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Abstract

Data-plane programmability is now mainstream. As we find
more use cases, deployments need to be able to run multiple
packet-processing modules in a single device. These are
likely to be developed by independent teams, either within the
same organization or from multiple organizations. Therefore,
we need isolation mechanisms to ensure that modules on the
same device do not interfere with each other.

This paper presents Menshen, an extension of the Reconfig-
urable Match Tables (RMT) pipeline that enforces isolation
between different packet-processing modules. Menshen is
comprised of a set of lightweight hardware primitives and
an extension to the open source P4-16 reference compiler
that act in conjunction to meet this goal. We have prototyped
Menshen on two FPGA platforms (NetFPGA and Corundum).
We show that our design provides isolation, and allows new
modules to be loaded without impacting the ones already run-
ning. Finally, we demonstrate the feasibility of implementing
Menshen on ASICs by using the FreePDK45nm technology
library and the Synopsys DC synthesis software, showing
that our design meets timing at a 1 GHz clock frequency and
needs approximately 6% additional chip area. We have open
sourced the code for Menshen’s hardware and software at
https://isolation.quest/.

1 Introduction

Programmable network devices in the form of programmable
switches [6, 15, 26] and smart network interface cards
(SmartNICs) [10, 11, 44] are becoming commodity. Such
devices allow the network infrastructure to provide its users
additional services beyond packet forwarding, e.g., conges-
tion control [41,66], measurement [52], load balancing [62],
in-network caches [60], and machine learning [72].

As network programmability matures, a single device
will have to concurrently support multiple independently
developed modules. This is the case for networks in the
public cloud where tenants can provide packet-processing

*Work done at Queen Mary University of London
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Figure 1: The RMT architecture [36] typically consists of a
programmable parser/deparser, match-action pipeline and traffic
manager. Menshen provides isolation between RMT modules. In the
figure we show resources allocated to and by
shading them in the appropriate color.

modules that are installed and run on the cloud provider’s
devices. Another example is when different teams in an
organization write different modules, e.g., an in-networking
caching module and a telemetry module.

Isolation is required to safely run multiple modules on a
single device. Several prior projects have observed this need
and proposed solutions targeting multicore network proces-
sors [50, 68], FPGA-based packet processors [63,73,77,82],
and software switches [53,81]. However, thus far, high-speed
pipelines such as RMT that are used in switch and NIC ASICs
provide only limited support for isolation. For instance, the
Tofino programmable switch ASIC [26] provides mechanisms
to share stateful memory across modules but cannot share
other resources, e.g., match-action tables [79].

Our goal with this paper is to lay out the requirements
for isolation mechanisms on the RMT architecture that are
applicable to all resources and then to design lightweight
mechanisms that meet these requirements. As presented in
Figure 1, the desired isolation mechanisms should guarantee
that multiple modules can be allocated to different resources,
and process packets in parallel without impacting each other.
In brief (§2.1 elaborates), we seek isolation mechanisms
that ensure that (1) one module’s behavior (input, output,
and internal state) is unaffected by another module; (2)
one module can not affect another’s throughput and/or
latency; and (3) one module can not access RMT pipeline
resources belonging to another. Given the high performance
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requirements of RMT, we also seek mechanisms that are
lightweight. Finally, the isolation mechanism should ensure
that one module can be updated without disturbing any other
modules and that the update process itself is quick.

The RMT architecture poses unique challenges for isola-
tion because its pipeline design means that neither an OS nor
a hypervisor can be used to enforce isolation.! This is because
RMT is a dataflow or spatial hardware architecture [34,39]
with a set of instructions units continuously processing data
(packets). This is in contrast to the Von Neumann architecture
found on processors [27], where a program counter decides
what instruction to execute next. As such, an RMT pipeline
is closer in its hardware architecture to an FPGA or a
CGRA [70] than a processor. This difference in architecture
has important implications for isolation. The Von Neumann
architecture supports a time-sharing approach to isolation
(in the form of an OS/hypervisor) that runs different modules
on the CPU successively by changing the program counter to
point to the next instruction of the next module. We instead
use space-partitioning to divide up the RMT pipeline’s
resources (e.g., match-action tables) across different modules.

Unfortunately, space partitioning is not a viable option for
certain RMT resources because there are very few of them
to be effectively partitioned across modules (e.g., match key
extraction units (§3.1)). For such resources, we add additional
hardware primitives in the form of small tables that store
module-specific configurations for these resources. As a
packet progresses through the pipeline, the packet’s module
identifier is used as an index into these tables to extract
module-specific configurations before processing the packet
according to the just extracted configuration. These primitives
are similar to the use of overlays [3, 16] in embedded sys-
tems [1,25] and earlier PCs [17]. They effectively allow us to
bring in different configurations for the same RMT resource,
in response to different packets from different modules.

Based on the ideas of space partitioning and overlays, we
build a system, Menshen, for isolation on RMT pipelines.
Specifically, Menshen makes the following contributions:

1. The use of space partitioning and overlays as techniques
to achieve isolation when sharing an RMT pipeline
across multiple modules.

2. A hardware design for an RMT pipeline that employs
these techniques.

3. An implementation on 2 open-source FPGA platforms:
the NetFPGA switch [84] and Corundum NIC [45].

4. A compiler based on the open-source P4-16 com-
piler [18] that supports multiple modules running on
RMT, along with a system-level module to provide basic
services (e.g., routing, multicast) to other modules.

5. An evaluation of Menshen using 8 modules—based
on tutorial P4 programs, and the NetCache [60]
and NetChain [59] research projects—showing that

' An OS does run on the network device’s control CPU, allowing isolation
in the control plane. Our focus, instead, is on isolation in the data plane.

Menshen meets our isolation requirements.

6. An ASIC analysis of the Menshen, which shows that
our design can meet timing at 1 GHz (comparable to
current programmable ASICs) with modest additional
area relative to a baseline RMT design.

Overall, we find that Menshen adds modest overhead to
an existing RMT pipeline in both FPGA and ASIC imple-
mentations (§5). Our main takeaway is that a small number
of simple additions to RMT along with changes to the RMT
compiler can provide inter-module isolation for a high-speed
packet-processing pipeline. We have made Menshen’s
hardware design and software available under an open-source
license at https://isolation.quest/ to enable further
research into isolation mechanisms for high-speed pipelines.

2 The case for isolation

A single network device might host a measurement
module [52], a forwarding module [74], an in-network
caching [60] module, and an in-network machine-learning
module [72]—each written by a different team in the
same organization. It is important to isolate these modules
from each other. This would prevent bugs in measurement,
in-network caching, and in-network ML from causing
network downtime. It would also ensure that memory for
measuring per-flow stats [65] is separated from memory for
routing tables, e.g., a sudden arrival of many new flows does
not cause cached routes to be evicted from the data plane.
The packet-processing modules in question do not even
have to be developed by teams in the same organization [79].
They could belong to different tenants sharing the same
public cloud network. This would allow cloud providers
to offer network data-plane programmability as a service
to their tenants, similar to cloud CPU, GPU, and storage
offerings today. Such a capability would allow tenants to
customize network devices in the cloud to suit their needs.

2.1 Requirements for isolation mechanisms

For the rest of this paper, we will use the term module to
refer to a packet-processing program that must be isolated
from other such programs, regardless of whether the modules
belong to different mutually distrustful tenants or to a single
network operator. Importantly, modules can not call each
other like functions, but are intended to isolate different
pieces of functionality from each other—similar to processes.
Based on our use cases above (§2), we want an inter-module
isolation mechanisms that meet the requirements below:
1. Behavior isolation. The behavior of one module must
not affect the behavior (i.e., input, output, computation
and internal state) of another. This would prevent a
faulty or malicious module from adversely affecting
other modules. Further, one module should not be able
to inspect the behavior of another module.
2. Resource isolation. A switch/NIC pipeline has multiple
resources, e.g., static random-access memory (SRAM)
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for exact matching and ternary content-addressable
memory (TCAM) for ternary matching. Each module
should be able to access only its assigned subset of
the pipeline’s resources and no more. It should also be
possible to allocate each resource independent of other
resources. For example, an in-network caching module
may need large amounts of stateful memory [60] for
its caches, but a routing module may need significant
TCAM for routing tables.

3. Performance isolation. Each module should stay
within its allotted ingress packets per second and bits
per second rates. One module’s behavior should not
affect the throughput and latency of another module.

4. Lightweight. The isolation mechanisms themselves
must have low overhead so that their presence does
not significantly degrade the high performance of
the underlying network device. In addition, the extra
hardware consumed by these mechanisms must be small.

5. Rapid reconfiguration. If a module is reconfigured
with new packet-processing logic, the reconfiguration
process should be quick.

6. No disruption. If a module is reconfigured, it must
not disrupt the behavior of other unchanged modules—
especially important in a multi-tenant environment [40].

2.2 Target setting for Menshen

We target both programmable switches and NICs with a
programmable packet-processing pipeline based on the RMT
pipeline [36], a common architecture for packet processing
for the highest end devices. Other projects have looked at
isolation for software switches, multicore network processors,
FPGA-based devices, and the Barefoot Tofino switch
(without hardware changes). §6 compares against them.

An RMT pipeline can be implemented either on an FPGA
(e.g., FlowBlaze [71], Lightning NIC [57], nanoPU [56]) or
an ASIC (e.g., the Tofino [26], Spectrum [15], and Trident [6]
switches; and the Pensando NIC [13]). This pipeline has
also been embedded within larger hardware designs (e.g.,
PANIC [67]). Menshen builds on a baseline RMT pipeline
to provide isolation between different modules/tenants. A
high-speed implementation of Menshen would likely be
based on an RMT ASIC. For this paper, we prototype RMT
on 2 FPGA-based platforms: the NetFPGA switch [84] and
the Corundum NIC [45]. Our ASIC synthesis results suggest
that our lessons generalize to ASICs as well (§5.2).

3 Design

In order to meet its performance goals, RMT’s pipelined
architecture ensures that processing stages never stall, i.e.,
they can process a packet every clock cycle. The Menshen
design aims to preserve this invariant so that isolation does
not come at the cost of performance. To maintain this in-
variant, Menshen’s isolation mechanisms cannot reconfigure
stages or change table contents between packets. As a result,

Applied Mechanism  Targeted Resources

Space partitioning Match action table entries, stateful memories

Overlays Parsing actions, key extractors,
packet header vector (PHV) containers,

arithmetic logic units (ALUs)

Table 1: Summary of Menshen’s mechanisms.

Menshen provides isolation by spatially partitioning switch
resources between packet processing modules.

While spatial partitioning is easy for resources, e.g.,
match-action tables and stateful memory, that are provisioned
so they can be allocated at flow granularity, it is much more
challenging for resources such as key extractors (§3.1) which
are generally shared across flows. This is because naive
approaches to spatially partitioning such shared resources
across packet-processing modules would severely reduce
the number of resources available to each packet processing
module—and hence the richness of that module.

To see why, consider a case where a key extractor is split
between two packet processing modules: in this setting each
packet processing module can only use half the key extractor,
limiting its key length to half of what it would be able to
use were it running on the entire pipeline. This problem is
of course further exacerbated as we increase the number of
packet processing modules sharing the pipeline.

Menshen addresses this problem using overlays: we
associate a configuration lookup table with each shared
resource in the switch. This lookup table is keyed by the
packet processing module’s ID and contains the configuration
that should be used when processing packets for this
module. For example, in the case of the key extractor, the
configuration table contains the instructions that the module
uses to construct key (§3.1). Our use of overlays means that
we do not need to partition resources including ALUs or
PHVs between modules. Instead, the module has exclusive
access to all PHVs/ALUs in a stage when processing a packet.
Table 1 summarizes our mechanisms.

To realize Menshen, on the software side, we modify an
RMT compiler to target a block of resources rather than the
entire pipeline. Overlays require new hardware primitives
to be added to the RMT pipeline. These hardware primitives
are small tables that contain per-module configurations of
shared resources. On every packet, these tables are indexed
using the packet’s module ID to determine the configuration
to use for that packet at that resource. An incremental
deployment pathway for Menshen would be to only modify
an RMT compiler (e.g., Tofino’s compiler) to implement
space partitioning without investing in new overlay hardware.

3.1 Menshen hardware

The Menshen hardware design (Figure 2) builds on RMT
by adding hardware primitives for isolation into the RMT
pipeline. Because these isolation primitives are added
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Figure 2: Menshen hardware and software-to-hardware interface.
Menshen builds on a RMT [36] pipeline, by adding
components and modifying ones.

pervasively throughout the pipeline, we first describe the
overall Menshen hardware design including both RMT and
the new isolation primitives. We then summarize the new
isolation primitives added by Menshen.

Menshen expects that a data packet’s header carries
information identifying what module should process the
packet. Currently in our prototype, this is the VLAN ID
(VID) header, which we assume is set by the vSwitch [51],
but other fields, e.g., VXLAN ID, can be used instead.
Packets entering Menshen are first handled by a packet filter
that discards packets without a VLAN ID.? Next, a parser
extracts the VLAN ID from the packet and applies module-
specific parsing to extract module-specific headers from the
TCP/UDP payload. The parser then pushes these parsed
packet headers into packet header vector (PHV) containers
that travel through the pipeline of match-action stages.

Each stage forms keys out of headers, looks up the keys in a
match-action table, and performs actions. At the start of each
stage, a key extractor in the stage forms a key by combining
together the headers in a module-specific manner. The keys
are then concatenated with the module ID and looked up in a
match-action table, whose space is partitioned across different
modules. If the key matches against a match-action pair in
the table, the lookup result is used to index an action table.

Similar to the match-action table, the action table is
also partitioned across modules. Each action in the table
identifies opcodes, operands, and immediate constants for
a very-large instruction word (VLIW), controlling many
parallel arithmetic and logic units (ALUs). The VLIW
instruction consumes the current PHV to produce a new PHV
as input for the next stage. The table’s action can modify
persistent pipeline state, stored in stateful memory. Stateful
memory is indexed by a physical address that is computed
from a local address, obtained from a module’s packets. This
computation is done by a segment table, which stores the
offset and range of each module’s slice of stateful memory.
We now detail the main components of our design.

Parser. The Menshen parser is driven by a table lookup
process similar to the RMT parser [36, 49]. Specifically,
whenever a new packet comes in, the module ID is extracted

2The filter can be configured to send control packets without VLAN tags,
e.g., BFD packets [5], to the control plane or system-level module (§3.3).
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Figure 4: Menshen processing stage.

from its VLAN ID prior to parsing the rest of the packet.
This module ID is then used as an index into the table that
determines how to parse the rest of the packet (Figure 3).
Each table entry corresponds to multiple parsing actions for
a module—one action per extracted PHV container. Each
parsing action specifies (1) bytes from head, indicating where
in the packet the parser should extract a particular header, (2)
container type (e.g., 4-byte container, etc.), indicating how
many bytes we should extract; (3) container index, indicating
where in the PHV we should put the extracted header into.
The parser also sets aside space in the PHV for metadata that
is automatically created by the pipeline (e.g., time of enqueue
into switch output queues and queueing delay after dequeue)
and for temporary packet headers used for computation.

Key extractor. Before a stage performs a lookup on a match-
action table, a lookup key must be constructed by extracting
and combining together one or more PHV containers. This
key extraction process differs between modules in the same
stage, and between different stages for the same module. To
implement key extraction, just like the parser, we use a key
extractor table (Figure 4) that is indexed by a packet’s module
ID. Each entry in this table specifies which PHV containers
to combine together to form the key. These PHV containers
are then selected into the key using a multiplexer for each
portion of the key. To enable variable-length key matching
for different modules, the key extractor also includes a key
mask table, which also uses the module ID as an index to
determine how many bits to pad in the key to bring it up to
a certain fixed key size before lookup.

Match table. Each stage looks up the fixed-size key con-
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structed by the key extractor in a match table. Currently,
we support only exact-match lookup. The match table is
statically partitioned across modules by giving a certain
number of entries to each module. To enforce isolation
among different modules, the module ID is appended to the
key output by the key extractor. This augmented key is what
is actually looked up against the entries in the match table;
each entry stores both a key and the module ID that the key
belongs to. The lookup result is used as index into the VLIW
action table to identify a corresponding action to execute.

Action table and action engine. Each VLIW action table
entry indicates which fields from the PHV to use as ALU
operands (i.e., the configuration of each ALU’s operand
crossbar) and what opcode should be used for each ALU
controlled by the VLIW instruction (i.e., addition, subtraction,
etc.). Each ALU outputs a value based on its operands and
opcode. There is one ALU per PHV container, removing the
need for a crossbar on the output because each ALU’s output
is directly connected to its corresponding PHV container.
After a stage’s ALUs have modified its PHV, the modified
PHYV is passed to the next stage.

Stateful memory. Menshen’s action engines can also modify
persistent pipeline state on every packet. Each module is as-
signed its own address space, and the available stateful mem-
ory in Menshen is partitioned across modules. When a module
accesses its slice of stateful memory, it supplies a per-module
address that is translated into a physical address by a segment
table before accessing the stateful memory. To perform this
translation, Menshen stores per-module configuration (i.e.,
base address and range) in a segment table, which can be in-
dexed by the packet’s module ID. Menshen borrows this idea
of a segment table from NetVRM’s [79, 83] page table, but
implements it in hardware instead of programming it in P4
atop Tofino’s stateful memory like NetVRM does. This allows
Menshen to avoid using scarce Tofino stateful memory to em-
ulate a segment table. Also, by adding segment table hardware
to each stage, Menshen avoids sacrificing the first stage of
stateful memory for a segment table, instead reclaiming it for
useful packet processing. This is unlike NetVRM, which can
share stateful memory across modules only from the second
stage because the first stage is used for the page table.

Deparser. The deparser performs the inverse operation of the
parser. It takes PHV containers and writes them back into
the appropriate byte offset in the packet header, merges the
packet header with the corresponding payload in the packet
buffer, and transmits the merged packet out of the pipeline.
The format of the deparser table is identical to the parser
table and is similarly indexed by a module ID.

Secure reconfiguration. Our threat model assumes that the
Menshen hardware and software are trusted, but that data
packets that enter the Menshen pipeline are untrusted. Data
packets are untrusted because for a switch, they can come
from physical machines outside the switch’s control and,

for a NIC, they can come from tenant VMs sharing the NIC.
Hence, the pipeline should be reconfigured only by Menshen
software, not data packets.

This is a security concern faced by existing RMT pipelines
as well, even without isolation support. Commercial pro-
grammable switches solve this problem by using a separate
daisy chain [7] to configure pipeline stages. This chain
carries configuration commands that are picked up by the
intended pipeline stage as the command passes that stage.
The chain is only accessible over PCle, which is connected
to the control-plane CPU, but not by Ethernet ports, which
carry outside data packets. Hence, the only way to write new
configurations into the pipeline is through PCle. The packet-
processing pipeline is restricted to just reading configurations
and using them to implement packet processing. Thus, the
daisy chain provides secure reconfiguration by physically
separating reconfiguration and packet processing.

Menshen uses a similar approach by employing a daisy
chain for reconfiguration when a module is updated. A special
reconfiguration packet carries configuration commands for
the pipeline’s resources (e.g., parser). Our implementation
of this daisy chain varies depending on the platform. For our
NetFPGA prototype, this daisy chain is connected solely to
the switch CPU via PCle, similar to current switches. For our
Corundum NIC prototype, we connect the daisy chain directly
to PCle and use a packet filter before our parser to filter
out reconfiguration packets from untrusted data packets by
ensuring that reconfiguration packets have a specific UDP des-
tination port. An ideal solution would be to use a physically
separate interface, e.g., USB or JTAG, for reconfiguring the
Menshen pipeline on Corundum, but we found it challenging
to implement such a physically separate reconfiguration
interface on Corundum. In Appendix A, we show how a daisy
chain permits more rapid reconfiguration than an alternative
approach of using the AXI-L protocol on an FPGA.

Summary of Menshen’s new primitives. The hardware
primitives introduced by Menshen on top of an RMT pipeline
(Figure 2) are the configuration tables for the parser, deparser,
key extractor, key mask units and segment table. These tables
provide an overlay feature to share the same unit across mul-
tiple modules. Specifically, for each unit, Menshen provides
a table with a configuration entry per module, rather than
one configuration for the whole unit. In addition, Menshen
introduces the packet filter to ensure secure reconfiguration.
Menshen also modifies match tables, by appending the mod-
ule ID to the match key and the match-action entries. Finally,
Menshen partitions match-action tables and stateful memory
across all modules. These primitives ensure that updating one
module only affects a single entry (for Menshen resources
that use overlays) and only affects a subset of memory (for
Menshen resources that use space partitioning), thus allowing
us to update one module without disrupting others (§2.1).

ASIC feasibility of Menshen’s primitives. Menshen’s parser,
deparser, key extractor, key mask, and segment tables are
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Figure 5: Three optimization techniques applied in Menshen.
Numbered circles refer to specific techniques in §3.2.

small and simple arrays indexed by the module identifier.
They can be readily realized in SRAM that can support a
memory read every clock cycle. The packet filter is a simple
combinational circuit that checks if the incoming packet is
destined to a specific UDP destination port. Extending the
match-action tables in each stage to append a module ID to ev-
ery entry amounts to modestly increasing the key width in the
table. While these new primitives add some additional latency
relative to RMT, e.g., to go through the packet filter or reading
out the per-module parser configuration, the pipelined nature
of RMT means that this additional latency does not impact
packet-forwarding rate. The ASIC area overhead increases
as we increase the number of simultaneous programming
modules that need to be supported; we quantify it in §5.2.

3.2 Improving Menshen’s throughput

As shown in Figure 5, we apply 3 main techniques to optimize
the forwarding performance of Menshen: (1) masking RAM
read latency, (2) using multiple parsers and deparsers, and (3)
increasing pipeline depth. We demonstrate the effect these
techniques have on Menshen’s throughput in §5.2.

@ Masking RAM read latency. The design described in §3.1
attaches the module ID to the PHV that is sent from one
element (e.g., parser, key extractor) to the next. In this design,
we read the module’s configuration from SRAM after the PHV
arrives, thus incurring a few additional clock cycles of latency.
To optimize this, we mask SRAM access latency by splitting
the module ID from the PHV and sending the module ID to
the next element ahead of time. The PHV follows the module
ID, and thus the module configuration at a stage can be read
concurrently with the PHV being transmitted to that stage.

@ Multiple parsers and deparsers. In §3.1’s design, there is
one parser, deparser, and packet buffer. The parser extracts
and parses the header and puts the full packet in the packet
buffer. Then the deparser takes the modified headers from
the last stage, uses them to overwrite the relevant portions of
the full packet in the packet buffer, and sends out the packet.

Our optimized design uses multiple parallel parsers, de-
parsers, and packet buffers to improve throughput. Deparsing
is the most expensive operation as any position within the
PHYV container might be modified, and thus any part of the
packet header (128 bytes in our implementation) might need
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Figure 6: Menshen software and system-level module.

to be updated. Furthermore, deparsing has to process both the
packet header and the payload. Therefore, we use 4 parallel
deparsers and 2 parsers. We also associate a separate packet
buffer with each deparser.

On ingress, the packet filter tags each packet with a packet
buffer number (0-3) in round robin order. It also round robins
incoming packets to the 2 parsers. The last pipeline stage
uses the packet buffer tag to determine which packet buffer’s
packet the last stage’s modified PHV should be combined
with. Each packet buffer’s deparser combines the earliest
packet from the packet buffer along with the last stage’s most
recently modified PHV for that buffer.

®@ Deep pipelining. With careful digital design, in Menshen’s
implementation, we can pipeline each element (e.g., match-
action table) into several sub elements to improve throughput.
For example in Figure 5, we divide the match-action table
into CAM-lookup and action-RAM-read sub elements. In
this specific example, this allows us to process a PHV every
2 clock cycles at each sub-element rather than every 4 clock
cycles at the whole match-action table.

3.3 The Menshen system-level module

To hide information about the underlying physical infras-
tructure (e.g., topology) from tenant modules in a virtualized
environment, modules in Menshen can use virtual IP ad-
dresses to operate in a shared environment [51]. Here, virtual
IP addresses are local and scoped to modules belonging to
a particular tenant, regardless of which physical device these
modules are on. To support virtual IPs and provide basic
services to other modules, Menshen contains a system-level
module written in P4-16 that provides common OS-like
functionality, e.g., converting virtual IPs to physical IPs, mul-
ticast, and looking up physical IPs to find output ports. The
system-level module has 3 benefits: (1) it avoids duplication
among different modules re-implementing common functions,
improving the resource efficiency of the pipeline, (2) it hides
underlying physical details (e.g., topology) from each module
so that one tenant’s modules on different network devices can
form a virtual network [51], and (3) it provides common and
useful real-time statistics (e.g., link utilization, queue length,
etc.) that can inform packet processing within modules.
Figure 6 shows how the system-level module is laid out
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relative to the other modules. Packets entering the Menshen
pipeline are first processed by the system-level module before
being handed off to their respective module for module-
specific processing. After module-specific processing, these
packets enter the system module for a second time before
exiting the pipeline. The first time they enter the system-level
module, packets can read and update system-level state
(e.g., link utilization, packet counters, queue measurements),
whereas the second time they enter the system-level module,
module-specific packet header fields (e.g., virtual IP address)
can be read by the system-level module to determine device-
specific information (e.g., output port). In both halves, there is
a narrow interface by which modules communicate with the
system-level module. This split structure of the system-level
module arises directly from the feed-forward nature of the
RMT pipeline, where packets typically only flow forward, but
not backward. Hence, packets pick up information from the
system-level module in the first stage and pass information
to the system-level module in the last stage. The non-system
modules are sandwiched in between these two halves.

3.4 Menshen software

The software-hardware interface. The Menshen software-
to-hardware interface works similar to P4Runtime [19] to
support interactions (e.g., modifying match-action entries,
fetching hardware statistics, etc.) between the Menshen
software and the Menshen hardware. However, in addition
to P4Runtime’s functions, Menshen’s software-hardware
interface can also be used to reconfigure different hardware
resources (Appendix C) in Menshen to reprogram them when
a module is added or updated. This allows us to dynamically
reconfigure portions of Menshen as module logic changes.

The Menshen resource checker. The Menshen resource
checker ensures that each module’s resource allocation com-
plies with an operator specified resource sharing policy (e.g.,
dominant resource sharing (DRF) [48], or a utility-based [54]
policy). In our current design we check allocations statically
because reassigning resources from one module to another
disrupts processing for both modules. Instead we rely on
admission control and do not load a module whose resource
requirements cannot be met. We leave the question of what
is an appropriate resource allocation policy to future work.

The Menshen static checker. To ensure isolation, Menshen’s
static checker analyzes 3 properties of the module’s P4
source code. First, it checks that modules do not modify
hardware-related statistics (e.g., link utilization) provided
by the system-level module to all modules. Second, modules
can not modify their VID. This is because a module can be
spread across multiple programmable devices [46, 59], and
changes to VIDs by module A on a device can unintentionally
affect a module B on a downstream device, where B’s real
VID happens to be the same as A’s modified VID. Third,
modules must not recirculate packets and their routing tables

should be loop-free.® This is because all modules share the
same ingress pipeline bandwidth. Recirculating packets or
looping them back through multiple devices will degrade the
ability of other modules to process packets.

The Menshen compiler. Packet-processing pipelines (e.g.,
RMT [36]) are structured as feed-forward pipelines of
programmable units, each of which has limited processing
capabilities. This design ensures the all-or-nothing property:
once a module has been compiled and loaded it can run at up
to line rate, while modules that can not run at line rate cannot
be compiled. Menshen’s compiler follows the same design,
and only admits modules that meet line-rate requirements.

The compiler reuses the frontend and midend of the
open-source P4-16 reference compiler [18] and creates a
new backend similar to BMv2 [4]. This backend has a parser,
a single processing pipeline, and a deparser. The compiler
takes a module’s P4-16 program as input and conducts all the
resource usage and static checks described above. Then, for
the parser and deparser, it transforms the parser defined in the
module to configuration entries for the parser and deparser
tables. For the packet-processing pipeline, which consists
of match-action tables, it transforms the key in a table to a
configuration in the key extractor table, and actions to VLIW
action table entries according to the opcodes. The compiler
also performs dependency checking [36,61] to guarantee that
all ALU actions and key matches are placed in the proper
stage, respecting table dependencies.

The Menshen compiler can be extended to support the
same packet flowing through different P4 modules belonging
to one tenant. The compiler can take multiple P4 modules as
input, assign them the same module ID, and allocate them to
non-overlapping pipeline stages—similar to how we lay out
user and system modules in different stages as in Figure 6.

3.5 Limitations

As a research prototype, Menshen has several limitations.
First, while we have developed mechanisms to support
isolation across multiple modules, we have not yet designed
policies that decide how much of each resource a module
should be given [35]. Second, our FPGA implementation
of RMT lacks many features present in a commercial RMT
implementation such as the Barefoot Tofino switch [26].
Third, our compiler currently does not perform any com-
piler optimizations for code generation [47] or memory
allocation [46, 61]. Fourth, Menshen proposes isolation
mechanisms for the packet-processing pipeline, but does not
deal with isolating traffic from different modules competing
for output link bandwidth, which is a orthogonal traffic
management problem. Proposals like PIFO [75] can be used
here, by assigning PIFO ranks to different modules to realize
a desired inter-module bandwidth-sharing policy.

3We check loop freedom in the control plane.
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Format of Menshen’s reconfiguration packet

| 4B | 12bits 4 | 18 15B Varied

|Common Hdrl Resource ID | Resv. | Index Padding Payload
Format of match key 1b

[ 1weB | 2968 | 1t4B [ 2waB [112B]2%2B]flag

Format of entry in key extractor table

| 3 4 | 8 |
|Index Indexllndexl Indexl Indexllndex opcode | operand 1 |operand 2|
1t6B 2 6B 1st4B 2 4B 1st2B 27 2B

4 | sb | sb | 1o |
opcode |container1 |container2| reserved |

(1) Action with 2 operands
from PHV container

o | 5 | 16b | (2) Action with 1 operand
opcode |container 1 | immediate value | from PHV container

Figure 7: Formats of Menshen’s packets and tables.

4 Implementation

4.1 Menshen hardware

To implement Menshen, we first built a baseline RMT imple-
mentation for an FPGA. Menshen includes (1) a packet filter
to filter out reconfiguration packets from data packets using
a specific predefined UDP destination port (i.e., 0xf1f2), (2) a
programmable parser, (3) a programmable RMT pipeline with
5 programmable processing stages, (4) a deparser, and (5) a
separate daisy-chain pipeline for reconfiguration. It also in-
cludes Menshen’s primitives for isolation. We have integrated
it into both the Corundum NIC [45] and the NetFPGA refer-
ence switch [84]. The Menshen code base together with the
optimizations (§3.2) consists of 9975 lines of Verilog. Of this,
3098 and 3226 lines are for handling data bus widths of 512
bits (Corundum) and 256 bits (NetFPGA) respectively. 3651
lines are for the common blocks, e.g., key extractor, etc. Be-
low, we describe our hardware implementation in more detail.
Figure 7 shows the formats of Menshen’s packets and tables.

PHY format. Menshen’s PHV has 3 types of containers of
different sizes, namely 2-byte, 4-byte and 6-byte containers.
Each type has 8 containers. Also, we allocate and append
an additional 32 bytes to store platform-specific metadata
(e.g., an indication to drop the packet, destination port, etc.),
which results in a PHV length of 128 bytes in total. Thus,
we have a total of 3*8+1=25 PHV containers. To prevent
any possibility of PHV contents leaking from one module
to another, the PHV is zeroed out for each incoming packet.

Reconfiguration packet format. Figure 7 shows the format of
Menshen reconfiguration packets. The reconfiguration packet
is a UDP packet with the standard UDP, Ethernet, VLAN,
and IP headers. Within the UDP payload, a 12-bit resource
ID indicates which hardware resource within which stage
should be updated (e.g., key extractor table in stage 3). To
reconfigure the resource, the table storing the configuration
for this resource must be updated by writing the entry stored
within the reconfiguration packet’s payload at the location
specified by the 1-byte index field in the reconfiguration
packet header. The UDP destination port field determines
whether the reconfiguration packet is valid or not.

Operation Description

add/sub Add/subtract between containers

addi/subi Add/subtract an immediate to/from container

set Set a container to an immediate value

load Load a value from stateful memory

store Store a value to stateful memory

loadd Load value from stateful memory, add 1, and store back
port Set destination port

discard Discard packet

Table 2: Supported operations in Menshen’s ALU.

Packet filter. The packet filter has 2 registers that can be
accessed by the Menshen software via Xilinx’s AXI-Lite
protocol [28]: (1) a 4-byte reconfiguration packet counter,
which monitors how many reconfiguration packets have
passed through the daisy chain; (2) a 32-bit bitmap, which
indicates which module is currently being updated (e.g.,
bit 1 stands for module 1, bit 2 for module 2, etc.). During
reconfiguration of a module, via the software-to-hardware
interface, the Menshen software reads the reconfiguration
packet counter. It then writes the bitmap to reflect the module
ID M of the module currently being updated. The bitmap
is then consulted on every packet to drop data packets from
M until reconfiguration completes, so that M’s “in-flight”
packets aren’t incorrectly processed by partial configurations.
Then, the Menshen software sends all reconfiguration
packets embedded with the predefined UDP destination
port to the daisy chain. Finally, it polls the reconfiguration
packet counter to check if reconfiguration is over and then
zeroes the bitmap so that M’s packets are no longer dropped.
Reconfiguration packets maybe dropped before they reach
the RMT pipeline. This can be detected by polling the
reconfiguration packet counter to see if it has been correctly
incremented or not. If it hasn’t been incremented correctly,
then the entire reconfiguration process restarts with M’s
packets being dropped until reconfiguration is successful.

Programmable parser/deparser. We currently support
per-module packet header parsing in the first 128 bytes of the
packet. These 128 bytes also include the headers common to
all modules (e.g., Ethernet, VLAN, IP, and UDP). We design
the parser action for each parsed PHV container as a 16-bit
action. The first 3 bits are reserved. The next 7 bits indicate
the starting extraction position in bytes from byte 0. These
7 bits can cover the whole 128-byte length. Then, the next
2 bits and 3 bits indicate the container type (2, 4, or 6 byte)
and number (0-7) respectively. The last bit is the validity bit.
For each module, we allocate 10 such parser actions (i.e., to
parse out at most 10 containers), resulting in a 160-bit-wide
entry for the parser action table.

We note that we only parse out fields of a packet into PHV
containers, if those fields are actually used as part of either
keys or actions in match-action tables. Before packets are
sent out, the deparser pulls out the full packet (including the
payload) from the packet buffer and only updates the portions
of the packet that were actually modified by table actions. This
approach allows us to reduce the number of PHV containers to
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25 because packet fields that are never modified or looked up
by the Menshen pipeline need not travel along with the PHV.

Key extractor. The key for lookup in the match-action table
is formed by concatenating together up to 2 PHV containers
each of the 2-byte, 4-byte, and 6-byte container types. Hence
the key can be up to 24 bytes and 6 containers long. Since
there are 8 containers per type, the key extraction table entry
for each module in each stage uses log,(8) * 6 = 18 bits to
determine which container to use for the 6 key locations. Ad-
ditionally, the key extractor is also used to support conditional
execution of actions based on the truth value of a predicate
of the form A OP B, where A and B are packet fields and OP
is a comparison operator. For this purpose, each key extractor
table entry also specifies the 2 operands for the comparison op-
eration and the comparison opcode. The opcode is a 4-bit num-
ber, while the operands are 8 bits each. The operands can ei-
ther be an immediate value or refer to one of the PHV contain-
ers. The result of the predicate evaluation adds one bit to the
original 24 byte key, bringing the total key length to 248+ 1=
193 bits. Because not all keys need to be 193 bits long, we use
a 193-bit-wide mask table. Each entry in this table denotes the
validity of each of the 193 key bits for each module in each
stage. This is somewhat wasteful and can be improved by stor-
ing validity information within the key extractor table itself.

Exact match table. To implement the exact match table, we
leverage the Xilinx CAM block [31]. This CAM matches the
key from the key extractor module against the entries within
the CAM. As discussed in §3.1, to ensure isolation between
different modules, we append the module ID (i.e., VLAN
ID) to each entry, which means that the CAM has a width of
193+12=205 bits. The lookup result from the CAM is used
to index the VLIW action table. The action is designed in
a 25-bit format per ALU/container (Figure 7). As we have
24 +1 =25 PHV containers, the width of the VLIW action
table is 25%25=625 bits. The Xilinx CAM block simplifies
implementation of an exact-match table and can also easily
support ternary matches if needed (Appendix B).

Action engine. The crossbar and ALUs in the action engine
use the VLIW actions to generate inputs for each ALU and
carry out per-ALU operations. ALUs support simple arith-
metic, stateful memory operations (e.g., loads and stores),
and platform-specific operations (e.g., discard packets)
(Table 2). The formats of these actions are shown in Figure 7.
Additionally, in stateful ALU processing, each entry in the
segment table is a 2-byte number, where the first byte and
second byte indicate memory offset and range, respectively.

Menshen primitives. Menshen’s isolation primitives (e.g.,
key-extractor and segment tables) are simple arrays
implemented using the Xilinx Block RAM [30] feature.

4.2 Menshen Software

The Menshen compiler reuses the open-source P4-16
reference compiler [18] and implements a new backend

Program Description

CALC [20] return value based on parsed opcode and operands
Firewall [20] stateless firewall that blocks certain traffic

Load Balancing [20] steer traffic based on 4-tuple header info

QoS [20] set QoS based on traffic type

Source Routing [20] route packets based on parsed header info
NetCache [60] in-network key-value store

NetChain [59] in-network sequencer

Multicast [20] multicast based on destination IP address

Table 3: Evaluated use cases.

extension in 3773 lines of C++. It takes the module written
in P4-16 together with resource allocation as the inputs, and
generates per-module configurations for Menshen hardware.
Specifically, it (1) conducts resource usage checking to ensure
every program’s resource usage is below its allocated amount;
(2) places the system-level module’s (120 lines of P4-16) con-
figurations in the first and last stages in the Menshen pipeline;
and (3) allocates PHV containers to the fields shared between
the system-level and other modules so that the other modules
can be sandwiched between the two halves of the system-level
module (§3.4). The Menshen software-to-hardware interface
is written in Python. It configures Menshen hardware by
converting program configurations to reconfiguration packets.

4.3 Corundum and NetFPGA integrations

We have integrated Menshen into 2 FPGA platforms: one for
the NetFPGA platform that captures the hardware architecture
of a switch [84], and another for the Corundum platform that
captures the hardware architecture of a NIC [45]. Menshen’s
integration on Corundum [45] is based on a 512-bit AXI-
S [29] data width and runs at 250 MHz. Although Menshen’s
pipeline can be integrated into both the sending and receiving
path, in our current implementation, we have integrated
Menshen into only Corundum’s sending path, i.e., PCle input
to Ethernet output. Menshen on NetFPGA [84] uses a 256-bit
AXI-S [29] data width and runs at 156.25 MHz.

On the Corundum NIC platform, we insert a 1-bit discard
flag, while on the NetFPGA switch platform, we insert a
1-bit discard flag and 128-bit platform-specific metadata, i.e.,
source port, destination port and packet length, into the PHV’s
metadata field. A 4-bit one-hot encoded tag indicates the
packet buffer (§3.2). The table depth in Menshen’s parser, key
extractor, key mask, page, and deparser tables affects the max-
imum number of modules we can support and is currently 32.
The depth of CAM and VLIW action table directly influences
the amount of match-action entries and VLIW actions that can
be allocated to all modules. Due to the open technical chal-
lenge of implementing CAMs on FPGAs efficiently [58,71],
we set their depth to 16 in each stage. While 16 is a small
depth, the depth can be improved by using a hash table, rather
than a CAM, for exact matching, e.g., cuckoo hashing [69].

5 Evaluation

In §5.1, we show that Menshen can meet our requirements
(§2.1): it can be rapidly reconfigured, is lightweight, provides
behavior isolation, and is disruption-free. Menshen achieves
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performance isolation by (1) assuming packets exceed a
minimum size (to guarantee line rate) and (2) forbidding
recirculation. If either is violated, hardware rate limiters can
be used to limit each module’s packet/bit rate. It achieves
resource isolation by ensuring that a table entry for a resource
(e.g., parser) is allotted to at most one module. In §5.2, we
evaluate the current performance of Menshen.

Experimental setup. To demonstrate Menshen’s ability
to provide multi-module support, we picked 6 tutorial P4
programs [20], as detailed in Table 3, together with simplified
versions of NetCache [60] and NetChain [59].4 The system-
level module provides basic forwarding and routing, with
multicast logic integrated in it. Menshen’s parameters are
detailed in §4 and summarized in Table 5 in the Appendix.

Testbed. We evaluate Menshen based on our Corundum and
NetFPGA integrations as described in §4. For the switch
platform experiments on NetFPGA, we use a single quad-port
NetFPGA SUME board [14], where two ports are connected
to a machine equipped with an Intel Xeon E5645 CPU
clocked at 2.40 GHz and a dual-port Intel XXV710 10/25GbE
NIC. For the NIC platform experiments on Corundum, we use
a single Xilinx Alveo U250 board [2], where one port is with
Menshen for the transmitting path and this port is connected
to a 100 GbE NIC as the receiving path. Both setups are used
to check Menshen’s correctness (§5.1). For NetFPGA perfor-
mance tests (§5.2), we use the host as a packet generator. For
Corundum performance tests (§5.2), we internally connect its
receiving and transmitting path, and use the Spirent tester [22]
to generate traffic. We depict our testing setup in Appendix D.

5.1 Does Menshen meet its requirements?

Menshen can be rapidly reconfigured. Reconfiguration time
includes both the software’s compilation time (Figure 8) and
the hardware’s configuration time (Figure 9); we evaluate
each separately. When a module is compiled, the compiler
needs to generate both configuration bits for various hardware
resources as well as match-action entries for the tables the
module looks up. These match-action entries can and will
be overwritten by the control plane, but we need to start out
with a new set of match-action entries for a module to ensure
no information leaks from a previous module.

Hence, every time a module is compiled, the compiler also
generates match-action entries. Within an exact match table,
these entries must be different from each other to prevent
multiple lookup results. As a result, Menshen’s compilation
time increases with the number of match-action entries in the
module (Figure 8). To contextualize this, Menshen’s compile
times (few seconds) compare favorably to compile times for
Tofino (~10 seconds for our use cases) and FPGA synthesis
times (10s of minutes). We note that this is an imperfect
comparison: our compiler performs fewer optimizations than

4Our versions of NetChain and NetCache do not include some features
such as tagging hot keys.

Hardware Implementation Slice LUTs Block RAMs
NetFPGA reference switch 42325 (9.77%) 245.5(16.7%)
RMT on NetFPGA 200573 (46.3%) 641 (43.6%)
Menshen on NetFPGA 200733 (46.34%) 641 (43.6%)
Corundum 61463 (3.56%) 349 (12.98%)
RMT on Corundum 235686 (13.63%) 316 (11.75%)
Menshen on Corundum 235903 (13.65%) 316 (11.75%)

Table 4: Resources used by 5-stage Menshen pipeline, on NetFPGA
SUME and AU250 boards, compared with reference switch,
Corundum NIC, and RMT.

either the Tofino or FPGA compilers and our targets are sim-
pler. That said, compilation can happen offline, and hence it
is not as time-sensitive compared to run-time reconfiguration.
To measure time taken for Menshen’s configuration post
compilation, we vary the number of entries the Menshen
software has to write into the pipeline.> Also, as a comparison,
we evaluate the cost of the Tofino run-time APIs from Tofino
SDE 9.0.0 to insert match-action table entries for the CALC
program. From Figure 9, we observe that the time spent in
configuration of the hardware via Menshen’s software-to-
hardware interface is similar to Tofino’s run-time APIs.

Menshen can reconfigure without disruption. To show
Menshen can support disruption-free reconfiguration, we
launch three CALC programs with fixed input packet rate, i.e.,
5:3:2 ratio on a single link for module 1, 2 and 3, respectively.
We use netmap-based tcprelay to generate total traffic of 9.3
Gbit/s on a 10 Gbit/s link. 0.5 seconds in, we start to recon-
figure the first module to see if the packet processing of other
modules has stalled or not. In Figure 10 we show the through-
put achieved by each of three modules when reconfiguring
module 1. We can observe that model 2 and 3 see no impact
on their throughput. This demonstrates that Menshen provides
performance isolation, and that it is feasible for a tenant to
reconfigure their module without impacting other tenants. By
contrast, updating a module on Tofino (§6) requires resetting
the entire switch pipeline. Even with Tofino’s Fast Refresh [9],
this leads to a 50 ms disruption of all servers (and their VMs)
whose traffic is routed through the switch. This disruption
can be significant in public cloud environments, and in many
cases renders dynamic reconfiguration infeasible.

Menshen is lightweight. We list Menshen’s resource
usage of logic and memory (i.e., LUTs and Block RAMs),
including absolute numbers and fractions, in Table 4. For
comparison, we also list the resource usage of the NetFPGA
reference switch and the Corundum NIC. We believe that the
additional hardware footprint of Menshen is acceptable for
the programmability and isolation mechanisms it provides
relative to the base platforms. The reason that Menshen uses
more LUTs than Block RAMs is that Menshen leverages
the Shift Register Lookup (SRL)-based implementation of
Xilinx’s CAM IP [31]. We also compared with an RMT
design, where we modified Menshen’s hardware to support
only one module. Relative to RMT, Menshen incurs an extra

3Since the Menshen hardware can’t currently support so many entries
(§4.3), we overwrite previously written entries to measure configuration time.
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Figure 8: Compilation time.

0.65% (NetFPGA) and 0.15% (Corundum) in LUTs usage.

Menshen provides behavior isolation. Next, we spot check
that Menshen can correctly isolate modules, i.e., every
running module can concurrently execute its desired func-
tionality. For this, we ran the CALC, Firewall, and NetCache
module simultaneously on the Menshen pipeline. We
generate data packets of different VIDs, which indicate which
of these 3 modules they belong to, and input them to the
Menshen FPGA prototype on both platforms. By examining
the output packets at the end of Menshen’s pipeline, we
checked that Menshen had correctly isolated the modules, i.e.,
each module behaved as it would have had it run by itself. We
repeated the same experiment by running the Load Balancing,
Source Routing, and NetChain modules simultaneously; we
observed correct behavior isolation here too.

5.2 Menshen Performance

How many modules can be packed? In our current prototype
on both Corundum and NetFPGA, we can support at most 32
modules because each isolation primitive (e.g., key extractor
table) currently has 32 entries. In practice, the number of
modules could be less than 32 if modules need to share a
more bottlenecked hardware resource. For instance, if each
module wants a match-action entry in every pipeline stage,
the maximum number of modules is at most 16 because
there are only 16 match-action entries in each stage in our
current prototype. However, the numbers above are entirely
a function of how much hardware one is willing to pay in
exchange for multitenancy support. If we can afford to expend
additional resources on an FPGA or extra area on an ASIC,
we can correspondingly support a larger number of modules.

Latency. In our current implementation, the number of clock
cycles needed to process a packet in the pipeline depends on
packet size. This is because the number of cycles to process
both the header and the payload depend on the header and
payload length. For instance, for a minimum packet size of
64 bytes, Menshen’s pipeline introduces 79 and 106 cycles
of processing for NetFPGA and Corundum, resulting in
79 % % =505.6 ns and 106 * % =424 ns latency, respec-
tively. For the max. packet size of 1500 bytes, Menshen incurs
146 and 112 cycles for NetFPGA and Corundum, resulting

in 150+ 199 =960 ns and 129+ 2% =516 ns latency.

1
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Figure 9: Configuration time.
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Figure 10: Throughput during reconfiguration.

Throughput. For NetFPGA, we used MoonGen [42] to gen-
erate packets with different sizes. Figure 11a shows that Men-
shen achieves a rate of 10 Gbit/s after a packet size of 96
bytes. This is the maximum supported by our MoonGen setup
because we have a single 10G NIC. For Corundum, we in-
ternally connected Corundum’s receiving and transmitting
path. Rather than using a host-based packet generator through
PCle, we used Spirent FX3-100GO-T2 tester to test Men-
shen’s throughput. The MTU size is set to 1500 bytes. As
shown in Figure 11b and Figure 11c, optimized Menshen on
Corundum achieves 100 Gbit/s at 256 bytes, while unopti-
mized Menshen can only achieve 80 Gbit/s at MTU-size pack-
ets. Also, we sample packets to evaluate the packet latency of
optimized Menshen on Corundum with full rate. As depicted
in Figure 11d, at full rate, it incurs about 1.2 ps latency.

ASIC feasibility. With the same parameter settings in §5, we
use the Synopsys DC synthesis tool [24] and FreePDK45nm
technology library [8] to assess the ASIC feasibility of the
Menshen pipeline.® At 1 GHz frequency, when compared with
an RMT design, where we modified Menshen to support only
one module, Menshen incurs 18.5%, 7%, 20.9% additional
chip area for the parser, deparser and one stage, respectively.
For a 5-stage pipeline along with the packet filter, parser,
deparser and packet buffers, Menshen (10.81 mm?) incurs
11.4% additional chip area compared with RMT (9.71 mm?).
Considering that memory (i.e., lookup tables) and packet
processing logic only costs at most 50% in switch chip
area [21, page 36], Menshen’s chip area overhead is moderate
(11.4% x 50% = 5.7%), which is conservative since the
number of entries in our match-action table is only 16
(§4.1). With much larger number of entries in lookup
tables—which is the common block between Menshen and
RMT—Menshen’s additional chip area will be negligible.

6 Related work

Multi-core architecture solutions. To support isolation
on programmable network devices based on multi-
cores [10, 11,23], FairNIC [50] partitions cores, caches, and
memory across tenants and shares bandwidth across tenants
through Deficit Weighted Round Robin (DWRR) scheduling.

Since we can not have access to source code of Xilinx IPs (e.g., DMA,
Ether+PHY, etc.), we solely run synthesis on Menshen’s Verilog codebase.
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Figure 11: Results for performance benchmarks.

iPipe [68] uses a hybrid DRR+FCFS scheduler to share
SmartNIC and host processors between different programs.
Menshen uses space partitioning as well to allocate different
resources to different modules. However, RMT’s spatial/-
dataflow architecture differs considerably from the Von Neu-
mann architectures for multi-core network processors targeted
by FairNIC and iPipe. An RMT architecture can not support a
runtime system similar to the ones used by iPipe and FairNIC.

FPGA-based solutions. Several FPGA platforms exist for
programmable packet processing. These platforms can
be broadly categorized into (1) direct programming of
FPGAs [12, 44, 55, 64, 73, 77, 78] and (2) higher-level
abstractions built on top of FPGAs [33,37,43,71].

Systems (e.g., VirtP4 [73], MTPSA [77]) based on direct
FPGA programming typically implement packet-processing
logic in a hardware-description language (HDL) or using a
high-level language like P4 [55,78] or C [32,64] that is trans-
lated into HDL. The HDL program is fed to an FPGA synthe-
sis tool to produce a bitstream, which is written into the FPGA.
This approach requires combining the programs of different
modules into a single Verilog program, which can then be
fed to the synthesis tool. Thus, changing one module disrupts
other modules, violating our requirement of no disruption.

FlowBlaze [71], SwitchBlade [33], and hXDP [37] expose
a restricted higher-level abstraction like RMT or eBPF on top
of an FPGA. FlowBlaze and hXDP do not provide support for
isolation. SwitchBlade does, but its higher-level abstraction
is much less flexible than the RMT abstraction in Menshen.
NICA [43] targets an FPGA NIC and is designed to share
one pre-programmed offloading engine across many modules,
while Menshen also targets ASIC pipelines and supports
reprogramming individual modules without disrupting others.

Tofino [26]. Tofino is a commercial switch ASIC that uses
multiple parallel RMT pipelines. However, Tofino currently
does not support multiple modules/P4 programs within a sin-
gle pipeline. The current Tofino compiler requires a single P4
program per pipeline. Multiple P4 programs can be merged
into a single program per pipeline and then fed into the Tofino
compiler (Wang et al. [79] and uP4 [76]). However, both
approaches still disrupt all tenants every time a single tenant
in any pipeline is updated. This is because despite supporting
an independent program per pipeline, updating any of these
programs requires a reset of the entire Tofino switch [9].

Emulation-based solutions. Hyper4 [53] and HyperV [81]
propose to emulate multiple P4 programs/modules using a
single hypervisor P4 program, which can be configured at
run time by the control plane, thus supporting disruption-free
reconfiguration. However, we found that it was very challeng-
ing to design a sufficiently “universal” hypervisor program
on a commercial RMT switch like Tofino.

As one example, the hypervisor program needs to support
performing a bit-shift by an amount determined by a packet
field, where the packet field is specified by the control plane.
However, a high-speed chip like Tofino has several restric-
tions on bit-shifts and other computations for performance,
e.g., on Tofino, the shift width and field to shift must be
supplied at compile time, not at run time by the control plane.

PANIC [67] and FlexCore [80]. PANIC and FlexCore [80]
are programmable multi-tenant NIC and switch designs,
respectively. They both suffer from scalability issues
because they need to build a large crossbar with long wires
interconnecting all engines to each other, which requires
careful physical design [38, Appendix C]. Menshen’s RMT
pipeline is easier to scale as its wires are shorter: they only
connect adjacent pipeline stages [36, 2.1].

7 Conclusion

This paper described Menshen, a system for isolating
co-resident packet-processing modules on pipelines similar
to RMT. Menshen builds on the idea of space partitioning
and overlays, and is comprised of a set of simple hardware
primitives that are inserted at different points in an RMT
pipeline. These primitives are straightforward to realize
in both ASICs and FPGAs. Menshen thus demonstrates
that providing inter-module isolation in high-speed packet-
processing pipelines is practical. Our software and hardware
are available at https://isolation.quest/.
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A Daisy-Chain vs. Fully-AXI-L-Based Config-
uration

As discussed in §3.1, Menshen uses a daisy chain pipeline
to configure the Menshen pipeline and uses the AXI-L [28]
protocol for safety alone, i.e., to read the reconfiguration
packet counter and update the bitmap during reconfiguration.
Before using this daisy-chain approach, we considered a
different approach based fully on the AXI-L protocol. In this
approach, all configuration settings on the FPGA would be
set using the AXI-L protocol via PCle from the host instead
of passing a reconfiguration packet through a daisy chain
pipeline. We elected to use the daisy-chain approach instead
for 2 reasons described below.

First, as one AXI-L write in Corundum can only support
a 32-bit data length, we have to write [625/32] = 20 and
[205/32] =7 times for configuring one entry in the VLIW
action table and CAM respectively. For our test modules, we
estimate AXI-L reconfiguration time based on the write time
of a single AXI-L write. As shown in Figure 12, Menshen’s
daisy-chain configuration is much faster than the AXI-L based
method, especially for longer entries (i.e., VLIW action table).
These benefits are likely to be more pronounced on a larger im-
plementation of Menshen because the entries (both for VLIW
action table and CAM) will be even longer in that case. Sec-
ond, the daisy-chain approach is more similar in style to how
programmable switch ASICs are configured today, hence, it is
preferable for an eventual ASIC implementation of Menshen.

4 EEE AXI-L based Configuration [ Daisy-chain Configuration

Configuration Time (ms)
o o o =g = I
B (=] o o N >

°
N}

o
=

STAGE 0
VLIW action table
STAGE 0 CAM
STAGE 1
VLIW action table
STAGE 1 CAM
STAGE 2
VLIW action table
STAGE 2 CAM
STAGE 3
VLIW action table
STAGE 3 CAM
STAGE 4
VLIW action table
STAGE 4 CAM

Figure 12: Configuration time comparison for AXI-L based
(estimated) and Menshen’s daisy-chain configuration (measured).

B Isolation of ternary match tables using the
Xilinx CAM IP

While our current Menshen implementation only supports
exact matching, we could reuse our implementation strategy
(the Xilinx CAM IP) for ternary matching as well. However,
supporting isolation between the ternary match tables of
multiple different modules requires some care. This is to

ensure that updates to the ternary match-action rules for one
module do not cause updates to the ternary match-action

rules for another module.

In the case of ternary matching, the Xilinx CAM IP block
uses the address of a CAM entry as the TCAM priority to
determine which entry to return when there are multiple
matches [31]. Concretely, the Xilinx CAM IP block can
prioritize either the entry with the lowest address or the
highest address. To support isolation on top of this block,
first, we append the module ID (i.e., VLAN ID) to ternary
match-action rules as we do currently for exact matches (§3).
Second, we allocate contiguous addresses within the Xilinx
CAM IP block to a particular module.

Appending the module ID ensures that a module’s packets
do not match any other module’s match-action rules. Allocat-
ing contiguous addresses ensures that a new match-action rule
can be added (or an old rule can be updated) for a module with
disruption to that module’s match-action rules alone—and im-
portantly, without disturbing the rules for any other modules.’

C Hardware resources in Menshen

[ Hardware Resource | Description

A 32-bit bitmap,

and a 4-byte reconfiguration packet counter
2-byte, 4-byte, 6-byte containers,

PHV each type has 8 containers

a 32-byte container for platform-specific metadata
16 bits wide

10 parsing actions, 160 bits wide, 32 entries deep
38 bits wide, 32 entries deep

Packet Filter

Parsing action
Parser and deparser table
Key extractor table

Key mask table 193 bits wide, 32 entries deep
Exact match table 205 bits wide, 16 entries deep
ALU Action 25 bits wide
VLIW action table 25 ALU actions, 625 bits wide, 16 entries deep
Segment table 16 bits wide, 32 entries deep
Stages 5
Module ID 12 bits

Table 5: Hardware resources in Menshen

D Experimental setup

Host
PCle

Spirent Tester
[
]
N

fs] fe]
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T
N
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NetFPGA PCle
Host
(1) NetFPGA (2) Corundum (3) Corundum
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(a) Correctness setup. (b) Performance test setup.

Figure 13: Testbed setup. Red arrow shows packet flow.

7Note that a new rule can be added to a module only if there are still empty
addresses within that module’s chunk of contiguously allocated addresses.
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