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requirements of RMT, we also seek mechanisms that are

lightweight. Finally, the isolation mechanism should ensure

that one module can be updated without disturbing any other

modules and that the update process itself is quick.

The RMT architecture poses unique challenges for isola-

tion because its pipeline design means that neither an OS nor

a hypervisor can be used to enforce isolation.1 This is because

RMT is a dataflow or spatial hardware architecture [34, 39]

with a set of instructions units continuously processing data

(packets). This is in contrast to the Von Neumann architecture

found on processors [27], where a program counter decides

what instruction to execute next. As such, an RMT pipeline

is closer in its hardware architecture to an FPGA or a

CGRA [70] than a processor. This difference in architecture

has important implications for isolation. The Von Neumann

architecture supports a time-sharing approach to isolation

(in the form of an OS/hypervisor) that runs different modules

on the CPU successively by changing the program counter to

point to the next instruction of the next module. We instead

use space-partitioning to divide up the RMT pipeline’s

resources (e.g., match-action tables) across different modules.

Unfortunately, space partitioning is not a viable option for

certain RMT resources because there are very few of them

to be effectively partitioned across modules (e.g., match key

extraction units (§3.1)). For such resources, we add additional

hardware primitives in the form of small tables that store

module-specific configurations for these resources. As a

packet progresses through the pipeline, the packet’s module

identifier is used as an index into these tables to extract

module-specific configurations before processing the packet

according to the just extracted configuration. These primitives

are similar to the use of overlays [3, 16] in embedded sys-

tems [1, 25] and earlier PCs [17]. They effectively allow us to

bring in different configurations for the same RMT resource,

in response to different packets from different modules.

Based on the ideas of space partitioning and overlays, we

build a system, Menshen, for isolation on RMT pipelines.

Specifically, Menshen makes the following contributions:

1. The use of space partitioning and overlays as techniques

to achieve isolation when sharing an RMT pipeline

across multiple modules.

2. A hardware design for an RMT pipeline that employs

these techniques.

3. An implementation on 2 open-source FPGA platforms:

the NetFPGA switch [84] and Corundum NIC [45].

4. A compiler based on the open-source P4-16 com-

piler [18] that supports multiple modules running on

RMT, along with a system-level module to provide basic

services (e.g., routing, multicast) to other modules.

5. An evaluation of Menshen using 8 modules—based

on tutorial P4 programs, and the NetCache [60]

and NetChain [59] research projects—showing that

1An OS does run on the network device’s control CPU, allowing isolation

in the control plane. Our focus, instead, is on isolation in the data plane.

Menshen meets our isolation requirements.

6. An ASIC analysis of the Menshen, which shows that

our design can meet timing at 1 GHz (comparable to

current programmable ASICs) with modest additional

area relative to a baseline RMT design.

Overall, we find that Menshen adds modest overhead to

an existing RMT pipeline in both FPGA and ASIC imple-

mentations (§5). Our main takeaway is that a small number

of simple additions to RMT along with changes to the RMT

compiler can provide inter-module isolation for a high-speed

packet-processing pipeline. We have made Menshen’s

hardware design and software available under an open-source

license at https://isolation.quest/ to enable further

research into isolation mechanisms for high-speed pipelines.

2 The case for isolation

A single network device might host a measurement

module [52], a forwarding module [74], an in-network

caching [60] module, and an in-network machine-learning

module [72]—each written by a different team in the

same organization. It is important to isolate these modules

from each other. This would prevent bugs in measurement,

in-network caching, and in-network ML from causing

network downtime. It would also ensure that memory for

measuring per-flow stats [65] is separated from memory for

routing tables, e.g., a sudden arrival of many new flows does

not cause cached routes to be evicted from the data plane.

The packet-processing modules in question do not even

have to be developed by teams in the same organization [79].

They could belong to different tenants sharing the same

public cloud network. This would allow cloud providers

to offer network data-plane programmability as a service

to their tenants, similar to cloud CPU, GPU, and storage

offerings today. Such a capability would allow tenants to

customize network devices in the cloud to suit their needs.

2.1 Requirements for isolation mechanisms

For the rest of this paper, we will use the term module to

refer to a packet-processing program that must be isolated

from other such programs, regardless of whether the modules

belong to different mutually distrustful tenants or to a single

network operator. Importantly, modules can not call each

other like functions, but are intended to isolate different

pieces of functionality from each other—similar to processes.

Based on our use cases above (§2), we want an inter-module

isolation mechanisms that meet the requirements below:

1. Behavior isolation. The behavior of one module must

not affect the behavior (i.e., input, output, computation

and internal state) of another. This would prevent a

faulty or malicious module from adversely affecting

other modules. Further, one module should not be able

to inspect the behavior of another module.

2. Resource isolation. A switch/NIC pipeline has multiple

resources, e.g., static random-access memory (SRAM)
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for exact matching and ternary content-addressable

memory (TCAM) for ternary matching. Each module

should be able to access only its assigned subset of

the pipeline’s resources and no more. It should also be

possible to allocate each resource independent of other

resources. For example, an in-network caching module

may need large amounts of stateful memory [60] for

its caches, but a routing module may need significant

TCAM for routing tables.

3. Performance isolation. Each module should stay

within its allotted ingress packets per second and bits

per second rates. One module’s behavior should not

affect the throughput and latency of another module.

4. Lightweight. The isolation mechanisms themselves

must have low overhead so that their presence does

not significantly degrade the high performance of

the underlying network device. In addition, the extra

hardware consumed by these mechanisms must be small.

5. Rapid reconfiguration. If a module is reconfigured

with new packet-processing logic, the reconfiguration

process should be quick.

6. No disruption. If a module is reconfigured, it must

not disrupt the behavior of other unchanged modules—

especially important in a multi-tenant environment [40].

2.2 Target setting for Menshen

We target both programmable switches and NICs with a

programmable packet-processing pipeline based on the RMT

pipeline [36], a common architecture for packet processing

for the highest end devices. Other projects have looked at

isolation for software switches, multicore network processors,

FPGA-based devices, and the Barefoot Tofino switch

(without hardware changes). §6 compares against them.

An RMT pipeline can be implemented either on an FPGA

(e.g., FlowBlaze [71], Lightning NIC [57], nanoPU [56]) or

an ASIC (e.g., the Tofino [26], Spectrum [15], and Trident [6]

switches; and the Pensando NIC [13]). This pipeline has

also been embedded within larger hardware designs (e.g.,

PANIC [67]). Menshen builds on a baseline RMT pipeline

to provide isolation between different modules/tenants. A

high-speed implementation of Menshen would likely be

based on an RMT ASIC. For this paper, we prototype RMT

on 2 FPGA-based platforms: the NetFPGA switch [84] and

the Corundum NIC [45]. Our ASIC synthesis results suggest

that our lessons generalize to ASICs as well (§5.2).

3 Design

In order to meet its performance goals, RMT’s pipelined

architecture ensures that processing stages never stall, i.e.,

they can process a packet every clock cycle. The Menshen

design aims to preserve this invariant so that isolation does

not come at the cost of performance. To maintain this in-

variant, Menshen’s isolation mechanisms cannot reconfigure

stages or change table contents between packets. As a result,

Applied Mechanism Targeted Resources

Space partitioning Match action table entries, stateful memories

Overlays Parsing actions, key extractors,

packet header vector (PHV) containers,

arithmetic logic units (ALUs)

Table 1: Summary of Menshen’s mechanisms.

Menshen provides isolation by spatially partitioning switch

resources between packet processing modules.

While spatial partitioning is easy for resources, e.g.,

match-action tables and stateful memory, that are provisioned

so they can be allocated at flow granularity, it is much more

challenging for resources such as key extractors (§3.1) which

are generally shared across flows. This is because naive

approaches to spatially partitioning such shared resources

across packet-processing modules would severely reduce

the number of resources available to each packet processing

module—and hence the richness of that module.

To see why, consider a case where a key extractor is split

between two packet processing modules: in this setting each

packet processing module can only use half the key extractor,

limiting its key length to half of what it would be able to

use were it running on the entire pipeline. This problem is

of course further exacerbated as we increase the number of

packet processing modules sharing the pipeline.

Menshen addresses this problem using overlays: we

associate a configuration lookup table with each shared

resource in the switch. This lookup table is keyed by the

packet processing module’s ID and contains the configuration

that should be used when processing packets for this

module. For example, in the case of the key extractor, the

configuration table contains the instructions that the module

uses to construct key (§3.1). Our use of overlays means that

we do not need to partition resources including ALUs or

PHVs between modules. Instead, the module has exclusive

access to all PHVs/ALUs in a stage when processing a packet.

Table 1 summarizes our mechanisms.

To realize Menshen, on the software side, we modify an

RMT compiler to target a block of resources rather than the

entire pipeline. Overlays require new hardware primitives

to be added to the RMT pipeline. These hardware primitives

are small tables that contain per-module configurations of

shared resources. On every packet, these tables are indexed

using the packet’s module ID to determine the configuration

to use for that packet at that resource. An incremental

deployment pathway for Menshen would be to only modify

an RMT compiler (e.g., Tofino’s compiler) to implement

space partitioning without investing in new overlay hardware.

3.1 Menshen hardware

The Menshen hardware design (Figure 2) builds on RMT

by adding hardware primitives for isolation into the RMT

pipeline. Because these isolation primitives are added
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Figure 2: Menshen hardware and software-to-hardware interface.

Menshen builds on a RMT [36] pipeline, by adding Yellow

components and modifying Green ones.

pervasively throughout the pipeline, we first describe the

overall Menshen hardware design including both RMT and

the new isolation primitives. We then summarize the new

isolation primitives added by Menshen.

Menshen expects that a data packet’s header carries

information identifying what module should process the

packet. Currently in our prototype, this is the VLAN ID

(VID) header, which we assume is set by the vSwitch [51],

but other fields, e.g., VxLAN ID, can be used instead.

Packets entering Menshen are first handled by a packet filter

that discards packets without a VLAN ID.2 Next, a parser

extracts the VLAN ID from the packet and applies module-

specific parsing to extract module-specific headers from the

TCP/UDP payload. The parser then pushes these parsed

packet headers into packet header vector (PHV) containers

that travel through the pipeline of match-action stages.

Each stage forms keys out of headers, looks up the keys in a

match-action table, and performs actions. At the start of each

stage, a key extractor in the stage forms a key by combining

together the headers in a module-specific manner. The keys

are then concatenated with the module ID and looked up in a

match-action table, whose space is partitioned across different

modules. If the key matches against a match-action pair in

the table, the lookup result is used to index an action table.

Similar to the match-action table, the action table is

also partitioned across modules. Each action in the table

identifies opcodes, operands, and immediate constants for

a very-large instruction word (VLIW), controlling many

parallel arithmetic and logic units (ALUs). The VLIW

instruction consumes the current PHV to produce a new PHV

as input for the next stage. The table’s action can modify

persistent pipeline state, stored in stateful memory. Stateful

memory is indexed by a physical address that is computed

from a local address, obtained from a module’s packets. This

computation is done by a segment table, which stores the

offset and range of each module’s slice of stateful memory.

We now detail the main components of our design.

Parser. The Menshen parser is driven by a table lookup

process similar to the RMT parser [36, 49]. Specifically,

whenever a new packet comes in, the module ID is extracted

2The filter can be configured to send control packets without VLAN tags,

e.g., BFD packets [5], to the control plane or system-level module (§3.3).
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Figure 4: Menshen processing stage.

from its VLAN ID prior to parsing the rest of the packet.

This module ID is then used as an index into the table that

determines how to parse the rest of the packet (Figure 3).

Each table entry corresponds to multiple parsing actions for

a module—one action per extracted PHV container. Each

parsing action specifies (1) bytes from head, indicating where

in the packet the parser should extract a particular header, (2)

container type (e.g., 4-byte container, etc.), indicating how

many bytes we should extract; (3) container index, indicating

where in the PHV we should put the extracted header into.

The parser also sets aside space in the PHV for metadata that

is automatically created by the pipeline (e.g., time of enqueue

into switch output queues and queueing delay after dequeue)

and for temporary packet headers used for computation.

Key extractor. Before a stage performs a lookup on a match-

action table, a lookup key must be constructed by extracting

and combining together one or more PHV containers. This

key extraction process differs between modules in the same

stage, and between different stages for the same module. To

implement key extraction, just like the parser, we use a key

extractor table (Figure 4) that is indexed by a packet’s module

ID. Each entry in this table specifies which PHV containers

to combine together to form the key. These PHV containers

are then selected into the key using a multiplexer for each

portion of the key. To enable variable-length key matching

for different modules, the key extractor also includes a key

mask table, which also uses the module ID as an index to

determine how many bits to pad in the key to bring it up to

a certain fixed key size before lookup.

Match table. Each stage looks up the fixed-size key con-
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structed by the key extractor in a match table. Currently,

we support only exact-match lookup. The match table is

statically partitioned across modules by giving a certain

number of entries to each module. To enforce isolation

among different modules, the module ID is appended to the

key output by the key extractor. This augmented key is what

is actually looked up against the entries in the match table;

each entry stores both a key and the module ID that the key

belongs to. The lookup result is used as index into the VLIW

action table to identify a corresponding action to execute.

Action table and action engine. Each VLIW action table

entry indicates which fields from the PHV to use as ALU

operands (i.e., the configuration of each ALU’s operand

crossbar) and what opcode should be used for each ALU

controlled by the VLIW instruction (i.e., addition, subtraction,

etc.). Each ALU outputs a value based on its operands and

opcode. There is one ALU per PHV container, removing the

need for a crossbar on the output because each ALU’s output

is directly connected to its corresponding PHV container.

After a stage’s ALUs have modified its PHV, the modified

PHV is passed to the next stage.

Stateful memory. Menshen’s action engines can also modify

persistent pipeline state on every packet. Each module is as-

signed its own address space, and the available stateful mem-

ory in Menshen is partitioned across modules. When a module

accesses its slice of stateful memory, it supplies a per-module

address that is translated into a physical address by a segment

table before accessing the stateful memory. To perform this

translation, Menshen stores per-module configuration (i.e.,

base address and range) in a segment table, which can be in-

dexed by the packet’s module ID. Menshen borrows this idea

of a segment table from NetVRM’s [79, 83] page table, but

implements it in hardware instead of programming it in P4

atop Tofino’s stateful memory like NetVRM does. This allows

Menshen to avoid using scarce Tofino stateful memory to em-

ulate a segment table. Also, by adding segment table hardware

to each stage, Menshen avoids sacrificing the first stage of

stateful memory for a segment table, instead reclaiming it for

useful packet processing. This is unlike NetVRM, which can

share stateful memory across modules only from the second

stage because the first stage is used for the page table.

Deparser. The deparser performs the inverse operation of the

parser. It takes PHV containers and writes them back into

the appropriate byte offset in the packet header, merges the

packet header with the corresponding payload in the packet

buffer, and transmits the merged packet out of the pipeline.

The format of the deparser table is identical to the parser

table and is similarly indexed by a module ID.

Secure reconfiguration. Our threat model assumes that the

Menshen hardware and software are trusted, but that data

packets that enter the Menshen pipeline are untrusted. Data

packets are untrusted because for a switch, they can come

from physical machines outside the switch’s control and,

for a NIC, they can come from tenant VMs sharing the NIC.

Hence, the pipeline should be reconfigured only by Menshen

software, not data packets.

This is a security concern faced by existing RMT pipelines

as well, even without isolation support. Commercial pro-

grammable switches solve this problem by using a separate

daisy chain [7] to configure pipeline stages. This chain

carries configuration commands that are picked up by the

intended pipeline stage as the command passes that stage.

The chain is only accessible over PCIe, which is connected

to the control-plane CPU, but not by Ethernet ports, which

carry outside data packets. Hence, the only way to write new

configurations into the pipeline is through PCIe. The packet-

processing pipeline is restricted to just reading configurations

and using them to implement packet processing. Thus, the

daisy chain provides secure reconfiguration by physically

separating reconfiguration and packet processing.

Menshen uses a similar approach by employing a daisy

chain for reconfiguration when a module is updated. A special

reconfiguration packet carries configuration commands for

the pipeline’s resources (e.g., parser). Our implementation

of this daisy chain varies depending on the platform. For our

NetFPGA prototype, this daisy chain is connected solely to

the switch CPU via PCIe, similar to current switches. For our

Corundum NIC prototype, we connect the daisy chain directly

to PCIe and use a packet filter before our parser to filter

out reconfiguration packets from untrusted data packets by

ensuring that reconfiguration packets have a specific UDP des-

tination port. An ideal solution would be to use a physically

separate interface, e.g., USB or JTAG, for reconfiguring the

Menshen pipeline on Corundum, but we found it challenging

to implement such a physically separate reconfiguration

interface on Corundum. In Appendix A, we show how a daisy

chain permits more rapid reconfiguration than an alternative

approach of using the AXI-L protocol on an FPGA.

Summary of Menshen’s new primitives. The hardware

primitives introduced by Menshen on top of an RMT pipeline

(Figure 2) are the configuration tables for the parser, deparser,

key extractor, key mask units and segment table. These tables

provide an overlay feature to share the same unit across mul-

tiple modules. Specifically, for each unit, Menshen provides

a table with a configuration entry per module, rather than

one configuration for the whole unit. In addition, Menshen

introduces the packet filter to ensure secure reconfiguration.

Menshen also modifies match tables, by appending the mod-

ule ID to the match key and the match-action entries. Finally,

Menshen partitions match-action tables and stateful memory

across all modules. These primitives ensure that updating one

module only affects a single entry (for Menshen resources

that use overlays) and only affects a subset of memory (for

Menshen resources that use space partitioning), thus allowing

us to update one module without disrupting others (§2.1).

ASIC feasibility of Menshen’s primitives. Menshen’s parser,

deparser, key extractor, key mask, and segment tables are
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Figure 5: Three optimization techniques applied in Menshen.

Numbered circles refer to specific techniques in §3.2.

small and simple arrays indexed by the module identifier.

They can be readily realized in SRAM that can support a

memory read every clock cycle. The packet filter is a simple

combinational circuit that checks if the incoming packet is

destined to a specific UDP destination port. Extending the

match-action tables in each stage to append a module ID to ev-

ery entry amounts to modestly increasing the key width in the

table. While these new primitives add some additional latency

relative to RMT, e.g., to go through the packet filter or reading

out the per-module parser configuration, the pipelined nature

of RMT means that this additional latency does not impact

packet-forwarding rate. The ASIC area overhead increases

as we increase the number of simultaneous programming

modules that need to be supported; we quantify it in §5.2.

3.2 Improving Menshen’s throughput

As shown in Figure 5, we apply 3 main techniques to optimize

the forwarding performance of Menshen: (1) masking RAM

read latency, (2) using multiple parsers and deparsers, and (3)

increasing pipeline depth. We demonstrate the effect these

techniques have on Menshen’s throughput in §5.2.

¬ Masking RAM read latency. The design described in §3.1

attaches the module ID to the PHV that is sent from one

element (e.g., parser, key extractor) to the next. In this design,

we read the module’s configuration from SRAM after the PHV

arrives, thus incurring a few additional clock cycles of latency.

To optimize this, we mask SRAM access latency by splitting

the module ID from the PHV and sending the module ID to

the next element ahead of time. The PHV follows the module

ID, and thus the module configuration at a stage can be read

concurrently with the PHV being transmitted to that stage.

­ Multiple parsers and deparsers. In §3.1’s design, there is

one parser, deparser, and packet buffer. The parser extracts

and parses the header and puts the full packet in the packet

buffer. Then the deparser takes the modified headers from

the last stage, uses them to overwrite the relevant portions of

the full packet in the packet buffer, and sends out the packet.

Our optimized design uses multiple parallel parsers, de-

parsers, and packet buffers to improve throughput. Deparsing

is the most expensive operation as any position within the

PHV container might be modified, and thus any part of the

packet header (128 bytes in our implementation) might need
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to be updated. Furthermore, deparsing has to process both the

packet header and the payload. Therefore, we use 4 parallel

deparsers and 2 parsers. We also associate a separate packet

buffer with each deparser.

On ingress, the packet filter tags each packet with a packet

buffer number (0–3) in round robin order. It also round robins

incoming packets to the 2 parsers. The last pipeline stage

uses the packet buffer tag to determine which packet buffer’s

packet the last stage’s modified PHV should be combined

with. Each packet buffer’s deparser combines the earliest

packet from the packet buffer along with the last stage’s most

recently modified PHV for that buffer.

® Deep pipelining. With careful digital design, in Menshen’s

implementation, we can pipeline each element (e.g., match-

action table) into several sub elements to improve throughput.

For example in Figure 5, we divide the match-action table

into CAM-lookup and action-RAM-read sub elements. In

this specific example, this allows us to process a PHV every

2 clock cycles at each sub-element rather than every 4 clock

cycles at the whole match-action table.

3.3 The Menshen system-level module

To hide information about the underlying physical infras-

tructure (e.g., topology) from tenant modules in a virtualized

environment, modules in Menshen can use virtual IP ad-

dresses to operate in a shared environment [51]. Here, virtual

IP addresses are local and scoped to modules belonging to

a particular tenant, regardless of which physical device these

modules are on. To support virtual IPs and provide basic

services to other modules, Menshen contains a system-level

module written in P4-16 that provides common OS-like

functionality, e.g., converting virtual IPs to physical IPs, mul-

ticast, and looking up physical IPs to find output ports. The

system-level module has 3 benefits: (1) it avoids duplication

among different modules re-implementing common functions,

improving the resource efficiency of the pipeline, (2) it hides

underlying physical details (e.g., topology) from each module

so that one tenant’s modules on different network devices can

form a virtual network [51], and (3) it provides common and

useful real-time statistics (e.g., link utilization, queue length,

etc.) that can inform packet processing within modules.

Figure 6 shows how the system-level module is laid out
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relative to the other modules. Packets entering the Menshen

pipeline are first processed by the system-level module before

being handed off to their respective module for module-

specific processing. After module-specific processing, these

packets enter the system module for a second time before

exiting the pipeline. The first time they enter the system-level

module, packets can read and update system-level state

(e.g., link utilization, packet counters, queue measurements),

whereas the second time they enter the system-level module,

module-specific packet header fields (e.g., virtual IP address)

can be read by the system-level module to determine device-

specific information (e.g., output port). In both halves, there is

a narrow interface by which modules communicate with the

system-level module. This split structure of the system-level

module arises directly from the feed-forward nature of the

RMT pipeline, where packets typically only flow forward, but

not backward. Hence, packets pick up information from the

system-level module in the first stage and pass information

to the system-level module in the last stage. The non-system

modules are sandwiched in between these two halves.

3.4 Menshen software

The software-hardware interface. The Menshen software-

to-hardware interface works similar to P4Runtime [19] to

support interactions (e.g., modifying match-action entries,

fetching hardware statistics, etc.) between the Menshen

software and the Menshen hardware. However, in addition

to P4Runtime’s functions, Menshen’s software-hardware

interface can also be used to reconfigure different hardware

resources (Appendix C) in Menshen to reprogram them when

a module is added or updated. This allows us to dynamically

reconfigure portions of Menshen as module logic changes.

The Menshen resource checker. The Menshen resource

checker ensures that each module’s resource allocation com-

plies with an operator specified resource sharing policy (e.g.,

dominant resource sharing (DRF) [48], or a utility-based [54]

policy). In our current design we check allocations statically

because reassigning resources from one module to another

disrupts processing for both modules. Instead we rely on

admission control and do not load a module whose resource

requirements cannot be met. We leave the question of what

is an appropriate resource allocation policy to future work.

The Menshen static checker. To ensure isolation, Menshen’s

static checker analyzes 3 properties of the module’s P4

source code. First, it checks that modules do not modify

hardware-related statistics (e.g., link utilization) provided

by the system-level module to all modules. Second, modules

can not modify their VID. This is because a module can be

spread across multiple programmable devices [46, 59], and

changes to VIDs by module A on a device can unintentionally

affect a module B on a downstream device, where B’s real

VID happens to be the same as A’s modified VID. Third,

modules must not recirculate packets and their routing tables

should be loop-free.3 This is because all modules share the

same ingress pipeline bandwidth. Recirculating packets or

looping them back through multiple devices will degrade the

ability of other modules to process packets.

The Menshen compiler. Packet-processing pipelines (e.g.,

RMT [36]) are structured as feed-forward pipelines of

programmable units, each of which has limited processing

capabilities. This design ensures the all-or-nothing property:

once a module has been compiled and loaded it can run at up

to line rate, while modules that can not run at line rate cannot

be compiled. Menshen’s compiler follows the same design,

and only admits modules that meet line-rate requirements.

The compiler reuses the frontend and midend of the

open-source P4-16 reference compiler [18] and creates a

new backend similar to BMv2 [4]. This backend has a parser,

a single processing pipeline, and a deparser. The compiler

takes a module’s P4-16 program as input and conducts all the

resource usage and static checks described above. Then, for

the parser and deparser, it transforms the parser defined in the

module to configuration entries for the parser and deparser

tables. For the packet-processing pipeline, which consists

of match-action tables, it transforms the key in a table to a

configuration in the key extractor table, and actions to VLIW

action table entries according to the opcodes. The compiler

also performs dependency checking [36, 61] to guarantee that

all ALU actions and key matches are placed in the proper

stage, respecting table dependencies.

The Menshen compiler can be extended to support the

same packet flowing through different P4 modules belonging

to one tenant. The compiler can take multiple P4 modules as

input, assign them the same module ID, and allocate them to

non-overlapping pipeline stages—similar to how we lay out

user and system modules in different stages as in Figure 6.

3.5 Limitations

As a research prototype, Menshen has several limitations.

First, while we have developed mechanisms to support

isolation across multiple modules, we have not yet designed

policies that decide how much of each resource a module

should be given [35]. Second, our FPGA implementation

of RMT lacks many features present in a commercial RMT

implementation such as the Barefoot Tofino switch [26].

Third, our compiler currently does not perform any com-

piler optimizations for code generation [47] or memory

allocation [46, 61]. Fourth, Menshen proposes isolation

mechanisms for the packet-processing pipeline, but does not

deal with isolating traffic from different modules competing

for output link bandwidth, which is a orthogonal traffic

management problem. Proposals like PIFO [75] can be used

here, by assigning PIFO ranks to different modules to realize

a desired inter-module bandwidth-sharing policy.

3We check loop freedom in the control plane.
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Figure 7: Formats of Menshen’s packets and tables.

4 Implementation

4.1 Menshen hardware

To implement Menshen, we first built a baseline RMT imple-

mentation for an FPGA. Menshen includes (1) a packet filter

to filter out reconfiguration packets from data packets using

a specific predefined UDP destination port (i.e., 0xf1f2), (2) a

programmable parser, (3) a programmable RMT pipeline with

5 programmable processing stages, (4) a deparser, and (5) a

separate daisy-chain pipeline for reconfiguration. It also in-

cludes Menshen’s primitives for isolation. We have integrated

it into both the Corundum NIC [45] and the NetFPGA refer-

ence switch [84]. The Menshen code base together with the

optimizations (§3.2) consists of 9975 lines of Verilog. Of this,

3098 and 3226 lines are for handling data bus widths of 512

bits (Corundum) and 256 bits (NetFPGA) respectively. 3651

lines are for the common blocks, e.g., key extractor, etc. Be-

low, we describe our hardware implementation in more detail.

Figure 7 shows the formats of Menshen’s packets and tables.

PHV format. Menshen’s PHV has 3 types of containers of

different sizes, namely 2-byte, 4-byte and 6-byte containers.

Each type has 8 containers. Also, we allocate and append

an additional 32 bytes to store platform-specific metadata

(e.g., an indication to drop the packet, destination port, etc.),

which results in a PHV length of 128 bytes in total. Thus,

we have a total of 3∗8+1=25 PHV containers. To prevent

any possibility of PHV contents leaking from one module

to another, the PHV is zeroed out for each incoming packet.

Reconfiguration packet format. Figure 7 shows the format of

Menshen reconfiguration packets. The reconfiguration packet

is a UDP packet with the standard UDP, Ethernet, VLAN,

and IP headers. Within the UDP payload, a 12-bit resource

ID indicates which hardware resource within which stage

should be updated (e.g., key extractor table in stage 3). To

reconfigure the resource, the table storing the configuration

for this resource must be updated by writing the entry stored

within the reconfiguration packet’s payload at the location

specified by the 1-byte index field in the reconfiguration

packet header. The UDP destination port field determines

whether the reconfiguration packet is valid or not.

Operation Description

add/sub Add/subtract between containers

addi/subi Add/subtract an immediate to/from container

set Set a container to an immediate value

load Load a value from stateful memory

store Store a value to stateful memory

loadd Load value from stateful memory, add 1, and store back

port Set destination port

discard Discard packet

Table 2: Supported operations in Menshen’s ALU.

Packet filter. The packet filter has 2 registers that can be

accessed by the Menshen software via Xilinx’s AXI-Lite

protocol [28]: (1) a 4-byte reconfiguration packet counter,

which monitors how many reconfiguration packets have

passed through the daisy chain; (2) a 32-bit bitmap, which

indicates which module is currently being updated (e.g.,

bit 1 stands for module 1, bit 2 for module 2, etc.). During

reconfiguration of a module, via the software-to-hardware

interface, the Menshen software reads the reconfiguration

packet counter. It then writes the bitmap to reflect the module

ID M of the module currently being updated. The bitmap

is then consulted on every packet to drop data packets from

M until reconfiguration completes, so that M’s “in-flight”

packets aren’t incorrectly processed by partial configurations.

Then, the Menshen software sends all reconfiguration

packets embedded with the predefined UDP destination

port to the daisy chain. Finally, it polls the reconfiguration

packet counter to check if reconfiguration is over and then

zeroes the bitmap so that M’s packets are no longer dropped.

Reconfiguration packets maybe dropped before they reach

the RMT pipeline. This can be detected by polling the

reconfiguration packet counter to see if it has been correctly

incremented or not. If it hasn’t been incremented correctly,

then the entire reconfiguration process restarts with M’s

packets being dropped until reconfiguration is successful.

Programmable parser/deparser. We currently support

per-module packet header parsing in the first 128 bytes of the

packet. These 128 bytes also include the headers common to

all modules (e.g., Ethernet, VLAN, IP, and UDP). We design

the parser action for each parsed PHV container as a 16-bit

action. The first 3 bits are reserved. The next 7 bits indicate

the starting extraction position in bytes from byte 0. These

7 bits can cover the whole 128-byte length. Then, the next

2 bits and 3 bits indicate the container type (2, 4, or 6 byte)

and number (0–7) respectively. The last bit is the validity bit.

For each module, we allocate 10 such parser actions (i.e., to

parse out at most 10 containers), resulting in a 160-bit-wide

entry for the parser action table.

We note that we only parse out fields of a packet into PHV

containers, if those fields are actually used as part of either

keys or actions in match-action tables. Before packets are

sent out, the deparser pulls out the full packet (including the

payload) from the packet buffer and only updates the portions

of the packet that were actually modified by table actions. This

approach allows us to reduce the number of PHV containers to
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25 because packet fields that are never modified or looked up

by the Menshen pipeline need not travel along with the PHV.

Key extractor. The key for lookup in the match-action table

is formed by concatenating together up to 2 PHV containers

each of the 2-byte, 4-byte, and 6-byte container types. Hence

the key can be up to 24 bytes and 6 containers long. Since

there are 8 containers per type, the key extraction table entry

for each module in each stage uses log2(8)∗6 = 18 bits to

determine which container to use for the 6 key locations. Ad-

ditionally, the key extractor is also used to support conditional

execution of actions based on the truth value of a predicate

of the form A OP B, where A and B are packet fields and OP

is a comparison operator. For this purpose, each key extractor

table entry also specifies the 2 operands for the comparison op-

eration and the comparison opcode. The opcode is a 4-bit num-

ber, while the operands are 8 bits each. The operands can ei-

ther be an immediate value or refer to one of the PHV contain-

ers. The result of the predicate evaluation adds one bit to the

original 24 byte key, bringing the total key length to 24∗8+1=

193 bits. Because not all keys need to be 193 bits long, we use

a 193-bit-wide mask table. Each entry in this table denotes the

validity of each of the 193 key bits for each module in each

stage. This is somewhat wasteful and can be improved by stor-

ing validity information within the key extractor table itself.

Exact match table. To implement the exact match table, we

leverage the Xilinx CAM block [31]. This CAM matches the

key from the key extractor module against the entries within

the CAM. As discussed in §3.1, to ensure isolation between

different modules, we append the module ID (i.e., VLAN

ID) to each entry, which means that the CAM has a width of

193+12=205 bits. The lookup result from the CAM is used

to index the VLIW action table. The action is designed in

a 25-bit format per ALU/container (Figure 7). As we have

24+1 = 25 PHV containers, the width of the VLIW action

table is 25∗25=625 bits. The Xilinx CAM block simplifies

implementation of an exact-match table and can also easily

support ternary matches if needed (Appendix B).

Action engine. The crossbar and ALUs in the action engine

use the VLIW actions to generate inputs for each ALU and

carry out per-ALU operations. ALUs support simple arith-

metic, stateful memory operations (e.g., loads and stores),

and platform-specific operations (e.g., discard packets)

(Table 2). The formats of these actions are shown in Figure 7.

Additionally, in stateful ALU processing, each entry in the

segment table is a 2-byte number, where the first byte and

second byte indicate memory offset and range, respectively.

Menshen primitives. Menshen’s isolation primitives (e.g.,

key-extractor and segment tables) are simple arrays

implemented using the Xilinx Block RAM [30] feature.

4.2 Menshen Software

The Menshen compiler reuses the open-source P4-16

reference compiler [18] and implements a new backend

Program Description

CALC [20] return value based on parsed opcode and operands

Firewall [20] stateless firewall that blocks certain traffic

Load Balancing [20] steer traffic based on 4-tuple header info

QoS [20] set QoS based on traffic type

Source Routing [20] route packets based on parsed header info

NetCache [60] in-network key-value store

NetChain [59] in-network sequencer

Multicast [20] multicast based on destination IP address

Table 3: Evaluated use cases.

extension in 3773 lines of C++. It takes the module written

in P4-16 together with resource allocation as the inputs, and

generates per-module configurations for Menshen hardware.

Specifically, it (1) conducts resource usage checking to ensure

every program’s resource usage is below its allocated amount;

(2) places the system-level module’s (120 lines of P4-16) con-

figurations in the first and last stages in the Menshen pipeline;

and (3) allocates PHV containers to the fields shared between

the system-level and other modules so that the other modules

can be sandwiched between the two halves of the system-level

module (§3.4). The Menshen software-to-hardware interface

is written in Python. It configures Menshen hardware by

converting program configurations to reconfiguration packets.

4.3 Corundum and NetFPGA integrations

We have integrated Menshen into 2 FPGA platforms: one for

the NetFPGA platform that captures the hardware architecture

of a switch [84], and another for the Corundum platform that

captures the hardware architecture of a NIC [45]. Menshen’s

integration on Corundum [45] is based on a 512-bit AXI-

S [29] data width and runs at 250 MHz. Although Menshen’s

pipeline can be integrated into both the sending and receiving

path, in our current implementation, we have integrated

Menshen into only Corundum’s sending path, i.e., PCIe input

to Ethernet output. Menshen on NetFPGA [84] uses a 256-bit

AXI-S [29] data width and runs at 156.25 MHz.

On the Corundum NIC platform, we insert a 1-bit discard

flag, while on the NetFPGA switch platform, we insert a

1-bit discard flag and 128-bit platform-specific metadata, i.e.,

source port, destination port and packet length, into the PHV’s

metadata field. A 4-bit one-hot encoded tag indicates the

packet buffer (§3.2). The table depth in Menshen’s parser, key

extractor, key mask, page, and deparser tables affects the max-

imum number of modules we can support and is currently 32.

The depth of CAM and VLIW action table directly influences

the amount of match-action entries and VLIW actions that can

be allocated to all modules. Due to the open technical chal-

lenge of implementing CAMs on FPGAs efficiently [58, 71],

we set their depth to 16 in each stage. While 16 is a small

depth, the depth can be improved by using a hash table, rather

than a CAM, for exact matching, e.g., cuckoo hashing [69].

5 Evaluation

In §5.1, we show that Menshen can meet our requirements

(§2.1): it can be rapidly reconfigured, is lightweight, provides

behavior isolation, and is disruption-free. Menshen achieves
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performance isolation by (1) assuming packets exceed a

minimum size (to guarantee line rate) and (2) forbidding

recirculation. If either is violated, hardware rate limiters can

be used to limit each module’s packet/bit rate. It achieves

resource isolation by ensuring that a table entry for a resource

(e.g., parser) is allotted to at most one module. In §5.2, we

evaluate the current performance of Menshen.

Experimental setup. To demonstrate Menshen’s ability

to provide multi-module support, we picked 6 tutorial P4

programs [20], as detailed in Table 3, together with simplified

versions of NetCache [60] and NetChain [59].4 The system-

level module provides basic forwarding and routing, with

multicast logic integrated in it. Menshen’s parameters are

detailed in §4 and summarized in Table 5 in the Appendix.

Testbed. We evaluate Menshen based on our Corundum and

NetFPGA integrations as described in §4. For the switch

platform experiments on NetFPGA, we use a single quad-port

NetFPGA SUME board [14], where two ports are connected

to a machine equipped with an Intel Xeon E5645 CPU

clocked at 2.40 GHz and a dual-port Intel XXV710 10/25GbE

NIC. For the NIC platform experiments on Corundum, we use

a single Xilinx Alveo U250 board [2], where one port is with

Menshen for the transmitting path and this port is connected

to a 100 GbE NIC as the receiving path. Both setups are used

to check Menshen’s correctness (§5.1). For NetFPGA perfor-

mance tests (§5.2), we use the host as a packet generator. For

Corundum performance tests (§5.2), we internally connect its

receiving and transmitting path, and use the Spirent tester [22]

to generate traffic. We depict our testing setup in Appendix D.

5.1 Does Menshen meet its requirements?

Menshen can be rapidly reconfigured. Reconfiguration time

includes both the software’s compilation time (Figure 8) and

the hardware’s configuration time (Figure 9); we evaluate

each separately. When a module is compiled, the compiler

needs to generate both configuration bits for various hardware

resources as well as match-action entries for the tables the

module looks up. These match-action entries can and will

be overwritten by the control plane, but we need to start out

with a new set of match-action entries for a module to ensure

no information leaks from a previous module.

Hence, every time a module is compiled, the compiler also

generates match-action entries. Within an exact match table,

these entries must be different from each other to prevent

multiple lookup results. As a result, Menshen’s compilation

time increases with the number of match-action entries in the

module (Figure 8). To contextualize this, Menshen’s compile

times (few seconds) compare favorably to compile times for

Tofino (∼10 seconds for our use cases) and FPGA synthesis

times (10s of minutes). We note that this is an imperfect

comparison: our compiler performs fewer optimizations than

4Our versions of NetChain and NetCache do not include some features

such as tagging hot keys.

Hardware Implementation Slice LUTs Block RAMs

NetFPGA reference switch 42325 (9.77%) 245.5 (16.7%)

RMT on NetFPGA 200573 (46.3%) 641 (43.6%)

Menshen on NetFPGA 200733 (46.34%) 641 (43.6%)

Corundum 61463 (3.56%) 349 (12.98%)

RMT on Corundum 235686 (13.63%) 316 (11.75%)

Menshen on Corundum 235903 (13.65%) 316 (11.75%)

Table 4: Resources used by 5-stage Menshen pipeline, on NetFPGA

SUME and AU250 boards, compared with reference switch,

Corundum NIC, and RMT.

either the Tofino or FPGA compilers and our targets are sim-

pler. That said, compilation can happen offline, and hence it

is not as time-sensitive compared to run-time reconfiguration.

To measure time taken for Menshen’s configuration post

compilation, we vary the number of entries the Menshen

software has to write into the pipeline.5 Also, as a comparison,

we evaluate the cost of the Tofino run-time APIs from Tofino

SDE 9.0.0 to insert match-action table entries for the CALC

program. From Figure 9, we observe that the time spent in

configuration of the hardware via Menshen’s software-to-

hardware interface is similar to Tofino’s run-time APIs.

Menshen can reconfigure without disruption. To show

Menshen can support disruption-free reconfiguration, we

launch three CALC programs with fixed input packet rate, i.e.,

5:3:2 ratio on a single link for module 1, 2 and 3, respectively.

We use netmap-based tcprelay to generate total traffic of 9.3

Gbit/s on a 10 Gbit/s link. 0.5 seconds in, we start to recon-

figure the first module to see if the packet processing of other

modules has stalled or not. In Figure 10 we show the through-

put achieved by each of three modules when reconfiguring

module 1. We can observe that model 2 and 3 see no impact

on their throughput. This demonstrates that Menshen provides

performance isolation, and that it is feasible for a tenant to

reconfigure their module without impacting other tenants. By

contrast, updating a module on Tofino (§6) requires resetting

the entire switch pipeline. Even with Tofino’s Fast Refresh [9],

this leads to a 50 ms disruption of all servers (and their VMs)

whose traffic is routed through the switch. This disruption

can be significant in public cloud environments, and in many

cases renders dynamic reconfiguration infeasible.

Menshen is lightweight. We list Menshen’s resource

usage of logic and memory (i.e., LUTs and Block RAMs),

including absolute numbers and fractions, in Table 4. For

comparison, we also list the resource usage of the NetFPGA

reference switch and the Corundum NIC. We believe that the

additional hardware footprint of Menshen is acceptable for

the programmability and isolation mechanisms it provides

relative to the base platforms. The reason that Menshen uses

more LUTs than Block RAMs is that Menshen leverages

the Shift Register Lookup (SRL)-based implementation of

Xilinx’s CAM IP [31]. We also compared with an RMT

design, where we modified Menshen’s hardware to support

only one module. Relative to RMT, Menshen incurs an extra

5Since the Menshen hardware can’t currently support so many entries

(§4.3), we overwrite previously written entries to measure configuration time.
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