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Abstract: A cantilevered plate at an angle of attack in axial high speed flow represents a
prototypical control surface. Using a computationally efficient modal structural model cou-
pled with a novel enhanced piston theory aerodynamic method, a nonlinear aeroelastic model
is developed. Results presented include pre-flutter stable steady state solutions, flutter points,
and post-flutter limit cycle oscillations. Because of the computationally efficient methodology,
many simulations can be run to define sensitivities to mathematical modeling, model parame-
ters, and numerical methods.

1 INTRODUCTION
Aeroelasticity of thin plates in high speed flow is currently generating much research interest.
Recently, Spottswood et al. [1] have conducted experimental tests of a thin plate clamped on all
four sides subjected to high speed flow, and have demonstrated nonlinear limit cycle oscillations
as well as buckling behavior. Freydin et al. [2] modeled a similar system of a clamped plate
with thermal stresses. In addition, Currao et al. have measured experimental pressures on and
deflections of a cantilevered plate in high speed flow well below the flutter boundary with [3]
and without [4] a shock impinging on the plate. The cantilevered configuration is of interest for
modeling engineering structures such as trailing edge control surfaces on high speed aircraft.
The present authors have developed and published a model which predicts the dynamics of
a high speed cantilevered plate with no angle of attack in axial high speed flow undergoing
post-flutter limit cycle oscillations (LCO) [5]. Presented here is the case with a trailing edge
cantilever at an angle of rotation. Although the geometry in this case is simplified significantly
from a flight-worthy control surface, the investigation of clamped-free boundary conditions
of a thin, flat plate offers valuable insights into the fluid-structure interaction, stability, and
effectiveness of these more complex systems.

This study is motivated mainly by two preliminary studies from the University of New South
Wales. In the study by Currao et al. [4], the researchers examined a flexible cantilevered plate
which was angled into high speed flow. At the leading edge corner, a shock wave was formed.
The study compared an experiment, a high-fidelity computational fluid dynamics (CFD) tech-
nique, and a low-fidelity piston theory technique. Capturing the shock structure in CFD soft-
ware proved computationally difficult and physically tedious due to meshing issues, with the
researchers stating “The convergence of the simulation was extremely sensitive to the shape
of the o-grid at the stagnation point...It was extremely challenging if not generally impossible,
to align perfectly a strong (curved) shock with the mesh grid.” They did, however, prove that
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Figure 1: Schematics of the system illustrating (a) the full system and (b) the flexible trailing edge plate

the lower-fidelity piston theory was accurate to predict pressures on the plate in this type of
configuration.

In a second publication by Currao et al. [3], the team examined the aeroelastic response to a
plate in high speed flow with no angle of attack but rather an impinging shock wave. Again
they compare piston theory to CFD and experiment with good accuracy. They also quantify
flap efficiency, i.e. the moment acting on the control surface hinge compared to that from an
ideal flap.

Motivated by these two studies indicating that piston theory can be used to examine high speed
aeroelastic response, and propelled by the influx of new high speed research, we present theory
and modeling to predict dynamics of control surfaces in high speed flows. The schematic for
this case is shown in Fig. 1. The system consists of a flexible control surface connected to a
rigid wing via a hinge and it is assumed that the hinge is perfectly rigid at each evaluation with
no free-play or other nonlinearities. The aeroelastic behavior of the control surface is analyzed
at several different values of control surface rotation angle θ. For any nonzero value of θ, we
assume that there is a weak shock wave (resulting in > Mach 1 flow downstream) on one side
and an expansion wave on the other, as shown in the diagram.

Because the streamlines of the flow turn with the angle θ, the control surface itself can be
evaluated as if there were no angle of attack after accounting for a steady pressure differential
due to the shock behavior. The system is shown in Fig. 1(b). And because the flow is high speed
on both the top and bottom of the wing, we can enlist piston theory as our aerodynamic theory.
These two assumptions significantly simplify our analysis. The structural theory will be the
nonlinear inextensible beam theory, owing to the assumption that there is no torsion acting on
the surface. Recent advances by the authors and colleagues in nonlinear beam and plate theory
demonstrate a capability to model the responses of these structures with high computational
efficiency [6–11]. Most recently, it has been shown that a model which couples the inextensible
beam model with a piston theory aerodynamic forcing model can be used to predict aeroelastic
behavior of a cantilever in high speed flow without any control surface rotation [5].

In the present paper, a new form of piston theory recently introduced by the authors [5] is used.
Because the cantilevered conditions allow for large deflections of the structure, a new geometric
modification to piston theory has been introduced. With use of the parameter β(x)—the angle
of the beam with respect to its undeformed datum—the pressure is always applied normal to
the instantaneous shape of the beam.

The present model then includes several nonlinearities: two structural and several aerodynamic.
The effects of the structural geometric nonlinearities alone have been reported previously by
the authors [10,11], and the aerodynamic nonlinearities have been explored for the case with no
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initial control surface rotation [5]. However, the aerodynamic nonlinearities for the case with an
initial rotation are novel because of the inclusion of a steady pressure differential due to leading
edge shock behavior as well as the inclusion of second order piston theory terms. The interplay
among the nonlinearities proves to be interesting and important. It is also found that third order
nonlinear piston theory predicts a significantly higher limit cycle amplitude than the first order
linear theory, while second order piston theory is negligible for small control surface rotations.

Also note that when modeling any physical system and certainly a fluid-structural (aeroelastic)
system, it is important to study the sensitivity of the results to different model attributes. Here
we identify three types of sensitivities which are significant to this work. Type 1 is the sensi-
tivity to the mathematical model of the physical system. How do the results change when new
mathematics are introduced to the system? Type 2 is the sensitivity to the parameters that ap-
pear in the mathematical model or which are considered in the design of an experimental model.
How do the results change based on varying geometric or material properties of the structure
or the freestream flow properties? Type 3 is the accuracy of the numerical methods employed
to extract solutions from the mathematical model. This is typically measured by performing a
convergence study. Each of these is considered in the present paper.

The goals are to show the effectiveness of a computationally efficient modal aeroelastic model
to predict behavior of and gain insight into the physics of simple, yet relevant aeroelastic sys-
tems. Because no high speed cantilevered plate wind tunnel tests have been performed near or
beyond the flutter speed, this model will serve as the baseline for predicting aeroelastic struc-
tural deformations. Information such as moment on the hinge and maximum plate deflection
will be of interest for experimentalists seeking to validate these results.

2 EQUATIONS OF MOTION
The equations of motion for the structural system, ie the inextensible cantilevered beam, have
been studied in the literature [5,8,10] and are repeated here. Following the work of the authors,
there are three equations of motion and three unknown variables: u is the displacement in the
x direction, w in y, and λ is the Lagrange multiplier that enforces the inextensibility constraint.
What follows is Eqn. 1 as the equation of motion for u, Eqn. 2 as the equation of motion for w,
and Eqn. 3 as the constraint equation.

ü−Aλ = 0 (1)
ẅ + 2ζω ẇ + ω2 w −Bwλ+P w3 = 0 (2)

u+
1

2
A−1Bw2 = 0 (3)

To add fluid forcing to this system, we adopt two forms of a pressure loading. The steady pres-
sure differential across the plate will be due to oblique shock analysis at the clamped leading
edge of the plate. The unsteady pressure distribution will be due to nonlinear piston theory, in-
cluding a geometric modification to classical piston theory to ensure that the pressure is always
acting normal to the surface of the plate.

The virtual work acting on the plate is given by

δWNCaero =

L∫
0

b∆p n · δr dx (4)
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where n is the unit normal to the deflected plate and δr is the virtual displacement of the plate.
Piston Theory is classically used to predict pressures only in the direction normal to the unde-
formed plate which intrinsically assumes that the slopes are small. The virtual work would then
be expressed as Eqn. 5.

δWNCaero =

L∫
0

b∆p δw dx (5)

For fully pinned or clamped plates this assumption is valid. However, the small deflection
assumption no longer holds for the case of a cantilevered plate, and therefore a large deflection
expression must be derived.

2.1 Large Deflection Generalization of the Aerodynamic Model
Due to the large displacement of the beam, we understand that pressure must be everywhere
normal to the deflected beam. Therefore, the pressure contributes to both the δu and δw compo-
nents of the virtual work. To derive the correct form of the virtual work for this case, consider
the beam with longitudinal deflection w in the i direction and transverse deflection u in j. The
virtual displacement is δr = δui + δwj, and the local tangent vector to the deformed beam
is τ = cos βi + sin βj, where β is the angle of the beam relative to the undeformed horizon-
tal. Now the local normal to the deformed beam is n ≡ k × τ = − sin βi + cos βj, and by
incorporating this into Eqn. 4, the expression for virtual work is given by Eqn. 6.

δWNCaero =

L∫
0

[−b∆p sin(β) δu+ b∆p cos(β) δw] dx (6)

Note that sin β and cos β are defined from geometric relationships as follows.

tan β =

∂w

∂x

1 +
∂u

∂x

=
wx

1 + ux

=
wx

1− 1/2w2
x

≡ f (7)

tan β =
sin β

cos β
= f (8)

sin2 β + cos2 β = 1 (9)

f 2 =
sin2 β

cos2 β
(10)

So then, (
f 2 + 1

)
cos2 β = 1 (11)

cos β =
1

(f 2 + 1)1/2
(12)

From this, we can find sin β as well.

sin β =
f

(f 2 + 1)1/2
(13)
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Now, substituting 7 into 12 and 13, we can write the definitions of sin β and cos β in terms of
w.

cos β = (1− w2
x)

1/2 ≈ (1− 1/2w2
x) (14)

sin β = wx (15)

So, the expression for virtual work acting on the plate (Eqn. 6) can be written as follows.

δWNCaero =

L∫
0

b∆p
(
− wx δu+ (1− 1/2w2

x) δw
)
dx (16)

2.2 Oblique Wave Theory
At the sharp, perfectly rigid corner at the leading edge of the panel, the flow is turned and
oblique waves are generated. As shown in Fig. 1, on the side of the panel which is turned
into the flow, there is a shock wave. On the side turned out of the flow, there is an expansion
wave. This generates a pressure differential across the plate which causes a static deflection
of the plate, as computed and shown in Fig. 2a. The pressures behind the clamped corner
are computed with classical oblique shock theory and Prandtl-Meyer expansion fan theory, the
formulations for which are omitted here but can be found in many references [12, 13]. Beyond
this initial clamped corner, the plate is flexible and may produce other waves in a two-way
coupling fashion between the fluid and the structure, and the pressures from these effects are
calculated with piston theory.

To include the static pressure differential in the equations of motion, we substitute the pressure
differential from the oblique wave analysis into Eqn. 16, and use the Rayleigh-Ritz method
to separate variables into mode shapes and coefficients in both u and w. The mode shapes
for u and w are the natural cantilever mode shapes and for λ the mode shapes are given by
Ψλ

k(x) = sin
(
2k−1
2π

(1− x)
)
. For more details on the modal expansion of λ, see [10].

u =
∑
i

Ψu
i (x)ui(t) = Ψu

Tu (17)

w =
∑
j

Ψw
j (x)wj(t) = Ψw

Tw (18)

λ =
∑
k

Ψλ
k(x)λk(t) = Ψλ

Tλ (19)

δWNCaero = −∆p0
∑
i

∑
j

∫ L

0

Ψw′
j Ψu

i dx wj δui

+∆p0
∑
j

(∫ L

0

Ψw
j dx− 1

2

∑
j1

∑
j2

∫ L

0

Ψw′
j1Ψ

w′
j2Ψ

w
j dx wj1wj2

)
δwj (20)

Note that the pressure is constant across the plate for this term and therefore ∆p can be writ-
ten outside of the integral. Nondimensionalizing and replacing the integrals with equivalent
matrices, we have the following.
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δW
NCaero

=
bL3

EI
∆p0

−
∑
i

∑
j

Q∆pu
ij wj δui +

∑
j

 Q∆pw1
j − 1

2

∑
j1

∑
j2

Q∆pw2
jj1j2 wj1wj2

 δwj


(21)

Or, switching from index notation to a more compact matrix notation, where all bold Roman
variables are vectors or matrices, we have the following.

δW
NCaero

= ∆p0

(
−Q∆pu w δu+

(
Q∆pw1 − 1

2
Q∆pw2 ww

)
δw

)
(22)

2.3 Piston Theory Aerodynamic Forcing
Piston theory [14–17] provides a simple relation between pressure perturbation and motion of a
structure, one side of which is under a free stream flow with properties ρ∞, U∞,M∞. Because
our plate model has fluid acting on both sides, and the fluid properites are not the same on both
sides, we calculate a change in pressure across the upper and lower surfaces.

pupper =
ρuUu

Ml

[(
ẇ + Uu

∂w

∂x

)
+

γ + 1

4au

(
ẇ + Uu

∂w

∂x

)2

+
γ + 1

12a2u

(
ẇ + Uu

∂w

∂x

)3
]

(23)

plower =
ρlUl

Ml

[(
−ẇ − Ul

∂w

∂x

)
+

γ + 1

4al

(
−ẇ − Ul

∂w

∂x

)2

+
γ + 1

12a2l

(
−ẇ − Ul

∂w

∂x

)3
]

(24)

Note that x is positive in the flow direction. Now we subtract the upper surface from the lower
[16], and note the second order terms do not cancel one another since Uu ̸= Ul.

∆p = plower − pupper = −
(
ρlUl

Ml
+

ρuUu

Mu

)
ẇ −

(
ρlU

2
l

Ml
+

ρuU
2
u

Mu

)
∂w

∂x

+
γ + 1

4

(
ρlUl

Mlal
− ρuUu

Muau

)
ẇ2 +

γ + 1

2

(
ρlU

2
l

Mlal
− ρuU

2
u

Muau

)
∂w

∂x
ẇ +

γ + 1

4

(
ρlU

3
l

Mlal
− ρuU

3
u

Muau

)(
∂w

∂x

)2

− γ + 1

12

(
ρlUl

Mla2l
+

ρuUu

Mua2u

)
ẇ3 − γ + 1

4

(
ρlU

2
l

Mla2l
+

ρuU
2
u

Mua2u

)
∂w

∂x
ẇ2 − γ + 1

4

(
ρlU

3
l

Mla2l
+

ρuU
3
u

Mua2u

)(
∂w

∂x

)2

ẇ

− γ + 1

12

(
ρlU

4
l

Mla2l
+

ρuU
4
u

Mua2u

)(
∂w

∂x

)3

(25)

2.4 Dimensionless Parameters
When nondimensionalizing length, the following relationships are important.

x = Lξ
∂

∂x
=

1

L

∂

∂ξ

∂2

∂x2
=

1

L2

∂2

∂ξ2
(26)

We can also nondimensionalize time and its derivatives as follows, where the overlined terms
are dimensionless.

t =

(
mL4

EI

)1/2

t
∂

∂t
=

(
EI

mL4

)1/2
∂

∂t

∂2

∂t2
=

EI

mL4

∂2

∂t
2 (27)
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In addition, we can use the following nondimensional parameters to describe the fluid and struc-
tural parameters. Note that µ is the aerodynamic to structural mass ratio and Λ is the aerody-
namic to structural compliance ratio and both incorporate the Mach number in their definition.

µ ≡ ρ∞bL

mM∞
(28)

Λ ≡ ρ∞U2
∞bL3

EIM∞
(29)

(Λµ)1/2 =
ρ∞U∞bL2

M∞ (EIm)1/2
(30)

2.5 Simplifying Equation 25
Because the top and bottom freestream flow parameters are not equal, Eqn. 25 is much more
cumbersome than classic third order piston theory expression when the top and bottom flow is
the same. We can clean this up by a clever use of matrix algebra. First, note that(

ρlUl

Ml

+
ρuUu

Mu

)
=
[
ρlUl

Ml

ρuUu

Mu

]
︸ ︷︷ ︸

q̂T

{
1
1

}
(31)

Defining the coefficient matrix as q̂T to denote that it represents a type of dynamic pressure, we
can rewrite Eqn. 25 with this new notation.

∆p = q̂T

(
−
({

1
1

}
ẇ +

{
Ul

Uu

}
wx

)
+

γ + 1

4

({
a−1
l

−a−1
u

}
ẇ2 + 2

{
Ula

−1
l

−Uua
−1
u

}
wxẇ +

{
U2
l a

−1
l

−U2
ua

−1
u

}
w2

x

)

− γ + 1

12

({
a−2
l

a−2
u

}
ẇ3 + 3

{
Ula

−2
l

Uua
−2
u

}
wxẇ

2 + 3

{
U2
l a

−2
l

U2
ua

−2
u

}
w2

xẇ +

{
U3
l a

−2
l

U3
ua

−2
u

}
w3

x

))
(32)

Let’s nondimensionalize q̂T by multiplying and dividing by the freestream parameters upstream
of the control surface.

q̂T =
[
ρlUl

Ml

ρuUu

Mu

]( M∞

ρ∞U∞

)(
ρ∞U∞

M∞

)
=
[

ρlUlM∞
Mlρ∞U∞

ρuUuM∞
Muρ∞U∞

](ρ∞U∞

M∞

)
≡ qT

(
ρ∞U∞

M∞

)
(33)

qT ≡
[

ρlUlM∞
Mlρ∞U∞

ρuUuM∞
Muρ∞U∞

]
(34)

Note that qT without the hat is dimensionless.

Finally in each vector with Ui or ai, we will multiply and divide by the freestream flow velocity
U∞ or speed of sound a∞, such that Ui = Ui/U∞ and ai = ai/a∞ For example,{

Ula
−1
l

−Uua
−1
u

}
=

{
(Ula∞)/(U∞al)

−(Uua∞)/(U∞au)

}(
U∞

a∞

)
=

{
Ul/al

−Uu/au

}(
U∞

a∞

)
(35)

2.6 First Order Piston Theory
For first order piston theory, we neglect the third order term in Eqn. 32, so the change in pressure
across the beam is as follows.

∆p = −q̂T

({
1
1

}
ẇ +

{
Ul

Uu

}
∂w

∂x

)
(36)

7



IFASD-2022-114

Note the difference between Eqn. 36 and the expression for classical first order piston theory,
∆p = −2ρ∞U∞

M∞
(ẇ + U∞wx).

Nondimensionalizing the dynamic pressure and the terms inside the parentheses, we get the
following.

∆p = −
(
ρ∞U∞

M∞

)
qT

(
L

(
EI

mL4

)1/2{
1
1

}
ẇ +

{
Ul

Uu

}
U∞

∂w

∂ξ

)
(37)

Now insert Eqn. 37 into Eqn. 16 to get the virtual work done by first order piston theory.
Note that we’ve already pulled out a factor of L2 to account for the virtual displacments and the
integration across the length.

δWNCaero = −
1∫

0

L2b

(
ρ∞U∞

M∞

)
qT

(
L

(
EI

mL4

)1/2{
1
1

}
ẇ +

{
Ul

Uu

}
U∞

∂w

∂ξ

)

×
(
− wx δu+ (1− 1/2wx

2) δw
)
dξ (38)

Now if we divide both sides by EI/L to nondimensionalize work, we get the following.

L

EI
δWNCaero ≡ δW

NCaero
= −

1∫
0

qT

((
ρ∞U∞bL2

M∞(EIm)1/2

){
1
1

}
ẇ +

(
ρ∞U2

∞bL3

EIM∞

){
Ul

Uu

}
∂w

∂ξ

)
×
(
− wx δu+ (1− 1/2wx

2) δw
)
dξ (39)

And finally we arrive at the expression for first order piston theory, using the dimensionless
parameters Λ and µ.

δW
NCaero

= −
1∫

0

qT

(
(Λµ)1/2

{
1
1

}
ẇ + Λ

{
Ul

Uu

}
∂w

∂ξ

)(
− wx δu+ (1− 1/2wx

2) δw
)
dξ

(40)
2.7 Second and Third Order Piston Theory
We can extend the previous analysis to derive the virtual work from second and third order
piston theory. Note that we will use delta functions to include or exclude the second and third
order terms. For example, if we are evaluating a second order case, we set δ2 = 1 and δ3 = 0,
and for a third order case, δ2 = δ3 = 1.

δW
NCaero

= −
1∫

0

qT

(
(Λµ)1/2

{
1
1

}
ẇ + Λ

{
Ul

Uu

}
wx

+ δ2
M∞(γ + 1)

4

(
µ

{
al

−1

−au
−1

}
ẇ

2
+ 2(Λµ)1/2

{
Ulal

−1

−Uuau
−1

}
wxẇ + Λ

{
Ul

2
al

−1

−Uu
2
au

−1

}
wx

2

)

+ δ3
M2

∞(γ + 1)

12

((
µ3

Λ

)1/2{
al

−2

au
−2

}
ẇ

3
+ 3µ

{
Ulal

−2

Uuau
−2

}
wxẇ

2

+ 3(Λµ)1/2

{
Ul

2
al

−2

Uu
2
au

−2

}
wx

2ẇ + Λ

{
Ul

3
al

−2

Uu
3
au

−2

}
wx

3

))
×
(
− wx δu+ (1− 1/2wx

2) δw
)
dξ (41)
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2.8 First Order Scaling Analysis
In previous work [5], we utilized a scaling analysis to justify neglecting some higher order
terms. Here we employ the same idea. Scale ẇ by ωw. The order of each term is as follows,
based upon dimensional quantities given in the appendix.

µ = O[10−2]

Λ = O[102]

ω = O[102]

w = O[10−1]

∂w

∂ξ
= O[10−1]

δW
NCaero

= −
1∫

0

qT

(
(Λµ)1/2

{
1
1

}
ẇ + Λ

{
Ul

Uu

}
∂w

∂ξ

)(
− wx δu+ (1− 1/2wx

2) δw
)
dξ

(42)

δW
NCaero

=

1∫
0

qT

(
δβ

(
(Λµ)1/2

{
1
1

}
wxẇ + Λ

{
Ul

Uu

}
wx

2

)
δu

+

(
− (Λµ)1/2

{
1
1

}
ẇ + 1/2δβ (Λµ)

1/2

{
1
1

}
wx

2ẇ − Λ

{
Ul

Uu

}
wx + 1/2δβΛ

{
Ul

Uu

}
wx

3

)
δw

)
dξ

(43)

Assuming that Ul and Uu are order 1, this leads to the following order of each term.

(
O[100] +O[101]

)
δu+

(
O[101] +O[10−1] +O[101] +O[10−1]

)
δw (44)

Note that the nonlinear terms which contribute to the virtual work in u via of the β effect are
marked with a delta function where these terms can be included or excluded by setting δβ equal
to zero or one. Note also that these terms are of the same order than some linear terms in w,
illuminating the importance of the β effect. For the first order approximation, we keep all terms.
Moving forward, we will discard any terms of order O[10−2] or higher.

2.9 Second and Third Order Scaling Analysis
Utilizing the same method outlined above, we can simplify the second and third order piston
theory expressions greatly. It can be shown that the virtual work due to piston theory aerody-
namics may be simplified to the following.
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Using the Rayleigh-Ritz approximation of this equation, we have the following.
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Switching to matrix notation in which each Q represents a multidimensional matrix of inte-
grated mode shapes, and each w is a vector of w modal coefficients, we can simplify the ex-
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pression.
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Now we can separate this into components according to δu or δw,
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Q8wẇ + Λ

{
Ul

2
al

−1

−Uu
2
au

−1

}
Q9w

2

)

+ δ3
M2

∞(γ + 1)

12

((
µ3

Λ

)1/2{
al

−2

au
−2

}
Q10ẇ
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and finally we arrive at the equations of motion. Note that the ∆p0 terms represent the steady
pressure differential due to the leading edge shock and the QPT terms are the unsteady piston
theory terms.

ü−Aλ = −∆p0Q
∆pu w +QPTu

ẅ + 2ζω ẇ + ω2 w −Bwλ+P w3 = ∆p0

(
Q∆pw1 − 1

2
Q∆pw2 ww

)
+QPTw

u+
1

2
A−1Bw2 = 0

(50)

(51)

(52)

These equations are manipulated into one equation for w and then solved in time using Matlab’s
fourth order Runge-Kutta solver, ode45.

3 RESULTS
We are interested in the dynamic behavior of the plate at and around the flutter point, ie the
critical value of the nondimensional flow dynamic pressure Λ where the plate behavior changes
from a static deflection to a limit cycle oscillation (LCO). Figure 2 illustrates a canonical case
for each response type with a Mach 2 flow over a 5°corner angle. The surface’s static deflection
with a Λ value of 60 and µ value of 0.0241 is shown in Fig. 2a, while the LCO of the surface
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(a) Steady state deflection, subcritical Λ = 60
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(b) Samples of LCO deflections over one period, supercritical Λ = 72

Figure 2: Steady state and LCO deflections of control surface with incidence angle of 5°, Mach 2. Black lines
show control surface, blue lines are the expansion fan, red line is the oblique shock, dot-dash cyan line
is the horizontal, and dashed orange shows the incidence angle

with a Λ value of 72 and µ value of 0.0256 is shown in Fig. 2b. In each figure, the black lines
represent the structure itself, the two blue lines above the structure are the Mach lines which
make up the front and rear of the expansion fan, the red line below the plot is the weak oblique
shock wave. The dashed orange line shows the corner angle while the light blue dash-dotted line
shows the undeformed horizontal. From Fig. 2a, we can visualize how the pressure differential
across the plate from the corner angle shock behavior influences the plate’s static deflection.
From Fig. 2b, we can expect that the LCO is primarily a combination of the first and second
natural bending modes.

The results herein depict several types of sensitivity. One is the sensitivity to numerical methods
such as the number of modes used. Another is the sensitivity to the mathematical model of the
physical system. Finally, the third is the sensitivity to the parameters within the model. To
illustrate the sensitivity to the numerical methods, a modal convergence study was performed,
and the results are shown in Fig. 3. For these cases, the number of modes in each component
was set to either 2, 4, or 6. It can be seen that the cases with 4 and 6 modes are nearly identical
until the deflection grows above 15% of the plate length, and therefore 4 modes are deemed to
be sufficient for these computations.

These equations of motion are attractive due to their transparency into the system. By including
or omitting the nonlinear terms in the equations, one may examine the sensitivity the system has
to the mathematical model which describes it. The behavior of the beam with and without these
nonlinearities has been studied previously [10], and this work again shows that the nonlinear
inertia dominates the nonlinear stiffness due to geometric nonlinearities, as seen in Fig. 4.
Because flutter is a linear phenomenon, the flutter point does not change as we change the
nonlinear parameters of the model, however the LCO behavior changes dramatically. Compared
to the solution with a linear structure, the solution is similar when stiffness nonlinearities are
incorporated. By including inertia nonlinearities, the LCO amplitude nearly doubles. When
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Figure 3: Modal convergence of Mach 2 flow over a 2° corner angle. Number of modes is equal among all com-
ponents u, w, and Λ.
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Figure 4: Influence of structural nonlinearities on LCO amplitude

both are included, the nonlinear stiffness somewhat lowers the LCO amplitude, but the system
is still clearly dominated by the nonlinear inertia.

Similarly, we can explore the effects of including or omitting the aerodynamic nonlinearities
in the form of the piston theory expansion terms. Figure 5 shows the effect for two cases of
corner angle θ. In both cases, the third order piston theory predicts higher LCO amplitude.
However, it is clear that the inclusion of second order terms has a smaller effect than the third
order terms. This is because the pressure from the upper and lower surfaces are subtractive
rather than additive in the second order terms, and at these conditions the pressures are nearly
identical. To illustrate this effect, the second order effects in Fig. 5a where θ = 2° are nearly
zero but they are non-negligible in the case of Fig. 5b where θ = 5°. Because in the higher
corner angle case, the pressure acting on the top and bottom surfaces differ more than in the
smaller corner angle case, the second order effect is greater. Indeed, in the case where θ = 0°,
the second order terms sum to zero by definition.

Finally we arrive at the sensitivity to the model parameters themselves. In Figs. 6 and 7, the in-
fluences of the freestream Mach number and the corner angle θ are respectively explored. Note
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(a) Bifurcation at θ = 2°
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Figure 5: Sensitivities of the model to different orders of Piston Theory, for an initial corner angle of (a) θ = 2°

and (b) θ = 5°.
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Figure 6: Influence of Mach number on static deflection, flutter point, and LCO amplitude. Note that where the
Mach 4 solutions are not plotted is where the solutions diverge to infinity.

that for first order piston theory, the Mach number only appears embedded within the parame-
ters Λ and µ, but for second and third order piston theory, the Mach number appears on its own.
Therefore, for nonlinear flow theory, the model may be sensitive to the Mach number. Figure 6
shows this sensitivity. Note that the higher Mach number flow has a slightly lower flutter point
than lower Mach numbers due to the difference in static pressure differential. More importantly
though, the LCO amplitudes are higher at higher Mach numbers. Note, interestingly, that the
Mach 4 flow plot abruptly ends just before Λ = 80. Beyond this Λ level, the solution oscillates
toward ± infinity, ie it is no longer a stable limit cycle. This has been documented by the au-
thors previously, and it was found that each Mach number has a point at which the solutions
tend toward the infinities, and that these points are coincident with a specific RMS tip deflection
level times the Mach number. This aligns with classical literature [14] which states that there is
some high speed similitude parameter beyond which piston theory is invalid.

Figure 7 is interesting in that it shows clearly the effect of the initial corner angle on the system
as well as the flow parameters. With no angle, the subcritical Λ values produce no static deflec-
tion of the plate, since both sides of the plate experiences the same pressure. A bifurcation to
a LCO then occurs and the plate oscillates about the static equilibrium of zero. As the corner
angle increases, the static deflection increases, owing to the pressure differential on either side
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Figure 7: Influence of corner angle θ on static deflection, flutter point, and LCO amplitude

of the plate. Once a bifurcation occurs, the LCO amplitude is higher than the zero angle case
because the plate is oscillating about a nonzero equilibrium. It is interesting to note, however
that the flutter point occurs at lower Λ values for higher θ values, indicating that the stability of
the system is affected by the pressure differential across the plate.

Because θ influences the static deflection of the plate, it is natural to ask if this influences the
frequency response of the system. Figure 8 shows the frequency data for a range of forcing
values, where lighter yellow colors indicate more content at that frequency. These plots were
generated by solving the time histories at each Λ value with initial conditions of a small modal
deflection in each mode. A Fast Fourier Transform (FFT) was performed and the data was
scaled to the largest peak in the FFT, such that at each Λ value, the colormap scales from 0 to 1.
These figures show the standard expected result, that the first and second frequencies coalesce
to form a flutter response. It is interesting to note that the value of θ does not significantly
change this phenomenon, however at high angles of 6° and 8° there is far less content in the
second mode than in the first mode. Furthermore, at lower angles, there is more frequency
content between the first and second frequencies when θ = 0° and more content between the
second and third frequencies when θ = 4°. Overall, at each angle, the first and second modes
coalesce to form flutter, although the flutter point is decreased slightly with increasing angle,
and the frequency content at subcritical forcing levels is changed somewhat substantially at
higher angles.

Lastly, we can evaluate flap effectiveness by computing the moment on the hinge and comparing
to a perfectly rigid flap. By defining flap effectiveness as

Ef =
M(flexible)

M(rigid)
(53)

we can quantify the loss of control authority to the flexibility of the flap. Figure 9 illustrates
this phenomena by plotting flap effectiveness for a range of pre-flutter pressure ratios and a
selection of initial control surface rotations. It is interesting to note that for all rotation values,
the effectiveness is similar, especially considering the differences in deflection illlustrated in
Fig. 7. By plotting up to each case’s flutter point, we reveal another interesting trend, that the
effectiveness just before the flutter point of each rotation is remarkably similar, about 7.5%.
Obviously this plate is much more flexible than a typical control surface, but the conclusion that
flap effectiveness can be an indicator of aeroelastic stability may be significant more generally.
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(a) Frequency info at θ = 0° (b) Frequency info at θ = 4°

(c) Frequency info at θ = 6° (d) Frequency info at θ = 8°
Figure 8: Frequency plots
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Figure 9: Flap effectiveness versus pre-flutter pressure ratio for various control surface rotations. Note that each
line stops at its respective flutter boundary, and that the flap effectiveness is remarkably similar across
rotation cases.
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4 CONCLUSION
Here we have presented a new mathematical model which predicts the behavior of a simplified
trailing edge control surface in high speed flow. A flexible plate represents a torsion-free flap
as it rotates about a hinged corner. Oblique waves at the corner generate a steady pressure
differential across the plate, and an enhanced piston theory predicts unsteady pressure across
the flexible surface. The model was used to predict pre and post flutter dynamics as well as flap
effectiveness relative to a perfectly rigid plate.

The results depict three types of sensitivity: Type 1, the sensitivity to the mathematical model
of the physical system; Type 2, the sensitivity to the parameters within the model; and Type 3,
the sensitivity to numerical methods. Type 1 sensitivity was studied by measuring the impact of
including various nonlinearities. It was found that the model is most sensitive to the structural
inertia and the third order piston theory nonlinearities. In other words, if the analysis did not
include these mathematical terms, the solutions would differ greatly. Type 2 sensitivity was
studied by varying Mach number and angle of rotation θ. Higher Mach numbers lead to larger
LCO amplitudes, owing to the nonlinear piston theory terms. Increasing the rotation angle
increases the model’s sensitivity to second order piston theory terms, increases the static de-
flection of the plate, and decreases the critical pressure ratio. Type 3 sensitivity was accounted
for by completing a modal convergence study, where it was found that 4 structural modes are
sufficient for the range of parameters studied.

The flap effectiveness was measured by calculating the moment on the hinge for each steady
displacement, and comparing this to the moment on a hinge due to a rigid plate. Considering
the highly flexible plate in this study, it is not surprising that the effectiveness is rather low. This
may also explain why this quantity is relatively insensitive to rotation angle θ. However it is
interesting that the flutter point of various control surface rotation cases occurs at similar flap
effectiveness levels, indicating that flap effectiveness may be an indicator of stability.

Future work includes a comparison to an Euler CFD solver to evaluate the inviscid pressure
solution predicted by piston theory. A comparative Euler solution would validate the use of
this computationally efficient method. This has been done in prior work for the special case
of no control surface angle of attack. A step further is to model the structure with a higher
fidelity method such as the finite element method, and couple this to a CFD solution. This
would require sophisticated mesh deformation techniques, a nonlinear finite element model,
and CFD; a recipe for extremely high computational time. It is also desirable to study this case
experimentally.

5 APPENDIX A: PHYSICAL MODEL PARAMETERS
The model parameters were chosen based on measurements and specifications of the AFRL
Research Cell 19 (RC-19) wind tunnel facility [1, 18]. However, it is important to note that a
formal design study was not conducted. The flow parameters chosen are as follows.

M∞ = 2

T∞ = 288K

p∞ = 100000Pa

R = 287J/(kgK)

γ = 1.4
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The structural parameters are for a rectangular plate made of aluminum as follows.

b = 0.01m

L = 0.04m

ρ = 2700kg/m3

E = 70e9Pa
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