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ABSTRACT

Recent studies show that deep neural networks (DNN) are vulnerable to adver-
sarial examples, which aim to mislead DNNs by adding perturbations with small
magnitude. To defend against such attacks, both empirical and theoretical defense
approaches have been extensively studied for a single ML model. In this work,
we aim to analyze and provide the certified robustness for ensemble ML models,
together with the sufficient and necessary conditions of robustness for different en-
semble protocols. Although ensemble models are shown more robust than a single
model empirically; surprisingly, we find that in terms of the certified robustness
the standard ensemble models only achieve marginal improvement compared to a
single model. Thus, to explore the conditions that guarantee to provide certifiably
robust ensemble ML models, we first prove that diversified gradient and large confi-
dence margin are sufficient and necessary conditions for certifiably robust ensemble
models under the model-smoothness assumption. We then provide the bounded
model-smoothness analysis based on the proposed Ensemble-before-Smoothing
strategy. We also prove that an ensemble model can always achieve higher certified
robustness than a single base model under mild conditions. Inspired by the theoret-
ical findings, we propose the lightweight Diversity Regularized Training (DRT)
to train certifiably robust ensemble ML models. Extensive experiments show that
our DRT enhanced ensembles can consistently achieve higher certified robustness
than existing single and ensemble ML models, demonstrating the state-of-the-art
certified Ly-robustness on MNIST, CIFAR-10, and ImageNet datasets.

1 INTRODUCTION

Deep neural networks (DNN) have been widely applied in various applications, such as image
classification (Krizhevsky, 2012; He et al., 2016), face recognition (Sun et al., 2014), and natural
language processing (Vaswani et al., 2017; Devlin et al., 2019). However, it is well-known that DNNs
are vulnerable to adversarial examples (Szegedy et al., 2013; Carlini & Wagner, 2017; Xiao et al.,
2018a;b; Bhattad et al., 2020; Bulusu et al., 2020), and it has raised great concerns especially when
DNNs are deployed in safety-critical applications such as autonomous driving and facial recognition.

To defend against such attacks, several empirical defenses have been proposed (Papernot et al., 2016b;
Madry et al., 2018); however, many of them have been attacked again by strong adaptive attack-
ers (Athalye et al., 2018; Tramer et al., 2020). To end such repeated game between the attackers and
defenders, certified defenses (Wong & Kolter, 2018; Cohen et al., 2019) have been proposed to provide
the robustness guarantees for given ML models, so that no additional attack can break the model under
certain adversarial constraints. For instance, randomized smoothing has been proposed as an effective
defense providing certified robustness (Lecuyer et al., 2019; Cohen et al., 2019; Yang et al., 2020a).
Among different certified robustness approaches (Weng et al., 2018; Xu et al., 2020; Li et al., 2020a;
Zhang et al., 2022), randomized smoothing provides a model-independent way to smooth a given
ML model and achieves state-of-the-art certified robustness on large-scale datasets such as ImageNet.

Currently, all the existing certified defense approaches focus on the robustness of a single ML model.
Given the observations that ensemble ML models are able to bring additional benefits in standard
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learning (Opitz & Maclin, 1999; Rokach, 2010), in this work we aim to ask: Can an ensemble ML
model provide additional benefits in terms of the certified robustness compared with a single model?
If so, what are the sufficient and necessary conditions to guarantee such certified robustness gain?

Empirically, we first find that standard ensemble models only achieve marginally higher certified
robustness by directly appling randomized smoothing: with Lo perturbation radius 1.5, a single
model achieves certified accuracy as 21.9%, while the average aggregation based ensemble of three
models achieves certified accuracy as 24.2% on CIFAR-10 (Table 2). Given such observations, next
we aim to answer: How to improve the certified robustness of ensemble ML models? What types of
conditions are required to improve the certified robustness for ML ensembles?

In particular, from the theoretical perspective, we analyze the standard Weighted Ensemble (WE) and
Max-Margin Ensemble (MME) protocols, and prove the sufficient and necessary conditions for the
certifiably robust ensemble models under model-smoothness assumption. Specifically, we prove that:
(1) an ensemble ML model is more certifiably robust than each single base model; (2) diversified
gradients and large confidence margins of base models are the sufficient and necessary conditions
for the certifiably robust ML ensembles. We show that these two key factors would lead to higher
certified robustness for ML ensembles. We further propose Ensemble-before-Smoothing as the model
smoothing strategy and prove the bounded model-smoothness with such strategy, which realizes our
model-smoothness assumption.

Inspired by our theoretical analysis, we propose C 07T Base Model 1 1
Diversity-Regularized Training (DRT), a lightweight i
regularization-based ensemble training approach. :
DRT is composed of two simple yet effective and gen- :
:
|
|

True-Class Decision
Region of Base Models

eral regularizers to promote the diversified gradients C \)

and large confidence margins respectively. DRT can True-Class Decision
be easily combined with existing ML approaches for ‘- b Niodei g || B of Ensembles
training smoothed models, such as Gaussian augmen- . )

tation (Cohen et al., 2019) and adversarial smoothed Figure I: Illustration of a robust ensemble.

training (Salman et al., 2019), with negligible training time overhead while achieves significantly
higher certified robustness than state-of-the-art approaches consistently.

We conduct extensive experiments on a wide range of datasets including MNIST, CIFAR-10, and Im-
ageNet. The experimental results show that DRT can achieve significantly higher certified robustness
compared to baselines with similar training cost as training a single model. Furthermore, as DRT
is flexible to integrate any base models, by using the pretrained robust single ML models as base
models, DRT achieves the highest certified robustness so far to our best knowledge. For instance,
on CIFAR-10 under Ls radius 1.5, the DRT-trained ensemble with three base models improves the
certified accuracy from SOTA 24.2% to 30.3%; and under Lo radius 2.0, DRT improves the certified
accuracy from SOTA 16.0% to 20.3%.

Technical Contributions. In this paper, we conduct the first study for the sufficient and necessary
conditions of certifiably robust ML ensembles and propose an efficient training algorithm DRT to
achieve the state-of-the-art certified robustness. We make contributions on both theoretical and
empirical fronts.

* We provide the necessary and sufficient conditions for robust ensemble ML models including
Weighted Ensemble (WE) and Max-Margin Ensemble (MME) under the model-smoothness
assumption. In particular, we prove that the diversified gradients and large confidence margins
of base models are the sufficient and necessary conditions of certifiably robust ensembles. We
also prove the bounded model-smoothness via proposed Ensemble-before-Smoothing strategy,
which realizes our model-smoothness assumption.

* To analyze different ensembles, we prove that when the adversarial transferability among base
models is low, WE is more robust than MME. We also prove that the ML ensemble is more
robust than a single base model under the model-smoothness assumption.

* Based on the theoretical analysis of the sufficient and necessary conditions, we propose DRT, a
lightweight regularization-based training approach that can be easily combined with different
training approaches and ensemble protocols with small training cost overhead.

* We conduct extensive experiments to evaluate the effectiveness of DRT on various datasets, and
we show that to the best of your knowledge, DRT can achieve the highest certified robustness,
outperforming all existing baselines.
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Related work. @ DNNs are known vulnerable to adversarial examples (Szegedy et al., 2013).
To defend against such attacks, several empirical defenses have been proposed (Papernot et al.,
2016b; Madry et al., 2018). For ensemble models, existing work mainly focuses on empirical
robustness (Pang et al., 2019; Li et al., 2020b; Cheng et al., 2021) where the robustness is measured
by accuracy under existing attacks and no certified robustness guarantee could be provided or
enhanced; or certify the robustness for a standard weighted ensemble (Zhang et al., 2019; Liu et al.,
2020) using either LP-based (Zhang et al., 2018) verification or randomized smoothing without
considering the model diversity (Liu et al., 2020) to boost their certified robustness. In this paper, we
aim to prove that the diversified gradient and large confidence margin are the sufficient and necessary
conditions for certifiably robust ensemble ML models. Moreover, to our best knowledge, we propose
the first training approach to boost the certified robustness of ensemble ML models.

Randomized smoothing (Lecuyer et al., 2019; Cohen et al., 2019) has been proposed to provide
certified robustness for a single ML model. It achieved the state-of-the-art certified robustness on
large-scale dataset such as ImageNet and CIFAR-10 under Ly norm. Several approaches have been
proposed to further improve it by: (1) choosing different smoothing distributions for different L,,
norms (Dvijotham et al., 2019; Zhang et al., 2020; Yang et al., 2020a), and (2) training more robust
smoothed classifiers, using data augmentation (Cohen et al., 2019), unlabeled data (Carmon et al.,
2019), adversarial training (Salman et al., 2019), regularization (Li et al., 2019; Zhai et al., 2019),
and denoising (Salman et al., 2020). In this paper, we compare and propose a suitable smoothing
strategy to improve the certified robustness of ML ensembles.

2 CHARACTERIZING ML ENSEMBLE ROBUSTNESS

In this section, we prove the sufficient and necessary robustness conditions for both general and
smoothed ML ensemble models. Based on these robustness conditions, we discuss the key factors for
improving the certified robustness of an ensemble, compare the robustness of ensemble models with
single models, and outline several findings based on additional theoretical analysis.

2.1 PRELIMINARIES

Notations.  Throughout the paper, we consider the classification task with C' classes. We first
define the classification scoring function f : R? — A®, which maps the input to a confidence
vector, and f(x); represents the confidence for the ith class. We mainly focus on the confidence
after normalization, i.e., f(z) € A® = {p € Rgo : |lplli = 1} in the probability simplex. To
characterize the confidence margin between two classes, we define f¥1/%2(z) := f(x),, — f(x)y,-
The corresponding prediction F : R? — [C] is defined by F(z) := arg max;e (o) f(x)i. We are
also interested in the runner-up prediction F(?) (x) := arg MaX; (it F(a) | (T)i-

r-Robustness.  For brevity, we consider the model’s certified robustness, against the Ly-bounded
perturbations as defined below. Our analysis can be generalizable for L; and L, perturbations,
leveraging existing work (Li et al., 2019; Yang et al., 2020a; Levine & Feizi, 2021).

Definition 1 (r-Robustness). For a prediction function F' : R? — [C] and input g, if all instance
x € {xo+0:|d]||2<r} satisfies F'(x) = F(xg), we say model F' is r-robust (at point x).

Ensemble Protocols.  An ensemble model contains N base models {F;}Y_,, where F;(x) and

Fl@)(ac) are their top and runner-up predictions for given input x respectively. The ensemble
prediction is denoted by M : R? — [C], which is computed based on outputs of base models
following certain ensemble protocols. In this paper, we consider both Weighted Ensemble (WE) and
Maximum Margin Ensemble (MME).
Definition 2 (Weighted Ensemble (WE)). Given N base models {F;}¥ |, and the weight vector
{w;}¥., € RY, the weighted ensemble Myg: R? — [C] is defined by
N
Mwg(xo) == argmaxijfj(wo)i. (1)
i€l 4

Definition 3 (Max-Margin Ensemble (MME)). Given N base models {F;} |, for input x(, the
max-margin ensemble model Mynyg : R? — [C] is defined by

Mume (o) := Fe(xo) where ¢ = argmax (fi(iﬁo)pi(z()) — fi(azo)F(z)(%)) . ?2)
i€[N] i
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The commonly-used WE (Zhang et al., 2019; Liu et al., 2020) sums up the weighted confidence of
base models {F;}¥ , with weight vector {w; },, and predicts the class with the highest welghted
confidence. The standard average ensemble can be viewed as a special case of WE (where all w;’s
are equal). MME chooses the base model with the largest confidence margin between the top and the
runner-up classes, which is a direct extension from max-margin training (Huang et al., 2008).

Randomized Smoothing. Randomized smoothing (Lecuyer et al., 2019; Cohen et al., 2019)
provides certified robustness by constructing a smoothed model from a given model. Formally, let
e ~ N(0,021,) be a Gaussian random variable, for any given model F' : R? — [C] (can be an
ensemble), we define smoothed confidence function g5, : R — A such that

gh(@) = | B MF@+e)=jl=_ Pr  (F@+e)=j). ()
Intuitively, g5 (x); is the probability of base model F’s prediction on the jth class given Gaussian
smoothed input. The smoothed classifier G5. : R? — [C] outputs the class with highest smoothed
confidence: G%(x) := argmax;cic) g7 (x);. Let ca be the predicted class for input o, i.e.,
ca = G5(xp). Cohen et al. show that G5, is (c® (g5 (x0).,))-robust at input x, i.e., the
certified radius is c® =1 (g% (xo)., ) where ®~! is the inverse cumulative distribution function of
standard normal distribution. In practice, we will leverage the smoothing strategy together with
Monte-Carlo sampling to certify ensemble robustness. More details can be found in Appendix A.

2.2 ROBUSTNESS CONDITIONS FOR GENERAL ENSEMBLE MODELS

We will first provide sufficient and necessary conditions for robust ensembles under the model-
smoothness assumption.

Definition 4 (3-Smoothness). A differentiable function f : R? ~— R is B-smooth, if for any
valf(ml)J wgf(mZ)JHZ < 5

lz1—=2]2

x1, T € R? and any output dimension j € [C],

The definition of S-smoothness is inherited from optimization theory literature, and it is equivalent
to the curvature bound in certified robustness literature (Singla & Feizi, 2020). [ quantifies the
non-linearity of function f, where higher /5 indicates more rigid functions/models and smaller 3
indicates smoother ones. When 8 = 0 the function/model is linear.

For Weighted Ensemble (WE), we have the following robustness conditions.

Theorem 1 (Gradient and Confidence Margin Conditions for WE Robustness). Given input o € R?
with ground-truth label yo € [C), and Mg as a WE defined over base models { F;} | with weights
{wi}¥ . Mwg(xo) = yo. All base models F;’s are 3-smooth.

* (Sufficient Condition) The My is r-robust at point x if for any y; # o,

N
HZwJ Va0 (@o)||, < Zw FL (o) — Br Y wy, @
j=1
* (Necessary Condmon) If Mg is r-robust at point x, for any y; # yo,
szﬂv fyo/'llz H Zw fyo/w (z0) +ﬂ7“zwg (5)

The proof follows from Taylor expansion at o and we leave the detailed proof in Appendix B.2.
When it comes to Max-Margin Ensemble (MME), the derivation of robust conditions is more involved.
In Theorem 3 (Appendix B.1.1) we derive the robustness conditions for MME composed of two base
models. The robustness conditions have highly similar forms as those for WE in Theorem 1. Thus,
for brevity, we focus on discussing Theorem 1 for WE hereinafter and similar conclusions can be
drawn for MME (details are in Appendix B.1.1).

To analyze Theorem 1, we define Ensemble Robustness Indicator (ERI) as such:

=[St ol o S e o
=1

ERI appears in both sufﬁ01ent (Equation (4)) and necessary (Equation (5)) conditions. In both
conditions, smaller ERI means more certifiably robust ensemble. Note that we can analyze the
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robustness under different attack radius r by directly varying r in Equations (4) and (5). When r
becomes larger, the gap between the RHS of two inequalities (257 Zjvzl w;) also becomes larger,
and thus it becomes harder to determine robustness via Theorem 1. This is because the first-order
condition implied by Theorem 1 becomes coarse when 7 is large. However, due to bounded /3 as we
will show, the training approach motivated by the theorem still empirically works well under large r.

Diversified Gradients. The core of first term in ERI is the magnitude of the vector sum
of gradients: || Zjvzl ijmf;")/yi(sco)Hg. According to the law of cosines: ||la + b|l2 =
Val3 + [[b]2 + 2||al2[|b]|2 cos(a, b), to reduce this term, we could either reduce the base models’
gradient magnitude or diversify their gradients (in terms of cosine similarity). Since simply reduc-

ing base models’ gradient magnitude would hurt model expressivity (Huster et al., 2018), during
regularization the main functionality of this term would be promoting diversified gradients.

Large Confidence Margins. The core of second term in ERI is the confidence margin:

D Wy ijo/ Yi(xo). Due to the negative sign of second term in ERI, we need to increase this
term, i.e., we need to increase confidence margins to achieve higher ensemble robustness.

In summary, the diversified gradients and large confidence margins are the sufficient and necessary
conditions for high certified robustness of ensembles. In Section 3, we will directly regularize these
two key factors to promote certified robustness of ensembles.

Impact of Model-Smoothness Bound 3. From Theorem 1, we observe that: (1) if min,, »,, I, <
—Br, Mg is guaranteed to be r-robust (sufficient condition); and (2) if miny,«,, Iy, > Br, Mwg
cannot be r-robust (necessary condition). However, if min,, 2, I,, € (—pr, fr], we only know
Mwr is possibly r-robust. As a result, the model-smoothness bound 5 decides the correlation
strength between miny, ., I,, and the robustness of Mwg: if 3 becomes larger, miny, 4, I, is
more likely to fall in (—Sr, Sr], inducing an undetermined robustness status from Theorem 1, vice
versa. Specifically, when 8 = 0, i.e., all base models are linear, the gap is closed and we can always
certify the robustness of My via comparing min,, ., with 0. Similar observations can be drawn
for MME. Therefore, to strengthen the correlation between I, and ensemble robustness, we would
need model-smoothness bound 3 to be small.

2.3 ROBUSTNESS CONDITIONS FOR SMOOTHED ENSEMBLE MODELS

Typically neural networks are nonsmooth or admit only coarse smoothness bounds (Sinha et al.,
2018), i.e., [ is large. Therefore, applying Theorem 1 for normal nonsmooth models would lead
to near-zero certified radius. Therefore, we propose soft smoothing to enforce the smoothness of
base models. However, with the soft smoothed base models, directly applying Theorem 1 to certify
robustness is still practically challenging, since the LHS of Equations (4) and (5) involves gradient
of the soft smoothed confidence. A precise computation of such gradient requires high-confidence
estimation of high-dimensional vectors via sampling, which requires linear number of samples with
respect to input dimension (Mohapatra et al., 2020; Salman et al., 2019) and is thus too expensive in
practice. To solve this issue, we then propose Ensemble-before-Smoothing as the practical smoothing
protocol, which serves as an approximation of soft smoothing, so as to leverage the randomized
smoothing based techniques for certification.

Soft Smoothing. To impose base models’ smoothness, we now introduce soft smoothing (Kumar
et al., 2020), which applies randomized smoothing over the confidence scores. Given base model’s
confidence function f : R — AY (see Section 2.1), we define soft smoothed confidence by
g7 x— E. f(x + ¢). Note that soft smoothed confidence is different from smoothed confidence g5
defined in Equation (3). We consider soft smoothing instead of classical smoothing in Equation (3)
since soft smoothing reveals differentiable and thus practically regularizable training objectives. The
following theorem shows the smoothness bound for g5.

Theorem 2 (Model-Smoothness Upper Bound for g;). Let e ~ N(0,0%14) be a Gaussian random
variable, then the soft smoothed confidence function g5 is (2/0?)-smooth.

We defer the proof to Appendix B.4. The proof views the Gaussian smoothing as the Weierstrass
transform (Weierstrass, 1885) of a function from R to [0, 1], leverages the symmetry property, and
bounds the absolute value of diagonal elements of the Hessian matrix. Note that a Lipschitz constant

\/2/(wo?) is derived for smoothed confidence in previous work (Salman et al., 2019, Lemma 1),
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which characterizes only the first-order smoothness property; while our bound in addition shows the
second-order smoothness property. In Appendix B.4, we further show that our smoothness bound in
Theorem 2 is tight up to a constant factor.

Now, we apply WE and MME protocols with these soft smoothness confidence {g¢ (zo)} ; as base
models’ confidence scores, and obtain soft ensemble Gs My and G5 Mg TESPECtively. Since each
g¢ is (2/a?)-smooth, take WE as an example, we can study the ensemble robustness with Theorem 1.
We state the full statement in Corollary 2 (and in Corollary 3 for MME) in Appendix B.1.3. From the
corollary, we observe that the correspondmg ERI for the soft smoothed WE can be written as

(@0+9)| /||w\|1— ijfyo/% (o + <) @

We have following observatlons (1) unlike for standard models w1th unbounded 3, for the smoothed
ensemble models, this ERI (Equation (7)) would have guaranteed correlation with the model robust-
ness since 3 = ©(1/0?) is bounded and can be controlled by tuning o for smoothing. (2) we can
still control ERI by diversifying gradients and ensuring large confidence margins as discussed in
Section 2.2, but need to compute on the noise augmented input &, + ¢ instead of original input x.

?/'L: ’

Towards Practical Certification.  As outlined at the beginning of this subsection, even with
smoothed base models, certifying robustness using Theorem 1 is practically difficult. Therefore,
we introduce Ensemble-before-Smoothing strategy as below to construct G, . and G54, . as
approximations of soft ensemble G8 My and G5 My TESPECtively.

Definition 5 (Ensemble-before-Smoothing (EBS)). Let M be an ensemble model over base models
{F;}Y., and ¢ be a random variable. The EBS strategy construct smoothed classifier G5, : R — [C]
that picks the class with highest smoothed confidence of M: G () := arg max;¢[c] g5 ();-

Here M could be either Mg or Mynvg. EBS aims to approximate the soft smoothed ensemble.
SN wif

Twl: to be WE ensemble’s confidence, then

S w5,
== 79— 55 WE(x)i (8)
Z;'V:1 wj M

where LHS is the smoothed confidence of EBS ensemble and RHS is the soft smoothed ensemble’s
confidence. Such approximation is also adopted in existing work (Salman et al., 2019; Zhai et al.,
2019; Kumar et al., 2020) and shown effective and useful. Therefore, our robustness analysis of soft
smoothed ensemble still applies with EBS and we can control ERI in Equation (7) to improve the
certified robustness of EBS ensemble. For EBS ensemble, we can leverage randomized smoothing
based techniques to compute the robustness certification (see Proposition C.1 in Appendix C).

Formally, use WE as an example, we let fay,, =

Irtwe (®)i = EIMwe(z + €) = i] ® Ec faryg (® +€)i =

2.4 ADDITIONAL PROPERTIES OF ML ENSEMBLES

Comparison between Ensemble and Single-Model Robustness.  In Appendix B.1, we show
Corollary 1, a corollary of Theorem 1, which indicates that when the base models are smooth
enough, both WE and MME ensemble models are more certifiably robust than the base models. This
aligns with our empirical observations (see Table 1 and Table 2), though without advanced training
approaches such as DRT, the improvement of robustness brought by ensemble itself is marginal. In
Appendix B.1, we also show larger number of base models NV can lead to better certified robustness.
Comparison between WE and MME Robustness.  Since in actual computing, the certified radius
of a smoothed model is directly correlated with the probability of correct prediction under smoothed
input (see Equation (11) in Appendix A), we study the robustness of both WE and MME along with
single models from the statistical robustness perspective in Appendix D. From the study, we have the
following theoretical observations verified by numerical experiments: (1) MME is more robust when
the adversarial transferability is high; while WE is more robust when the adversarial transferability is
low. (2) If we further assume that f;(x¢ + ¢),, follows marginally uniform distribution, when the
number of base models N is sufficiently large, MME is always more certifiably robust. Appendix D.5
entails the numerical evaluations that verify our theoretical conclusions.

3 DIVERSITY-REGULARIZED TRAINING

Inspired by the above key factors in the sufficient and necessary conditions for the certifiably robust
ensembles, we propose the Diversity-Regularized Training (DRT). In particular, let x( be a training
sample, DRT contains the following two regularization terms in the objective function to minimize:
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. . . (2) (2)
* Gradient Diversity Loss (GD Loss): Lgp(z);; = vafiy()/yi (mo)Jerf]yo/y] (o), (9

2 (2)
+ Confidence Margin Loss (CM Loss): Lo (z0)ij = ny< )/yo(:co) + f;-/j /o (x0). (10)
In Equations (9) and (10), ¥ is the ground-truth label of x, and y§2) (or y§2)) is the runner-up class
of base model F; (or F}). Intuitively, for each model pair (F;, F;) where i, j € [N] and i # j, the
GD loss promotes the diversity of gradients between the base model F; and F;. Note that the gradient
computed here is actually the gradient difference between different labels. As our theorem reveals, it
is the gradient difference between different labels instead of pure gradient itself that matters, which
improves existing understanding of gradient diversity (Pang et al., 2019; Demontis et al., 2019).
Specifically, the GD loss encourages both large gradient diversity and small base models’ gradient
magnitude in a naturally balanced way, and encodes the interplay between gradient magnitude and
direction diversity. In contrast, solely regularizing the base models’ gradient would hurt the model’s
benign accuracy, and solely regularizing gradient diversity is hard to realize due to the boundedness
of cosine similarity. The CM loss encourages the large margin between the true and runner-up classes
for base models. Both regularization terms are directly motivated by theoretical analysis in Section 2.

For each input xg with ground truth yo, we use xo + € with € ~ A (0, azId) as training input for
each base model (i.e., Gaussian augmentation). We call two base models (FZ-, Fj) a valid model pair
at (xo, yo) if both F;(x¢ + ¢€) and F;(xo + €) equal to yo. For every valid model pair, we apply DRT:
GD Loss and CM Loss with p; and p; as the weight hyperparameters as below.

Loin= Y Laa@o+ep)i+p >, Lap@o+e)ij+p2 Y, Lom(®o+e)ij.

i€[N] i,j€[N],i] i,jE[N],i#j

(F3, Fy) is valid (F3, Fy) is valid

The standard training loss Lgq(xo + €,y0); of each base model F; is either cross-entropy loss
(Cohen et al., 2019), or adversarial training loss (Salman et al., 2019). This standard training loss will
help to produce sufficient valid model pairs with high benign accuracy for robustness regularization.
Specifically, as discussed in Section 2.3, we compute Lep and Lo on the noise augmented inputs
(zo + €) instead of @, to improve the certified robustness for the smoothed ensemble.
Discussion.  To our best knowledge, this is the first training approach that is able to promote the
certified robustness of ML ensembles, while existing work either only provide empirical robustness
without guarantees (Pang et al., 2019; Kariyappa & Qureshi, 2019; Yang et al., 2020b; 2021), or tries
to only optimize the weights of Weighted Ensemble (Zhang et al., 2019; Liu et al., 2020). We should
notice that, though concepts similar with the gradient diversity have been explored in empirically
robust ensemble training (e.g., ADP (Pang et al., 2019), GAL (Kariyappa & Qureshi, 2019)), directly
applying these regularizers cannot train models with high certified robustness due to the lack of
theoretical guarantees in their design. We indicate this through ablation studies in Appendix G.4. For
the design of DRT, we also find that there exist some variations. We analyze them and show that the
current design is usually better based on the analysis in Appendix E. Our approach is generalizable
for other L,-bounded perturbations such as L; and L, leveraging existing work (Li et al., 2019;
Lecuyer et al., 2019; Yang et al., 2020a; Levine & Feizi, 2021).

4 EXPERIMENTAL EVALUATION

To make a thorough comparison with existing certified robustness approaches, we evaluate DRT
on different datasets including MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky, 2012), and
ImageNet (Deng et al., 2009), based on both MME and WE protocols. Overall, we show that the DRT
enabled ensemble outperforms all baselines in terms of certified robustness under different settings.

4.1 EXPERIMENTAL SETUP

Baselines. We consider the following state-of-the-art baselines for certified robustness: Gaussian
smoothing (Cohen et al., 2019), SmoothAdv (Salman et al., 2019), MACER (Zhai et al., 2019),
Stability (Li et al., 2019), and SWEEN (Liu et al., 2020). Detail description of these baselines can be
found in Appendix F. We follow the configurations of baselines, and compare DRT-based ensemble
with Gaussian Smoothing, SmoothAdv, and MACER on all datasets, and in addition compare it
with other baselines on MNIST and CIFAR-10 considering the training efficiency. There are other
baselines, e.g., (Jeong & Shin, 2020). However, SmoothAdv performs consistently better across
different datasets, so we mainly consider SmoothAdyv as our strong baseline.
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Train Ensemble Models Aggregate with WEor  Smooth via EBS Compute Certified
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Robust Ensemble Training Smoothed Ensemble Construction Robustness Certification

Figure 2: Pipeline for DRT-based ensemble.

Table 1: Certified accuracy under different radii on MNIST dataset. The grey rows present the performance of
the proposed DRT approach. The brackets show the base models we use.

Radius 7 | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50
Gaussian (Cohen et al., 2019) 99.1 | 97.9 | 96.6 | 94.7 | 90.0 | 83.0 | 682 | 46.6 | 33.0 | 205 | 11.5
SmoothAdy (Salman et al., 2019) 99.1 | 984 | 97.0 | 96.3 | 93.0 | 87.7 | 802 | 66.3 | 432 | 343 | 24.0
MACER (Zhai et al., 2019) 99.2 | 985 | 97.4 | 94.6 | 902 | 83.5 | 724 | 544 | 366 | 26.4 | 165
Stability (Li et al., 2019) 99.3 | 98.6 | 97.1 | 93.8 | 90.7 | 83.2 | 692 | 46.8 | 33.1 | 20.0 | 11.2

SWEEN (Gaussian) (Liu et al., 2020) 992 | 984 | 96.9 | 949 | 90.5 | 844 | 71.1 | 489 | 353 | 23.7 | 128
SWEEN (SmoothAdyv) (Liu et al., 2020) | 99.2 | 98.2 | 97.4 | 963 | 934 | 88.1 | 81.0 | 67.2 | 445 | 349 | 25.0

MME (Gaussian) 992 | 984 | 96.8 | 949 | 90.5 | 843 | 69.8 | 488 | 34.7 | 234 | 12.7
DRT + MME (Gaussian) 99.5 | 98.6 | 975 | 955 | 92.6 | 86.8 | 76.5 | 60.2 | 439 | 36.0 | 29.1
MME (SmoothAdv) 99.2 | 982 | 973 | 96.4 | 932 | 88.1 | 80.6 | 67.9 | 448 | 350 | 25.2
DRT + MME (SmoothAdv) 99.2 | 984 | 97.6 | 96.7 | 93.1 | 88.5 | 832 | 689 | 482 | 40.3 | 347
WE (Gaussian) 992 | 984 | 969 | 949 | 90.6 | 84.5 | 70.4 | 49.0 | 352 | 23.7 | 129
DRT + WE (Gaussian) 99.5 | 98.6 | 974 | 956 | 92.6 | 86.7 | 76.7 | 60.2 | 43.9 | 35.8 | 29.0
WE (SmoothAdv) 99.1 | 982 | 974 | 964 | 93.4 | 832 | 81.1 | 679 | 44.7 | 352 | 249
DRT + WE (SmoothAdv) 99.1 | 984 | 97.6 | 96.7 | 93.4 | 88.5 | 83.3 | 69.6 | 483 | 40.2 | 34.8

Models. For base models in our ensemble, we follow the configurations used in baselines: LeNet (Le-
Cun et al., 1998), ResNet-110, and ResNet-50 (He et al., 2016) for MNIST, CIFAR-10, and ImageNet
datasets respectively. Throughout the experiments, we use N = 3 base models to construct the
ensemble for demonstration. We expect more base models would yield higher ensemble robustness.

Training Details. We follow Section 3 to train the base models. We combine DRT with Gaussian
smoothing and SmoothAdv (i.e., instantiating Lstq by either cross-entropy loss (Cohen et al., 2019;
Yang et al., 2020a) or adversarial training loss (Salman et al., 2019)). We leave training details along
with hyperparametes in Appendix F.

Pipeline. After the base models are trained with DRT, we aggregate them to form the ensemble M,
using either WE or MME protocol (see Definitions 2 and 3). If we use WE, to filter out the effect of
different weights, we adopt the average ensemble where all weights are equal. We also studied how
optimizing weights can further improve the certified robustness in Appendix G.3. Then, we leverage
Ensemble-before-Smoothing strategy to form a smoothed ensemble (see Definition 5). Finally, we
compute the certified robustness for the smoothed ensemble based on Monte-Carlo sampling with
high-confidence (99.9%). The training pipeline is shown in Figure 2.

Evaluation Metric. We report the standard certified accuracy under different Lo radii »’s as our
evaluation metric following existing work (Cohen et al., 2019; Yang et al., 2020b; Zhai et al., 2019;
Jeong & Shin, 2020). More evaluation details are in Appendix F.

4.2 EXPERIMENTAL RESULTS

Here we consider ensemble models consisting of three base models. We show that 1) DRT-based
ensembles outperform the SOTA baselines significantly especially under large perturbation radii;
2) smoothed ensembles are always more certifiably robust than each base model (Corollary 1 in
Appendix B.1); 3) applying DRT for either MME or WE ensemble protocols achieves similar and
consistent improvements on certified robustness.

Certified Robustness of DRT with Different Ensemble Protocols. The evaluation results on
MNIST, CIFAR-10, ImageNet are shown in Tables 1, 2, 3 respectively. It is clear that though the
certified accuracy of a single model can be improved by directly applying either MME or WE
ensemble training (proved in Corollary 1), such improvements are usually negligible (usually less
than 2%). In contrast, in all tables we find DRT provides significant gains on certified robustness for
both MME and WE (up to over 16% as Table 1 shows).

From Tables 1 and 2 on MNIST and CIFAR-10, we find that compared with all baselines, DRT-based
ensemble achieves the highest robust accuracy, and the performance gap is more pronounced on large
radii (over 8% for r = 2.50 on MNIST and 6% for » = 1.50 on CIFAR-10). We also demonstrate
the scalability of DRT by training on ImageNet, and Table 3 shows that DRT achieves the highest
certified robustness under large radii. It is clear that DRT can be easily combined with existing
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Table 2: Certified accuracy under different radii on CIFAR-10 dataset. The grey rows present the performance
of the proposed DRT approach. The brackets show the base models we use.

Radius r | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00
Gaussian (Cohen et al., 2019) 789 | 64.4 | 47.4 | 337 | 23.1 | 183 | 136 | 10.5 | 7.3
SmoothAdv (Salman et al., 2019) 689 | 61.0 | 544 | 457 | 348 | 28.5 | 21.9 | 182 | 157
MACER (Zhai et al., 2019) 79.5 | 68.8 | 556 | 423 | 350 | 27.5 | 234 | 204 | 175
Stability (Li et al., 2019) 724 | 582 | 434 | 275 | 239 | 160 | 156 | 114 | 7.8

SWEEN (Gaussian) (Liu et al., 2020) 81.2 | 68.7 | 544 | 38.1 | 283 | 19.6 | 152 | 115 | 8.6
SWEEN (SmoothAdv) (Liu et al., 2020) | 69.5 | 62.3 | 55.0 | 46.2 | 352 | 29.5 | 224 | 193 | 16.6

MME (Gaussian) 80.8 | 68.2 | 534 | 384 | 29.0 | 196 | 156 | 11.6 | 88
DRT + MME (Gaussian) 814 | 704 | 57.8 | 43.8 | 344 | 29.6 | 249 | 209 | 16.6
MME (SmoothAdv) 714 | 645 | 57.6 | 484 | 362 | 29.8 | 239 | 195 | 162
DRT + MME (SmoothAdv) 72.6 | 67.2 | 60.2 | 504 | 394 | 358 | 304 | 24.0 | 20.1
WE (Gaussian) 80.8 | 68.4 | 53.6 | 384 | 292 | 197 | 159 | 11.8 | 89
DRT + WE (Gaussian) 81.5 | 704 | 579 | 440 | 342 | 29.6 | 249 | 20.8 | 164
WE (SmoothAdv) 71.8 | 64.6 | 57.8 | 485 | 362 | 29.6 | 242 | 19.6 | 16.0
DRT + WE (SmoothAdv) 72.6 | 67.0 | 60.2 | 50.5 | 39.5 | 36.0 | 30.3 | 24.1 | 20.3

training approaches (e.g. Gaussian smoothing or SmoothAdv), boost their certified robustness, and
set the state-of-the-art results to the best of our knowledge.

To evaluate the computational cost of DRT, we analyze the theoretical complexity in Appendix E
and compare the efficiency of different methods in practice in Appendices F.1 and F.2. In particular,
we show that DRT with Gaussian Smoothing base models even achieves around two times speedup
compared with SmoothAdv with comparable or even higher certified robustness, since DRT does
not require adversarial training. More discussions about hyper-parameters settings for DRT can
be found in Appendix F. In Appendix G.4, we also show that our proposed DRT approach could
achieve 6% ~ 10% higher certified accuracy compared to adapted ADP (Pang et al., 2019) and
GAL (Kariyappa & Qureshi, 2019) training on large radii for both MNIST and CIFAR-10 datasets.

Certified Accuracy with Different Table 3: Certified accuracy under different radii on ImageNet

Perturbation Radius. We visualize the dataset. The grey rows present the performance of the proposed
trend of certified accuracy along with dif- DRT approach. The brackets show the base models we use.

ferent pe.rturbatlon radii in Figure 3. Fo.r P—T— 1000 | 0.50 | 1,00 | 150 | 200 | 250 | 5.00
each radius r, we present the best certi- Gaussian (Cohen et al., 2019) 572 | 462 | 37.0 | 29.2 | 19.6 | 15.2 | 124
fied accuracy among different smoothing ~ SmeothAdy (Salman et al. 2019) 54.6 | 49.0 | 438 | 37.2 | 27.0 | 252 | 204
MACER (Zhai et al., 2019) 68.0 | 57.0 | 43.0 | 31.0 | 25.0 | 18.0 | 140

parameters o € {0,25_ 0.50, 1,00}, We SWEEN (Gaussian) (Liu et al., 2020) 584 | 470 | 374 | 298 | 202 | 158 | 1238
. oo ’ . SWEEN (SmoothAdv) (Liu et al., 2020) | 55.2 | 50.0 | 44.2 | 37.8 | 27.6 | 26.6 | 21.6
notice that while simply applying MME  —vE Gaussiam) 580 | 472 | 388 | 312 | 214 | 164 | 142
or WE protocol could slightly improve DRI+ MME (Guussian) 522 | 468 | 424 | 342 | 24.0 | 196 | 180
MME (SmoothAdv) 550 | 502 | 442 | 386 | 27.4 | 264 | 216

the certified accuracy, DRT could signif— DRT + MME (SmoothAdv) 49.8 | 46.8 | 444 | 39.8 | 30.2 | 28.2 | 234
. . WE (Gaussian) 582 [ 472 | 386 | 312 | 21.6 | 17.0 | 144
icantly boost the certified accuracy un-  prr+ we (Gaussian) 522 | 468 | 41.8 | 336 | 242 | 198 | 184
: . WE (SmoothAdv) 552 | 502 | 444 | 386 | 282 | 26.2 | 220

der different radii. We also present the [ ettt o) 498 | 466 | 444 | 388 | 304 | 290 | 232

trends of different smoothing parameters
separately in Appendix F which lead to
similar conclusions.

Effects of GD and CM Losses in DRT. ..
To explore the effects of individual Gra-
dient Diversity and Confidence Margin
Losses in DRT, we set p; or ps to 0 sepa-
rately and tune the other for evaluation on
MNIST and CIFAR-10. The full results : ]
are shown in Appendix G.1. We observe =0 s 20 13 20 25 30735 4o Radius
that both GD and CM losses have positive (a) MNIST (b) CIFAR-10

effects on improving the certified accu-
racy, and GD plays a major role on larger Figure 3: Certified accuracy for ML ensembles with Gaus-
radii. By combining these two regular- sian smoothed base models, under smoothing parameter o €

ization losses as DRT does, the ensemble  10-25;0.50, 1.00} on (Left) MNIST; (Right) CIFAR-10.
model achieves the highest certified accuracy under all radii.
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5 CONCLUSION

In this paper, we explored and characterized the robustness conditions for certifiably robust ensemble
ML models theoretically, and proposed DRT for training a robust ensemble. Our analysis provided the
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justification of the regularization-based training approach DRT. Extensive experiments showed that
DRT-enhanced ensembles achieve the highest certified robustness compared with existing baselines.

Ethics Statement.  In this paper, we characterized the robustness conditions for certifying ML en-
semble robustness. Based on the analysis, we propose DRT to train a certifiably robust ensemble. On
the one hand, the training approach boosts the certified robustness of ML ensemble, thus significantly
reducing the security vulnerabilities of ML ensemble. On the other hand, the trained ML ensemble
can only guarantee its robustness under specific conditions of the attack. Specifically, we evaluate
the trained ML ensemble on the held-out test set and constrain the attack to be within predefined Lo
distance from the original input. We cannot provide robustness guarantee for all possible real-world
inputs. Therefore, users should be aware of such limitations of DRT-trained ensembles, and should
not blindly rely on the ensembles when the attack can cause large deviations measured by Lo distance.
As a result, we encourage researchers to understand the potential risks, and evaluate whether our
attack constraints align with their usage scenarios when applying our DRT approach to real-world
applications. We do not expect any ethics issues raised by our work.

Reproducibility Statement.  All the theorem statements are substantiated with rigorous proofs
in Appendices B to D. In Appendix F, we list the details and hyperparameters for reproducing
all experimental results. Our evaluation is conducted on commonly accessible MNIST, CIFAR-
10, and ImageNet datasets. Finally, we upload the source code as the supplementary material for
reproducibility purpose.
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In Appendix A, we provide more background knowledge about randomized smoothing. In Ap-
pendix B, we first discuss the direct connection between the definition of r-robustness and the
robustness certification of randomized smoothing, then prove the robustness conditions and the
comparison results presented in Section 2. In Appendix C, we formally define, discuss, and the-
oretically compare the smoothing strategies for ensembles. In Appendix D, we characterize the
robustness of smoothed ML ensembles from statistical robustness perspective which is directly related
to the robustness certification of randomized smoothing. In Appendix E, we present and analyze
some alternative designs of DRT. In Appendix F, we show the detailed experimental setup and full
experiment results. Finally, in Appendix G, we conduct abalation studies on the effects of Gradient
Diversity and Confidence Margin Losses in DRT in Appendix G.1, certified robustness of single base
model within DRT-trained ensemble in Appendix G.2, and investigate how optimizing ensemble
weights can further improve the certified robustness of DRT-trained ensemble in Appendix G.3. We
also analyze other gradient diversity promoted regularizers’ performance and compare them with
DRT in Appendix G.4.

A BACKGROUND: RANDOMIZED SMOOTHING

Cohen et al. (Cohen et al., 2019) leverage Neyman-Pearson Lemma Neyman & Pearson (1933) to
provide a computable robustness certification for the smoothed classifier.

Lemma A.1 (Robustness Certificate of Randomized Smoothing; (Cohen et al., 2019)). At point x,
let random variable ¢ ~ N (0,0%1,), a smoothed model G5, is r-robust where

((1)71 (g%(mO)CA) - (1)71 (g%(mO)CB)) ) (11)

T =

o1 Q

where ca = G%(xo) and cg = Gi-,@)(:co) are the top and runner-up class respectively, and ®~! is

the inverse cumulative distribution function (CDF) of standard normal distribution.

In practice, for ease of sampling, the standard way of computing the certified radius is using the lower
bound of Equation (11): r = 0®~!(g%(x0)., ). Now we only need to figure out g5 (xo).,. The
common way is to use Monte-Carlo sampling together with binomial confidence interval Cohen et al.
(2019); Yang et al. (2020a); Zhai et al. (2019); Jeong & Shin (2020). Concretely, from definition
97(0)es = Pren(o,021,) (F (20 + €) = ca), we sample n Gaussian noises: £1,€2,...,6, ~
N(0,021,) and compute the empirical mean: §%(zo)c, = + > I[F(®o + &) = ca]. The
binomial testing Clopper & Pearson (1934) then gives a high-confidence lower bound of ¢%. (o).,
based on §5(xo).,. We follow the setting in the literature: sample n = 105 samples and set
confidence level be 99.9% Cohen et al. (2019); Yang et al. (2020a); Zhai et al. (2019); Jeong & Shin
(2020). More details are available in Appendix F. Note that F' could be either single model or any
ensemble models with Ensemble-before-Smoothing strategy.

B DETAILED ANALYSIS AND PROOFS IN SECTION 2

In this appendix, we first show the omitted theoretical results in Section 2, which are the robustness
conditions for Max-Margin Ensemble (MME) and the comparison between the robustness of ensemble
model and single model. We then present all proofs for these theoretical results.

B.1 DETAILED THEORETICAL RESULTS AND DISCUSSION

Here we present the theoretical results omitted from Section 2 along with some discussions.

B.1.1 ROBUSTNESS CONDITION OF MME

For MME, we have the following robustness condition.

Theorem 3 (Gradient and Confidence Margin Condition for MME Robustness). Given input ¢, € R?
with ground-truth label yo € [C], and Mg as an MME defined over base models {Fy, F}.
Muyme (o) = yo. Both Fy and Fs are 3-smooth.
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* (Sufficient Condition) If for any y1,y> € [C] such that y, # yo and y2 # yo,

1
[V f?/" (@o) + Vi f3% (o)l2 <~ (1" (o) + f3°* (o)) —28r. (1)

then Mg is r-robust at point x.

* (Necessary Condition) Suppose for any x € {xq+6 : ||0||2 < 7}, forany i € {1,2}, either
F;(x) = yo or Fi(z)(m) = yo. If MMME is r-robust at point x, then for any y1,y2 € [C]
such that yy # yo and y2 # Yo,

1
[V 1 (o) + Va3 (o)ll2 <~ (F177" (o) + 37/ (o)) +28r. (13)

Comparing with the robustness conditions of MME (Theorem 1), the conditions for MME have highly
similar forms. Thus, the discussion for ERI in main text (Equation (6)) still applies here, including
the positive impact of diversified gradients and large confidence margins towards MME ensemble
robustness in both sufficient and necessary conditions and the implication of small model-smoothness
bound 5. A major distinction is that the condition for MME is limited to two base models. This
is because the “maximum” operator in MME protocol poses difficulties for expressing the robust
conditions in succinct continuous functions of base models’ confidence. Therefore, Taylor expansion
cannot be applied. We leave the extension to /N > 2 base models as future work, and we conjecture
the tendency would be similar as Equation (5). The theorem is proved in Appendix B.2.

B.1.2 COMPARISON BETWEEN ENSEMBLE ROBUSTNESS AND SINGLE-MODEL ROBUSTNESS

To compare the robustness of ensemble models and single models, we have the following corollary
that is extended from Theorem 1 and Theorem 3.

Corollary 1 (Comparison of Ensemble and Single-Model Robustness). Given an input €, € R?
with ground-truth label yy € [C). Suppose we have two [3-smooth base models {Fy, F»}, which are
both r-robust at point xq. For any A € [0, 1):

*» (Weighted Ensemble) Define Weighted Ensemble My with base models {Fy, F>}. Sup-
pose Mwg(zo) = yo. If for any label y; # o, the base models’ smooth-

ness B < A - min{ffo/yi(mo), gO/yi(mo)}/(CQTQ), and the gradient cosine similarity
cos(Vyg fO/yi (x0), Vg 2yo/y7; (x0)) < cos, then the Mg with weights {w1, w2} is at least
R-robust at point xo with

1-A

2 (1= Cwe(l —cos0)) "2 where (14)
1+A

=r

Core —  min _2w1w2 YO @0) £307% (o)
WE = ! v0/vi vo /i 2
yiyi£yo (w1 fy (zo)+w2f, (o))

¢ =max{174 (1 - Cwe(1 — cos))”/* 1},

* (Max-Margin Ensemble) Define Max-Margin Ensemble Myg with the base models {F1, Fy}.
Suppose Muuvge(xo) = yo. If for any label y1 # yo and y2 # yo, the base models’
smoothness § < A - min{fiu”/y1 (o), gO/M (z0)}/(c*r?), and the gradient cosine similarity

cos(Vy f”’/yl (o), Vo go/w(wo» < cos b, then the Myug is at least R-robust at point xg
with
1-A

R =1 13 (1= Chnan(1 = c0s0)) ™" where (15)
— g 2@ (@) 1A (1 _ ~ cosB)) 2
Choue = U I o) £ o) max{ {73 (1 — Cumg(l —cos)) ", 1}
Y1,Y27Yo

The proof is given in Appendix B.3.

Optimizing Weighted Ensemble.  As we can observe from Corollary 1, we can adjust the weights
{w1,ws} for Weighted Ensemble to change Cwg and the certified robust radius (Equation (14)).
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Then comes the problem of which set of weights can achieve the highest certified robust radius. Since
larger C'ywg results in higher radius, we need to choose

- 2w1w2fy0/yi( )fy()/yi( 0)
wy ', wy ) =arg max min — w070 .
W1, W2 Y;:Yi Yo (wlf (:130) + U)Qf (:130))

Since this quantity is scale-invariant, we can fix wy and optimize over ws to get the optimal weights.
In particular, if there are only two classes, we have a closed-form solution

9 Yo/y1 Yo /Y1
(WP wOPT) — arg max wiwa f1°7 (o) 5" (20)

w1 ,wa (,w fyo/y1($0)+w2fyo/y1( O))2
= {k- fyO/yl(wo) k- fyo/yl( o) i keRLY,

( OPT , OPT

and corresponding C g achieves the maximum 1/2.

For a special case—average weighted ensemble, we get the corresponding certified robust radius by
setting w1 = wo and plug the yielded

Yo/Yi Yo/yi
CWE _ InlIl f (mo)f;/ ! (.’Bo) c (0’ 1/2]

viwiFvo (f301% (20) + f3°7Y (20))2

into Equation (14).

Comparison between ensemble and single-model robustness.  The similar forms of R in the
corollary allow us to discuss the Weighted Ensemble and Max-Margin Ensemble together. Specifically,
we let C be either Cwg or Cyivig, then
1-A —1/s
R:rm(l—C(l—COSQ)) Y .
Since when R > r, both ensembles have higher certified robustness than the base models, we solve
this condition for cos 6:

1-A\?
— — <1-—
R>r < (1+ ) >1—-C(1—cosf) < cosf <1

AN
C(1+A)?

Notice that C' € (0, 1/2]. From this condition, we can easily observe that when the gradient cosine
similarity is smaller, it is more likely that the ensemble has higher certified robustness than the base
models. When the model is smooth enough, according to the condition on 3, we can notice that A
could be close to zero. As a result, 1 — C(%AA)? is close to 1. Thus, unless the gradient of base

models is (or close to) colinear, it always holds that the ensemble (either WE or MME) has higher
certified robustness than the base models.

Larger certified radius with larger number of base models N. Following the same methodol-
ogy, we can further observe that larger number of base models /N can lead to larger certified radius as
the following proposition shows.

Proposition B.1 (More Base Models Lead to Higher Certified Robustness of Weighted Ensemble).

At clean input o € R? with ground-truth label yo € [C], suppose all base models { f;}N " are

SMoot. upposete elg te nsemole 10 ase moaelts ifi—1 an 2 O, ase modaels
B-smooth. S he Weighted Ensemble M of b dels {f}¥, and My of b del

{fi}; N }L\%l are both r-robust according to the sufficient condition in Theorem 1, and for any y; # yo

the My and My’s ensemble gradients (Z _q Wy mf;")/yi (zo) and Z;\Z\%l ijmey”/y" (z0))

are non-zero and not colinear, then the Weighted Ensemble M of { fz}f\s{M

>

is v'-robust for some

Proof of Proposition B.1. For any y; # o, since both M7 and M are r-robust according to the
sufficient condition of Theorem 1, we have

HZU}] wao/% H Zf"/o/'l/z (o) 57’§:wj, (16)
j=1
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N+M 1 N+M N+M
| 3 wverr@ol, <0 S a0 -pr 3w an
J=N+1 J=N+1 j=N+1

Adding above two inequalties we get

N +1v 1 N+M N+M
Yo/ vi Yo/yi Yo/y:
TR ) SRR S S S S
j=1 j=N+1 Jj=1 j=1
(18)
Since gradients of ensemble are not colinear and non-zero, from the triangle inequality,
N+M ) , N+M ,
DIPTSR 1 o T Rt
j=N+1
and thus
N+M | NtM N+M

H Z w; Vo £V (g H Z £ (@) — Br Y wy, (20)
=

which means we can increase 7 to v’ and still keep the 1nequa11ty hold with “<”, and in turn certify a
larger radius 7’ according to Theorem 1. O

Since DRT imposes diversified gradients via GD Loss, the “not colinear” condition easily holds for
DRT ensemble, and therefore the proposition implies larger number of base models N lead to higher
certified robustness of WE. For MME, we empirically observe similar trends.

B.1.3 ROBUSTNESS CONDITIONS FOR SMOOTHED ENSEMBLE MODELS

Following the discussion in Section 2.3, for smoothed WE and MME, with the model-smoothness
bound (Theorem 2), we can concretize the general robustness conditions in this way.

We define the soft smoothed confidence function g3 (z) := E. f(x + ¢). This definition is also used
in the literature (Salman et al., 2019; Zhai et al., 2019; Kumar et al., 2020). As a result, we revise the
ensemble protocols of WE and MME by replacing the original confidences { f;(xo)}., with these
soft smoothed confidences {5 (x)},. These protocols then choose the predicted class by treating
these {75 (x)} Y, as the base models’ confidence scores. In the experiments, we did not actually
evaluate these revised protocols since their robustness performance are expected to be similar as
original ones (Salman et al., 2019; Zhai et al., 2019; Kumar et al., 2020). The derived results connect
smoothed ensemble robustness with the confidence scores.

Corollary 2 (Gradient and Confidence Margin Conditions for Smoothed WE Robustness). Given
input o € RY with ground-truth label yo € [C]. Let ¢ ~ N(0,0%1,) be a Gaussian random
variable. Define soft smoothed confidence g; (xz) := E. fi(x + €) for each base model F; (1 < i <
N). The G5, . is a WE defined over soft smoothed base models {gs } ., with weights {w;}Y.,.

Mwe (T0) = Yo.

* (Sufficient Condition) The GE My 18 T-robust at point xy if for any y; # yo,
2r
HZ% £ ()|, < Zw (o)~ 5wy, @D

* (Necessary Condition) If@e My 18 T-robust at point xo, for any y; £ Yo,

szj ©)vo/ v (a H Zw £YUo0/ Vi (g5, +7ij (22)

Corollary 3 (Gradient and Confidence Margin Condition for Smoothed MME Robustness). Given
input £ € R? with ground-truth label yo € [C]. Let ¢ ~ N(0,0%1;) be a Gaussian random
variable. Define soft smoothed confidence G5 (x) := E. f;(x + €) for either base model Fy or Fs.
The G4, 11 1S @ MME defined over soft smoothed base models {g5, g5} Gy, (T0) = Yo
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* (Sufficient Condition) If for any y1,y> € [C] such that y, # yo and y2 # yo,

1 4
IV (35)7/¥ (o) + Va (g5)"°/¥2 (@0) |2 < ;((ﬁi)y(‘/"“ (o) + (55)"/* (o)) — 5.,

) “23)
then G5, .., is T-robust at point x.

* (Necessary Condition) Suppose for any x € {xo + 0 : ||8]|]2 < r}, forany i € {1,2},
either Gp,(x) = yo or Gg)(az) = ¥p. IfG.EMMME is r-robust at point x, then for any
Y1, Y2 € [C] such that yy # yo and y2 # yo,

1 4
IV (g5)¥0/V" (o) + Vi (55)7°/¥2 (0|2 < T((Qi)yo/yl (o) + (5)"°/¥* (o)) + ;2
(24)

Remark. The above two corollaries are extended from Theorem 1 and Theorem 3 respectively, and
correspond to our discussion in Section 2.3. We defer the proofs to Appendix B.5. From these
two corollaries, we can explicit see that the Ensemble-before-Smoothing (see Definition 5) provides
smoothed classifiers G§,  and G5, with bounded model-smoothness; and we can see the
correlation between the robustness conditions and gradient diversity/confidence margin for smoothed
ensembles.

B.2 PROOFS OF ROBUSTNESS CONDITIONS FOR GENERAL ENSEMBLE MODELS

This subsection contains the proofs of robustness conditions. First, we connect the prediction of
ensemble models with the arithmetic relations of confidence scores of base models. This connection
is straightforward to establish for Weighted Ensemble (shown in Proposition B.2), but nontrivial for
Max-Margin Ensemble (shown in Theorem 4). Then, we prove the desired robustness conditions
using Taylor expansion with Lagrange reminder.

Proposition B.2 (Robustness Condition for WE). Consider an input xo € R? with ground-truth
label yo € [C), and an ensemble model Mg constructed by base models {F;}N | with weights
{wz}f\;l Suppose Mwg(xo) = yo. Then, the ensemble My, is r-robust at point x if and only if
foranyx € {zog+ 6 :| 0|2 <r},
N
min Z w]—f]y"/yi (x) > 0. (25)

yi €[Clyi#yo =

Proof of Proposition B.2. According the the definition of r-robust, we know My is r-robust if and
only if for any point & := x¢ + & where ||d]|2 < 7, Mwg(zo + §) = yo, which means that for any
other label y; # yo, the confidence score for label ¥ is larger or equal than the confidence score for
label y;. It means that

N N
D wifi(@)y, =D w;f(@)y,
j=1 j=1

forany @ € {@x¢ + 0 : ||d]|2 < r}. Since this should hold for any y; # yo, we have the sufficient and
necessary condition
N
min Z wjijo/yi(w) > 0. (25)

yi €[ClryiFyo <
=1

O

Theorem 4 (Robustness Condition for MME). Consider an input o € R¢ with ground-truth label
Yo € [C]. Let Mg be an MME defined over base models { F;}Y_|. Suppose: (1) Mymg(xo) =

Yos (2) for any x € {xo + 9 : ||8]|a < r}, given any base model i € [N, either F;(x) = yo

(2)

or F;”(x) = yo. Then, the ensemble Mg is r-robust at point x¢ if and only if for any

xe{xy+0:]0d]2<r}

max  min Yo/Yi(g) > max  min vi/yo ). 26
i€[N] y: €[Cl:yi#yo ; (@) 2 1€[N] y; €[Cly;#yo J; (@) (26)
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The theorem states the sufficient and necessary robustness condition for MME. We divide the two
directions into the following two lemmas and prove them separately. We mainly use the alternative
form of Equation (26) as such in the following lemmas and their proofs:

max  min fiyo/yi () + min  min fiyo/yi (x) > 0. (26)
i€[N] yi €[Clyi#yo i€[N] ¥, €[Cl:yi#yo

Lemma B.1 (Sufficient Condition for MME). Let Myvg be an MME defined over base models
{F;}N.,. For any input ¢o € R?, the Max-Margin Ensemble Mg predicts Mg (o) = yo if

max  min Yo/¥i (4£4) + min min Yo/ ¥ xy) > 0. 26
T i, S (@) O e (o) 2 (20)

Proof of Lemma B.1. For brevity, for i € [N], we denote y; := F;(xo),y, := Fi@)(:vo) for each
base model’s top class and runner-up class at point x.

Suppose Mume (o) # Yo, then according to ensemble definition (see Definition 3), there exists
¢ € [N], such that Mypyg(2o) = F.(xo) = y., and

Vi € [N], i # ¢, fo(@o)V/¥e > fimo)¥i/¥ . Q27)

Because y. # yo, we have f.(xo)y, < fe(xo),y,, so that felmg)ve/vo > f.(wg)v/¥. Now consider
any model F; where i € [N], we would like to show that there exists y* # yo, such that f; (aco)-’“/ vi >
fimo)ro!V":

« Ify; = yo, let y* := g, trivially f;(ao)¥/Vi = fi(awo)¥o/v";

o Ify; # yo, and ] # yo. we let y* := y/, then f;(wo)¥+/¥i = fi(wo)¥/¥" > fi(wo)¥/¥";
* If y; # yo. but y = yo, we let y* = y;, then f;(wo)¥/Vi = fi(wo)¥:/v0 > f;(ao)¥e/¥: =
fil@o)wo/v".
Combine the above findings with Equation 27, we have:

Vi€ [N],i# ¢, 3y; € [Clandy} # yo, 3y € [Clandy; # yo, fe(xo)?e/¥0 > fi(ao)¥o/¥ .

Therefore, its negation

3i € [N], i # ¢, Vy; € [Clandy; # yo, Vy! € [Clandy; # yo, fe(@o)*/¥" + fi(ao)"/¥ > 0
(28)
implies M(xo) = yo. Since Equation (28) holds for any y and y, the equation is equivalent to

Ji € [N], i # ¢, min o(20)Y/Y (xg) +  min (20)Y° Y () > 0.
[N], i # yCG[C]:yc;éyof( 0)¥"¥" (o) y;e[C]:y#yof( 0)"¥i (o)

The existence qualifier over ¢ can be replaced by maximum:

min_ fo(wo)"/¥(xo) + max min  fi(ao)*/¥ (zg) > 0.

ye€[Clyc#yo 1€[N] y; €[Cly;#yo
It is implied by
max min Yo/ Vi (g + min min vo/y; xg) > 0. 26
i€[N] y; €[Cl:yi #Yo fz ( O) i€[N] y;€[Cly#yo fz ( 0) o (26)
Thus, Equation (26) is a sufficient condition for Mymvg (o) = yo. O

Lemma B.2 (Necessary Condition for MME). For any input o € R?, if for any base model
i € [N], either F;(xo) = yo or Fi(2) (xo) = yo, then Max-Margin Ensemble Mg predicting
Mg (o) = yo implies

max  min Yo/Yi (1) + min min Yo/Yi (20} > 0. 26
max @i (@) o e I (@0) = (20)
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Proof of Lemma B.2. Similar as before, for brevity, for ¢ € [N], we denote y; := F;(x),y, :=
Fl@) (zo) for each base model’s top class and runner-up class at point .

Suppose Equation (26) is not satisfied, it means that

Je € [N], 3y € [Clandy! # yo, Vi € [N], 3y} € [Clandy; # yo, [2°/* (o) > f°/% (o).

o If y. = o, then f2</*(x0) < 0, which implies that f°/% (o) < 0, and hence F}(zq) #
0. Moreover, we know that fiyi/yi(mg) = fU(zg) > f;’“/y”(azo) > Ul (gg) >
JEV (o) = £V (o) so M) # Fulao) = wo.

© If yo # Yoo i€ Yl = yo. then f2/% (o) > FL7/ (o) > fP¥ (o). If Fi(mo) =

yo. then [P/ (o) > f1V () = fUV (o). Thus, fI/V(xo) = () >
fiy"/yi (o). As the result, M(xz¢) = F.(xo) # yo.

For both cases, we show that Myvg(xo) # Yo, i.e., Equation (26) is a necessary condition for
M(zo) = yo. O

Proof of Theorem 4. Lemmas B.1 and B.2 are exactly the two directions (necessary and sufficient
condition) of Myp\g predicting label yq at point . Therefore, if the condition (Equation (26)) holds
forany € {xo+ 6 : ||d]|2 < r}, the ensemble Mg is r-robust at point x¢; vice versa. O

For comparison, here we list the trivial robustness condition for single model.

Fact B.1 (Robustness Condition for Single Model). Consider an input xq € R¢ with ground-truth
label yo € [C). Suppose a model F satisfies F(xo) = yo. Then, the model F is r-robust at point 2
if and only if for any x € {xo + 0 : ||0]]2 < r},

min vo/¥i () > 0.
in[C}iyﬁéyof (@) 2

The fact is apparent given that the model predicts the class with the highest confidence.

Now we are ready to apply Taylor expansion to derive the robustness conditions shown in main text.

Theorem 1 (Gradient and Confidence Margin Condition for WE Robustness). Given input x, € R?
with ground-truth label yo € [C), and Mg as a WE defined over base models { F;} | with weights
{wi . Mwg (o) = yo. All base model F;’s are B-smooth.

* (Sufficient Condition) Mg is r-robust at point x if for any y; # yo,
N
szj fy()/yz H Zw fUO/yL -’130 6rzwj (4)
j=1
* (Necessary Condition) If My is r-robust at point x, then for any yi # Yo,

sza Vo [ (@ H ngfy"/y’ woer’Tij (5)

Proof of Theorem 1. From Taylor expansion with Lagrange remainder and the S-smoothness assump-
tion on the base models, we have

N
wayo/yz _THZMJ mfyo/yz H2 ;TQJE_:I 2Bw;) <

N
S Va2 (@), + 57 ;mwj),

1
§ :w] Jo/%

x: Hw on <r

(29)
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1 1
where the term 757"2 Zj\;l (2Bw;) and 57"2 Zjvzl (2Bw,) are bounded from Lagrange remainder.
Note that the difference f]"f’ o/vi g (23)-smooth instead of S-smooth since it is the difference of two
B-smooth function, and thus Zjvzl wj f;")/ Y s Z;V:l(Zﬁwj)—smooth. From Proposition B.2, the

sufficient and necessary condition of WE’s r-robustness is Z;Y:I w; f]?-”o/ Yi(x) > 0 for any y; € [C]

such that y; # yo, and any = x¢ + d where ||d||2 < r. Plugging this term into Equation (29) we
get the theorem. O

Theorem 3 (Gradient and Confidence Margin Condition for MME Robustness). Given input oy € R¢
with ground-truth label yo € [C], and Mg as an MME defined over base models {Fy, Fy}.
Mg (o) = yo. Both Fy and Fs are 3-smooth.

* (Sufficient Condition) If for any y1,ya € [C] such that y; # yo and y= # yo,

1
[V " (o) + Va3 (@o)l2 < — (" (wo) + £3" (o)) — 26, (12)
then Mymg is r-robust at point x.

* (Necessary Condition) Suppose for any x € {xq+6 : ||0||2 < 7}, forany i € {1,2}, either
Fi(x) = yo or Fi(z)(a:) = yo. If MMME is r-robust at point x, then for any y1,y2 € [C]
such that y1 # yo and ya # Yo,

1
[V 1" (o) + Va3 (@o)l2 < — (" (o) + £3/ (o)) +26r. (13)

Proof of Theorem 3. We prove the sufficient condition and necessary condition separately.

¢ (Sufficient Condition)
From Lemma B.1, since there are only two base models, we can simplify the sufficient
condition for Myvg(x) = yo as

min vo/Yi () + min vo/i x) > 0.
i €[Clyi#yo fl ( ) y; €[Cl:y; #yo f2 ( ) o

In other words, for any y; # yo and y» # yo,
fiJO/yl (:B) + fzyu/yz (:B) 2 0. (30)

With Taylor expansion and model-smoothness assumption, we have

min 7 (@) + [ (@)

x|z —zol2<r
1
Zflyo/yl (5130) + nyO/yz(wO) - T‘va 17/0/2/1 (mo) TV, gO/yz(ﬁcO)HQ -3 '4B7,2.

Plugging this into Equation (30) yields the sufficient condition.

In the above equation, the term —% - 48372 is bounded from Lagrange remainder. Here, the

48 term comes from the fact that £/ (z) + f¥°/¥2 () is (43)-smooth since it is the sum
of difference of 8-smooth function.

* (Necessary Condition)
From Lemma B.2, similarly, the necessary condition for Myvmg () = yo is simplified to:

for any y; # yo and y2 # Yo,

Again, from Taylor expansion, we have
min 1yo/y1 (z) + fgo/yz(w)

x:||e—xo||2<r

1
< o) + 130 o) = vV [ (o) + Vi £ (o) |2 + 5 - 457,
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Plugging this into Equation (30) yields the necessary condition.

In the above equation, the term —&—% - 4Br? is bounded from Lagrange remainder. The 4.3
term appears because of the same reason as before.

O

Since we will compare the robustness of ensemble models and the single model, we show the
corresponding conditions for single-model robustness.

Proposition B.3 (Gradient and Confidence Margin Conditions for Single-Model Robustness). Given
input ¢y € R with ground-truth label yo € [C]. Model F(xy) = yo, and it is 3-smooth.

* (Sufficient Condition) If for any y, € [C] such that y; # yo,

1
[V f20/ 2 (o)l < S/ (o) = B, 3D
F'is r-robust at point xy.

* (Necessary Condition) If F is r-robust at point x, for any y, € [C] such that y1 # yo,

1
||meyo/y1 (w0)||2 < ;fyﬂ/yl (330) + Br. (32)

Proof of Proposition B.3. This proposition is apparent given the following inequality from Taylor
expansion

fyo/y1 (azo)—THmeyO/yl (mo)||2—ﬂ7"2 < min fy"/yl(cc) < fyo/yl (mo)—THVa:fyO/yl (330)H2+,37“2

x:||x—xol|2<r

and the sufficient and necessary robust condition in Fact B.1. [

B.3 PROOF OF ROBUSTNESS COMPARISON RESULTS BETWEEN ENSEMBLE MODELS AND
SINGLE MODELS

Corollary 1 (Comparison of Ensemble and Single-Model Robustness). Given an input €, € R?
with ground-truth label yo € [C]. Suppose we have two [3-smooth base models {Fy, F»}, which are
both r-robust at point x¢. For any A € [0,1):

» (Weighted Ensemble) Define Weighted Ensemble My with base models {Fy, F>}. Sup-
pose Mwg(xo) = yo. If for any label y; F# yo, the base models’ smooth-
ness 3 < A - min{fiyo/y"(wo) yo/yb( 0)}/(c?r?), and the gradient cosine similarity

cos(Vy f‘)/y’ (o), Vo gO/y"’ (xg)) < cosé, then the Mwg with weights {wy,ws} is at least
R-robust at point xo with

1-A —1/2
R=r 13 (1= Cue(1 = cos0) ™ where (14)

/v vo/Yi
_ . 2wy wa fi yo (20) fo (x0)
OWE - I.Illn vo /i vo/Y; 27
yiyiFyo (wify (o) +wa2 f3 (x0))

¢ = max{i2 Y ( — Cwg(1 — cos 9))—1/2 1}

* (Max-Margin Ensemble) Define Max-Margin Ensemble Mypg with the base models {F1, F»}.
Suppose Muuvge(xo) = yo. If for any label y; 7é Yo and ya2 # Yo, the base models’

smoothness B < A - mm{fy”/y1 (xo), yO/yQ( 0)}/(c*r?), and the gradient cosine similarity

cos(V wfiyf’/yl( 0); Va 2y°/y2(1:0)) < cosb, then the Mg is at least R-robust at point xg
with
1-A _
R=r- 1_|_7A(1 — Chue(1 — cos0) ™72 where (15)

CMME: min nyo/y1( )fyo/yz(wg)

Y1ya: (fP07V (o) + Y07V (w0
Y1,Y27Yo

577 C = max{ 12 iITA A (1 - Cyvme(l — cosG))fl/z 1}
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Proof of Corollary 1. We first prove the theorem for Weighted Ensemble. For arbitrary y; # 1o, we
have

lev fyo/yl(w0)+w2v fyo/yq( 0)H2

—an FY (o) |13 + w3 Ve £3°7Y (20) 113 + 2w1w2 (Ve f107¥ (m0), f307Y (@0))

<¢w%||v F2 (o) |13 + w3 || Va £5°7 (20) |13 + 2w1w2 || Va f12Y (20) 12| Ve £5°7 (20) |2 cos 0

(i) 1 . 2 1 . 2 1 oo /us 1 v
< \/wf (;fly(’/y" (z0) + Br) + w3 (; Vo/Yi(g0) 4+ Br) + 2wiws (;flj‘)/yl (z0) + ﬁr) (;nyO/% (z0) + ﬂr) cos

1 ) 2 ) 2 ) )
== \/ w} (17 (o) + Br2) + wh (J2°7 (@o) + Br2) + 2wnwa (f1°¥ (wo) + Br2 ) (307 (o) + Br?) cos B
(#i.)
< 1 ( ) \/wayO/y’ +w2fyo/yz( ) +2w1w2fyo/yl( O)félo/yi(mo) cos
1 A ) ) 2 ) )
L (1 N —) (70075 ) 10272079 (@0)) = 201 cos by 25/ o £ o)

(i44.)

< 1 (1 + ) V1= (1—cos)Cwr (wlfyo/yl (o) + wgfé"’/y"'(mo))
where (i.) follows from the necessary condition in Proposition B.3; (4.) uses the condition on §; and
(741.) replaces lewgfyO/y’ (o) Qyﬂ/yi’ (zo) leveraging Cwg. Now, we define

1-A

_ _ —/2
1+A(1 Cwg(1l —cosf))” '~

All we need to do is to prove that My is robust within radius Kr. To do so, from Equation (4), we
upper bound ||w; Vg, fyo/.% (z0) + w2V yo/lh (o) |2 by L (wlfyo/% (zo) + ,w2fyo/y7( O)) _
BKr(wy + ws):

w1V f1°7Y (a0) + w2V f3°% (o) |12

(1 + > V1= (1 —cosf)Cwg (wlfyo/y“( o)+ wgfé")/yi (a:o))

IN

(1+A \/1 — (1 —cos8)Cwr (wlfy"/y’( 0) + w2f§’°/y"’ (wo))

1-A yo/yi Yo/ Yi

7 (wlf (o) +waf; (ﬁfo)>
1+A A (1= (1—cosh)Cwr)~
1

:E(l . ) (wlfyo/yz (CL'O) + wzfgo/yi (CL'O))

< (w7 (o) + wa 207 (o) — Amin{ £/ (o), £4°* (o) s + w2) )

ﬁ\»—ﬂﬁ\r—* %\H

Notice that A min{fi%/y" (zo), 5’0/% (x0)} > Bc2r? from (’s condition, so

w1 Vs 1Y (220) + w2V [V (@0) |2

SL (wlfi/o/yi (-730) +w2f§!0/yi (5130) _ ﬂCQT2(w1 _|_w2)>

K
2
:[T (wlfyo/% (o) + wa f1°/¥ ( )) — BKr(wi + ws) %
<o (w2 (o) 4w 207 (o)) — K (o + ws).

From Equation (4), the theorem for Weighted Ensemble is proved.
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Now we prove the theorem for Max-Margin Ensemble. Similarly, for any arbitrary 1, y2 such that
Y1 # Yo, Y2 # Yo, we have

||V yo/yl(w(])+v yo/y2(w0)”2

A
S% . (1 4 02> \/1 — (1 — cos 0)CnumE ( iyo/yl (x0) + féyo/yz(ﬁco)) .

Now we define

1-A —1/s
"= 1A (1— Cyme(1 — cos0)) ™72,

Again, from s condition we have A min{f°/¥ (x), f2°/** (z4)} > Bcr? and

1 . .
Ve fyO/yl(:Eo)—‘rV yo/yz(wo )l < o ( yo/y1($0)+f2yo/y1(wo>) — 28Ky,

From Equation (12), the ensemble is (K'r)-robust at point xg, i.e., the theorem for Max-Margin
Ensemble is proved. O

B.4 PROOFS OF MODEL-SMOOTHNESS BOUNDS FOR RANDOMIZED SMOOTHING

Theorem 2 (Model-Smoothness Upper Bound for g3). Let e ~ N (0, 021,) be a Gaussian random
variable, then the soft smoothed confidence function g5 is (2/ o2)-smooth.

Proof of Theorem 2. Recall that g3(z); = E..n (o [,zId)f( x +¢€);, where f(x + ¢); is a function

from R< to {0, 1}. Therefore, to prove that g5 is (2/0”)-smooth, we only need to show that for any
function f : Rd — [0, 1], the function f := f x (0, 0%1) is (2/0?)-smooth.

According to (Salman et al., 2019, Lemma 1), we have

3 1 |z —t]|3
f@) = Gz /R f®)esp (_202 2) . (33)
g2
Vf(x) = m f@)(x )GXP< |2052) dt. (34)

To show f is (2/0?)-smooth, we only need to show that V f is (2/0?)-Lipschitz. Let H (x) be the
Hessian matrix of f. Thus, we only need to show that for any unit vector u, |u™ H Flx)u| < 2/0
By the isotropy of H g(z), it is sufficient to consider u = (1,0,0,...,0)", where u"Hf(z)u =
H (x)11. Now we only need to bound the absolute value of H f(x)1;

1 o e — 113
H; = ‘7 COmy 202 ‘
‘ f(w)11| (27T02)d/202 /Ri f(t) 8:171 (x t) P ( 207 &
(x1 —t1)? Iz — 13 ‘
e ‘ /Rd ( — exp 552 dt
t||2
d/202 ‘ /Rd P ( ) dt‘

wl—h) l — ¢]I3
e )
+ (27r02 /242 ‘ /Rd exp( 202

B 1 / x? d
= 27m2 02 —5 exp 552 T

1+ f [P erar (39)
™ O 0

Let I'() be the Gamma function, we note that

/ " exp(—2/)dt = / " texp(—/2)d(—2) = V2 0°° Viexp(—t)dt = VAD(32) = v/,

0 0

(270

1
)/
1
(2m0?)

24



Published as a conference paper at ICLR 2022

and thus

1 2 1 T2
|Hf(m)11<02+\/;'02'\/g:(72» (36)

which concludes the proof. O

Remark. The model-smoothness upper bound Theorem 2 is not limited to the ensemble model with
Ensemble-before-Smoothing strategy. Indeed, for arbitrary classification models, since the confidence

score is in range [0, 1], the theorem still holds. If the confidence score is bounded in [a, b], simple
2(b—a)

scaling yields the model-smoothness upper bound 8 = =—;

Proposition B.4 (Model-Smoothness Lower Bound for g%). There exists a smoothed confidence

function g5 that is 3-smooth if and only if § > (

1
V2meo? )

Proof of Proposition B.4. We prove by construction. Consider the single dimensional input space R,
and a model f that has confidence 1 if and only if input z > 0. As a result,

1 oo (t—x)? 1 Hoo t2
g = — dt = —— dt.
95 (%) y, > /0 exp( 52 o [ oo
Thus,

LA S (R ‘dgi(x)io _ 1 2] exp w2
dzx 2o 202 d?z V2mo2 o 202
By symmetry, we study the function h(z) = xexp(—x2/2) for x > 0. We have h'(z) = (1 —
x) exp(—x2/2). Thus, h(z) obtains its maximum at zo = 1: h(x) = exp(—1/2), which implies that

2
[ _expl )1
d%x V2mo? V2meo?
1
which implies 3 > ——— for this g% per smoothness definition (Definition 4). ]
plies 3 a2 g7 p

B.5 PROOFS OF ROBUSTNESS CONDITIONS FOR SMOOTHED ENSEMBLE MODELS

Corollary 2 (Gradient and Confidence Margin Conditions for Smoothed WE Robustness). Given
input £o € RY with ground-truth label yo € [C]. Let ¢ ~ N(0,0%1;) be a Gaussian random
variable. Define soft smoothed confidence g; (x) := E. fi(x + ¢) for each base model F; (1 <1 <
N). The G5, is a WE defined over soft smoothed base models {g } ., with weights {w;}} ;.

* (Sufficient Condition) The G’E Mg IS T-robust at point o if for any y; # Yo,
| Zw] F ()|, < Zw =Y/ () Z% 1)
* (Necessary Condition) IfC:'E My 18 T-robust at point xo, for any y; # yo,

H Zw] vo/m (g H Zw yo/yl (o) ij (22)

Proof of Corollary 2. Since G.[;VIWE is a WE defined over {5} ,, we apply Theorem 1 directly

for G54,,,,- Notice that each g has model-smoothness bound 3 = 2/0* from Theorem 2 and the
corollary statement follows. O

Corollary 3 (Gradient and Confidence Margin Condition for Smoothed MME Robustness). Given
input £ € R? with ground-truth label yo € [C]. Let ¢ ~ N(0,0%1;) be a Gaussian random
variable. Define soft smoothed confidence G5 (x) := E. f;(x + €) for either base model Fy or Fs.
The G4, 11 1S @ MME defined over soft smoothed base models {g5, g5} Gy, (T0) = Yo
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* (Sufficient Condition) If for any y1,y> € [C] such that y, # yo and y2 # yo,

] 1 _ ] 4r
IV (95)%/¥4 (o) + Vi (95)7/%2 (o) |2 < ;((gi)"‘)/” (o) + (g5)"/** () — pet
~ (23)
then G5, ..., 1S T-robust at point x.

* (Necessary Condition) Suppose for any x € {xg + 0 : ||8]|2 < r}, forany i € {1,2},
either Gp,(x) = yg or Gg)(m) = ¥p. IfC_T’jAMME is r-robust at point T, then for any

y1,Y2 € [C] such that y1 # yo and y2 # yo,

—_

IV (g5)"/ " (o) + Va (3)"° /2 (@o)ll2 < ~((57)"/** (o) + (53)"°*2 (@0)) + %-

r
24

Proof of Corollary 3. Since Gi\AMME is constructed over confidences gi and g5, we can directly

apply Theorem 1. Again, with the model-smoothness bound 3 = 2/5% we can easily derive the
corollary statement. O

C ANALYSIS OF ENSEMBLE SMOOTHING STRATEGIES

In main text we mainly use the adapted randomized model smoothing strategy which is named
Ensemble-before-Smoothing (EBS). We also consider Ensemble-after-Smoothing (Ensemble-after-
Smoothing). Through the following analysis, we will show Ensemble-before-Smoothing generally
provides higher certified robust radius than Ensemble-after-Smoothing which justifies our choice of
the strategy.

The Ensemble-before-Smoothing strategy is defined in Definition 5. The Ensemble-after-Smoothing
strategy is defined as such.

Definition 6 (Ensemble-after-Smoothing (EAS)). Let M be an ensemble model over base models
{F;}Y.,. Let ¢ be a random variable. The EAS ensemble H5, : R? — [C] at input zy € R? is
defined as:
Hj5,(zo) == G%, (o) where c¢=argmaxgg, (Zo)cs, (a)- (37
i€[N] ’

Here, c is the index of the smoothed base model selected.

Remark. In EBS, we first construct a model ensemble M based on base models using WE or MME
protocol, then apply randomized smoothing on top of the ensemble. The resulting smoothed ensemble
predicts the most frequent class of M when the input follows distribution g + €.

In EAS, we use € to construct smoothed classifiers for base models respectively. Then, for given input
T, the ensemble agrees on the base model which has the highest probability for its predicted class.

C.1 CERTIFIED ROBUSTNESS

In this subsection, we characterize the certified robustness when using both strategies.

C.1.1 Ensemble-before-Smoothing

The following theorem gives an explicit method (first compute g5, (%o0)ce  (z,) Via sampling then
compute r) to compute the certified robust radius r for EBS protocol. This method is used for
computing the certified robust radius in our paper. All other baselines appeared in our paper also use
this method.

Proposition C.1 (Certified Robustness for Ensemble-before-Smoothing). Let G5 be an ensemble
constructed by EBS strategy. The random variable ¢ ~ N(0,0%1;). Then the ensemble G is
r-robust at point xo where

= o®! (giA(wo)caAm)) . (38)
Here, g5,(x0); = Pre(M(xo + €) = j).

The proposition is a direct application of Lemma A.1.
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C.1.2 Ensemble-after-Smoothing

The following theorem gives an explicit method to compute the certified robust radius r for EAS
protocol.

Theorem 5 (Certified robustness for Ensemble-after-Smoothing). Let HS, be an ensemble con-
structed by EAS strategy over base models {F;}Y_,. The random variable ¢ ~ N(0,0%1,). Let
yo = H5 (xo). For each i € [N), define

0@ (g5, (@0)cr, @) )+ G (@0) = o

~007" (g5 (®0)as, (@) ) - f G, (@0) # 10

Ty =

Then the ensemble H$  is r-robust at point xo where

- max;e[N] T + MIN;e[N] T4 ' (39)
2

Remark. The theorem appears to be a bit counter-intuitive — picking the best smoothed model in
terms of certified robustness cannot give strong certified robustness for the ensemble. As long as the
base models have different certified robust radius (i.e., ;s are different), the r, certified robust radius
for the ensemble, is strictly inferior to that of the best base model (i.e., max r;). Furthermore, if there
exists a base model with wrong prediction (i.e., ; < 0), the certified robust radius r is strictly smaller
than half of the best base model.

Proof of Theorem 5. Without loss of generality, we assume ry > 75 > --- > ry. Let the perturbation
added to g has Lo length §.

When § < ry, since picking any model always gives the right prediction, the ensemble is robust.

When ry < 6 < ”Jr#, the highest robust radius with wrong prediction is § — ry, and we can

still guarantee that model F3 has robust radius at least 7y — § from the smoothness of function

T — g%, (a:)GaF (o) (Salman et al., 2019). Since 71 — > 5™ > § —r, the ensemble will agree
1

on F or other base model with correct prediction and still gives the right prediction.

When § > ”*% suppose f is a linear model and only predicts two labels (which achieves the
tight robust radius bound according to Cohen et al. (2019)), then f can have robust radius § — r for
the wrong prediction. At the same time, for any other model F; which is linear and predicts correctly,
the robust radius is at most r; — 4. Since r; — 0 < r; — 0 < 25 < § — ry, the ensemble can
probably give wrong prediction.

In summary, as we have shown, the certified robust radius can be at most r. For any radius § > 7,
there exist base models which lead the ensemble H (o + de) to predict the label other than 9. [J

C.2 COMPARISON OF TWO STRATEGIES

In this subsection, we compare the two ensemble strategies when the ensembles are constructed from
two base models.

Corollary 4 (Smoothing Strategy Comparison). Given Mg, a Max-Margin Ensemble constructed
from base models { fo, fy}. Let € ~ N'(0,0%14). Let G5, be the EBS ensemble, and H5 .
be the EAS ensemble. Suppose at point xq with ground-truth label yo, G3, (x0) = G%, (To) = Yo,
g%a (1130) > 0.5, g%b (CE()) > 0.5.

Let § be their probability difference for class yo, i.e, § == |9 (T0)y, — 9%, (T0)yo|,- Let Pin be the
smaller probability for class yo between them, i.e., pin := min{g5 (%o0)y,, 9%, (T0)y, . We denote
p to the probability of choosing the correct class when the base models disagree with each other;
denote pqyp to the probability of both base models agreeing on the correct class:

pi= PET (Mumr(xo +¢) = yo | Fu(xo + €) # Fo(xo +€) and (Fy (o + €) = yo or Fy(xo +€) = o)) ,
Dab = P;r (Fa(xo +¢€) = Fy(xo +€) = 90) -
We have:
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1 Ifp > 1/2+(2+4(pmin—pab)/5)_1,7"g >nrg.
2. prgl/2,THZ7'G.

Here, r¢ is the certified robust radius of G5, .. computed from Equation (38); and ry is the
certified robust radius of H§, computed from Equation (39).

MME
Remark. Since p is the probability where the ensemble chooses the correct prediction between two
base model predictions, with Max-Margin Ensemble, we think p > 1/2 with non-trivial margin.

The quantity pmin — Pep and d both measure the base model’s diversity in terms of predicted label
distribution, and generally they should be close. As a result, 1/2 + (2 + 4(pmin — Pap)/6) ! ~
1/2+41/6 = 2/3, and case (1) should be much more likely to happen than case (2). Therefore, EBS
usually yields higher robustness guarantee. We remark that the similar tendency also holds with
multiple base models.

Proof of Corollary 4. For convenience, define p, := g% (€0)y,,Pb := 9%, (0)y,» Where p, = pyp+9
and Pmin = Pb-

From Proposition C.1 and Theorem 5, we have

rG = % 29! (PST(MMME(Q:O +e€) = yo)) , == (27 (o) + 27 (py))

| Q

Notice that Pr(Myme(o + €) = Y0) = Pab + P(Pa + Db — 2Pab), We can rewrite rg as

o _
re =g 207 (pap + p(pa + b — 2Pab))-

L. Whenp > 1/2 =+ (2 + 4(pmin - pab)/d)il’
since
;:14, g :pa+pb+5*2pab: Pa — Pab
2 Hpminzpar) 2 25+ 4(py —par)  2(Pa+ Py —2Pab)  Pa+ Db~ 2pap’

1y
p=3

we have pap + p(pa + Db — 2Pab) > pa. Therefore, 7 > o®~1(p,). Whereas, rg < /2 -
207 (p,) = 0@ L(py). Sorg > 7.

2. Whenp <1/2,

Pab + P(Pa + Db — 2Pab) < Pab +1/2 - (pa + Po — 2pav) = (Pa + Pv)/2-

Therefore, r¢ < 0®~((pa + pp)/2). Notice that @~ is convex in [1/2, +00), so ®~1(p,) +
O (pp) > 207 ((pa +m1)/2)s e T 2 76

O

D ROBUSTNESS FOR SMOOTHED ML ENSEMBLE: STATISTICAL ROBUSTNESS
PERSPECTIVE

In this appendix, we study the robustness of ensemble models from the statistical robustness perspec-
tive. This perspective is motivated from Lemma A.1, where the certified robust radius of a model
smoothed with Gaussian distribution € ~ N(0,021;) is directly proportional to the probability of
the original (unsmoothed) model predicting the correct class under such noise.

We first define the notation of statistical robustness in Appendix D.1; then we show and prove the
certified robustness guarantees of WE, MME, and single models respectively in Appendix D.2; next
we use these results to compare these ensembles under both general assumptions (Appendix D.3)
and more specific uniform distribution assumptions (Appendix D.4) where several findings are
also discussed; finally, we conduct extensive numerical experiments to verify all these findings in
Appendix D.5.
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D.1 DEFINITIONS OF STATISTICAL ROBUSTNESS

Definition 7 ((&, p)-Statistical Robust). Given a random variable ¢ and model F' : R? ~ [C], at
point g with ground truth label yo, we call F' is (&, p)-statistical robust if Pr.(F'(xo+¢) = yo) > p.

Remark. Note that based on Lemma A.1, when € ~ N (0,0%1,), if F is (&, p)-statistical robust at
point &g, the smoothed model G%. over F is (c®~!(p))-robust at point (.

The following three definitions are used in the theorem statements in the following subsections. They
can be viewed as the “confidence margins” under noised inputs x + ¢ for single model and ensemble
respectively.

Definition 8 ((¢, A, p)-Single Confident). Given a classification model F'. If at point & with ground-
truth label g and the random variable €, we have

P < A(1— 4
¢ (y]eféﬁ%’i#yof (o +)y; <AL= flzo +e>yo>) P,

we call F' (g, \, p)-single confident at point x.

Definition 9 ((¢, \, p)-WE Confident). Let Mg be a weighted ensemble defined over base models
{F;}N| with weights {w; }Y,. If at point & with ground-truth 3 and random variable ¢, we have

N N
Pr ( max (Z wi fi(xo + e)yj> < /\Zwi (1= fi(xo + e)y0)> =1-p, (40)
i=1

€ \v;€lCly;#vo P

we call weighted ensemble Mwg (¢, A, p)-WE confident at point xg.

Definition 10 (¢, \, p)-MME Confident). Let My be a max-margin ensemble over { £} . If
at point xy with ground-truth y and random variable €, we have

Pr max (o + )y, <A1 — fi(xg+e =1-—p, 41
€ LE/[>V] (yje[c]:yﬁéyof( 0 )y_7 ( f( 0 )yo)) p 41

we call max-margin ensemble Myvg (g, A, p)-MME confident at point .

Note that the confidence of every single model lies in the probability simplex, and A reflects the
confidence portion that a wrong prediction class can take beyond the true class (1 — f;(xo + €)).

To reduce ambiguity, we usualy use A\; in WE Confident, A5 in MME Confident, and A3 in Single
Confident. Note that given \; is the weighted average and Ay the maximum over \’s of all base
models, under the same p, A1 /A2 < 1. Furthermore, under the same p, A1/ X2 reflects the adver-
sarial transferability (Papernot et al., 2016a) among base models: If the transferability is high, the
confidence scores of base models are similar (\’s are similar), and thus A, is large resulting in large
A1/A2. On the other hand, when the transferability is low, the confidence scores are diverse (\’s are
diverse), and thus \; is small resulting in small A1 /As.

The following lemma is frequently used in our following proofs:

Lemma D.1. Suppose the random variable X satisfies EX > 0, Var(X) < oo and for any x € Ry,
Pr(X >EX +z) =Pr(X <EX — z), then

Var(X)

Pr(X <0) < 2EXT

Proof of Lemma D.1. Apply Chebyshev’s inequality on random variable X and notice that X is
symmetric, then we can easily observe this lemma. [

Now we are ready to present the certified robustness for different ensemble models.
D.2  STATISTICAL CERTIFIED ROBUSTNESS GUARANTEES

The main results in this subsection are Theorem 6 and Theorem 7.
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D.2.1 CERTIFIED ROBUSTNESS FOR SINGLE MODEL

As the start point, we first show a direct proposition stating the certified robustness guarantee of the
single model.

Proposition D.1 (Certified Robustness for Single Model). Let € be a random variable. Let F' be a
classification model, which is (¢, \3, p)-single confident. Let o € RY be the input with ground-truth
Yo € [C]. Suppose f(xqo + €)y, follows symmetric distribution with mean y and variance s*, where
p> (14+A3H) "L We have

2

s
Pr(F(xg+¢) = >1—p— .
E( (To+¢) =wo) 2 p 20— (L+ A, 1)-1)2

Proof of Proposition D.1. We consider the distribution of quantity Y := f(xo + €)y, — A3(1 —
f(xo + €)y,). Since the model F' is (g, A, p)-single confident, with probability 1 — p, ¥ <
f(®o + €)y, — maxy e(cy; £y0 f(To + €)y,;. We note that since

BY = (1 4+ A3)u — Az, Var(Y) = (1 + A\3)?s?,

from Lemma D.1,
2

S
Pr(Y <0) < .
V=0 Ty
Thus,
Pr(F(xzo +¢) =yo) = 1 — Pr(F(zo +¢) # o)
=1-P +E)yy — +E)y, <0
r (f(wo €)y e f(@ote)y, )

>1—-p—Pr(Y <0)

82

>1—p— .
BT e U R E

D.2.2 CERTIFIED ROBUSTNESS FOR ENSEMBLES

Now we are ready to prove the certified robustness of the Weighted Ensemble and Max-Margin
Ensemble (Theorems 6 and 7).

In the following text, we first define statistical margins for both WE and MME, and point out their
connections to the notion of (&, p)-Statistical Robust. Then, we reason about the expectation, variance,
and tail bounds of the statistical margins. Finally, we derive the certified robustness from the statistical
margins.

Definition D.1 (X ; Statistical Margin for WE Mwg). Let Mwg be Weighted Ensemble defined
over base models {F;} Y | with weights {w; } ;. Suppose Mwg is (¢, A1, p)-WE-confident. We

define random variable X; which is depended by random variable ¢:

N
Xl(e) = (1+A1)ijfj(33o+€)yo - A|lwlz. (42)

j=1

Definition D.2 (X 2; Statistical Margin for MME Myyg). Let Myvg be Max-Margin Ensemble
defined over base models { F; } ;. Suppose My is (¢, A2, p)-MME-confident. We define random

variable X, which is depended by random variable €:
Xa(€) := (14 Xa) (g[ﬁi\};{] fi(xo + €)y0 + 7%1[1]{/1] filzo + €)y0> — 2. 43)
We have the following observation:
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Lemma D.2. For Weighted Ensemble,

Pr (Muws(®o+2) = 90) 2 1—p—Pr (Xi(e) <0).
For Max-Margin Ensemble,

Pr (Myve(zo +€) =y0) 21 —p—Pr (Xa(e) <0).

Proof of Lemma D.2. (1) For Weighted Ensemble, we define the random variable X;:

Xi(€) := min w Uo/y‘m +€
1O = e ]yﬁeyoz if; )

Since Mg is (¢, A1, p)-WE-confident, from Definition 9, with probability 1 — p, we have

N
e) > Y w; (fi(@o + )y — Aa(1 = fi(@0 +€)y,))
J= N A
= (1+A2) ijfj(wo +€)yo — Mlwll1 = Xi(e).

Therefore,

Pr(Mws(zo +¢) = yo) = Pr(Xi(e) 2 0) > 1 —p - EI(XQ(E) <0).

(2) For Max-Margin Ensemble, we define the random variable X5:

Xs(€) := max min vo/yi Ty + €) + min min vo/Vi (g + €).
2(¢) iG[N]yqze[C]:yi#yof ( ) i€[N] y; €[C]: yﬁéyof (@o )

Similarly, since MymE is (g, A2, p)-MME-confident, from Definition 10, with probability 1 — p, we
have

Xo(€) > max (fi(mo +€)yo — A2(1 — fi(mo +€)y,)) + ITEH[IJ{}] (fi(zo +€)yo — A2(1 — fil@o +€)yy))

=1+ A2) (ng% fi(xo + €)y, + irél[il{/l] filxo + e)yo) — 2\ = Xs(e).
Moreover, from Lemma B.1, we know
Pr(M(zo+¢€) = yo) > Pr(Xa(e) > 0) > 1 — p — Pr(Xy(e) < 0).
g € €
O

As the result, to quantify the statistical robustness of two types of ensembles, we can analyze the
distribution of statistical margins X; and Xos.

Lemma D.3 (Expectation and variance of X 1 and Xg) Let X 1 and Xz be defined by Definition D.1
and Definition D.2 respectlvely Assume { fi(xo—+e)y, 11\, areiid. and follow symmetric distribution
with mean i and variance s*. Define sfc = Var(min;e[n) fi(xo + €)y, ). We have

EX1(e) =(1+ M) wllip = Mflwlly,  Var Xi(e) = (1 +A1)*s?|[wlf3,

E X5(g) =2(1 4 Xo)pu — 2Xo, Var Xy (e) < 4(1 4 Xo)2s2
Proof of Lemma D.3.
N
EXi(e) = (1+ M) Y Buw, fi(@o + €)y, — Mllwll = (1 + M) wllip = M[|w]s;
=1
N
VarX;(e) = (14 A1) Z Var(f(zo + €)y,) = (1 + A1)?s%||w]]3.
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According to the symmetric distribution property of { fi(xo + €),, };, we have

EXQ(S) = ]E(l + /\2) <ZH€1[EJL\)’(] fi(mO + E)yo + zrél[ll{/'l] fz(.’BQ + 6)y0) — 29

Also, due the symmetry, we have

Var (tfél[ll{fl] fi(zo + E)yo) = Var (Lfg% fi(zo + 5)yo> = 57
As aresult, A
Var Xo() < (14 Xg)? - 43?.

O

From Lemma D.3, now with Lemma D.1, we are ready to derive the statistical robustness lower
bound for WE and MME.

Theorem 6 (Certified Robustness for WE). Let € be a random variable supported on R?. Let Mg
be a Weighted Ensemble defined over {F;} N | with weights {w;}Y_,. The Mg is (¢, \1,p)-WE
confident. Let o € R? be the input with ground-truth label yo € [C). Assume { fi(xo + €)yo 11,
the confidence scores across base models for label vy, are i.i.d. and follow symmetric distribution
with mean p and variance s%, where pi > (1 + A\')~1. We have

[w]3 s?

||'w||1 9 (M_ (1 —I—)\fl)_l)Q'

Theorem 7 (Certified Robustness for MME). Let € be a random variable. Let Mg be a Max-
Margin Ensemble defined over {F;}Y_|. The Mg is (g, A2, p)-MME confident. Let o € R?
be the input with ground-truth label yo € [C). Assume {fi(xo + )y, }1\1, the confidence scores
across base models for label yo, are i.i.d. and follow symmetric distribution with mean | where
w> (1+ X311 Define 57 = Var(min;e(n) fi(®o + €)y, ). We have

PEY(MWE(JJO +e)=yy)>1—p— 44)

2
s
Pr(Myme(zo +¢) =y0) > 1—p — ! - (45)
€ —1\—1
2 (M = (1427 )
Proof of Theorems 6 and 7. Combining Lemmas D.1 to D.3, we get the theorem. [

Remark. Theorems 6 and 7 provide two statistical robustness lower bounds for both types of
ensembles, which is shown to be able to translate to certified robustness.

For the Weighted Ensemble, noticing that X, is the weighted sum of several independent variables,
we can further apply McDiarmid’s Inequality to get another bound

w2 L2
PEr(MWE(ZEO +e)=yo) >1—p—exp (_QHU’H% (M — (14X 1) ) ) )

which is tighter than Equation (44) when ||w||?/||w||3 is large. For average weighted ensemble,
|lw||?/||w]||3 = N. Thus, when N is large, this bound is tighter.

Both theorems are apglicable under the i.i.d. assumption of confidence scores. The another assumption
p > max{(1 + A1)~ (1 + A;')~'} insures that both ensembles have higher probability of
predicting the true class rather than other classes, i.e., the ensembles have non-trivial clean accuracy.

D.3 COMPARISON OF CERTIFIED ROBUSTNESS

We first show and prove an important lemma. Then, based on the lemma and Theorems 6 and 7, we
derive the comparison corollary.
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Lemma D.4. For ji, A1, A2, C' > 0, when max{A1/(1 + A1), de/(1+ X))} < p <1 and C <1,
we have

— A\t A _ _ A -t
M<C<:>)\;<)\21<(CI<M1+2)\2>+1[L) —-1]. 46)
1

Proof of Lemma D.4.

p— (A 1)t
p— (AT 1)1
1 c
TN Tr1l a1
2 1
)\1/)\2 < c! B
P Y2 P P |

* () < (O () )
—=2(1-pu+cC )< (o (— ) +
A2< : Tl 2 Niel M)TH
—1 1
c (,\;1+1_”)+“

c-1 (/‘_,\;}+1)+1—H

A As -1
-1 -1 . _ _
<:>—/\2<)\2 ((C (u 14_/\2>+1 ,u) 1).

<C

> p(l—=0)

p(C—t —1)

= =<\t

Now we can show and prove the comparison corollary.

Corollary 5 (Comparison of Certified Robustness). Let € be a random variable supported on
RY. Over base models {Fl}fvzl let Myivmg be Max-Margin Ensemble, and My, the Weighted
Ensemble with weights {w;}_,. Let ©( € R? be the input with ground-truth label yo € [C]. Assume
{fi(xo + €)yo V1, the confidence scores across base models for label yo, are i.i.d, and follow
symmetric distribution with mean ;1 and variance s%, where i > max{(1 + A7 ")~ (1 + A1)}
Define 53 = Var(mineny fi(xo + €)y,) and assume sy < s.

e When
M s 1 -t
-1 —1\—

for any weights {w; }~_,, Mg has higher certified robustness than My\g.

e When

-1
A1 1 s 1y —1
2 (\/mf(u—(HAQ) )+1—u> ~1), (48)

for any weights {wl}f\il Muime has higher certified robustness than Mwg.

Here, the certified robustness is given by Theorems 6 and 7.
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Proof of Corollary 5. (1) According to Lemma D.4, we have

A _ s -1 -1
A;<A21<<Sf(u—(1+A21) )+1—u> —1)
p— (D) sy
p=OTHD)T s

Il p =g+ )T sy
lwlfp— (7t +1)7t s

2
[w]3 s> i

”le . 9 (N_ (1+Af1)_1)2 < ) (M_ (1+)\2*1)_1)2.

According to Theorems 6 and 7, we know the RHS in Equation (44) is larger than the RHS in
Equation (45), i.e., Mwg has higher certified robustnesss than Myjvg.-

(2) According to Lemma D.4, we have

~1
A -1 s _ —1\~1 _ _
)\2>/\2 <\/N5f (,u (1+X27) >+1 ,u> 1

p=Qgt ) VNsy
p— (A1) 5
[wllz p = A"+ D)7 sy
lwllf o= ATH+ D)7 s
2
_ Nlwl3 s? Sy

2 27 :
Pl s (o aar) ™) 2(n-4ag) ™)

According to Theorems 6 and 7, we know the RHS in Equation (45) is larger than the RHS in
Equation (44), i.e., Myve has higher certified robustnesss than M. O

Remark. (1) Given that \;/\o reflects the adversarial transferability among base models Ap-
pendix D.1, the corollary implies that, MME is more robust when the transferability is high; WE is
more robust when the transferability is low.

(2) As we can observe in the proof, there is a gap between Equation (47) and Equation (48) — when
A1/ A9 lies in between RHS of Equation (47) and RHS of Equation (48), it is undetermined which
ensemble protocol has higher robustness. Indeed, this uncertainty is caused by the adjustable weights
{w;}}¥.| of the Weighted Ensemble. If we only consider the average ensemble, then this gap is
closed:

-1
)\1 MyMmE more robust 4 s L
AL > A ( (14 ) 1 .
A2 Mws nf)re robust 2 <\/N5f K ( 2 ) 1%

(3) Note that we assume that sy < s, where s2 is the variance of single variable and s? is the variance
of minimum of /V i.i.d. variables. For common symmetry distributions, along with the increase of NV,
s shrinks in the order of O(1/N ) where B € (0,2]. Thus, as long as N is large, the assumption
sy < s will always hold. An exception is that when these random variables follow the exponential
distribution, where s; does not shrink along with the increase of N. However, since these random
variables are confidence scores which are in [0, 1], they cannot obey exponential distribution.

D.4 A CONCRETE CASE: UNIFORM DISTRIBUTION

As shown by Saremi & Srivastava (2020) (Remark 2.1), when the input dimension d is large, the
Gaussian noise € ~ N(0,0%1,) ~ Unif (6v/dSq_1), i.e., o + € is highly uniformly distributed on

34



Published as a conference paper at ICLR 2022

the (d — 1)-sphere centered at x,. Motivated by this, we study the case where the confidence scores
{fi(xo + &)y, Y, are also uniformly distributed.

Under this additional assumption, we can further make the certified robustness for the single model
and both ensembles more concrete.

D.4.1 CERTIFIED ROBUSTNESS FOR SINGLE MODEL

Proposition D.2 (Certified Robustness for Single Model under Uniform Distribution). Let € be
a random variable supported on R%. Let F be a classification model, which is (¢, \3,p)-single
confident. Let ¢o € R? be the input with ground-truth yo € [C]. Suppose f(zo + €)y, is uniformly
distributed in [a, b]. We have

—1y
Pr(F(xo +2) = yo) = 1 — p—clip (”“fﬁ”) |

where  clip(r) = max(min(z,1),0).

Proof of Proposition D.2. We consider the distribution of quantity ¥ := f(x¢ + €),, — As(1 —
f(xo + €)y,). Since the model F is (g, A3, p)-single confident, with probability 1 — p, ¥ <
f(®o + &)y, — Maxy, c(0)y, 2yo f(To + €)y,;. At the same time, because f(xg + €)y, follows the
distribution U ([a, b]),

YV = (14 A3)f (@0 +€)y, — A3

follows the distribution U([(1 4+ A3z)a — Ag, (1 4+ A3)b — Ag]). Therefore,

As — (1 +)\3)a>

Pr(Y <0) = clip ((14—/\3)(6—(1)

As the result,

A3 =1+
Pr (f(a:o +6€)yo — max  f(xo+e)y, < O) <p-+clip ( 3~ ( 3)a) ,
;5 €[CT:y; #yo

(I1+A3)(b—a)
which is exactly

(A= (1+X3)a (1 1+ MY —a
Pr(F =yo)>1—p—clip| ——F7 | =1—p—cdlip| 7322 ——).
r(F(zo+e)=y)=1-p Clp<(1+)\3)(b—a)> P mp( r—
O

D.4.2 CERTIFIED ROBUSTNESS FOR ENSEMBLES

Still, we define X (¢) and X5 (e) according to Definitions D.1 and D.2. Under the uniform distribution
assumption, we have the following lemma.

Lemma D.5 (Expectation and Variance of X 1 and X 5 under Uniform Distribution). Let X 1 and X 2
be defined by Definition D.1 and Definition D.2 respectively. Assume that under the distribution of ¢,
the base models’ confidence scores for true class { f;(zo + )y, } ¥, are pairwise i.i.d and uniformly
distributed in range [a, b]. We have

5 1 ; 1
EXi(e) = 51+ A)llwlli(a +b) = Mflwlly,  VarXi(e) = 5(1+ M) w3 - a)?,

EXo(e) = (14 Ao)(a+b) — 2\, Var Xa(e) < (14 Ag)2 e ( 2 ! )(b—a)Q.

N+1\N+2 N+1

Proof of Lemma D.5. We start from analyzing X1. From the definition

N
Xi(€) = (14 M) Y wifj(ao+ €)y, — Mllwlls (42)

j=1
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where {f;(xo + €)y, 2, are i.i.d. variables obeying uniform distribution ¢ ([a, b)),

R a+b 1
EXi(e) = (1 +M)[[wli—— = Mllwly = 51+ Allwllr(a+b) = Adflwlly,
AR | 1
Var X1 (€) = (14 \;)? wjzﬁ(bf a)? = ﬁ(l + A1) w3 (b — a)?.
j=1

Now analyze the expectation of Xo. By the symmetry of uniform distribution, we know
E Xy(€) = (1+ Aa) - 2E fi(x0 + €)yo — 222 = (1 + A2)(a + b) — 2Xq.
To reason about the variance, we need the following fact:

Fact D.1. Let x1, Xa, ..., X, be uniformly distributed and independent random variables. Specifi-
cally, foreach 1 < i <n, x; ~U([a, b]). Then we have

1 2 1
Var | min x; | = Var | max x; | = — (b— a)z.
1<i<n 1<i<n n+l1\n+2 n+1

Observing that each i.i.d. f;(x¢ + €),, is exactly identical to x; in Fact D.1, we have

. 4 2 1
Var (s oo + € + min fieo + 0 ) < 77 (3755~ ) 0 O
Therefore,
Var X5(e) < (14 Xo)? A 2 1 (b—a)?
2= Y N+1\N+2 N+1 '

O

Proof of Fact D.1. From symmetry of uniform distribution, we know Var (mini<;<,X;) =
Var (maxi<;<n X;). So here we only consider Y := minj<;<, X;. Its CDF F' and PDF f can
be easily computed:

. b—y " ’ (bfy)nil
Fy) =1 Pr(rnilnxz_y> 1 <b—a> , f(y)=F'(y)=n Gar , wherey € [a, D]
Hence,
b n —1 n+1
B _yb—y)"++1) -y e b-a
EY*/G yf(y)dy = (b—a)" bia+n+1’
b b n—1
b—y)
EY2_ 2 _/ 2(
/ayf(y)dy B
b—y\" 5 Pb—y\"
= — 2
(b—a> A / b v
b—y\" ot 2 (b—y)"! /(b—y)"+1 b
= - ~ A JA
(b—a> 4 a+n+1< (b—a) v+t (b—a)” ).
(b e 2 (ot L (o)
N b—a) Yl nt1 (b—a) Yt (b—a) a
2
— g2 " (h— — _(b—a)*
a +n+1( a)a+(n+1)(n+2)( a)
As the result, VarY = EY? — (EY)? = %—l—l (7%%2 — %—H) (b—a)?. O

Now, similarly, we use Lemma D.1 to derive the statistical robustness lower bound for WE and MME.
We omit the proofs since they are direct applications of Lemma D.5, Lemma D.1, and Lemma D.2.
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Theorem 8 (Certified Robustness for WE under Uniform Distribution). Let Mwg be a Weighted
Ensemble defined over { F;} N with weights {w;}~_,. Let o € R? be the input with ground-truth
label yo € [C]. Let ¢ be a random variable supported on RY. Under the distribution of ¢, suppose
{filxo+e)y, YV, arei.id. and uniformly distributed in [a, b]. The Mg is (g, A1, p)-WE confident.
Assume 8 > 1 We have

2 1A
dy K2
P;Y(MWE(% +e)=wy)>1-p— B L
49)
w3 b—a (
where d, = I Hz, K, = RS
1 2 1+)\1—1

Theorem 9 (Certified Robustness for MME under Uniform Distribution). Let Myvg be a Max-
Margin Ensemble over { F;}_|. Let xg € R? be the input with ground-truth label yo € [C]. Let € be
a random variable supported on R%. Under the distribution of €, suppose { f;(xo + )y, } 1, are i.id.
and uniformly distributed in [a, b]. Mg is (€, A2, p)-MME confident. Assume “£2 > —L—_ We

1+ "
have 9
cnK
ET(MMME(CBO +e)=y)>1—-p— N4 2
2 2 1 b—a (50)
h = —_— K = ==
wnere CN N+1<N+2 N+1>’ 2 G'T_‘—b— 171
142,

D.4.3 COMPARISON OF CERTIFIED ROBUSTNESS FOR ENSEMBLES

Now under the uniform distribution, we can also have the certified robustness comparison.

Corollary 6 (Comparison of Certified Robustness under Uniform Distribution). Over base models
{Fl}f\il let Myive be Max-Margin Ensemble, and Myyg the Weighted Ensemble with weights
{w;}N,. Let zg € RY be the input with ground-truth label yo € [C). Let ¢ be a random variable
supported on RY. Under the distribution of ¢, suppose { fi(xq + s)yg}f\él are i.i.d. and uniformly
distributed with mean 1. Suppose M is (€, A1, p)-WE confident, and Myug is (g, A2, p)-MME

1 1
confident. Assume [ > max T st S

e When

—1
_ N+2 1
2t N+1 — 1— -1 51
o 2 <( 1\ 5N (“ 1+)\21>+ “) ’ S

Mwe has higher certified robustness than My\Eg.

-1
M [ (N+1 [N+2 1
= \/ - 1— -1 2

Muame has higher certified robustness than Mwg.

1 -2
N>6<1_M(1+>\2_1)) -2, (53)

for any A1, Myimg has higher or equal certified robustness than Myyg.

e When

e When

Here, the certified robustness is given by Theorems 8 and 9.

Proof of Corollary 6. First, we notice that a uniform distribution with mean p can be any distribution
U([a, b]) where (a + b)/2 = p. We replace p by (a + b)/2.

Then (1) and (2) follow from Lemma D.4 similar to the proof of Corollary 5.
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(3) Since
1 -2 N +2 1 -
N>6<1—_1> -2= <u— _1>+1—u <1
n(14A57) 6 L+ A,
-1
. N+1 |N+2 B 1 1o <1
v Vo P p ,

the RHS of Equation (52) is smaller than 0. Thus, for any A1, since A1 /A2 > 0, the Equation (48) is
satisfied. According to (2), Myvg has higher certified robustnesss than Myyg. O

Remark. Comparing to the general corollary (Corollary 5), under the uniform distribution, we
have an additional finding that when N is sufficiently large, we will always have higher certified
robustness for Max-Margin Ensemble than Weighted Ensemble. This is due to the more efficient
variance reduction of Max-Margin Ensemble than Weighted Ensemble. As shown in Lemma D.5, the
quantity VarX (¢)/(EX (£))? for Weighted Ensemble is Q(1/N), while for Max-Margin Ensemble
is O(1/N?). As the result, when N becomes larger, Max-Margin Ensemble has higher certified
robustness.

We use uniform assumption here to give an illustration in a specific regime. We think it would be
an interesting future direction to generalize the analysis to other distributions such as the Gaussian
distribution that corresponds to locally linear classifiers. The result from these distribution may be
derived from their specific concentration bound for maximum/minimum i.i.d. random variables as
discussed at the end of Appendix D.3.

D.5 NUMERICAL EXPERIMENTS

To validate and give more intuitive explanations for our theorems, we present some numerical
experiments.

D.5.1 ENSEMBLE COMPARISON FROM NUMERICAL SAMPLING

As discussed in Appendix D.1, A1 /Ao reflects the transferability across base models. It is challenging
to get enough amount of different ensembles of various transferability levels while keeping all
other variables controlled. Therefore, we simulate the transferability of ensembles numerically
by varying \; /A (see the definitions of \; and Ay in Definitions 9 and 10), and sampling the
confidence scores { fi(zo + €)y, } and {max;c(c):j-y, fi(To + €);} under determined \; and As.
For each level of A1 /\q, with the samples, we compute the certified robust radius r using randomized
smoothing (Lemma A.1) and compare the radius difference of Weighted Ensemble and Max-Margin
Ensemble. According to Corollary 5, we should observe the tendency that along with the increase of
transferability A; /A2, Max-Margin Ensemble would gradually become more certifiably robust than
Weighted Ensemble.

Figure 4 verifies the trends: with the increase of A1 /A2, MME model tends to achieve higher certified
radius than WE model. Moreover, we notice that under the same A1 /A2, with the larger number of
base models N, the MME tends to be relatively more certifiably robust compared with WE. This is
because we sample the confidence score uniformly and under the uniform distribution, MME tends to
be more certifiably robust than WE when the number of base models [NV becomes large, according to
Corollary 6.

The concrete number settings of A1, A2, and the sampling interval of confidence scores are entailed in
the caption of Figure 4.

D.5.2 ENSEMBLE COMPARISON FROM CERTIFIED ROBUSTNESS PLOTTING

In Corollary 6, we derive the concrete certified robustness for both ensembles and the single model
under i.i.d. and uniform distribution assumption. In fact, from the corollary, we can directly compute
the certified robust radius without sampling, as long as we assume the added noise ¢ is Gaussian. In
Figure 5, we plot out such certified robust radius for the single model, the WE, and the MME.
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Certified Robustness Comparison with N =3 Certified Robustness Comparison with N = 10 Certified Robustness Comparison with N = 20
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Figure 4: Signed certified robust radius difference between MME and WE by A1 /Ao under different
numbers of base models N. Here we fix A2 to be 0.95 and uniformly sample A; € [0.8,0.95). The
confidence score for the true class on each base model is uniformly sampled from [a, b], where a
is sampled from [0.3,1.0) and b is sampled from [a, 1.0) uniformly for each instance. Blue points
correspond to the negative radius difference (i.e., WE has larger radius than MME) and Red points
correspond to the positive radius difference (i.e., MME has larger radius than WE).

Concretely, in the figure, we assume that the true class confidence score for each base model is
i.i.d. and uniformly distributed in [a, b]. The Weighted Ensemble is (¢, A1, 0.01)-WE confident; the
Max-Margin Ensemble is (g, A2, 0.01)-MME confident; and the single model is (&, Az, 0.01)-MME
confident. We guarantee that \; < A3 < Ao to simulate the scenario that ensembles are based
on the same set of base models to make a fair comparison. We directly apply the results from
our analysis (Theorem 8, Theorem 9, Proposition D.2) to get the statistical robustness for single
model and both ensembles. Then, we leverage Lemma A.1 to get the certified robust radius (with
o = 1.0, N = 100000 and failing probability o = 0.001 which are aligned with realistic setting).
The z-axis is the number of base models /V and the y-axis is the certified robustness. We note that N
is not applicable to the single model, so we plot the single model’s curve by a horizontal red dashed
line.

From the figure, we observe that when the number of base models IV becomes larger, both ensembles
perform much better than the single model. We remark that when N is small, the ensembles have
0 certified robustness mainly because our theoretical bounds for ensembles are not tight enough
with the small N. Furthermore, we observe that the Max-Margin Ensemble gradually surpasses
Weighted Ensemble when [V is large, which conforms to our Corollary 6. Note that the left sub-figure
has smaller transferability A1 /A2 and the right subfigure has larger transferability A; /Ao, it again
conforms to our Corollary 5 and its following remarks in Appendix D.3 that in the left subfigure the
Weighted Ensemble is relatively more robust than the Max-Margin Ensemble.

D.5.3 ENSEMBLE COMPARISON FROM REALISTIC DATA

We study the correlation between transferability A; /Ao and whether Weighted Ensemble or Max-
Margin Ensemble is more certifiably robust using realistic data.

By varying the hyper-parameters of DRT, we find out a setting where over the same set of base
models, Weighted Ensemble and Max-Margin Ensemble have similar certified robustness, i.e., for
about half of the test set samples, WE is more robust; for another half, MME is more robust. We
collect 1, 000 test set samples in total. Then, for each test set sample, we compute the transferability
A1/ A9 and whether WE or MME has the higher certified robust radius. We remark that A; and A, are
difficult to be practically estimated so we use the average confidence portion as the proxy:

» For WE,
N
MAaXy . c[Cly; £yo Y iz Wifi(@o + €)y,

)\1 :]EE N
Yimiwill = fi(zo +€)y,)

e For MME,
Ay = E, max maxy, e[Cl:y; #yo fi(@o + &)y,
- €
i€[N] (1= fi(xo +€)yp)
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Figure 5: Comparison of certified robustness (in terms of certified robust radius) of Max-Margin
Ensemble, Weighted Ensemble, and single model under concrete numerical settings. The y-axis
is the certified robustness and the x-axis is the number of base models. The confidence score for
the true class is uniformly distributed in [a, b]. The Weighted Ensemble (shown by blue line) is
(€, A1,0.01)-WE confident; the Max-Margin Ensemble (shown by green line) is (g, A2, 0.01)-MME
confident; and the single model (shown by red line) is (&, Az, 0.01)-MME confident.
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Figure 6: ROC curve of the I[MME has higher certified robustness| classification task with the
threshold variable X.

Now we study the correlation between
X := A1/A2 — RHS of Equation (48) and Y := I[MME has higher certified robustness].

To do so, we draw the ROC curve where the threshold on X does binary classification on Y. The
curve and the AUC score is shown in Figure 6. From the ROC curve, we find that X and Y are
apparently positively correlated since AUC = 0.66 > 0.5, which again verifies Corollary 5. We
remark that besides X, other factors such as non-symmetric or non-i.i.d. confidence score distribution
may also play a role.

Closing Remarks. ~ The analysis in this appendix mainly shows two major findings theoretically
and empirically: (1) MME is more robust when the adversarial transferability is high; while WE is
more robust when the adversarial transferability is low; (2) If each f;(x¢ + €), follows uniform
distribution, when number of base models NN is sufficiently large, the MME is always more certifiably
robust. Our analysis does have limitations: we assume the symmetric and i.i.d. distribution of
fi(zo + €)y, or even more strict uniform distribution to derive these findings. Though they model the
real-world scenario in some extent as our realistic data results show, they are not perfect considering
the transferability among base models and boundedness of confidence scores. We hope current
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analysis can open an angle of theoretical analysis of ensembles and leave a more general analysis as
the future work.

E ANALYSIS OF ALTERNATIVE DESIGN OF DRT
In the main text, we design our DRT based on GD Loss

vo/ys” vo/ys”
Lap(xo)ij = [Vl (®0) + Vaf; (o), &)
and CM Loss
s> /o v$® /o
Lom(zo)ij = f;" "7 (=o) + f; (o). (10)
Following the convention, we apply Gaussian augmentation to train the models, i.e., replacing o by
xo + ¢ where e ~ N(0,021;) in Equation (9) and Equation (10). We apply these two regularizers to

every valid base model pair (F;, F;), where the valid pair means both base models predict the ground
truth label Yo: Fi(w() + E) = Fj (w(] + E) = Yo.

One may concern that in the worst case, there could be O(N?) valid pairs, i.e., O(N?) regularization
terms in the training loss. However, we should notice that each base model F; only appears in
O(N) valid pairs. Therefore, when N is large, we can optimize DRT by training iteratively, i.e., by
regularizing each base model one by one to save the computational cost.

An alternative design inspired from the theorems (e.g., Theorem 1) is to use overall summation
instead of pairwise summation, which directly correlates with I, (Equation (6)):

N (2)
Lop@o) = | SVl ()], (54)
=1
/ al 11(~2)/y0
om(@o) = > f7 1 (o). (55)
1=1

Although this design appears to be more aligned with the theorem and more efficient with O(N)

regularization terms, it also requires all base models F; to have the same runner-up prediction ylm as
observed from both theorem and intuition (otherwise diversified gradients and confidence margins are
for different and independent labels that are meaningless to jointly optimize). It is less likely to have
all base models having the same runner-up prediction than a pair of base models having the same
runner-up prediction especially in the initial training phase. Therefore, this alternative design will
cause fewer chances of meaningful optimization than the previous design and we use the previous
design for our DRT in practice.

F EXPERIMENT DETAILS

Baselines. We consider the following state-of-the-art baselines for certified robustness: (1) Gaussian
smoothing (Cohen et al., 2019) trains a smoothed classifier by applying Gaussian augmentation.
2. MACER (Zhai et al., 2019): Adding the regularization term to maximize the certified radius
R = %(p A — pp) on training instances. (2) SmoothAdv (Salman et al., 2019) combines adver-
sarial training with Gaussian augmentation. (3) MACER (Zhai et al., 2019) improves a single
model’s certified robustness by adding regularization terms to minimize the Negative Log Likelihood
(NLL) between smoothed classifier’s output gr () and label y, and maximize the certified radius
R = (2 (95 (x),) — ' (maxy 2, g5 (), )), where ¢ ~ N(0,0°1;) and g5 is as defined
in Equation (3). (4) Stability (Li et al., 2019) maintains the stability of the smoothed classifier
gr by minimizing the Rényi Divergence between gr () and gr(x + ¢) where ¢ ~ N(0,0%1,).
(5) SWEEN (Liu et al., 2020) builds smoothed Weighted Ensemble (WE), which is the only prior
work computing certified robustness for ensemble to our knowledge.

Evaluation Metric. We report the standard certified accuracy under different Lo radii r’s as our
evaluation metric following Cohen et al. (2019), which is defined as the fraction of the test set
samples that the smoothed classifier can certify the robustness within the Ly ball of radius 7. Since
the computation of the accurate value of this metric is intractable, we report the approximate certified
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test accuracy (Cohen et al., 2019) sampled through the Monte Carlo procedure. For each sample,
the robustness certification holds with probability at least 1 — a.. Following the literature, we choose
a = 0.001, ng = 100 for Monte Carlo sampling during prediction phase, and n = 10° for Monte
Carlo sampling during certification phase. On MNIST and CIFAR-10 we evaluated every 10-th
image in the test set, for 1, 000 images total. On ImageNet we evaluated every 100-th image in the
validation set, for 500 images total. This evaluation protocol is the same as prior work (Cohen et al.,
2019; Salman et al., 2019).

F.1 MNIST

Baseline Configuration. Following the literature (Salman et al., 2019; Jeong & Shin, 2020; Zhai
et al., 2019), in each batch, each training sample is Gaussian augmented twice (augmenting more
times yields negligible difference as Salman et al. (2019) show). We choose Gaussian smoothing
variance o € {0.25,0.5,1.0} for training and evaluation for all methods. For SmoothAdv, we
consider the attack to be 10-step Lo PGD attack with perturbation scale § = 1.0 without pretraining
and unlabelled data augmentation. We reproduced results similar to their paper by using their
open-sourced code!.

Training Details. First, we use LeNet architecture and train each base model for 90 epochs. For the
training optimizer, we use the SGD-momentum with the initial learning rate o« = 0.01. The learning
rate is decayed for every 30 epochs with decay ratio v = 0.1 and the batch size equals to 256. Then,
we apply DRT to finetune our model with small learning rate « for another 90 epochs. We explore
different DRT hyper-parameters p;, p2 together with the initial learning rate a, and report the best
certified accuracy on each radius » among all the trained ensemble models.

Table 4: Certified accuracy of DRT-(p1, p2) under different radii » on MNIST dataset. Smoothing
parameter o = 0.25. The grey rows present the performance of the proposed DRT approach. The
brackets show the base models we use.

Radius r p1 | p2 1 0.00 | 025 | 0.50 | 0.75

Gaussian (Cohen et al., 2019) - - 99.1 | 979 | 96.6 | 93.0
SmoothAdv (Salman et al., 2019) | - - 199.1 | 984 | 97.0 | 96.3
MME (Gaussian) 99.2 | 984 | 96.8 | 93.6

0.1 | 021|994 | 983|975 | 95.1
DRT + MME (Gaussian) 0.1 | 0.5]99.5 | 98.6 | 97.1 | 94.8
02 ] 05995 | 985|974 | 95.1
- - 1992 1982|973 | 964
0.1 | 02]99.1 984|975 | 964
DRT + MME (SmoothAdv) 0.1 | 0.5 99.1 | 98.3 | 97.6 | 96.7
02 ] 05| 99.1 | 984 | 97.5 | 96.6
- - 1992|984 | 969 | 93.7
0.1 | 02995984 | 973 | 95.1
DRT + WE (Gaussian) 0.1 | 0.5]99.5 | 98.6 | 97.1 | 949
02 ] 051|995 | 985|973 | 953
- - 1992 1982|974 | 964
0.1 021991984 | 975 | 965
DRT + WE (SmoothAdyv) 0.1 | 0.5 99.1 | 98.2 | 97.6 | 96.6
02 ] 05990 | 984 | 97.5 | 96.7

MME (SmoothAdv)

WE (Gaussian)

WE (SmoothAdv)

Trend of Certified Accuracy with Perturbation Radius. We visualize the trend of certified accu-
racy along with different perturbation radii on different smoothing parameters separately in Figure 7
and Figure 8. For each radius r, we present the best certified accuracy among all the trained models.
We can notice that while simply applying MME or WE protocol could slightly improve the certified
accuracy, DRT could significantly boost the certified accuracy on different radii.

Average Certified Radius. We report the Average Certified Radius (ACR) (Zhai et al., 2019): ACR
= I?l‘l 2 (.)€ Sen F(T: ), Where Siey refers to the test set and R(z, y) the certifed radius on testing

"https://github.com/Hadisalman/smoothing-adversarial/
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Table 5: Certified accuracy of DRT-(p1, p2) under different radii » on MNIST dataset. Smoothing
parameter o = 0.50. The grey rows present the performance of the proposed DRT approach. The
brackets show the base models we use.

Radius r 12 p2 | 0.00 | 025 ] 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75

Gaussian (Cohen et al., 2019) - - 99.0 | 97.7 | 96.4 | 94.7 | 90.0 | 83.0 | 68.2 | 43.5
SmoothAdv (Salman et al., 2019) - - 98.6 | 98.0 | 97.0 | 95.4 | 93.0 | 87.7 | 80.2 | 66.3
MME (Gaussian) - - 99.0 [ 97.7 [ 96.8 1 949 [ 90.5 | 843 | 69.8 | 4855

2.0 [ 99.1 | 984 | 97.2 | 952 | 92.6 | 86.5 | 743 | 54.1
5.0 [99.1 | 98.6 | 97.1 | 953 | 92.6 | 86.2 | 74.0 | 54.3
2.0 [99.2 | 983 | 974 | 955 | 92.1 | 86.4 | 74.7 | 55.6
05 | 50 | 99.0 | 982|973 | 95.1 | 91.6 | 84.8 | 73.7 | 524
10.0 | 99.1 | 98.1 | 97.1 | 95.0 | 91.8 | 85.7 | 733 | 514
1.0 | 50 | 99.1 | 98.2 | 972 | 952 | 922 | 85.8 | 744 | 544
0.1 | 98.8 | 98.0 | 96.8 | 94.7 | 91.5 | 86.5 | 75.5 | 59.1
DRT + MME (Gaussian) 02 | 989 | 98.1 | 96.9 | 95.1 | 92.1 | 85.8 | 76.1 | 56.4
10.0 0.5 [ 987 | 98.1 | 96.8 | 952 | 92.1 | 85.8 | 76.0 | 56.9
. 2.5 [99.0 | 983 | 97.0 | 95.1 | 92.4 | 858 | 75.7 | 57.0
5.0 [99.0 | 98.1 | 96.8 | 95.0 | 91.9 | 855 | 74.4 | 54.6
10.0 | 99.0 | 98.2 | 96.9 | 95.1 | 91.9 | 85.5 | 74.6 | 545
2.5 | 987 | 98.0 | 96.7 | 95.1 | 91.7 | 86.4 | 75.6 | 59.8
80.0 | 5.0 | 985 | 97.7 | 96.5 | 949 | 91.9 | 85.9 | 76.1 | 59.3
25.0 | 98.9 | 98.0 | 969 | 94.9 | 92.2 | 85.7 | 76.5 | 58.3
MME (SmoothAdv) - - 98.6 | 98.0 | 97.0 | 95.5 | 93.2 | 88.1 | 80.6 | 67.8
0.5 | 984|978 | 97.0 | 955 | 92.7 | 87.7 | 80.9 | 67.9
0.1 1.0 | 984 | 97.9 | 97.0 | 95.5 | 92.9 | 83.1 | 80.8 | 67.2
5.0 [ 985|982 |97.0 | 954 | 93.1 | 83.4 | 81.2 | 68.3
0.5 | 984|977 |972 | 953|923 | 877|793 | 684
20 | 984|976 | 97.1 | 953 | 923 | 87.8 | 80.2 | 67.7

0.2

L2 50 [ 984|978 | 97.1 | 952 | 93.0 | 87.9 | 80.3 | 68.3
10.0 | 98.4 | 97.8 | 97.1 | 95.3 | 92.9 | 88.5 | 81.0 | 67.6

03 50 | 984|975 |97.1 | 95.0 | 92.4 | 87.7 | 79.7 | 68.3
: 10.0 | 98.5 | 97.7 | 97.0 | 95.2 | 92.6 | 88.5 | 81.1 | 68.1
05 2.0 | 985|973 | 96.6 | 943 | 91.6 | 86.7 | 79.5 | 68.6

DRT + MME (SmoothAdv) 50 | 984 | 975|969 | 946 | 92.0 | 87.5 | 80.1 | 67.8
0.5 [ 97.7 | 96.8 | 95.5 | 92.3 | 89.6 | 84.1 | 76.7 | 66.3

1o 1.0 | 97.9 | 96.6 | 95.7 | 92.6 | 89.7 | 84.6 | 77.5 | 66.2
0.1 | 954|933 |91.2 | 88.1 | 838 | 768 | 68.3 | 59.9
0.2 [ 955|937 | 90.9 | 87.7 | 82.0 | 75.7 | 68.7 | 59.6
10.0 0.5 [95.0 | 933 | 91.1 | 87.8 | 82.6 | 76.3 | 68.2 | 59.7
. 2.5 [ 946|929 | 90.1 | 86.3 | 81.6 | 76.0 | 69.6 | 62.5
5.0 [ 943 ] 93.1 | 90.0 | 86.1 | 81.9 | 76.3 | 70.0 | 63.6
10.0 | 949 | 934 | 91.3 | 87.3 | 832 | 782 | 71.8 | 65.9
0.0 2.5 | 87.7 | 844|799 | 75.0 | 70.5 | 65.5 | 58.9 | 50.5

5.0 | 885 | 851 | 81.0 | 76.8 | 71.4 | 67.4 | 60.6 | 52.1
WE (Gaussian) - - 99.0 | 97.8 | 96.8 | 949 | 90.6 | 84.5 | 70.4 | 48.2
02 2.0 [99.2 | 984 | 972952 | 925|862 | 743 | 53.5
: 5.0 | 99.1 | 98.6 | 97.1 | 953 | 92.6 | 86.4 | 74.2 | 54.4
2.0 [99.2 | 983 | 974 | 95.6 | 92.1 | 86.5 | 74.7 | 55.3
05 | 50 | 99.0 | 98.1 | 97.4 | 95.1 | 91.4 | 84.8 | 73.7 | 525
10.0 | 99.1 | 98.2 | 97.1 | 95.1 | 91.7 | 854 | 73.5 | 51.0
1.0 | 50 | 99.1 | 982|972 | 952 | 922 | 859 | 75.1 | 553
0.1 | 98.8 | 98.0 | 96.8 | 94.8 | 91.6 | 86.7 | 76.3 | 59.0
DRT + WE (Gaussian) 0.2 | 98.8 | 98.1 | 97.0 | 95.0 | 92.1 | 86.0 | 75.7 | 56.8
10.0 0.5 | 98.8 | 98.1 | 96.9 | 952 | 922 | 86.0 | 76.2 | 57.0
. 2.5 [ 989 | 983 | 97.0 | 95.1 | 924 | 859 | 76.2 | 56.3
5.0 [99.0 | 98.1 | 96.9 | 95.0 | 91.8 | 855 | 74.5 | 55.0
10.0 | 99.0 | 98.1 | 969 | 95.1 | 91.9 | 85.7 | 743 | 544
2.5 | 987|979 | 96.7 | 95.1 | 91.8 | 86.2 | 75.5 | 60.1
80.0 | 5.0 | 984 | 97.8 | 96.8 | 95.0 | 91.9 | 86.2 | 75.6 | 60.2
25.0 | 99.0 | 98.1 | 969 | 94.9 | 92.1 | 859 | 76.7 | 58.4
WE (SmoothAdv) - - 98.7 | 98.0 | 97.0 | 955 | 934 | 88.2 | 81.1 | 67.9
0.5 [ 984 ] 978 |97.0 955 | 92.7 | 87.8 | 80.6 | 68.1
0.1 1.0 | 985 | 97.9 | 97.0 | 95.5 | 93.1 | 88.0 | 81.2 | 67.7
5.0 [ 985|982 |97.0 | 954 | 93.3 | 88.5 | 81.4 | 68.6
0.5 | 984|977 | 972|954 | 923 | 87.6 | 79.7 | 68.0
2.0 [ 984|976 | 97.1 | 953 | 92.3 | 87.8 | 80.6 | 68.1

0z 50 | 984|979 | 97.1 | 95.1 | 93.0 | 88.2 | 80.4 | 69.1
10.0 | 98.3 | 97.8 | 97.1 | 953 | 92.9 | 88.4 | 80.7 | 68.1

03 5.0 | 984|975 |97.1 | 950 | 924 | 87.9 | 79.9 | 69.3
: 10.0 | 984 | 97.7 | 97.0 | 95.2 | 92.6 | 88.4 | 81.1 | 68.2
05 2.0 | 984 | 973 | 96.6 | 943 | 91.8 | 86.7 | 79.6 | 68.1

DRT + WE (SmoothAdv) 5.0 | 984 | 975 | 96.9 | 94.7 | 92.0 | 87.7 | 79.7 | 67.7
05 | 97.8 | 96.8 | 954 | 923 | 89.7 | 84.1 | 77.0 | 65.9

1O 10 | 979 | 96.6 | 956 | 927 | 89.8 | 844 | 77.4 | 662
0.1 | 953 | 93.5 | 91.2 | 887 | 83.8 | 76.8 | 68.9 | 60.1
02 | 954 | 93.8 | 90.9 | 88.1 | 832 | 76.6 | 69.1 | 59.9
100 | 05 | 951|935 | 909 | 877 | 836 | 766 | €91 | 598
01 25 | 948 | 93.0 | 90.5 | 868 | 82.1 | 75.1 | 69.1 | 62.0
50 | 94.4 | 93.3 | 90.1 | 866 | 82.0 | 75.8 | 70.0 | 63.2
100 | 947 | 93.3 | 90.5 | 868 | 8255 | 772 | 71.8 | 65.6
go0 | 25 | 878|831 | 785 | 740 | 677 | 623 | 549 | 470

5.0 | 884 | 842|799 | 753 | 69.3 | 63.7 | 56.5 | 48.7
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Table 6: Certified accuracy of DRT-(p1, p2) under different radii » on MNIST dataset. Smoothing
parameter o = 1.00. The grey rows present the performance of the proposed DRT approach. The
brackets show the base models we use.

Radius r p1 p2 | 0.00] 025050075100 1.25]| 1.50 | 1.75 | 2.00 | 2.25 | 2.50

Gaussian (Cohen et al., 2019) - - 96.5 | 943 | 91.1 | 87.0 | 80.2 | 71.8 | 60.1 | 46.6 | 33.0 | 20.5 | 11.5
SmoothAdv (Salman et al., 2019) - - 953 | 935 | 89.3 | 85.6 | 804 | 72.8 | 63.9 | 54.6 | 43.2 | 343 | 24.0
MME (Gaussian) - - 96.4 | 94.8 | 91.3 | 87.7 | 80.8 | 73.5 | 61.0 | 48.8 | 34.7 | 234 | 12.7

05 2.0 [ 96.0 | 93.9 | 90.1 | 86.3 | 80.7 | 73.2 | 63.0 | 52.0 | 38.9 | 26.9 | 15.6

’ 50 | 958 | 94.1 | 90.0 | 86.6 | 80.4 | 729 | 62.4 | 51.3 | 40.0 | 27.8 | 16.5
1.0 | 50 [ 953 | 93.1 | 89.7 | 8.8 | 80.0 | 72.7 | 62.9 | 52.0 | 39.8 | 28.5 | 17.6
05 [ 913 | 89.7 | 85.6 | 78.8 | 73.3 | 65.8 | 59.1 | 522 | 43.9 | 36.0 | 29.1
50 | 25 925|902 | 87.7 | 82.0 | 76.3 | 69.6 | 60.7 | 52.8 | 434 | 354 | 26.0
5.0 [ 932 | 90.6 | 88.1 | 829 | 78.1 | 70.6 | 62.3 | 52.5 | 433 | 344 | 23.8
MME (SmoothAdv) - - 95.4 1934 [ 893|861 | 80.7 [ 73.1 | 65.0 | 55.0 | 44.8 | 35.0 | 25.2
02 20 | 941 | 919 | 88.6 | 845 | 794 | 724 | 63.4 | 54.0 | 45.0 | 36.6 | 27.3
’ 5.0 [ 94.1 | 91.6 | 889 | 844 | 793 | 723 | 63.2 | 542 | 46.1 | 369 | 28.5
05 20 | 928 | 91.3 | 87.7 | 832 | 77.3 | 71.2 | 62.2 | 53.3 | 455 | 37.0 | 29.7

’ 50 | 925|912 | 88.0 | 83.5 | 785 | 71.2 | 62.2 | 53.8 | 452 | 37.7 | 29.2
1.0 | 5.0 | 92.1 | 90.0 | 86.3 | 81.3 | 76.2 | 69.4 | 61.1 | 54.0 | 46.4 | 38.6 | 31.1
50 1.0 | 89.3 | 86.5 | 822 | 76.5 | 70.5 | 62.8 | 54.6 | 48.5 | 414 | 352 | 29.2
’ 5.0 | 87.6 | 833 | 788 | 73.1 | 67.4 | 61.8 | 56.2 | 50.5 | 44.9 | 384 | 32.8
10.0 | 20.0 | 82.7 | 79.6 | 75.3 | 72.0 | 67.9 | 633 | 58.6 | 51.1 | 46.6 | 40.3 | 34.7
WE (Gaussian) - - 96.3 | 94.9 | 91.3 | 87.7 | 80.7 | 73.5 | 61.1 | 49.0 | 352 | 23.7 | 12.9
05 2.0 [ 959939 902|863 |80.7 732|632 | 519 386|270 | 155
’ 50 | 959 | 94.1 | 90.0 | 86.4 | 80.4 | 73.1 | 62.3 | 51.7 | 39.8 | 27.5 | 16.4
1.0 | 50 | 954 | 93.1 | 89.7 | 85.8 | 80.0 | 72.7 | 62.9 | 52.1 | 39.9 | 28.5 | 17.8
05 [91.3 | 89.8 | 859 | 79.0 | 73.4 | 655 | 59.2 | 522 | 439 | 354 | 28.8
50 | 25 | 924|902 | 87.8 | 81.7 | 76.2 | 69.5 | 60.5 | 52.5 | 43.5 | 35.8 | 26.8
5.0 | 929 | 90.7 | 88.0 | 82.7 | 78.1 | 70.5 | 62.3 | 52.6 | 43.1 | 345 | 24.4
'WE (SmoothAdv) - - 052 934 ]84 ]862 808733648 [ 551447 | 352249
02 20 [ 942 | 919 | 88.6 | 845 | 79.6 | 72.5 | 63.7 | 539 | 449 | 364 | 27.3
: 5.0 [ 942 | 91.6 | 889 | 844 | 793 | 72.5 | 63.3 | 543 | 459 | 369 | 28.7
05 20 | 926 | 91.3 | 87.7 | 83.1 | 77.5 | 71.1 | 62.4 | 53.3 | 453 | 36.7 | 29.3

’ 50 | 925|912 | 88.0 | 834 | 785 | 71.1 | 62.3 | 53.7 | 453 | 37.8 | 29.5
1.0 | 50 | 92.1 | 90.0 | 86.4 | 81.4 | 763 | 69.7 | 61.1 | 54.0 | 46.4 | 384 | 31.0
50 1.0 | 89.1 | 86.5 | 82.5 | 76.7 | 70.5 | 63.0 | 54.8 | 484 | 41.5 | 353 | 29.1
’ 5.0 (879 | 834 | 788 | 73.0 | 67.5 | 61.6 | 56.2 | 50.4 | 44.8 | 38.5 | 32.7
10.0 | 20.0 | 82.0 | 79.1 | 752 | 71.8 | 67.6 | 63.4 | 58.6 | 51.2 | 46.7 | 40.2 | 34.7
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Figure 7: Certified accuracy for ML ensembles with Gaussian smoothed base models, under smooth-
ing parameter o € {0.25,0.50,1.00} separately on MNIST.
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Figure 8: Certified accuracy for ML ensembles with SmoothAdv base models, under smoothing
parameter o € {0.25,0.50, 1.00} separately on MNIST.
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sample (z,y). We evaluate ACR of our DRT-trained ensemble trained with o € {0.25,0.5,1.0}
smoothing parameter and compare it with other baselines. Results are shown in Table 7.

We can clearly see that our DRT-trained ensemble could still achieve the highest ACR on all the
smoothing parameter settings. Especially on o = 1.00, our improvement is significant.

Table 7: Average Certified Radius (ACR) of DRT-trained ensemble trained with different smoothing
parameter o € {0.25,0.50,1.00} on MNIST dataset, compared with other baselines. The grey rows
present the performance of the proposed DRT approach. The brackets shows the base models we use.

Radius r c=025|0=050]| c=1.00
Gaussian (Cohen et al., 2019) 0.912 1.565 1.633
SmoothAdv (Salman et al., 2019) 0.920 1.629 1.734
MACER (Zhai et al., 2019) 0.918 1.583 1.520
MME / WE (Gaussian) 0.915 1.585 1.669
DRT + MME / WE (Gaussian) 0.923 1.637 1.745
MME / WE (SmoothAdv) 0.926 1.678 1.765
DRT + MME / WE (SmoothAdv) 0.929 1.689 1.812

Effects of p; and p,. We investigate the DRT hyper-parameters p; and ps corresponding to different
smoothing parameter o € {0.25,0.5,1.0}. Here we put the detailed results for various hyper-
parameter settings in Tables 4 to 6 and bold the numbers with the highest certified accuracy on each
radius r. From the experiments, we find that the GD loss’s weight p; can have the major influence on
the ensemble model’s functionality: if we choose larger p;, the model will achieve slightly lower
certified accuracy on small radii, but higher certified accuracy on large radii. We also can not choose
too large p; on small o cases (e.g., 0 = 0.25). Otherwise, model’s functionality will collapse. Here
we show DRT-based models’ certified accuracy by applying different p; in Figure 9.

Alternatively, we find that the CM loss’s weight ps can also have positive influence on model’s
performance: the larger ps we choose, the higher certified accuracy we could get. Choosing larger
and larger po does not harm model’s functionality too much, but the improvement on certified
accuracy will become more and more marginal.

Efficiency Analysis. We regard the execution time per mini-batch as our efficiency criterion. For
MNIST with batch size equals to 256, DRT with the Gaussian smoothing base model only requires
1.04s to finish one mini-batch training to achieve the comparable results to the SmoothAdv method
which requires 1.86s. Moreover, DRT with the SmoothAdv base model requires 2.52s per training
batch but achieves much better results. The evaluation is on single NVIDIA GeForce GTX 1080 Ti
GPU.

- DRT+MME (SmoothAdv, p; = 0.0)
DRT+MME (SmoothAdv, p; = 0.2)
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Figure 9: Effect of p;: Certified accuracy of DRT-based models with MME protocol trained by
different GD Loss’s weight p; on MNIST. Smoothing parameter o € {0.50,1.00}. Training with
large p; will lead to lower certified accuracy on small radii but higher certified accuracy on large
radii.
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Table 8: Certified accuracy of DRT-(p1, p2) under different radii » on CIFAR-10 dataset. Smoothing
parameter o = 0.25. The grey rows present the performance of the proposed DRT approach. The
brackets show the base models we use.

Radius r p1 | p2 | 0.00 | 0.25 | 0.50 | 0.75

Gaussian (Cohen et al., 2019) - - 789 | 64.4 | 47.4 | 30.6
SmoothAdv (Salman et al., 2019) - - 68.9 | 61.0 | 544 | 45.7
MME (Gaussian) - - 80.8 | 68.2 | 534 | 374

0.1 |05 | 814|704 | 57.6 | 434
0.2 | 05| 788 | 69.2 | 57.8 | 43.8
05|20 | 733 | 61.7 | 51.0 | 39.3
0.5 50| 662 | 57.1 | 46.2 | 344
MME (SmoothAdv) - - | 714 | 645 | 57.6 | 484
0.1 05| 726 | 672 | 60.2 | 50.3
DRT + MME (SmoothAdv) 02 05| 71.8 | 66.5 | 59.3 | 50.4
05|05 | 682 | 643 | 58.2 | 489
WE (Gaussian) - - 80.7 | 68.3 | 53.6 | 37.5
0.1 |05 | 815 | 704 | 57.7 | 434
02 |05 | 788 | 69.3 | 57.9 | 44.0

DRT + MME (Gaussian)

DI 5 E (Gl 05|20 | 734 | 617 | 51.0 | 39.2
05 | 50 | 662 | 57.1 | 461 | 345
WE (SmoothAdv) - (718 | 646 | 57.8 | 48.5
01105 726 [ 67.0 | 602 | 503
DRT + WE (SmoothAdv) 02| 05| 71.9 | 665 | 594 | 505
05| 0.5 | 682 | 643 | 58.4 | 49.1
F2 CIFAR-10

Baseline Configuration. Following the literature (Salman et al., 2019; Jeong & Shin, 2020; Zhai
et al., 2019), in each batch, each training sample is Gaussian augmented twice (augmenting more
times yields negligible difference as Salman et al. (2019) show). We choose Gaussian smoothing
variance o € {0.25,0.5,1.0} for training and evaluation for all methods. For SmoothAdv, we
consider the attack to be 10-step Lo PGD attack with perturbation scale § = 1.0 without pretraining
and unlabelled data augmentation. We also reproduced the similar results mentioned in baseline
papers.

Training Details. First, we use ResNet-110 architecture and train each base model for 150 epochs.
For the training optimizer, we use the SGD-momentum with the initial learning rate o = 0.1. The
learning rate is decayed for every 50-epochs with decay ratio v = 0.1. Then, we use DRT to
finetune our model with small learning rate o for another 150 epochs. We also explore different DRT
hyper-parameters p1, po together with the initial learning rate «, and report the best certified accuracy
on each radius r among all the trained ensemble models.

Trend of Certified Accuracy with Perturbation Radius. We visualize the trend of certified accu-
racy along with different perturbation radii on different smoothing parameters separately in Figure 10
and Figure 11. For each radius r, we present the best certified accuracy among all the trained models.
We can see the similar trends: Applying either MME or WE ensemble protocol will only give slight
improvement while DRT can help make this improvement significant.

Average Certified Radius. We report the Average Certified Radius (ACR) (Zhai et al., 2019): ACR
= ITlml D (2y)eSes B(T: ), Where Sieg refers to the test set and 12(x, y) the certifed radius on testing
sample (z,y). We evaluate ACR of our DRT-trained ensemble trained with o € {0.25,0.5,1.0}
smoothing parameter and compare it with other baselines. Results are shown in Table 11.

Results shows that, DRT-trained ensemble has the highest ACR on almost all the settings. Especially
on ¢ = 1.00, our improvement is significant.

Effects of p; and p;. We study the DRT hyper-parameter p; and ps corresponding to different
smoothing parameters o € {0.25,0.5,1.0} and put the detailed results in Tables 8 to 10. We bold the
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Table 9: Certified accuracy of DRT-(p1, p2) under different radii » on CIFAR-10 dataset. Smoothing
parameter o = 0.50. The grey rows present the performance of the proposed DRT approach. The
brackets show the base models we use.

Radius r p1 p2 | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75

Gaussian (Cohen et al., 2019) - - 68.2 | 57.1 | 449 | 337 | 23.1 | 163 | 10.0 | 54
SmoothAdyv (Salman et al., 2019) - - 60.6 | 542 | 479 | 41.2 | 348 | 28.5 | 21.9 | 17.1
MME (Gaussian) - - 69.5 | 59.6 | 473 | 384 | 290 | 19.6 | 133 | 7.6

02 20 | 69.7 | 61.0 | 50.9 | 40.3 | 30.8 | 22.5 | 15.8 | 10.0

: 5.0 | 68.0 | 59.9 | 50.0 | 40.8 | 30.1 | 22.1 | 152 | 9.6

05 2.0 | 67.8 | 58.5 | 49.0 | 39.9 | 31.6 | 23.4 | 16.1 | 10.2

’ 5.0 | 655 | 58.4 | 49.0 | 40.1 | 31.2 | 23.6 | 16.5 | 10.2

1.0 20 | 645 | 558 | 475 | 394 | 31.1 | 23.6 | 148 | 9.3

50 | 622 | 54.1 | 46.5 | 38.8 | 29.7 | 22.8 | 16.6 | 11.0
DRT + MME (Gaussian) 1.5 | 5.0 | 59.2 | 52.8 | 44.1 | 35.6 | 27.8 | 22.3 | 15.0 | 10.2
25 | 584 | 510 | 442 | 39.2 | 334 | 27.6 | 234 | 20.6
50 | 562 | 49.6 | 45.8 | 404 | 344 | 29.6 | 244 | 20.8
25 | 52.0 | 46.8 | 42.0 | 36.2 | 32.4 | 27.8 | 23.4 | 19.7
50 | 512 | 475 | 425 | 38.1 | 33.7 | 289 | 249 | 20.9
15.0 | 20.0 | 54.5 | 49.8 | 44.7 | 349 | 30.2 | 23.0 | 18.7 | 11.1
20.0 | 30.0 | 52.2 | 46.2 | 40.2 | 344 | 294 | 22.6 | 17.8 | 12.8
MME (SmoothAdv) - - 61.0 | 54.8 | 48.7 | 42.2 | 362 | 29.8 | 23.9 | 19.1
02 | 5.0 | 622 | 564 | 503 | 43.4 | 37.5 | 26.7 | 24.6 | 194
05 | 50 | 619 | 56.2 | 50.3 | 43.5 | 37.6 | 31.8 | 24.8 | 19.6
1.0 | 5.0 | 564 | 52.6 | 48.2 | 444 | 39.6 | 35.8 | 30.4 | 23.6
1.5 | 5.0 | 56.0 | 50.8 | 47.2 | 442 | 39.8 | 35.0 | 294 | 24.0
WE (Gaussian) - - 69.4 | 59.7 | 475 | 384 | 292 | 19.7 | 133 | 7.5
20 | 69.7 | 61.2 | 50.8 | 40.2 | 30.8 | 22.4 | 159 | 10.0

DRT + MME (SmoothAdv)

0.2 5.0 | 68.0 | 599 | 50.1 | 40.8 | 30.1 | 22.1 | 154 | 9.7
05 20 | 67.8 | 585 | 49.2 | 39.8 | 31.7 | 235 | 16.2 | 104

’ 50 | 655 | 584 | 49.1 | 403 | 31.3 | 242 | 164 | 103
1.0 20 | 64.6 | 559 | 475 | 39.6 | 31.0 | 240 | 148 | 94

50 | 623 | 542 | 46.6 | 38.8 | 29.8 | 229 | 16.6 | 10.9
DRT + WE (Gaussian) 1.5 | 5.0 | 592 | 52.8 | 44.2 | 35.8 | 27.8 | 224 | 15.0 | 10.3
25 | 584 | 51.1 | 442 | 39.2 | 333 | 27.8 | 23.2 | 20.6
50 | 562 | 49.7 | 458 | 40.3 | 342 | 29.6 | 24.5 | 20.8
25 | 52.0 | 469 | 42.0 | 364 | 32.5 | 27.8 | 23.5 | 19.7
50 | 512 | 47.6 | 424 | 38.1 | 33.6 | 28.9 | 249 | 20.8
15.0 | 20.0 | 54.3 | 49.8 | 44.6 | 35.0 | 30.3 | 23.0 | 18.8 | 11.3
20.0 | 30.0 | 52.2 | 46.2 | 40.2 | 345 | 29.2 | 22.6 | 179 | 12.8
WE (SmoothAdv) - - 61.1 | 54.8 | 48.8 | 423 | 36.2 | 29.6 | 24.2 | 19.0
02 | 5.0 | 622 | 563 | 50.3 | 43.4 | 37.5 | 269 | 24.7 | 19.3
05 | 50 | 619 | 562 | 50.2 | 43.4 | 37.9 | 31.8 | 25.0 | 19.6
1.0 | 5.0 | 564 | 52.6 | 48.2 | 444 | 39.5 | 36.0 | 30.3 | 23.6
1.5 | 5.0 | 56.1 | 50.9 | 47.2 | 44.1 | 39.8 | 35.1 | 294 | 24.1

DRT + WE (SmoothAdv)

numbers with the highest certified accuracy on each radius r. The results show similar conclusion to
our understanding from MNIST.

Efficiency Analysis. We also use the execution time per mini-batch as our efficiency criterion. For
CIFAR-10 with batch size equals to 256, DRT with the Gaussian smoothing base model requires
3.82s to finish one mini-batch training to achieve the competitive results to 10-step PGD attack
based SmoothAdv method which requires 6.39s. All the models are trained in parallel on 4 NVIDIA
GeForce GTX 1080 Ti GPUs.

F.3 IMAGENET

For ImageNet, we utilize ResNet-50 architecture and train each base model for 90 epochs using
SGD-momentum optimizer. The initial learning rate « is set to 0.1. During training, the learning
rate is decayed for every 30-epochs with decay ratio v = 0.1. We tried different Gaussian smoothing
parameter o € {0.50,1.00}, and consider the best hyper-parameter configuration for each o. Then,
we use DRT to finetune base models with the learning rate o = 5 x 102 for another 90 epochs. Due

47



Published as a conference paper at ICLR 2022

Table 10: DRT-(py, p2) model’s certified accuracy under different radii  on CIFAR-10 dataset.
Smoothing parameter ¢ = 1.00. The grey rows present the performance of the proposed DRT
approach. The brackets show the base models we use.

Radius 7 p1 p2 | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00

Gaussian (Cohen et al., 2019) - - 489 | 42.7 | 354 | 28.7 | 22.8 | 183 | 13.6 | 105 | 7.3
SmoothAdv (Salman et al., 2019) - - 47.8 | 433 | 39.5 | 346 | 303 | 25.0 | 21.2 | 182 | 15.7
MME (Gaussian) - - 502 | 440 | 375 | 309 | 241 | 193 | 156 | 11.6 | 8.8

05 | 50 | 494 | 442 | 37.8 | 31.6 | 254 | 22.6 | 182 | 144 | 124
1.0 | 50 | 498 | 444 | 39.0 | 31.6 | 25.6 | 22.6 | 18.2 | 15.0 | 12.0
1.5 | 50 | 48.0 | 424 | 36.4 | 304 | 26.2 | 22.0 | 184 | 154 | 12.8
0.5 | 446 | 38.6 | 34.6 | 292 | 25.6 | 21.8 | 194 | 17.0 | 15.6
DRT + MME (Gaussian) 50 | 25 | 448 | 396 | 352 | 31.0 | 27.8 | 23.4 | 20.6 | 182 | 16.6
10.0 | 454 | 40.4 | 36.8 | 30.4 | 26.0 | 21.8 | 19.0 | 15.8 | 13.6
10.0 | 20.0 | 444 | 40.8 | 36.2 | 31.2 | 27.4 | 21.2 | 188 | 17.2 | 13.6
15.0 | 20.0 | 42.2 | 39.6 | 34.8 | 30.8 | 26.2 | 224 | 18.0 | 16.6 | 154
20.0 | 30.0 | 33.8 | 30.2 | 26.8 | 22.6 | 18.6 | 16.8 | 15.0 | 12.8 | 114
MME (SmoothAdv) - - 482 | 43.7 | 40.1 | 354 | 31.3 | 26.2 | 22.6 | 19.5 | 16.2
02 | 5.0 | 482|439 | 40.1 | 354 | 31.5 | 26.7 | 229 | 198 | 16.8
0.5 | 5.0 | 481 | 43.8 | 403 | 35.7 | 31.8 | 26.9 | 23.1 | 20.1 | 17.5
1.0 | 50 | 462 | 43.4 | 40.8 | 37.0 | 34.2 | 30.0 | 26.8 | 23.8 | 20.1
1.5 | 5.0 | 478 | 434 | 39.5 | 354 | 31.6 | 26.7 | 23.1 | 20.4 | 18.1
WE (Gaussian) - - 504 | 44.1 | 375|309 | 242 | 192 | 159 | 11.8 | 89

05 | 50 | 495|443 | 37.8 | 31.8 | 256 | 225 | 182 | 144 | 123
1.0 | 50 | 498 | 444 | 39.1 | 31.7 | 25.6 | 22.8 | 184 | 15.1 | 12.1
1.5 | 50 | 482 | 425 | 36.6 | 304 | 26.1 | 22.1 | 182 | 15.7 | 12.6
0.5 | 446 | 38.6 | 347 | 29.1 | 25.8 | 21.8 | 19.6 | 17.1 | 15.6
DRT + WE (Gaussian) 50 | 25 | 448 | 396 | 354 | 31.0 | 27.9 | 23.4 | 20.6 | 18.1 | 164
10.0 | 454 | 403 | 36.8 | 30.4 | 26.2 | 21.8 | 19.1 | 15.8 | 13.6
10.0 | 20.0 | 445 | 40.8 | 36.2 | 31.3 | 27.4 | 21.2 | 189 | 17.2 | 13.5
15.0 | 20.0 | 42.2 | 39.7 | 348 | 30.8 | 26.1 | 224 | 18.0 | 16.7 | 154
20.0 | 30.0 | 33.8 | 304 | 26.8 | 22.8 | 18.6 | 169 | 15.0 | 12.7 | 11.2
WE (SmoothAdv) - - 482 | 43.7 | 40.2 | 354 | 31.5 | 26.2 | 22.7 | 19.6 | 16.0
02 | 5.0 | 482|438 | 402 | 354 | 31.5 | 26.8 | 23.0 | 199 | 16.7
0.5 | 5.0 | 482 | 43.8 | 40.5 | 35.7 | 319 | 26.8 | 233 | 20.2 | 17.5
1.0 | 50 | 462 | 434 | 40.6 | 37.0 | 34.2 | 30.1 | 26.8 | 23.9 | 20.3
1.5 | 5.0 | 478 | 434 | 39.6 | 354 | 31.4 | 26.7 | 23.0 | 204 | 18.1

DRT + MME (SmoothAdv)

DRT + WE (SmoothAdyv)

Table 11: Average Certified Radius (ACR) of DRT-trained ensemble trained with different smoothing
parameter o € {0.25,0.50,1.00} on CIFAR-10 dataset, compared with other baselines. The grey
rows present the performance of the proposed DRT approach. The brackets shows the base models
we use.

Radius r c=025|0=050 | c =1.00
Gaussian 0.484 0.595 0.559
SmoothAdv 0.539 0.662 0.730
MACER 0.556 0.726 0.792
MME / WE (Gaussian) 0.513 0.621 0.579
DRT + MME / WE (Gaussian) 0.551 0.687 0.744
MME / WE (SmoothAdv) 0.542 0.692 0.689
DRT + MME / WE (SmoothAdv) 0.545 0.760 0.868

to the consideration of achieving high certified accuracy on large radii, we choose large DRT training
hyper-parameter p; and ps in practice, which lead to relatively low benign accuracy.

G ABLATION STUDIES

G.1 THE EFFECTS OF GRADIENT DIVERSITY LOSS AND CONFIDENCE MARGIN LOSS
To explore the effects of individual Gradient Diversity and Confidence Margin Losses in DRT, we set

p1 or ps to 0 and tune the other for evaluation on MNIST and CIFAR-10. The results are shown in
Table 12 and 13. We observe that both GD and CM losses have positive effects on improving the
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Figure 10: Certified accuracy for ML ensembles with Gaussian smoothed base models, under
smoothing parameter o € {0.25,0.50, 1.00} separately on CIFAR-10.
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Figure 11: Certified accuracy for ML ensembles with SmoothAdv base models, under smoothing
parameter o € {0.25,0.50,1.00} separately on CIFAR-10.

certified accuracy while GD plays a major role on larger radii. By combining these two regularization
losses together in DRT, the ensemble model achieves the highest certified accuracy under all radii.

Table 12: Certified accuracy achieved by training with GD Loss (GDL) or Confidence Margin Loss
(CML) only on MNIST dataset.

Radius r 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50

MME (Gaussian) 99.2 1 9841 96.8 | 949 | 90.5 | 843 | 69.8 | 48.8 | 34.7 | 234 | 12.7
GDL + MME (Gaussian) | 99.2 | 98.4 | 969 | 953 | 92.3 | 86.2 | 76.0 | 60.2 | 43.3 | 355 | 28.7
CML + MME (Gaussian) | 99.3 | 98.4 | 97.0 | 95.0 | 90.8 | 84.0 | 71.1 | 50.0 | 36.7 | 24.5 | 13.7
DRT + MME (Gaussian) | 99.5 | 98.6 | 97.5 | 95.5 | 92.6 | 86.8 | 76.5 | 60.2 | 43.9 | 36.0 | 29.1
WE (Gaussian) 99.2 | 984 |1 969 | 949 | 90.6 | 84.5 | 704 | 49.0 | 352 | 23.7 | 129
GDL + WE (Gaussian) | 99.3 | 98.5 | 97.1 | 953 | 92.3 | 86.3 | 76.3 | 59.8 | 43.4 | 35.1 | 29.0
CML + WE (Gaussian) | 99.3 | 98.4 | 97.0 | 95.0 | 90.8 | 84.1 | 71.1 | 50.3 | 37.0 | 24.6 | 13.7
DRT + WE (Gaussian) | 99.5 | 98.6 | 974 | 95.6 | 92.6 | 86.7 | 76.7 | 60.2 | 43.9 | 35.8 | 29.0

G.2 CERTIFIED ROBUSTNESS OF SINGLE BASE MODEL WITHIN DRT-TRAINED ENSEMBLE

We also conduct ablation study on how the single base models’ certified accuracy can be improved
after applying DRT to the whole ensemble for both MNIST and CIFAR-10 datasets. Results are
shown in in Table 14 and 15. We are surprised to find that the single base model within our DRT-
trained ensemble are more robust compared to single base model within other baseline ensembles.
Also, integrating them together could achieve higher robustness.

G.3 OPTIMIZING THE WEIGHTS OF DRT-TRAINED ENSEMBLE

While we adapt average weights in our WE ensemble protocol in our experiments, we are also
interested in how tuning the optimal weights could further improve the certified accuracy of our
DRT-trained ensemble. We conduct this ablation study on both MNIST and CIFAR-10 datasets
by grid-searching all the possible weights combination with step size as 0.1. Results are shown in
Table 16 and 17. (AE here refers to the average ensemble protocol and WE the weighted ensemble
protocol by adapting the tuned optimal weights)
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Table 13: Certified accuracy achieved by training with GD Loss (GDL) or Confidence Margin Loss
(CML) only on CIFAR-10 dataset.

Radius r 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00

MME (Gaussian) 80.8 | 68.2 | 53.4 | 38.4 | 29.0 | 19.6 | 15.6 | 11.6 | 8.8
GDL + MME (Gaussian) | 81.0 | 69.0 | 55.6 | 41.9 | 30.4 | 24.8 | 20.1 | 16.9 | 14.7
CML + MME (Gaussian) | 81.2 | 69.4 | 544 | 39.6 | 29.2 | 21.6 | 17.0 | 13.1 | 12.8
DRT + MME (Gaussian) | 81.4 | 70.4 | 57.8 | 43.8 | 34.4 | 29.6 | 24.9 | 20.9 | 16.6

WE (Gaussian) 80.8 | 68.4 | 53.6 | 384 | 29.2 | 19.7 | 159 | 11.8 | 89
GDL + WE (Gaussian) | 81.0 | 69.1 | 55.6 | 41.8 | 30.6 | 25.2 | 20.2 | 169 | 149
CML + WE (Gaussian) | 81.1 | 69.4 | 54.6 | 39.7 | 29.4 | 21.7 | 17.2 | 13.2 | 12.8
DRT + WE (Gaussian) | 81.5 | 70.4 | 57.9 | 44.0 | 34.2 | 29.6 | 249 | 20.8 | 16.4

Table 14: Certified accuracy of single base model within DRT-trained ensemble on MNIST dataset.

Radius r 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50

Single (Gaussian) 99.1 | 97.9 | 96.6 | 94.7 | 90.0 | 83.0 | 68.2 | 46.6 | 33.0 | 20.5 | I1.5
DRT Single (Gaussian) 99.0 | 98.6 | 97.2 | 954 | 92.0 | 85.6 | 749 | 59.8 | 43.4 | 352 | 28.6
DRT + MME (Gaussian) 99.5 | 98.6 | 97.5 | 955 | 92.6 | 86.8 | 76.5 | 60.2 | 43.9 | 36.0 | 29.1
DRT + WE (Gaussian) 99.5 | 98.6 | 97.4 | 95.6 | 92.6 | 86.7 | 76.7 | 60.2 | 43.9 | 358 | 29.0

Single (SmoothAdv) 99.1 | 98.4 | 97.0 | 96.3 | 93.0 | 87.7 | 80.2 | 66.3 | 43.2 | 343 | 24.0
DRT Single (SmoothAdv) | 99.2 | 98.4 | 97.6 | 96.6 | 929 | 88.1 | 80.4 | 68.0 | 46.4 | 39.2 | 34.1
DRT + MME (SmoothAdv) | 99.2 | 98.4 | 97.6 | 96.7 | 93.1 | 88.5 | 83.2 | 68.9 | 48.2 | 40.3 | 34.7
DRT + WE (SmoothAdv) | 99.1 | 98.4 | 97.6 | 96.7 | 93.4 | 88.5 | 83.3 | 69.6 | 48.3 | 40.2 | 34.8

Table 15: Certified accuracy of single base model within DRT-trained ensemble on CIFAR-10 dataset.

Radius r 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00

Single (Gaussian) 789 | 644 | 47.4 | 3377 | 23.1 | 183 | 13.6 | 10.5 | 7.3
DRT Single (Gaussian) 81.4 | 69.8 | 56.2 | 425 | 33.6 | 27.6 | 242 | 204 | 154
DRT + MME (Gaussian) 81.4 | 70.4 | 57.8 | 43.8 | 344 | 29.6 | 24.9 | 20.9 | 16.6
DRT + WE (Gaussian) 81.5 | 70.4 | 57.9 | 44.0 | 342 | 29.6 | 249 | 20.8 | 164

Single (SmoothAdv) 689 | 61.0 | 54.4 | 457 | 348 | 285 | 21.9 | 182 | 15.7
DRT Single (SmoothAdv) | 72.4 | 66.8 | 57.8 | 48.2 | 38.1 | 33.4 | 28.6 | 22.2 | 19.6
DRT + MME (SmoothAdv) | 72.6 | 67.2 | 60.2 | 504 | 39.4 | 35.8 | 30.4 | 24.0 | 20.1
DRT + WE (SmoothAdv) | 72.6 | 67.0 | 60.2 | 50.5 | 39.5 | 36.0 | 30.3 | 24.1 | 20.3

We can see that, by learning the optimal weights, the certified accuracy could be only slightly
improved compared to the average weights setting, which indicates that, average weights can be a
good choice in practice.

Table 16: Comparison of the certified accuracy between Average Ensemble (AE) protocol and
Weighted Ensemble (WE) protocol on MNIST dataset. Cells with bold numbers indicate learning
optimal weights could achieve higher certified accuracy on corresponding radius r.

Radius r 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50

DRT + AE (Gaussian) 99.5 | 98.6 | 97.4 | 95.6 | 92.6 | 86.7 | 76.7 | 60.2 | 43.9 | 35.8 | 29.0
DRT + WE (Gaussian) 99.5 | 98.6 | 97.6 | 95.6 | 92.7 | 86.8 | 76.7 | 60.3 | 44.0 | 36.0 | 29.3
DRT + AE (SmoothAdv) | 99.1 | 98.4 | 97.6 | 96.7 | 93.4 | 88.5 | 83.3 | 69.6 | 48.3 | 40.2 | 34.8
DRT + WE (SmoothAdv) | 99.1 | 984 | 97.6 | 96.8 | 93.5 | 88.5 | 83.3 | 69.7 | 48.5 | 40.2 | 34.8

G.4 COMPARISON WITH OTHER GRADIENT DIVERSITY REGULARIZERS

We notice that out of the certifiably robust ensemble field, there exist two representatives of gradient
diversity promoting regularizers: ADP (Pang et al., 2019) and GAL (Kariyappa & Qureshi, 2019).
They achieved notable improvements on empirical ensemble robustness. For an ensemble consisting
of base models {F; }; and input = and ground truth label y, the ADP regularizer is defined as

N
Lapp(x,y) = - Z H(mean({fi(x)})) + /5 - log(ED)

=1
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Table 17: Comparison of the certified accuracy between Average Ensemble (AE) protocol and
Weighted Ensemble (WE) protocol on CIFAR-10 dataset. Cells with bold numbers indicate learning
optimal weights could achieve higher certified accuracy on corresponding radius r.

Radius r 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00

DRT + AE (Gaussian) 81.5 | 704 | 579 | 44.0 | 342 | 29.6 | 249 | 20.8 | 164
DRT + WE (Gaussian) 81.5 | 704 | 579 | 44.0 | 343 | 29.6 | 25.0 | 20.9 | 16.5
DRT + AE (SmoothAdv) | 72.6 | 67.0 | 60.2 | 50.5 | 39.5 | 36.0 | 30.3 | 24.1 | 20.3
DRT + WE (SmoothAdv) | 72.6 | 67.1 | 60.2 | 50.5 | 39.5 | 36.1 | 30.3 | 24.1 | 204

Table 18: Certified accuracy of {ADP, GAL, DRT}-based Gaussian smoothed ensemble under
different radii with WE protocol.

MNIST 7 | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50

ADP 99.5 | 982 | 97.2 | 952 | 922 | 858 | 734 | 532 | 369 | 24.7 | 133
GAL 99.5 | 983 | 97.2 | 95.1 | 924 | 86.1 | 73.2 | 544 | 362 | 247 | 139
DRT 99.5 | 98.6 | 974 | 95.6 | 92.6 | 86.7 | 76.7 | 60.2 | 43.9 | 358 | 29.0

CIFAR-107 | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00

ADP 83.0 | 68.0 | 52.2 | 38.2 | 288 | 200 | 16.8 | 142 | 11.0
GAL 822 | 67.6 | 53.6 | 38.8 | 27.6 | 202 | 154 | 13.6 | 10.6
DRT 815 | 704 | 579 | 44.0 | 342 | 29.6 | 249 | 20.8 | 164

where H (-) refers to the Shannon Entropy Loss function and ED the square of the spanned volume
of base models’ logit vectors.

GAL regularizer minimizes the cosine similarity value between base models’ loss gradient vectors,
which is defined as:

LgaL(x,y) = log Z exp (cos(VmKF“VmZFJ.))
1<i<j<N

Under the smoothed ensemble training setting, the final training loss is represented by
Luain(@,y) = Y Lawa(@ +2,9)i + {Lavp(x +€,) or LoaL(®@ + £, y)}
1€[N]

where we consider standard training loss Ls4 (o + €, Y0 ) of each base model F; to be the standard
cross-entropy loss.

Table 18 shows the certified accuracy of { ADP, GAL, DRT }-trained ensemble under different radii
with WE protocol on MNIST and CIFAR-10 dataset. We notice that DRT outperforms both ADP and
GAL significantly in terms of the certified accuracy on different datasets.
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