find the optimal solution of 
successive multi-generation populations respectively, and 
then determine whether the potential premature convergence 
occurs based on the Hamming distance between the optimal 
solutions of successive multi-generation populations. If no 
premature occurs, then go to step 3; if precocity occurs, then 
enable the injection strategy and move to the second step. 

We describe the condition for judging premature 
convergence: it is judged as premature convergence when the 
Hamming distance between the optimal solutions of 
successive multi-generational populations is 0. The 
mechanism is based on detecting the Hamming distance 
between the best solutions of successive generations. If the 
best solution remains the same after successive generations, 
then the injection strategy is applied.  

IV. PERFORMANCE EVALUATION OF THE PROPOSED 
SCHEDULING STRATEGY 

The computing platform used in our experiments was 
Sugon W580-G20, running Linux, and the CPU was Intel 
Xeon (R) CPU E5-2620 by Intel; the GPU was NVIDIA Tesla 
P100 from Nvidia; the memory was 128Gb and the hard disk 
was 2Tb.  

This paper selects three sets of loop processing parallel 
computing benchmark programs, of which MatMul is a 
classic bench program in the field of parallel computing; 
Pathfinder and Kmeans are from the latest version of the 
Rodinia benchmark suite; for the multi-task model, use the 
international general task map generation tool TGFF to 
generate random tasks for experiment [20]. 

A. Results of task scheduling strategy based on load-aware 
In this section, we present our evaluation results using the 

three benchmark applications. Our results show that the 
scheduling strategy leads to a significant performance 
improvement in reducing the gap between the CPU and GPU 
computing programs of the same order of magnitude. The 
scheduling strategy based on load-aware stores the 
computation tasks in a bidirectional queue before processing 
the parallel tasks. Combined with a dynamic scheduling 
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Fig. 2. Performance of GA PSO and IM_GA optimization. 
Fig. 1. Performance of static scheduling strategy (STA), 
hybrid scheduling strategy(HY) and load-aware 
scheduling strategy(LA). (a) MatMul. (b) Pathfinder. (c) 
Kmeans.  

strategy, the load balancing ability is stronger. Among them, 
the task scheduling strategy based on load-aware achieves 
significantly better performance than the static scheduling 
strategy and the hybrid scheduling strategy. For the three sets 
of MatMul, Pathfinder and Kmeans benchmarks selected in 
this paper, the performance of the systems has been improved 
by 29.97%, 27.62% and 26.63% respectively, with an 
average increase of 28.08%. Compared with the traditional 
scheduling scheme, the other two scheduling schemes 
improved performance by 12.96% and 17.30%, respectively. 
The performance evaluation is given in Figure 1. From the 
same set of examples with different data input sizes, we can 
observe that the real-time performance of the system is not 
stable, resulting in a large gap between the actual value and 
the theoretical value for the performance improvement of the 
static scheduling strategy as well as the static and dynamic 
scheduling strategy. Under the same environment, the 
maximum fluctuation is 9% and 8%, respectively. The 
fluctuation of the task scheduling strategy based on load-
aware is less than 4%. 

 

 

  
 
 

To summarize, the scheduling strategies proposed in this 
paper perform well for situations where the computing 
performance of the CPU and GPU are in the same order of 
magnitude. For scenarios where the performance of the CPU 
and GPU differ significantly, the improvement is not as 
significant as the earlier case. For example, for the Nbody 
instance from the official Nvidia test document, the GPU 
computing speed of this instance is nearly 2500 times that of 
the CPU. Nbody theoretically has a performance 
improvement of only 0.01%. The limitations of this type of 
instance is determined by the optimization method, 
regardless of the scheduling strategy. At the same time, the 
overhead in time caused by building task queues and 10% 
dynamic scheduling did not have a significant impact on the 
system performance. 

B. Results of task scheduling strategy based on genetic 
algorithm 
Convergence speed is one of the key indicators for 

evaluating the performance of swarm intelligence algorithms, 
and generally refers to the iteration of swarm intelligence 
algorithms to obtain the global approximate optimal solution 
time. In this subsection, three sets of test cases are created 
using TGFF, and then we performed experiments to test the 
performance of IM_GA and scheduling strategy. Our results 
show that, IM_GA has the fastest convergence speed among 
the three swarm intelligence algorithms, followed by a 
particle swarm algorithm, and the traditional genetic 
algorithm is the slowest. 

As shown in Figures 2 and 3, the improved genetic 
algorithm in the performance of the scheduling strategy 
performs the best. The ranking of performance improvement 
of the scheduling strategy using three algorithms in TGFF-1 
is GA <PSO <IMGA. IMGA strategy is 10.19% and 8.97% 
higher than the GA strategy and the PSO strategy, 
respectively. GA and PSO fall into the local optimal solution. 
In TGFF-2, the performance of the GA strategy is better than 
PSO, but GA and PSO are once again caught in the local 
optimal solution, both of which are 9.30% and 11.98% lower 
than the performance of the IM_GA strategy, respectively. 
For TGFF-3, the PSO strategy and the IM_GA strategy has 
the same performance, which is 11.84% higher than GA, and 
neither of them falls into the local optimal solution, while the 
convergence speed of IM_GA is much faster than PSO. 
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Fig. 3. Time consumption of FCFS,GA,PSO and IM_GA. 
 

To summarize, the convergence speed of IM_GA is the 
fastest among the three algorithms. Moreover, the scheduling 
strategy using IM_GA has the best performance of all. In the 
three sets of benchmarks, the IM_GA scheduling strategy is 
better than GA scheduling strategy, which proves that 
IM_GA has a strong ability to jump out of the local optimal 
solution, since IM_GA uses an adaptive mutation mechanism 
and injection strategy. 

Adaptive mutation can effectively retain the good 
individuals in the population and ensure that some good new 
individuals are effectively generated. The injection strategy 
is to inject a user-defined random number of artificial 
chromosomes (mapping solution). Whenever a potential 
precocity is detected when converging, this injection strategy 
will be triggered. It has a powerful complementary diversity 
mechanism, which enables the algorithm to jump out of the 
local optimal solution more easily, and solves the problem of 
premature easiness and avoids falling into the local optimal 
of the algorithm. 

V. CONCLUSIONS 
This paper proposes task scheduling strategies for two 

different types of parallel tasks. We first discuss the scientific 
calculations used for loop processing and propose a task 
scheduling strategy based on load-aware. This strategy can 
greatly reduce the waste of resources caused by the uneven 
load of heterogeneous processors. We also explore the multi-
task model. A task scheduling strategy based on the genetic 
algorithm is proposed, which can bind the execution 
relationship between different types of tasks and 
heterogeneous processing cores. Our proposed techniques 
can achieve better performance than traditional genetic 
algorithms. Our experiment results show that the scheduling 
strategies in this work can significantly improve system 
performance. 
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