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Abstract—The ever-increasing number of layers, millions of pa-
rameters, and large data volume make deep learning workloads
resource-intensive and power-hungry. In this paper, we develop
a convolutional neural network (CNN) acceleration framework,
named MLCNN, which explores algorithm-hardware co-design
to achieve cross-layer cooperative optimization and acceleration.
MLCNN dramatically reduces computation and on-off chip
communication, improving CNN’s performance. To achieve this,
MLCNN reorders the position of nonlinear activation layers and
pooling layers, which we prove results in a negligible accuracy
loss; then the convolutional layer and pooling layer are co-
optimized by means of redundant multiplication elimination, local
addition reuse, and global addition reuse. To the best of our
knowledge, MLCNN is the first of its kind that incorporates
cooperative optimization across convolutional, activation, and
pooling layers. We further customize the MLCNN accelerator
to take full advantage of cross-layer CNN optimization to
reduce both computation and on-off chip communication. Our
analysis shows that MLCNN can significantly reduce (up to 98%)
multiplications and additions. We have implemented a prototype
of MLCNN and evaluated its performance on several widely
used CNN models using both an accelerator-level cycle and
energy model and RTL implementation. Experimental results
show that MLCNN achieves 3.2× speedup and 2.9× energy
efficiency compared with dense CNNs. MLCNN’s optimization
methods are orthogonal to other CNN acceleration techniques,
such as quantization and pruning. Combined with quantization,
our quantized MLCNN gains a 12.8× speedup and 11.3× energy
efficiency compared with DCNN.

Index Terms—Deep learning, Cross-layer optimization, Accel-
erators, Performance evaluation.

I. INTRODUCTION

Convolutional neural network (CNN) has seen dramatic

development recently, leading to increasing interests from

industry, academia, and popular culture. However, the massive

multiplication and accumulation (MAC) operations and fre-

quent on-off chip data communications in CNN significantly

affect its performance and wider adoption [1]. Accelerators,

such as GPU, FPGA, TPU, and ASIC [2]–[4], have been

developed to speed up MAC operations.

However, the on-off chip data communication consumes

a significant amount of energy even with accelerators being

used. As a result, recent research efforts have been focusing

on optimizing both computation and communication, such as

tiling and unrolling-based CNN execution, weight repetition-

based CNN accelerators, and low-precision representations [5].

However, those techniques target the convolutional layer only

without considering the interplay between multiple layers.

In this paper, we present a cross-layer cooperative

algorithm-hardware co-design CNN optimization and accel-

eration framework, named MLCNN. Our design is based on a

key observation that the relative order of activation and pooling

does not affect CNN’s accuracy. By reordering the two layers

and co-optimizing the convolutional layer and pooling layer,

we eliminate a large number of redundant multiplications

and reuse many addition results. Moreover, we design and

implement an MLCNN accelerator that targets the acceleration

of CNN inference to accelerate the optimized CNN models.

The main contributions of this paper are as follows.
• We prove that CNN is insensitive to the relative order of

activation and pooling, which enables cross-layer coop-

erative optimization.

• We design effective methods to identify redundant mul-

tiplications and local and global addition reuses in CNN.

The proposed cross-layer optimization algorithm signifi-

cantly improves the performance of CNN.

• We design and implement a prototype MLCNN at the

register-transfer level (RTL) and evaluate its perfor-

mance using an accelerator-level cycle and energy model.

Experimental results on DenseNet, VGG, GoogLeNet

and LeNet are very promising, i.e., MLCNN achieves

a 3.2× speedup and 2.9× power consumption reduc-

tion compared with the dense CNN models (i.e., the

original CNNs without using MLCNN optimization).

Moreover, MLCNN can significantly improve the perfor-

mance of other CNN acceleration techniques. Combining

MLCNN with quantization achieves a 12.8× speedup

and 11.3× power consumption reduction compared with

dense CNNs.

The rest of the paper is organized as follows. Section II

describes the key components in CNN networks. Section III

proves the feasibility of reordering activation and pooling.

Our cross-layer cooperative CNN optimization framework and

algorithm are detailed and analyzed in Sections IV and V.

Section VI describes our MLCNN accelerator and Section VII

evaluates the performance of MLCNN. The related research

is discussed in Section VIII. Section IX concludes the paper.

II. CONVOLUTIONAL NEURAL NETWORKS

A. CNN Architectures and Key Layers

A CNN model is composed of multiple functional layers,

such as convolutional layers, activation layers, pooling layers,
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Fig. 1. The structure of convolutional layer in CNN.

Fig. 2. Comparison of the spatial dimension reduction by convolutional-
pooling CNNs and all convolutional CNNs. White pixels represent padding
areas.

and fully connected layers. Among these layers, convolutional

layers are the most computation-intensive.

The structure of a convolutional layer is depicted in Fig-

ure 1. N input feature maps with dimension (S ×C +K −
1) × (S × R + K − 1) are dynamically juxtaposed against

M N×K×K weight kernels. M three-dimensional C×R
feature maps are generated. S represents the stride size used

by a filter sliding the input feature maps. N and M denote

the number of input and output channels respectively.

An activation function in CNN is non-linear. For example,

ReLU and Sigmoid are two widely used activation functions.

A standard ReLU is expressed by yto,m,n = max (Cto,m,n, 0).
That is ReLU preserves the positive features while suppressing

negative values to zero. Unlike ReLU, Sigmoid rescales a

feature to (0, 1) with yto,m,n = 1
1+e−Cto,m,n

, where yto,m,n

denotes the output of activation and Cto,m,n is the output

from the convolutional layer. Pooling is usually incorporated

to extract new and representative information and discard

useless or disruptive details [6]. Average pooling and max

pooling are commonly used. The former employs an averaging

operation (i.e., favg(x) = 1
n

∑n
i=1 xi) to smooth a feature

map, while the latter applies a maximum operation (i.e.,

fmax(x) = max (x1, x2, . . . , xn)) to retain the maximum

value among inputs while discarding the rest.

B. All Convolutional CNN

All convolutional (All-Conv) CNN is a special type of

CNN contains convolutional layers only [7]. In All-Conv,

pooling layers are replaced by increasing the stride of the

preceding convolutional layers. Figure 2 compares the dimen-

sion variation of the conventional CNN and the All-Conv

CNN. A stride-2 convolutional layer achieves a similar spatial

dimension reduction as a convolutional layer followed by a

stride-2 pooling. In comparison, a stride-2 convolutional layer

achieves better performance, as it eliminates some floating-

point multiplications and additions. However, pooling not

only contributes to dimension reduction but also alleviates

the sensitivity of outputs to shifts and distortions [6]. The

exclusion of pooling layers loses these benefits and causes

degradation of accuracy and robustness for CNNs. We present

the accuracy results in Section III.
In this paper, we aim to accelerate CNN’s performance

and maintain the benefits brought from pooling. Moreover, we

explore pooling to further reduce unnecessary multiplications

and additions together with convolutional layers. The detail

of our cross-layer CNN optimization method is described in

Section IV.

III. ACCURACY-PRESERVING CNN LAYERS REORDERING

A. Reordering Activation and Pooling with Sensitivity Analysis
In many CNN networks, convolutional layers are followed

by activation. The non-linear nature of activation makes the

optimization of convolutional layers with other layers difficult.

Meanwhile, pooling compresses and extracts representative

features from the output of activation. It has been proved that

ReLU followed by max-pooling behaves the same as max-

pooling followed by ReLU [8]. In addition to max pooling,

average pooling is widely used. The influence of switching

activation and average pooling, however, has not been studied.
In this section, we analyze the sensitivity of model accuracy

to the placement of average pooling in CNN networks. We

reorder ReLU and average pooling layers in several widely

used CNNs and study the all-conv counterparts. We use

VGG16 [9], VGG19 [10], GoogLeNet [11] and LeNet5 [6]

to illustrate and as case studies. Results on DenseNet [12] are

presented in Section VII. The CNN models are trained using

the CIFAR-10 and CIFAR-100 datasets [13]. Table I lists the

number of convolutional layers and learnable parameters of the

CNN models. The table shows the bigger a network (i.e., from

LeNet5 to GoogLeNet) is, the more convolution operations and

parameters are used.

TABLE I
NUMBER OF CONVOLUTIONAL LAYERS AND LEARNABLE PARAMETERS IN

STUDIED CNN MODELS.

CNN models # of Convolutional Layers # of Learnable Parameters

LeNet5 1+1+1 62K
VGG16 2+2+3+3+3 14728K
VGG19 2+2+4+4+4 20040K

GoogLeNet 1+1+1+6+6+6+6+6+6+6+6+6 6166250K

After reordering the ReLU activation and average pooling

layers (i.e., average pooling followed by ReLU), we measure

the influence on models’ accuracy. Figure 3 presents the top-1

and top-5 accuracy of the reordered CNN models compared

with those of the original ones, and All-Conv [7] which

replaces pooling by the stride-2 convolutional layer. The above

accuracy is measured on the test datasets from CIFAR-10 and

CIFAR-100.
In Figure 3, the reordered, original, and All-Conv CNN

models exhibit similar top-1 and top-5 accuracy on CIFAR-10.
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Fig. 3. Influence of reordering activation and pooling layers on CNNs’ accuracy using CIFAR-100 and CIFAR-10 datasets. ReLU+AP: original CNN;
AP+ReLU: reordered CNN; All-Conv: all convolutional CNN.

Fig. 4. Analyzing the influence of different pooling functions on the accuracy
of CNNs using datasets (a) CIFAR-100 and (b) CIFAR-10.

Only LeNet-5 exhibits a little more top-1 accuracy degradation

after reordering. The more complex CNN networks are, the

better error tolerance they possess. Moreover, the figure shows

the importance of average pooling for dealing with complex

tasks on CIFAR-100. We can see the reordered network

is superior to All-Conv, achieving higher top-1 and top-5

accuracy. Compared with the original CNN (ReLU-AP), the

reordered GoogLeNet achieves about 0.5% improvement of

the top-1 accuracy. A similar performance gain is observed

in reordered VGG16 and VGG19. The more complex a CNN

model is, the less sensitive the reordered CNN is in terms of

model accuracy. These results motivate us to explore CNN

acceleration by means of layer reordering. We also find that

some deep CNNs, such as DenseNet and PNASNet [12],

[14], already use a reordered CNN architecture, which further

proves the feasibility of switching average pooling and ReLU.

Overall, a marginal accuracy variation is observed by moving

ReLU after average pooling, and pooling plays a critical role

when handling complex tasks.

B. Average Pooling and Max Pooling

Pooling helps reduce a model’s size and reduce over-fitting

for CNNs. The main advantage of average pooling over max

pooling is that average pooling does not remove information

from input feature maps, while max-pooling keeps only the

most distinct features and ignores the rest. We note some

CNNs use max pooling, such as [15], [16]. We study the

influence of different pooling functions (average and max)

on CNNs’ accuracy. Figure 4 plots the results. We can see

average pooling outperforms max-pooling in most CNNs,

which indicates it is beneficial to replace max-pooling with

average pooling. Our MLCNN exploits average pooling to

preserve useful information from feature maps.

IV. CROSS-LAYER CNN OPTIMIZATION

MLCNN incorporates multi-layer cooperation and cross-

layer optimization to effectively speed up CNNs. Specifically,

we explore redundant multiplication elimination (RME), local
addition reuse (LAR), and global addition reuse (GAR) across

multiple layers to reduce expensive floating-point operations.

To ease our discussion, we use the following symbols: K and

D denote filter’s and input’s spatial dimensions, respectively, S
is the step size, I represents an input feature map, W refers to

the weight filter, P is the pooling output, and N is the number

of elements in a row of a pooling feature map. Subscripts to,

ti, x, and y denote indexes.

Layer-Reordered CNNs. As discussed in Section III, the

relative order of activation and pooling has a marginal effect on

the accuracy of a CNN model. By reordering these two layers,

we generate an equivalent CNN network with convolutional,

pooling, and activation layers. The reordered, equivalent net-

work is used for cross-layer optimization.

Figure 5(a) presents an illustrating example. To facilitate

discussion, we only present calculations of the first output

feature from pooling P00. P denotes average pooling (AP)

which is connected to a 2×2 neighborhood in the correspond-

ing output feature map. The 2×2 neighborhood, i.e., C00 (-

0.11), C01 (-0.12), C10 (-0.15), and C11 (-0.13), is averaged.

Multiplication and accumulation (MAC) (denoted by M and A

in the figure) calculates a convolutional output feature Cx,y .

In this example, a 2 × 2 weight filter slides across a 5 × 5

input feature map from the top left corner with a unit stride.

In the beginning, the 2 × 2 weight filter covers the upper left

area of the input, and after a MAC operation, C00 is produced.

Then, the weight filter moves right by one column and starts

a new MAC operation to calculate C01. Sliding downwards

by one row followed by a MAC operation produces C10.

After calculating C10, the weight filter slides right by one

row followed by a MAC operation to determine C11. The

output from MAC is adjusted by adding a bias. In total, 16

multiplications and additions are performed to process the

input to pooling.

Identifying Redundant Multiplications and RME Opti-
mization. After reordering average pooling to follow a convo-

lutional layer, we examine MAC operations to find out whether

some can be eliminated. As the weights used to calculate

convolutional output features are the same, they can be fac-
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Fig. 5. An example illustrating the identification of redundant multiplications. A 5X5 input feature map is processed by a 2X2 filter. (a) Operations in the
original CNN: pooling for generating feature P00. (b) Weight factorization in calculating P00.

tored out. After factorization, the multiplication of input and

weight can be replaced by the accumulation of the inputs first.

This can help eliminate many multiplications from the original

CNN. As shown in Figure 5(b), four multiplications are used

to calculate a pooling output feature after weight factorization,

whereas in the original CNN, 16 multiplications are involved

as shown in Figure 5(a). That is 75% of multiplications can

be eliminated. We find that the number of multiplications

saved in MLCNN is proportional to the pooling’s filter size.

Specifically, K−1
K percent of multiplications can be eliminated,

where K denotes the pooling’s filter size. The value of P00

is the same, and thus the functional correctness of CNN is

preserved.

Identifying Addition Reuses and LAR-GAR Optimiza-
tion. After removing redundant multiplications, the CNN

network still contains many additions. Next, we optimize those

additions across layers to further improve performance and

energy efficiency.

1) Local Addition Reuse (LAR). In the fused convolutional-

pooling layers, we find that the additions for adjacent input

features in the same row or column are performed more than

once and their results can be reused. We refer to the additions

whose results can be shared in calculating a pooling output

feature as local addition reuse. For example, in Figure 6(a),

the additions between two inputs in the same column, i.e.,

I01 + I11, I02 + I12, ..., I44 + I54, can be reused. Row-based

LAR works in a similar way except that it retains the reused

results from two elements in the same row.

To calculate a pooling output feature, K2 small accumu-

lations (denoted by “A” in a square in Figure 6) and one

major accumulation (denoted by “A” in a circle) are performed

with 3 additions for each small accumulation and K2 − 1
additions for the major accumulation (without bias addition).

In the original convolutional layer, there are 4×K2 − 1
additions in total. After applying local addition reuses, only

K× (2×K+ S) +K2 − 1 additions remain. The addition

reduction rate is

P =
K × (K − S)

4×K2 − 1
. (1)

Algorithm 1: Cross-layer cooperative CNN optimiza-

tion algorithm.
Input : I=input feature map; W=weight filter;
Output : O=output feature map;
Parameters : N=# of channels for I; M=# of channels for O; R’=# of

rows for I; C’=# of columns for I; R=# of rows for O;
C=# of columns for O;
K= # of rows/columns for W;

for ti = 0 : N-1 do
for i = 0 : R’-1 do

for j = 0 : C’-1 do
HAti,i,j = Iti,i,j + Iti,i+1,j ; // half addition

end
end

end
for to = 0 : M-1 do

for ti = 0 : N-1 do
for r = 0 : K-2 do

for c = 0 : C’-1 do
FAti,r,c

= HAti,r,c
+ HAti,r,c+1; // full

addition
end

end
for r = 0 : R-1 do

for c = 0: K-2 do
FAti,K+r−1,c =
HAti,K+r−1,c + HAti,K+r−1,c+1;

end
for c = 0 : C-1 do

FAti,K+r−1,K+c−1 =
HAti,K+r−1,K+c−1 + HAti,K+r−1,K+c;

for i = 0 : K-1 do
for j = 0 : K-1 do

Oto,r,c+ = Wto,ti,i,j × FAti,i+r,j+c;
end

end
end

end
end

end

2) Global Addition Reuse (GAR). When calculating different

pooling output features, additions on the same portion of input

features/pixels may be performed multiple times. We refer to

those cases where addition results can be shared in calculating

multiple pooling output features as global addition reuses.

Figure 6(b) shows an example of row-based GAR. The “row”

here refers to a row of the output feature map from pooling

instead of the activation feature map used in the LAR design.

In Figure 6, the addition results from calculating P00, i.e.,
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Fig. 6. Local addition reuses (LARs) and global addition reuses (GARs). The cross marks in (a) show LARs and the highlighted blocks in (b) show GARs.

I02 + I12 + I03 + I13, I03 + I13 + I04 + I14, I04 + I14 + I05 +
I15, ..., I44 + I54 + I45 + I55, can be reused to calculate P01.

We use a row in the output matrix from pooling as the unit to

illustrate GAR and calculate the addition reduction rate. There

are also column-based GARs, which refer to the additions that

are shared in calculating the output features from pooling in

the same column. More computations can be eliminated by

combining the row-based and column-based GARs.

Recall that 3×K2 +K2 − 1 additions are used to calcu-

late an output feature from pooling. N× (3×K2 +K2 − 1)
additions are performed to produce a row of output features.

GAR becomes more beneficial when small accumulations

than major accumulations are used. The reusable small ac-

cumulations get results directly from the previous additions.

Consequently, only K× (D− S) small accumulations are

left. Since there are 3 additions in each small accumulation,

the number of additions can be reduced to K× (D− S)× 3.

Taking the major accumulations into account, there are

K× (D− S)× 3+N× (K2 − 1) additions in total. The

addition reduction rate attributed to GARs is

P =
3×N ×K2 − 3×K × (D − S)

N × (3×K2 +K2 − 1)
. (2)

Cross-Layer Cooperative CNN Optimization Algorithm.

We design a cross-layer cooperative optimization algorithm

to explore redundant multiplication elimination (RME), local

addition reuse (LAR), and global addition reuse (GAR) to

speed up deep learning computation. Algorithm 1 presents the

pseudo-code. The convolutional-pooling layers run in three

major steps: half addition, full addition, and MAC. A half

addition adds two adjacent elements in the same column. A

full addition exploits LAR to calculate the accumulation result,

i.e., I Acc in Equation (3). GAR is used by MAC to produce

the final output.

Pto,x,y = Relu

(∑K−1
i=0

∑K−1
j=0

∑N−1
ti=0 wto,ti,i,j × I Acc

4.0
+ Bto

)
. (3)

V. PERFORMANCE ANALYSIS OF MLCNN

As discussed in Section IV, redundant multiplication elimi-

nation (RME) can reduce K−1
K (percentage) of multiplications

in convolutional-pooling layers, where K denotes the filter

size in pooling layers. The performance benefit from addition

reuses (i.e., LAR and GAR) is influenced by several factors,

including filter size, step size, and input dimension. In this

section, we analyze the performance gain brought by LAR

and GAR. The following symbols are used in our discussion:

K (the spatial dimension of a filter), S (step size), D (the

dimension of an input feature map), and N (the number of

elements in a row of a pooling feature map).

TABLE II
IMPACT OF FILTER SIZE ON LOCAL ADDITION REUSES (LAR) IN

CALCULATING POOLING OUTPUT FEATURES. A UNIT STRIDE IS USED.

Filter
size

#of additions w/o
LAR

#of additions w/
LAR

Addition reduction
rate (%)

11 × 11 483 373 22.8
9 × 9 323 251 22.3
7 × 7 195 153 21.5
5 × 5 99 79 20.2
3 × 3 35 29 17.1
2 × 2 15 13 13.3

Local addition reuses: The influence of filter size and step

size on the effectiveness of addition reuses is presented in

Tables II and III, respectively. In Table II, we can see the

number of additions reduced by LAR closely depending on

the filter size. The lowest reduction rate occurs when a 2 × 2

filter is used. A larger filter leads to more additions reused.

Does a larger filter always result in more addition reuses? To

answer this question, we formally analyze the relation between

filter size and addition reuses. The addition reduction rate P
under a unit stride can be determined as follows.

P =
K × (K − 1)

4×K2 − 1
. (4)

Equation (4) shows a positive linear relation between P and

the filter size at the beginning. The rate flats as the filter size

increase further with P approaching 25%.

Then, we fix the filter size (e.g., 11 × 11) and vary the

step size. We choose 11× 11 as it is commonly used in CNN

models (e.g., AlexNet [17]) and it leads to the highest addition

reduction rate (shown in Table II). The influence of step size

on addition reuses is presented in Table III. From the table,

we find the addition reduction rate decreases almost linearly

as the step size increases. The greatest addition reduction is

achieved when a unit step size is used, and the performance
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TABLE III
IMPACT OF STEP SIZE ON LOCAL ADDITION REUSES (LAR) IN

CALCULATING POOLING OUTPUT FEATURES.

Step size #of additions w/o
LAR

#of additions w/
LAR

Addition reduction
rate (%)

1 483 373 22.8
2 483 384 20.5
3 483 395 18.2
4 483 406 15.9
5 483 417 13.7
6 483 428 11.4
... ... ... ...
11 483 483 0

gain drops when the step size becomes greater than the filter

size.

Global addition reuses: We also analyze the effectiveness

of GAR. A unit stride and a 28 × 28 input feature map are

studied. Table IV shows our analytical results. We observe

the addition reduction rate increases and approaches the apex

where a 15 × 15 filter is used. Then the effectiveness of

addition reuses drops as the filter size goes up further.

TABLE IV
IMPACT OF FILTER SIZE ON GLOBAL ADDITION REUSES (GAR) IN

CALCULATING A ROW OF POOLING OUTPUT. THE RESULTS ARE BASED ON

A 28× 28 INPUT FEATURE MAP AND A UNIT STRIDE.

Filter
size

#of additions w/o
GAR

#of additions w/
GAR

Addition reduction
rate (%)

3 × 3 455 347 23.7
5 × 5 1188 693 41.7

13 × 13 5400 2397 55.6
15 × 15 6293 2783 55.8
17 × 17 6930 3105 55.2

The effectiveness of GAR is also affected by the step size.

In Table V, we find the smallest step size leads to the highest

global addition reuse rate (i.e., 55.6%). The effectiveness of

GAR drops dramatically as the step size increases.

TABLE V
IMPACT OF STEP SIZE ON THE PERFORMANCE GAIN FROM GAR IN

CALCULATING A ROW OF THE POOLING OUTPUT. THE RESULTS ARE

BASED ON A 13× 13 FILTER AND A 28× 28 INPUT FEATURE MAP.

step size #of additions w/o
GAR

#of additions w/
GAR

Addition reduction
rate (%)

1 5400 2397 55.6
3 2025 1479 27.0
5 1350 1233 8.7

Furthermore, we investigate the relationship between input

dimension and the effectiveness of addition reuse. A 13× 13
filter and a unit stride are used. Table VI lists the results. We

observe a positive correlation between the input dimension and

the addition reduction rate. We further formulate the relation

between them. To calculate a row of the pooling output without

GAR, (4×K2−1)×(D−K+1
2 ) additions are performed. When

K = 13, the number of additions is 337.5×D− 4050. When

GAR is applied, the number drops to (4 ×K2 − 1) + ((6 ×

K +K2 − 1)× (D−K+1
2 − 1)). It is 123×D − 1047, when

K = 13. Therefore, the addition reduction rate P equals

P =
214.5×D − 3003

337.5×D − 4050
. (5)

As D increases, P approaches 63.6%.

lim
D→∞

214.5×D − 3003

337.5×D − 4050
= 0.636. (6)

TABLE VI
IMPACT OF INPUT DIMENSION ON THE PERFORMANCE GAIN FROM GAR

IN CALCULATING A ROW OF THE POOLING OUTPUT.

input
dim

#of additions w/o
GAR

#of additions w/
GAR

Addition reduction
rate (%)

28X28 5400 2397 55.6
32X32 6750 2889 57.2

224X224 71550 26505 63.0

When both GAR and LAR are applied, the additions in

small accumulations can be reused, which causes the number

of additions to drop from (4×K2 − 1) to (K2 − 1).

lim
K→∞

3×K2

4×K2 − 1
= 0.75. (7)

That is up to 75% of additions can be saved.

VI. MLCNN ACCELERATOR

We qualitatively demonstrate the effectiveness of MLCNN

for CNN optimization. However, its potential cannot be fully

exploited without an efficient computing platform that pro-

vides high-throughput data communication and computation.

As such, we develop a domain-specific accelerator architecture

to support MLCNN.

A. Architectural Design of MLCNN Accelerator

Deep learning applications need to process large columns

of data. To achieve high-throughput dataflow, we design an

addition reuse (AR) unit and exploit shift registers in MAC

slices to perform LAR and GAR optimization. Addition reuses

also help prevent unnecessary data movement. To reduce on-

off chip data communications, our MLCNN accelerator adds

two adjacent features in the same column and transfers the

results (instead of the original data) to DRAM. We also de-

velop reconfigurable AR units, MAC slices, and preprocessing

functions to execute the fused convolutional-pooling layers

and those convolutional layers which are not followed by

pooling. In this section, we present the architecture and design

of the MLCNN accelerator and then describe the dataflow

design, followed by explaining how to leverage LAR and

GAR, preprocessing, and reconfigurability of the accelerator

to speed up CNN execution.

Architecture of the MLCNN Accelerator. The MLCNN

accelerator is tailored to accelerate CNNs. Figure 7 shows

its architecture and major components. The execution of the

MLCNN accelerator is managed by a controller. Processing

elements (PEs) are designed to perform 32-bit floating-point or

8-bit fixed-point multiplications. Accordingly, the addition unit
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Fig. 7. MLCNN acceleration. (a) Overall architecture. (b) Block diagrams of the addition reuse (AR) unit and multiplication and accumulation (MAC) slices.

Fig. 8. Dataflow design for MLCNN ac-
celerator.

Fig. 9. Preprocessing.

adds two 32-bit floating-point or 8-bit fixed-point operands.

LAR and GAR are performed by AR units and MAC slices.

The input data and weights are stored in a multi-bank input-
weight buffer which aims to hide the latency in the on-off chip

data communication. The output buffer, on the other hand, is

responsible for data accumulation in addition to storing results.

For fused convolutional-pooling layers, two adjacent outputs

in the same column are added in preprocessing before the

result is sent to the off-chip DRAM.

Dataflow Design. A weight-input reuse dataflow is designed

to take advantage of the extensive reuse of weight operands

and the AR unit for input reuses. Weights are fetched from

PE’s registers and reused for different inputs. Weight is not

replaced from a register until it has been multiplied by all

inputs.

Moreover, we explore loop tiling to place a chunk of

data in the buffer and leverage temporal locality to improve

performance with a limited buffer space. Four major param-

eters are used in loop tiling for a convolutional layer, i.e.,

< Tm, Tn, Tr, Tc > [18]. For an input feature map with M
channels and an output feature map with N channels, the input

and output feature maps are partitioned into M
Tm

and N
Tn

tiles,

respectively. Accordingly, R rows and C columns in the output

feature map are tiled into R
Tr

and C
Tc

chunks.

Figure 8 illustrates the dataflow with loop tiling. Tm, Tn, Tr

and Tc are halves of the values of M , N , R, and C,

respectively. Two tiles in different channels are processed con-

secutively in order to reduce the number of outputs temporarily

buffered, e.g., I1 → I2, I3 → I4 shown in the figure. In the

beginning, a weight chunk w1 is loaded into PE’s registers,

and data from the input chunk I1 is added in the AR unit and

sent to the PE. w1 can be replaced in the register after it is

multiplied with all the inputs in I1. This process repeats for

Fig. 10. (a) Leveraging LAR on the MLCNN accelerator. (b) Part of the
preprocessing.

Fig. 11. Design of MAC slices for performing GAR.

the weight chunk w2 and input chunk I2. I3 is processed after

I2 (instead of I4) is multiplied by w2. The preceding steps

repeat until the output is produced.

AR Unit. An AR block consists of two addition units,

four registers, two demultiplexers, several multiplexers, and

FIFOs. Two small FIFOs, i.e., the leftmost ones shown in

Figure 7(b), are used for LAR optimization. Two operands

are sent to the AR unit every clock cycle at runtime. The

operand that has an odd column index is stored in the small

FIFO, that is the top one in the figure. The other operand is

stored in the bottom FIFO, and then moved from the bottom

register to the top one. One operand is shared by the two

addition units, which corresponds to the column-based LAR.

Figure 10 illustrates how LAR is conducted on the MLCNN

accelerator, where L denotes the input addition result which

comes from preprocessing. In the figure, we can see data

sharing between registers and data reuses are achieved from

using shift registers.

MAC Slices. The outputs of the two addition units in LAR

are cached in the rightmost FIFOs before being fed to the
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Fig. 12. Accuracy comparison between MLCNN and quantized MLCNN on
CIFAR-100 (C100) and CIFAR-10 (C10) datasets.

MAC slices for GAR optimization. With two FIFOs in an

MAC slice, the number of FIFOs is twice the number of MAC

slices. When they are full, the top FIFOs will not accept data

from the addition units until the computation for the next row

in the output feature map is initiated. In the MAC slice, two

shift register sets are used for GAR.

Figure 11 presents the data and control flow in a MAC

slice. G denotes the accumulation result from the inputs, i.e.,

G00 = I00 + I01 + I10 + I11. Weights and accumulation

results are processed/computed in PE. To multiply 32-bit

operands, we develop a PE with a three-stage pipeline [19].

We use a Wallace Tree multiplier to perform 8-bit fixed-point

multiplications [20]. An adder tree is employed to produce the

final output.

Preprocessing. Before being transferred to the off-chip

DRAM, data is pre-processed as shown in Figure 9. We use

a selector S1 to control the execution mode of a layer. When

S1 = 0, a fused convolutional-pooling layer is executed, while

S1 = 1 leads to the regular mode (i.e., original convolutional

and pooling layers). When S1 = 0, I0 is selected, otherwise I1
is used. I0 is divided by four by shifting right to generate the

pooling result, as shown in Figure 9. It is adjusted by adding a

bias, followed by passing through an activation function. The

selector S2 is governed by the incoming layer. For a fused

layer, O1 is selected and S2 = 1, whereas a regular layer has

S2 = 0 (i.e., O0 dominates).

Reconfigurability. In Figure 7(b), the dashed lines show the

execution of the traditional convolutional layer. This execution

path is similar to those in state-of-the-art CNN accelerators.

Input features are sent to PE without addition, followed by a

weight-input multiplication. FIFOs are used to take advantage

of CNN’s input reuse opportunities. The solid lines show the

execution of fused convolutional-pooling layers. Additional

components (including registers, FIFOs, AR units, and MAC

slices) are provided in our design to speed up RME, LAR and

GAR optimizations. Preprocessing supports both the fused and

regular execution modes. The selectors S1 and S2 determine

which execution mode MLCNN is currently in.

VII. PERFORMANCE EVALUATION OF MLCNN

We evaluate the performance of MLCNN in a PyTorch [21]

environment using four representative CNNs, i.e., DenseNet,

VGG16, GoogLeNet, and LeNet5 on CIFAR-100 [13]. Twelve

layers in GoogLeNet and three layers in the transition blocks

TABLE VII
CONFIGURATIONS OF ACCELERATORS IN EXPERIMENTS.

DCNN
FP32

MLCNN
FP32

MLCNN
FP16

MLCNN
INT8

#MAC Slices 32 32 64 128
Bitwidth 32 32 16 8

area (mm2) 1.52 1.52 1.52 1.52
On-chip memory (kB) 134 134 134 134

in DenseNet can benefit from MLCNN’s optimization. VGG-

16 has five convolutional layers that can be optimized with

pooling layers. In LeNet-5, two convolutional layers benefit

from MLCNN’s optimization while others are not affected

since LeNet-5 has two pooling layers.

We have implemented an MLCNN accelerator and synthe-

sized it at the register-transfer level (RTL) written in Verilog.

We use Design Compiler with the 45-nm TSMC library to

analyze the area of MAC Slices under different designs.

We use CACTI [22] to measure the power consumption

and Xilinx Vivado [34] to measure the performance of our

MLCNN accelerator. Table VII lists the configuration of our

MLCNN accelerator employed in the experiments. MLCNN

and baseline DCNN have the same amount of on-chip memory

which caches the input and weights for reducing the off-

chip memory access latency. For fair comparisons, we use

the same number of MAC Slices and the same area budget

(1.52mm2) for MLCNN and the baseline DCNN. We evaluate

the performance of MLCNN in terms of execution time,

floating-point operation reduction, and energy efficiency.

A. Accuracy of MLCNN

In the first set of experiments, we aim to understand to

what extent the design of MLCNN influences the accuracy of

object classification compared to the original DCNN. As the

optimization methods in MLCNN are complementary to the

existing CNN acceleration techniques, we combine MLCNN

with quantization (a widely used CNN acceleration approach)

in addition to the standalone MLCNN.

We perform input/activation and weight quantization

adapted from DoReFa-Net [23]. Both weight and input are

quantized based on an extensive straight-through estimator

(STE) method [24], expressed as

ro = quantizek(ri) =
1

2k − 1
round((2k − 1)ri), (8)

where a real number ri in [0, 1] is quantized to k-bit output

ro in [0, 1].

For weight quantization, as weights may be positive or

negative, we use the following method.

ro = 2quantizek(
tanh(ri)

2max(|tanh(ri)|) +
1

2
)− 1, (9)

where tanh rescales the range of weights to [-1, 1] before being

quantized to k-bit, and
tanh(ri)

2max(|tanh(ri)|) assures the value is in

[0, 1] (the maximum operation is performed on all the weights
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Fig. 13. Speedup of MLCNN (FP32, FP16 and INT8) compared with DCNNS: DenseNet, VGG16, GoogLeNet, and LeNet5. “C” denotes a convolutional
layer.

Fig. 14. Percentage of FLOPs reduced by MLCNN.“C” denotes a convolu-
tional layer in a CNN model.

of that layer). Function quantizek() quantizes its input to a k-

bit fixed-point value in [0, 1]. An affine transform then scales

the k-bit weight back to [-1, 1].

For input quantization, the extensive STE method, i.e.,

Equation (8), is used on input layers after ReLU, and the

extended method, i.e., Equation (9), is used on the inputs

without ReLU before them.

Figure 12 plots the measured accuracy of DCNN and ML-

CNN on four CNN models (DenseNet, VGG16, GoogLeNet,

and LeNet5). A static quantization scheme, DoReFa-Net [23],

is also used with MLCNN. As can be seen, although LeNet5

gives a 1.5% accuracy degradation, the MLCNN optimization

on GoogLeNet results in around 0.5% accuracy elevation

compared with DCNN. It is rational as complex CNNs

will have more error tolerance. MLCNN and DCNN reach

similar accuracy on CIFAR-10 and CIFAR-100 for FP32,

FP16, and INT8. In comparison with MLCNN, the most

accuracy degradation of quantized MLCNN (8-bit) comes with

GoogLeNet on CIFAR-100, which is less than 0.8%. VGG16,

however, has about a 0.5% accuracy elevation on CIFAR-100.

Overall, MLCNN, DCNN, and quantized MLCNN (8-bit) are

equivalent in terms of accuracy.

B. CNN Acceleration Performance by MLCNN

To quantify the performance improvement brought by ML-

CNN, we measure the execution time of CNNs. For fair

comparisons, the same area budget (1.52mm2) and on-chip

memory is applied to the quantized MLCNN and the quantized

DoReFaNet on 8-bit operands. Figure 13 presents the perfor-

mance of MLCNN (FP32 and FP16) and quantized MLCNN

(INT8) compared with the baseline DCNNs. The results show

MLCNN achieves about 3.2× performance improvement on

average for 32-bit floating-point operations. MLCNN FP16

achieves a 6.2× speedup compared with DCNNs. Moreover,

the quantized MLCNN (INT8) has a 12.8× performance

gain. Given the same area budget, more MAC slices are

implemented under a lower precision as shown in Table VII.

The forward propagation convolutional layer (C9) has the

highest performance gain in GoogLeNet (9.63×, 19.2× and

42.3× for FP32 MLCNN, FP16 MLCNN and quantized

MLCNN, respectively). Overall, GoogLeNet benefits the most

performance improvement than other CNN models explored

in this work. As mentioned in section IV, the percentage of

multiplications saved is proportional to the pooling filter size.

Therefore, it is rational that GoogLeNet achieves the most

performance gain with the highest pooling filer size (8 × 8).

The significant reduction of the execution time comes from the

elimination and reuse of redundant floating-point operations

including multiplications and additions.

C. Acceleration of Floating-Point Computations

Floating-point multiplications and additions are compute-

intensive and power-hungry. We measure the number of

floating-point operations saved by MLCNN in DenseNet,

VGG-16, GoogLeNet, and LeNet-5. Figure 14 shows the

results. There are two average pooling layers after the first

two convolutional layers in LeNet-5. MLCNN optimizes the

first and second convolutional layers. For VGG-16, five lay-

ers can be fused and cross-optimized, i.e., Layers 1 to 5

which are convolutional layers. Twelve convolutional layers

in GoogLeNet and three in DenseNet benefit from MLCNN’s

optimization. From the figure, we can see RME contributes

to up to 98% multiplication reduction. The percentage of

multiplication eliminated is K−1
K , where K denotes the filter

size in pooling. Furthermore, different layers exhibit varying

addition reduction rates. Convolutional layer 2 in LeNet-5

shows the greatest addition reduction, 51.52%. A 1 × 1 filter

together with a 1 × 1 output feature map disables addition

reuse in the design of MLCNN. As a result, no addition is

eliminated in such layers.

Overall, DenseNet, VGG16, and LeNet-5 save 75% of mul-

tiplications. For GoogLeNet, up to 98% of multiplications can

be eliminated. LeNet5 exhibits the highest addition reduction

rate, i.e., 51.52%, whereas no addition is reused in DenseNet.

A small dimension filter used in DenseNet, VGG16, and

GoogLeNet (i.e., 3 × 3 or 1 × 1) results in a relatively less

addition reductions compared to LeNet5 (5 × 5 filter).

The performance benefit from addition reuses is influenced

by the filter size, step size, and input dimension (See Sec-

tion V). Figure 14 shows the average-case results using several
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Fig. 15. Breakdown of energy consumption by MLCNN (FP32, FP16 and INT8) compared with DCNNS: DenseNet, VGG16, GoogLeNet, and LeNet5.“C”
denotes a convolutional layer.

real-world CNN models. In the best case, 75% of additions

can be reduced by leveraging local addition reuses (LARs) and

global addition reuses (GARs) when the filter dimension (K)

approaches infinity in Equation (7). In a real implementation,

on the other hand, K is usually a small number. As a result, the

CNN models that we evaluate on CIFAR-100 achieve 51.5%

or less addition reduction.

D. Energy Efficiency
Machine learning workloads are compute-intensive and

power-hungry. We measure energy saving by using MLCNN.

Figure 15 plots the energy consumption by MLCNN compared

with DCNNs on FPGA measured by CACTI [22]. In the

figure, we can see MLCNN consumes a less amount of energy

under all precision modes (FP32 MLCNN, FP16 MLCNN and

INT8 quantized MLCNN). On average, MLCNN achieves a

2.9× energy efficiency on FP32 operations compared with

DCNN. For FP16 MLCNN, a 5.9× energy efficiency is

obtained. Moreover, the quantized MLCNN (INT8) is 11.3×
energy-efficient than DCNNs. In particular, the Convolutional

Layer #9 in GoogLeNet achieves the greatest energy effi-

ciency, i.e., over 9.0× by FP32 MLCNN, 17.5× by FP16

MLCNN and 33.6× by INT8 quantized MLCNN compared

with DCNN, among all the layers.
To gain a deeper understanding of MLCNN’s energy effi-

ciency, we further study the energy consumption by the three

major components, that is DRAM, Buffer (input, weight, and

output buffer), and processing cores (MAC). As shown in

Figure 15, all these components (i.e., DRAM, Buffer, and

MAC) contribute to the energy reduction on FP32 MLCNN,

FP16 MLCNN, and quantized (INT8) MLCNN. Specifically,

DRAM, Buffer, and MAC contribute to reducing the execution

time which dominates the static energy use. The dynamic

energy is mainly saved by the Buffer and MAC. Data reuse

by MLCNN eliminates redundant data accesses to the Buffer.

Moreover, the number of multiplications and additions in

MAC is significantly reduced by MLCNN.

VIII. RELATED WORK

CNNs are incorporating more layers to extract features and

build accurate models, which slows down both model training

and inference. To speed up CNNs, researchers have proposed

optimization techniques and accelerators.

GPU, ASIC, and FPGA are the major CNN accelerators.

GPU excels in parallel computing. However, the prohibitive

power consumption makes GPU less preferable in terms of

performance per watt. Custom ASICs, such as Tensor Pro-

cessing Unit (TPU) [3], were developed. TPU is 15×-30×
faster than GPU and CPU when running CNNs. In addition,

NVIDIA developed tensor cores [25] that feature efficient

multi-precision matrix multiplications for CNNs. FPGA-based

accelerators attract new attention. For example, a tiling and

unrolling-based CNN execution framework on FPGA was

proposed, which balances on-chip computational resource and

memory bandwidth [26]. Moreover, Alwani et al. presented

a fused-layer CNN that fully utilizes the memory space to

mitigate data transfer overhead [27]. They focused on data

reuses between layers to reduce DRAM accesses, which did

not speed up multiplication and addition operations in convolu-

tional layers. Our MLCNN targets multiplication and addition

optimization in convolutional layers. The experimental results

show MLCNN (achieving a 3.2X speedup) is more effective

than fused layers (i.e., 1.5X for the first 2 convolutional layers

in AlexNet).

Among the software solutions, sparsity has been extensively

studied [28]. Synapses pruning can result in 10× data re-

duction, speeding up training and inference [29]. Dataflow

optimization has been explored to accelerate CNN applica-

tions. For example, Eyeriss [30] provides a dataflow taxonomy

and row-stationary dataflow. In [31], a heterogeneous dataflow

accelerator is proposed for convolutional layers. Moreover,

the error tolerance property of CNNs enables low-precision

calculations. Han et al. [32] achieved a 35× weight size

reduction for AlexNet. Hegde et al. [33] proposed a weight

repetition framework that explores the low-precision repre-

sentations of weights for acceleration. MLCNN optimizes

expensive multiplications and additions across multiple layers

in CNNs, which is complementary to the preceding techniques.

Daultani et al. [8] reordered max pooling and ReLU, which

could reduce some binary max operations. Specifically, they

targeted the max(a, b) function. It worked as follows. In a tra-
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ditional CNN with convolution-ReLU-pooling layers, assume

the dimension of a feature map output from the convolutional

layer is 3×3. Then, ReLU carries out 9 binary max operations.

With a 2×2 pooling filter, there are 12 binary max operations

in the max-pooling layer. In total, 21 binary max operations are

performed. After reordering max-pooling and ReLU, ReLU

conducts 4 binary max operations and max-pooling still needs

12 binary max. The overall number of binary max operations

is reduced from 21 to 16 (i.e., a 23.8% reduction). However,

as binary max is a light-weight operation, which accounts

for only 4% of execution time compared with over 90%

of the time by run convolutional layers [35], its overall

speedup was limited, that is around 1.03× [8]. Floating-point

multiplications and additions in convolutional layers involve

heavy computation. However, they were untouched in [8].

In contrast, our MLCNN targets directly the compute-

intensive convolutional layers by co-optimizing the convo-

lutional layer and pooling layer. Specifically, we identify

redundant multiplications and local and global addition reuses.

Up to 75% of floating-point multiplications and additions are

reduced and our performance improvement is significant, i.e.,

a 3.2× speedup.

IX. CONCLUSIONS

In this paper, we present MLCNN which speeds up deep

learning applications and develop an efficient CNN accelerator.

We design a cross-layer cooperative optimization method to

achieve redundant multiplication elimination, local addition

reuse, and global addition reuse. Both statistical analysis and

experimental results show MLCNN can significantly improve

the performance and reduces power consumption for deep

learning, which makes MLCNN a promising solution for high-

performance and low-power deep learning applications and

systems. We present the results on DenseNet which includes

bypass connections between non-adjacent convolutional lay-

ers. MLCNN can also be applied to ResNet. The convolutional

layers with pooling in ResNet-18 can benefit from MLCNN

with layer reordering and cross-layer optimization.

In our future research, we plan to integrate MLCNN with

the latest CNN networks and leverage our optimization method

to speed up other deep learning technologies, such as graph

neural networks and recurrent neural networks.
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