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Abstract—Perception of obstacles remains a critical safety
concern for autonomous vehicles. Real-world collisions have
shown that the autonomy faults leading to fatal collisions origi-
nate from obstacle existence detection. Open source autonomous
driving implementations show a perception pipeline with complex
interdependent Deep Neural Networks. These networks are not
fully verifiable, making them unsuitable for safety-critical tasks.

In this work, we present a safety verification of an existing
LiDAR based classical obstacle detection algorithm. We establish
strict bounds on the capabilities of this obstacle detection
algorithm. Given safety standards, such bounds allow for de-
termining LiDAR sensor properties that would reliably satisfy
the standards. Such analysis has as yet been unattainable for
neural network based perception systems. We provide a rigorous
analysis of the obstacle detection system with empirical results
based on real-world sensor data.

Index Terms—Autonomous vehicles, Vehicle safety, Object
detection

I. INTRODUCTION

Autonomous Vehicles (AV) will be among the most sig-

nificant technological achievements of current times, with the

potential to save and improve lives [1], [2]. While these great

benefits should exist in the future, it is unclear at what point

AV can be considered safer than the human-driven vehicles [3].

Evidence of the imperfections of current AV is the various

crashes and fatalities that have been attributed, at least in part,

to the autonomous control of involved vehicles [4]–[19].

Neural networks and artificial intelligence have enabled ca-

pabilities in cyber-physical systems that might have remained

unachievable otherwise. Deep Neural Networks (DNN) for

object detection, classification, and predictive tracking, are

crucial for perceiving an AV’s environment in real-time and

planning complex maneuvers an AV must execute. But these

technologies are inherently unverifiable, i.e., incapable of

being verified [20]–[22] and have tail issues that lead to, as yet

unsolvable, safety concerns [23]–[29]. Safety-critical software

are required to be analyzable and verifiable [30], [31], a role

DNN solutions are not yet ready to fulfill [32]–[34].

The impasse caused by the necessity of DNN solutions to

enable AV’s mission capabilities and their unsuitability for

safety-critical tasks can be resolved by decoupling mission

and safety requirements of tasks. The need for clearly defined

safety requirements for AV has long been acknowledged [21].

The disassociated fulfillment of safety and mission require-

ments has been successful in system architectures like Sim-

plex [35], [36], leading to systems that work with high perfor-

mance in typical cases but provide verifiable safe behavior in

safety-critical conditions. But thus far, such a separation has

not been achieved in AV.
In this work, we lay the foundation for decoupling of safety

and mission responsibilities for AV. We describe a minimal set

of requirements for safety-critical perception with a focus on

obstacle existence detection in Section IV. Unlike the mission-

critical requirement of perceiving obstacles and predicting

their trajectories for complex maneuvers planning, the safety-

critical requirement for collision avoidance is to reliably detect

the existence of obstacles that the AV may collide with. The

safety-critical obstacle existence detection can then be used in

various ways, like to detect and correct faults in the mission

critical perception systems, fused as an ensemble [37], [38],

or make control decisions like brake to stop if all else fails.
In the absence of verifiable DNN based solutions, we turn to

classical obstacle detection algorithms, that are verifiable, i.e.,

capable of being fully analyzed and verified, to determine their

ability to fulfill the safety-critical requirements. Traditional

LiDAR based obstacle detection algorithms [39], based on

geometric properties, are excellent candidates for verifiable

safety-critical obstacle detection. LiDAR sensors have shown

incredible promises for their use in autonomous driving [40].

This has, in turn, accelerated the improvements in LiDAR

sensor technology, increasing the range, scanning frequency,

and resolution of the sensor [41]. LiDAR sensors are also

superior to stereo cameras for 3D obstacle detection as they

only suffer a linear error growth with distance as compared

to quadratic for stereo camera [42]. These factors made the

LiDAR sensor the natural choice for this work.
Depth Clustering [43], [44] a LiDAR based range image

segmentation algorithm is chosen as the example algorithm

in this work. The core component of the algorithm analyzed

here is the ground removal i.e., separating the flat drivable

ground from obstacles that need to be avoided. These bounds

are referred to as the Detectability Model in this work. Such

bounds satisfy the analyzability and verifiability requirements

in safety-critical system engineering. The value of such a

Detectability Model comes from the predictability of faults

in obstacle existence detection and reliable mitigation. Given

desired safety standards and properties of obstacles, algorithm

parameters and LiDAR sensor parameters can be chosen to

meet the safety standards reliably.
The contributions of this work can be summarized as:

• Minimized sufficient requirements for obstacle detection

for safety-critical collision avoidance, decoupled from

mission-critical requirements for the same (§IV).



• Detectability model for an existing classical obstacle

detection algorithm, Depth Clustering, with human per-

ceptible bounds on capabilities and limitations (§VI).

• An evaluation based on real world sensor data from

Waymo Open Dataset [45] (§VII).

II. MOTIVATION AND OVERVIEW

Obstacle existence detection fault, i.e., False Negative (FN)

in perception are a grave safety concern [46]. A survey of fatal

collisions involving AV (Table I) points to recurring FN errors.

Other fatalities involving AV [8]–[19], excluded from Table I

due to unavailability of investigation reports, seem to follow

this pattern. These underlying safety concerns are the primary

challenge in adopting complete autonomy [47]–[52]. Learning

from these incidents and acknowledging the impossibility of

all encompassing safety on the road, we limit our focus to FN.

DNN verification, even for simple properties, is an NP-

complete problem [53]. Gharib et al. [54] describe the need

and current lack of verification methods for machine learning

components used in safety-critical applications. Empirical risk

minimization, a foundational principle of modern statistical

machine learning, fails to satisfy the high robustness require-

ments of safety-critical applications [55]. There is still an open

requirement for verification techniques that can validate the

behavior of a trained network under all circumstances and

not just expected safe input space [56]. The vastness of the

input sets for real-world problems, like perception, renders

reachability analysis impractical for the DNN used in AV.

Analyzability and verifiability are the crucial components

of the certification process of safety-critical systems [30],

[31]. Verifiable algorithms, where the causality between the

input parameters and the algorithm result can be established,

are inherently suitable for safety-critical applications. This

is in contrast to object detection DNN, trained using super-

vised learning, which effectively captures correlations between

training input and labels. Consider the following simple ex-

ample where y is obstacle height, x is obstacle distance from

the AV, a and b are parameters based on LiDAR properties:

y ≥ ax+ b (1)

If we want to establish that (1) is the detectability model, i.e.,

when the condition in (1) is met, obstacles are always detected

by the AV, the following must be defined:

Requirements: A definition of minimal requirements for

what it means to detect an obstacle (§IV).

Constraints: A set of well defined constraints that must be

met for the model to be applicable (§V).

Verification: A deterministic analysis verifying the de-

tectability model (§VI).

Let’s assume that an AV safety standard requires that the

AV be able to detect all obstacles of a minimum height of

10 cm. Further, let’s assume all vehicles and structures on the

road are also mandated to be taller than this minimum height

by a road safety rule. Using LiDAR and AV parameters to

determine a and b, the detectability model (1) can be used to

determine the minimum distance at which such obstacles can

be detected. This minimum distance, in conjunction with the

braking capability of the AV, can then be used to determine the

max speed at which the AV can safely travel. This example,

admittedly simple, shows how a verified detectability model

can bring together road safety rules, AV parameters and AV

safety policies to provide deterministic collision safety.

Table I: Survey of AV Involved Fatalities

Ref. Autonomy Response 1

[4] A truck in the path of the vehicle was not detected and no evasive
actions like braking or steering away were initiated.

[5] Low confidence, unstable classifications of a pedestrian led to the
perception system ignoring the existence of a pedestrian.

[6] A crash attenuator in the path of the vehicle was not detected.

[7] A white semi trailer in the path of the vehicle was not detected.

III. RELATED WORK

Classical Obstacle Detection: An approach for long-range

obstacle detection based on stereo cameras was proposed by

Pinggera et al. [57]. While they successfully detect patches on

most objects within a long range, it is unclear whether this ap-

proach is enough to avoid collisions and whether all obstacles

that pose collision risk are detected. While the approach shows

promise, its performance under common distortions like bright

spots, etc., is not shown, and a further study on its limitations

is required to use it in safety-critical tasks. Various LiDAR

based geometric algorithms were considered as part of this

work [58]–[62]. Each algorithm has a similar flow; identifying

points on the ground vs. obstacles, followed by clustering,

segmentation, and/or classification. Depth Clustering [43], [44]

is chosen as the primary example due to its deterministic

explainable behavior, flexible parameters to optimize tradeoffs,

and public availability of an efficient C++ implementation

with extremely low runtime of 40 ms on an embedded

Jetson Xavier platform, using a single CPU core only, for a

point cloud with 169, 600 points [63]. The algorithm has also

garnered interest in recent works in literature [63]–[68].

Neural Network Verification: Albarghouthi [69] described

the challenges for neural network verification, including scale,

complexity, and dynamism of the environment, all applicable

for their use in Autonomous Driving. Liu et al. [70] sur-

vey existing verification methods and classify the verifica-

tion methods into three categories: reachability, optimization,

and search. They identify tradeoffs between scale and com-

pleteness of the verification methods. Even when the deep

networks can be verified, it is done so for small input sets

only [71]. Another survey on the safety and trustworthiness of

DNNs [72] identified various challenges, including; a physical

representation of the verification metrics, completeness of the

verifiable properties, and scalability to complex DNN. Verifi-

cation techniques have also been proposed to explore around

available inputs by adding adversarial or context specific

distortions [26], [27], improving the input coverage. However,

this does not imply complete verification and dependable



predictability of behavior. Hardware reliability [28] does not

protect against algorithmic faults. Fully verifiable, analyzable

and explainable DNNs performing real-world object detection

in autonomous vehicles remain an elusive goal.

Collision Avoidance: This work complements typical col-

lision avoidance systems by potentially providing additional

triggers for the emergency braking systems to engage [73]–

[75], e.g., when comparing the output from the verifiable

algorithm to the DNN, a safety-critical FN in DNN output

is determined. Other collision avoidance systems leverage

cooperative communication [76], however, our work focuses

on all obstacles including human driven vehicles and pedestri-

ans. Motion planning [77]–[79] and risk assessment [80]–[84]

based collision avoidance systems would be benefited by using

a verifiable algorithm to detect obstacles in the environment.

IV. MINIMAL REQUIREMENTS

In this section, we define the minimally sufficient require-

ments for safety-critical obstacle detection and collision avoid-

ance. While some of the following observations are already

well established, this work is the first to form a minimally

sufficient set for safety-critical collision avoidance. Further,

some requirements like object classification are typically con-

sidered crucial for perception in AV, however, we show that

while it is valuable for mission-critical requirements like path

planning, it is not for safety-critical collision avoidance.

A. Classification

We will use the mathematical problem formulation of reach-

avoid control to justify why we do not need to classify

obstacles for collision avoidance purposes. The current section

is motivated by [85], [86] but we simplify the notations

and the problem in a deterministic setting while the refer-

ences consider stochastic problem formulations. Let xk ∈ X

be the 2D-position of the vehicle at discrete time instance

k ≥ 0, where X ⊆ R
2 is the set of the state space. The

set D ⊂ X is the destination, and the sets Oi(k) ⊂ X

for i ∈ MO , {1, 2, · · · ,M} are obstacles, where Oi(k)
represents the ith obstacle and MO is the index set for the

obstacles. The set Oi(k) could be time-varying but it is

assumed that the obstacles do not overlap with the destination,

i.e., ∪i∈MO
(D ∩ Oi(k)) = ∅ ∀ k. For simplicity, we drop

the dependency of Oi(k) on k. Now, the reach-avoid control

problem is to drive the vehicle to the destination D while

avoiding obstacles Oi for i ∈ MO within finite time horizon

N , given initial condition x0. The success of this mission can

be characterized by the following index r:

r ,

N
∑

j=0

(ΠM
i=1Π

j−1
t=01X\Oi

(xt))1D(xj)

=







1, if ∃j ∈ [0, N ] : xj ∈ D∧
∀t ∈ [0, j − 1] : xt ∈ ∩M

i=1X \Oi

0, otherwise,
(2)

where 1S(·) : X → {0, 1} is the indicator function for a set

S, and ∧ is the logical AND. In short, r = 1 if and only if

the objective is achieved. The index r in (2) can be used as a

cost function of the optimal control problem as in [85], [86].

Therefore, one is required to evaluate the indicator functions

in (2), which means that it is required to know the set D and

X \Oi for i ∈ MO.

However, index r in (2) can be equivalently formulated as

r =
N
∑

j=0

(Πj−1
t=01X\(∪i∈MO

Oi)(xt))1D(xj) (3)

and this expression can be used instead for the optimal reach-

avoid control problem. The formulation (3) indicates that one

could also address the control problem only with knowing

∪i∈MO
Oi, but not individual obstacle sets Oi, i.e., one does

not need to classify/distinguish individual obstacles for the

reach-avoid control purpose.

It should be noted that classification still adds valuable

information that supports advanced features like predictive

tracking and mission planning. The argument here is only that

object classification, while valuable in many ways, is not a

necessity for obstacle avoidance.

B. Collision Risk

While the dynamics and ethics of collision avoidance are

complex [87], the safety-critical obstacle detection system is

required to detect obstacles that can potentially collide with

the AV. We utilize a physics model for collision risk from

prior works in literature [88], where the risk of collision

is determined by the possibility of overlap of the existence

regions [89] of obstacles and AV within the AV’s time to stop.

C. Height

The height of an obstacle is only useful in making a binary

determination for collision avoidance, i.e., whether or not the

obstacle is completely clear above the height of the AV. For ex-

ample, in Figure 1 (a) the overhead road sign 1 is completely

above the AV, its exact height has no implication for collision

avoidance. The box 2 contains valuable information that is

required to identify the obstacle within the box to be a vehicle,

however as discussed in Section IV-A, such a recognition of

the obstacle class is not a requirement for collision avoidance.

Thus for safety-critical collision avoidance 3 contains as

much relevant information as 2 . Therefore as long as an

obstacle’s height is not erroneously detected to be above and

clear of the AV, we can simply consider the top or bird’s eye

view of the AV’s surroundings. While such a view of obstacles

is not traditionally used in perception systems, however, path

planning in AV, an inherently 2D problem, regularly uses this

representation [90].

D. Distance

The distance to an obstacle must be accurately detected for

the collision-free operation of the AV. For collision avoidance,

this distance is the minimum distance between the perimeters

of the obstacle and the AV. Many safety parameters like safe

following distance, time to collision and time to stop, are a

function of the distance between the AV and obstacles [73],









the angle ∆αr. The first set is the case that, when the size of

the obstacle is small, there is only one LiDAR point on the

obstacle, which requires us to have an additional condition for

the angle ∆αr.

The first condition set in Theorem 1 implies that the

minimum height to be detected at distance D satisfies

Hr(D) = ho

αth ≤ atan2(ho, |D −
HL

tan(ξr−1)
|), (13)

which depends on the distance D and threshold αth.

B. Obstacle at Inclination

Assumptions: We maintain all assumptions from §VI-A except

part of A1, i.e., that the obstacle surface inclination angle is

αo 6= 90o. We assume αo > αth, otherwise the obstacle cannot

be detected.

In this case, if Ri is at the end of the inclined obstacle, then

its height at a distance D is found by

Hi(D) = hosin(αo) + hocos(αo)tan(ξi).

This height can be used to determine whether there are more

than two LiDAR points on the obstacle. Further notice that

the angle αr is found by reduced height
Hr(D)

tan(ξr)/tan(αo)+1

and increased width D + Hr(D)
tan(ξr)+tan(αo)

− HL

tan(ξr−1)
. This

observations induce the following Corollary from Theorem 1.

Corollary 1. The obstacle is detected at distance D, if and

only if one of the following conditions are true:

1) Hr(D) ≤ hosin(αo) + hocos(αo)tan(ξr+1) <

Hr+1(D) AND αth < atan2( Hr(D)
tan(ξr)/tan(αo)+1 , |D +

Hr(D)
tan(ξr)+tan(αo)

− HL

tan(ξr−1)
|);

2) hosin(αo) + hocos(αo)tan(ξr+1) ≥ Hr+1(D).

C. Obstacle not Touching Ground

Assumptions: We maintain all assumptions in §VI-A except

A1, i.e., that the obstacle surface no longer touches the ground.

Instead, now the obstacle surface starts at height hg above the

ground as shown in Figure 4.

We are interested in the first beam on the obstacle, where

its index is defined by rg = min{i|Hi(D) > hg}. Noticing

the height of the obstacle tip is ho + hg , we can reformulate

Theorem 1 as the following corollary.

Corollary 2. The obstacle is detected at distance D, if and

only if one of the following conditions are true:

1) Hrg (D) ≤ ho + hg < Hrg+1(D) AND αth <

atan2(Hrg (D), |D − HL

tan(ξrg−1)
|);

2) ho + hg ≥ Hrg+1(D, ξ,HL).

The minimum detectable height for this case is found by

Hrg (D) = ho + hg

αth ≤ atan2(ho + hg, |D −
HL

tan(ξrg−1)
|).

D. Inclined Ground

Assumptions: We maintain all assumptions in §VI-A except

A2, i.e., Ground inclination αg could be non-zero (Figure 5).

Ground inclination affects the detectability model only when

relative inclination changes between the obstacle and the AV.

This section assumes that ground inclination starts before the

obstacle position, i.e., d < D. There are two cases.

Case I: The inclination starts after the beam Rr−1, i.e.,

HL

tan(ξr−1)
≤ d ≤

HL

tan(ξr)
. (14)

We can extend Corollary 1 to find the detectability condi-

tion. The first beam touching the obstacle must be higher than

the ground at distance D. Let us define

rf = min{i|Hi(D) > (D − d)tan(αg)}.

If Rrf+1 is at the end of the obstacle, then

Hrf+1(D) = hocos(αg)− hosin(αg)tan(ξrf+1)

+ (D − d)tan(αg),

which is the threshold to determine whether Rrf+1 is on

the obstacle. Furthermore, αrf is found by increased height
Hrf

(D)−(D−d)tan(αg)

1−tan(ξrf )tan(αg)
+(D− d)tan(αg) and decreased width

D +
Hrf

(D)−(D−d)tan(αg)

tan(ξrf )−cot(αg)
− HL

tan(ξrf−1)
. This observation in-

duces the following Corollary.

Corollary 3. The obstacle is detected at distance D, if and

only if one of the following conditions are true:

1) Hrf (D) ≤ hocos(αg) − hosin(αg)tan(ξrf+1) +
(D − d)tan(αg) < Hrf+1(D) AND αth <

atan2(
Hrf

(D)−(D−d)tan(αg)

1−tan(ξrf )tan(αg)
+ (D − d)tan(αg), |D +

Hrf
(D)−(D−d)tan(αg)

tan(ξrf )−cot(αg)
− HL

tan(ξrf−1)
|);

2) hocos(αg)−hosin(αg)tan(ξrf+1)+(D−d)tan(αg) ≥
Hrf+1(D).

Case II: The inclination starts before the beam Rr−1, i.e.,

d <
HL

tan(ξr−1)
.

In this case, the beam point of Rrf−1 land on different point

from that of the case II. This decreases relative height HL −
Rrf−1sin(ξrf−1) and increases relative width HL

tan(ξrf−1)
−

Rrf−1cos(ξrf−1) between Rrf−1 and Rrf . This changes αrf

found in Corollary 3. It is also worth to notice that if

d <
HL

tan(ξr−2)
,

then αrf−1 = αg , and thus we have ∆αr = αr − αg . Using

these facts, one can find an extension of Corollary 3.







actual obstacle. Figures 7a and 7b show such examples. Drawn

as per the provided GT, the green box is clearly either larger

or offset from the contained obstacle. Similarly, as shown in

Figure 7b, the GT inaccuracy is enough to bring the coverage

below the 75% threshold. In some cases, the error is small,

e.g., Figure 7c. However when close to the AV, the small GT

error can still be larger than the distance overestimation error

allowed. We consider these detections as TP after ascertaining

that the detection bounding box meets the requirements. A

total of 153 FN candidates were found to fall in this category.

4) Oversegmentation: Figure 7d shows a case where the

obstacle was adequately detected but segmented into more than

one bounding box. Since the second bounding box did not

meet the distance threshold, the automated analysis ignored

it. However, given the presence of both bounding boxes, we

argue that this detection should be considered True Positive.

The points on the obstacle were not erroneously considered to

be drivable ground. 10 instances of this scenario on the same

vehicle were found in consecutive frames.

5) Obstacle Existence Fault: No FN, i.e., obstacle exis-

tence faults were found. This is not surprising given the

low minimum height bounds determined in Section VI and

Figure 6.The max curve fits in Figures 6a, 6b and 6c are

conservative linear approximations. Ignoring the max curve

fits, the actual bounds in Figures 6a, 6b and 6c were less than

0.5 m in all cases within the sensor range of 75 m.

VIII. DISCUSSION

Generality: The safety-critical requirements for collision

avoidance are applicable to all ground based autonomous

vehicles. The LiDAR parameters used apply broadly to all

LiDAR sensors. The constraints are also generally applicable,

except C3 which is based on the algorithm. Other verifiable

algorithms may have different algorithmic constraints. The

detectability model in this work is specific to the chosen

algorithm. However, the analysis shows that it is indeed

possible to derive strict human perceptible bounds on the

detectability of these algorithms and serves as guidance for

verification of similar algorithms.

Human Comprehensibility and Interpretability: As shown

in this work, safety standards, policies and limitations of the

example algorithm are in human comprehensible definitions.

This makes such policies realistically implementable and en-

forceable. Human comprehensible limitations also implicitly

protect against adversarial objects [95], [96]. This is in contrast

to the machine learning based solutions where requirements,

faults and adversarial perturbations are not always expressible

in human perceptible forms [26].

Requirements: Section IV establishes a minimal set of re-

quirements for collision avoidance in AV. However, additional

features of obstacles, if determined in a verifiable manner,

can improve the safety envelop, reducing overly conservative

behaviors. For example, the collision risk model uses obstacle

and AV velocity to determine if there is a potential risk

of collision. If velocities cannot be determined reliably, a

conservative default high velocity threshold must be used.

Adversarial Objects: The failure modes for analyzable

algorithms are well defined and expressible in limitations like

minimum height and slopes from ground. Whereas DNN based

detectors can have varied failure modes, including fully or

partially designed adversarial objects [95]–[98]. The difference

in failure modes suggests than an ensemble of the two would

be robust against attacks using adversarial designed objects.

IX. FUTURE WORK

This work opens up various avenues for future research.

Integration: In this work we focus on detection of faults

in obstacle existence detection. However, the reaction to

them, i.e., fault handling has its own challenges. Verifiable

algorithms are not contrary to techniques like Sensor Fusion,

rather the verifiable algorithm can be made a part of the

ensemble [37], [38] of perception modules. Such a fusion

needs to be designed in conjunction with the fault handling

mechanism. The integration of verifiable algorithms within

existing AV pipelines and fault handling built upon it are the

focus of our future research.

Precision Improvements: The complete Depth Clustering

algorithm includes methods for improving the detection preci-

sion. The inclusion of these components would invalidate the

detectability model presented. The model will be expanded in

future works to include such methods.

Verifiable Algorithms: Despite the necessity of DNN in AV

perception system, this work shows that there is a role for

analyzable algorithms. Therefore further research is warranted

to improve such verifiable physical model backed algorithms.

Improvements like lower physical limitations bounds and

lower false positive error rates within those bounds would

make these algorithms have reduced impact to the performance

of the AV while maintaining the same safety guarantees.

Weather: Impediments like rain, fog, dust or smoke distort

the LiDAR returns and can result in LiDAR beams returning

with low enough intensity to not be recorded or causing a false

early return [99], [100], i.e., violating Constraint C1 (§V-B).

Detectability in the presence of such faults is another avenue

for future research.

X. CONCLUSION

This paper identifies requirements for safety-critical obsta-

cle detection and presents a safety analysis of an obstacle

detection algorithm. The results encourage a thorough separa-

tion of mission and safety-critical requirements in autonomous

vehicles. Furthermore, verifiable algorithms could fulfill the

critical safety requirements offloading that responsibility from

DNN based solutions that remain inherently unverifiable.
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