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Abstract

Goal reasoning agents can solve novel problems by detecting an anomaly between expectations and
observations; generating explanations about plausible causes for the anomaly; and formulating goals
to remove the cause. Yet not all anomalies represent problems. We claim that the task of discerning
the difference between benign anomalies and those that represent an actual problem by an agent will
increase its performance. Furthermore, we present a new definition of the term “problem” in a goal
reasoning context. This paper discusses the role of explanations and goal formulation in response to
developing problems and implements the response. The paper illustrates goal formulation in a mine
clearance domain and a labor relations domain. We also show the empirical difference between a
standard planning agent, an agent that detects anomalies and an agent that recognizes problems.

Keywords: Goal reasoning, cognitive architecture, case-based reasoning, explanation, goal formulation

1. Introduction

An intelligent, autonomous agent in a partially observable world should formulate its own goals,
make plans to achieve those goals and successfully execute those plans. An agent can formulate its
own goals based on an anomaly, i.e., the difference between an expected state and an observed
state, by generating a hypothesis that explains this anomaly and generating new goals that respond
to the hypothesis. However, many anomalies that arise in the real world do not represent a problem
to an agent’s mission or goal. For example, the playing of unexpected loud music may or may not
be a problem for roommates. If a roommate is preparing for an upcoming exam, the music is a
problem. If, on the other hand, she is doing her laundry, it is not a problem. Generally speaking, an
agent does not need to respond to every observed anomaly; an intelligent agent should be capable
of distinguishing between those that signal a problem and those that do not.

The Goal Driven Autonomy (GDA) approach (Cox, 2007; 2013; Molineaux et al., 2010; Munoz-
Avila et al., 2010) to agency represents an appropriate response for an autonomous agent’s
anomalies. However, the existing research does not formally address the issue of which anomalies
should be considered problems; for example, ARTUE (Klenk, Molineaux, & Aha, 2011)
motivations implicitly consider certain situations to require new goals, but the system provides no
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formal basis for determining whether a certain situation is problematic. In this paper, we consider
the task of recognizing whether an anomaly should constitute a problem for an agent. Performing
this efficiently will improve both the effectiveness and robustness of the agent. We use the term
problem in this paper to refer to anomalies that require a response in order to meet the agent’s goals.
Then, we present such an approach and further discuss the role of explanations and goal formulation
in recognizing and responding to problems. We show empirical results illustrating the effectiveness
of this approach as part of a GDA agent in two uncertain, dynamic environments.

The paper continues as follows. Section 2 defines the problem recognition task and presents a
formalism to represent the problem. Section 3 describes explanation patterns (XP) and their role in
understanding problems as well as the goals formulated when an agent detects a problem. Section
4 discusses the implementation of the problem recognition task in two domains: mine clearance
domain and labor relations domain. The evaluation of GDA agents and the presentation of the
results follows in Section 5. We consider related research in Section 6 and conclude with Section
7 with a discussion about some ideas for future research.

2. Formalities and Notation

An anomaly occurs when the expected state of the agent does not match its current observed state,
but a problem only occurs when the agent needs to address the above anomaly. As such, problem
recognition refers to reasoning about the anomaly and deciding whether it is something that the
agent needs to handle. There might be different types of problems as well as different ways to
recognize and address them. One such problem is the planning problem.

2.1 Classical Planning Problem Representation

A classical planning domain is defined as a finite state-transition system in which each state s € S
is represented by a finite set of ground atoms (Ghallab, Nau, & Traverso, 2004). A planning action
model is a triple @ = (head(a),pre(a),ef f(a)), where pre(a) and ef f (a) are preconditions
and effects. Each action a € A is a ground instance of some action model. An action a is
executable in a state s if s = pre(a). The state-transition system is a tuple 2 = (S, 4,y), where S
is the set of all states and A4 is the set of all actions as above. In addition, y is a state transition
functiony : S X A — S that returns the resulting state following action execution.

A classical planning problem is a triple P = (2, sq, g), where 2'is a planning domain, s, is the
initial state, and the goal g is a conjunction of first-order literals. A state s, satisfies a goal if 54 =
g in this situation we refer to s, as a goal state. A plan 7 € Il represents a solution to P if it consists
of a sequence of plan steps (a;,a,, ... a,) that incrementally changes the world, starting from the
initial state sy, and ending in a goal state. That is, it is a solution if y(rcg, SO) =

Y(...y(¥(se, a), az)..., ay) = g.

2.2 Extended Planning Problem Representation

Our extended definition of planning problems is intended for usage during execution. New
problems arise during problem solving and execution, necessitating updated solutions. These
iterated online planning problems therefore incorporate an agent’s prior expectations and
knowledge about the execution context. The extended problem also considers whether an agent
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should formulate new goals in response to the changing world. Solutions to the extended problem
comprise, in addition to a plan, an explanation of an encountered anomaly and an updated goal
agenda. Critically, the plan need not solve every goal in the goal agenda. Formally, we define an
extended planning problem P, = (s, S, Bk, H.) where:

e 5. € § is the current state of the environment,

e 5, € S is the state the agent previously expects to hold at this point in time,

e Bk is the agent’s background knowledge,

e H, is an episodic history.
A solution ¥, to a problem P is of the form (Gc, I Xe nc) where:

e (. is an updated goal agenda (set of pending goals for the agent to accomplish),

e g, is a goal from the agenda (i.e., g, € G.) chosen to address next,

e y. is an causal explanation that accounts for any discrepancy between s, and s, and

e 1. is a plan that will accomplish g;, at least one goal, g € G, in at least one possible world.
Note that the subscript “c” refers to the current iteration throughout this definition and later in this
section; as the extended planning problem is iterative, this explicitly links present outputs to future
inputs.

The agent’s background knowledge Bk is a tuple (X, A) consisting of the planning domain X as
defined in the classical planning problem along with a set A of goal operation models 6 =
(head(d), parameter(d), pre(d), res(d)). In a goal operation pre(d) and res(d) are a set of
preconditions and a result. The transformation’s identifier is head(d), and its input goal argument
is parameter(8). Any goal operation model & with no input goal (written parameter(d) = @)
models a goal formulation operation. Otherwise, 6 represents goal change operations. Collectively,
the agent’s goal operation models A define an interpretation function 5: S X G— G that transforms
an earlier goal into a desired goal (Cox, Dannenhauer, & Kondrakunta, 2017). See prior work for
additional detail on the function £.
The episodic history H, is a tuple (G, 7y, €5, x) that includes the agent’s memory of past goal

agendas G, = (G1,G,,...G._,), plans m, = (7y, 7y, ...m,_1), and causal explanations yj =
(X1, X2) - Xc—1), as well as the execution history containing states and actions €, =

(S9,a1,81,A3, - Sc—1,Ac)-

2.3 Problem Recognition Subproblem

We describe three subproblems we address: problem recognition, goal formulation and change, and
replanning. Problem recognition requires the agent to determine what problem, if any, occurred.
Specifically, given the extended planning problem tuple (s.,s,., Bk, H.), problem recognition
outputs a problem, root cause, and explanation pair (d, w, ¥.) such that:
ad, g;:s, = d As, ¥ d Arestricts (g;,d,2)NGg; € Ge_y Aw. = d A w & G._4

This is read: There is some discrepancy, a literal conjunct d, that was SBserved (i.e., entailed by
s.) butnot expected (i.e., not entailed by s,). The discrepancy d restricts how the agent can address
a goal g; in its legacy goal agenda G,. The discrepancy d was caused by a root cause w, (a literal
conjunct) according to explanation y.. Finally, the root cause w was not intended (i.e., not in the
legacy agenda G.). In the above, a goal g; is restricted by a discrepancy d if there is no plan  that
can accomplish the goal g; without eliminating discrepancy d. The explanation y. is a logical
derivation or proof tree. When this condition is met, the discrepancy d is considered a problem.
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2.4 Goal Formulation and Change Subproblem

Once a problem is recognized, the agent must update its goal agenda to respond. Given a current
state s, problem cause w,, explanation y,, and legacy goal agenda G._;; goal formulation and
change must find a new goal agenda (G, g,) that responds “appropriately”. Currently, no
recognized definition of what constitutes a correct or strong goal agenda outside of a particular
target problem exists.

2.5 Replanning Subproblem

The replanning subproblem finds a revised or new plan to accomplish the newly formulated goal
Jn- This problem is much the same as the classical planning problem, adding only a legacy plan. It
is defined by the tuple (X, s, gn, T._1), and the solution is the new plan m.. We do not further
consider replanning within the scope of this paper, choosing to reuse results of other research.

3. Explanation and Goal Formulation

In this work, an explanation is a causal structure that represents a hypothesis about the cause of an
anomaly. Problem explanations hypothesize the cause of an anomaly that limits an agent’s goals.
For example, in the context of doing laundry, an explanation such as “thoughtless neighbors cause
loud music” is not a problem explanation. However, in the context of studying for an exam, it is a
problem explanation. Moreover, reasoning about a hypothesis allows an agent to formulate its own
goals to deal with a problem. In a nutshell, explanations help an agent to decide whether an anomaly
is a problem or not, while goal formulation helps an agent to resolve a problem.

To implement our ideas, we modified Meta-AQUA (Cox & Ram, 1999), an open-source story
understanding system, to generate grounded explanations. In prior work, Meta-AQUA was
supplied with a case-base of explanation patterns that explain anomalous actions performed by
actors in a story. In our work, we extended Meta-AQUA to retrieve an explanation from memory
and adapt it for goal formulation whenever an agent encounters a problem.

3.1 Explanation Pattern

In our work, we use a case-base of problem explanations engineered manually to fit the domain.
Each explanation in our case-base is an abstract explanation pattern (XP) (Schank, 2013) as shown
in Figure 1. An XP is a data structure that represents a causal relationship between multiple states
and/or actions; variables adapted during or after case retrieval abstractly define each action/state.
An action or state is referred to as a node and different types of nodes are described based on their
role in an XP as follows:

® Explains node: An observed unpredictable action/state (i.e., the target of the XP).
® Pre-XP node: An observed action/state along with the Explains node.
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® XP-asserted node: An action, state, or XP that contributes to the explanation’s cause. In the
case of a causing XP, the effects of the cause XP can be seen as direct causes and the causes of
that XP indirect causes, of the effect XP.

Figure 1. XP Structure.

An explanation pattern represents a causal structure in which XP-asserted nodes form an
antecedent and Pre-XP nodes form the consequent. The Pre-XP nodes represent those states that
must hold for the XP to be a candidate, including the Explains node itself.

Figure 2. Mine-XP
Bolded symbols represent variables (e.g., enemy-sub, autonomous-agent)

Figure 2 represents an example of an abstract explanation pattern i.e., an explanation pattern
whose nodes refer to unbound variables, Mine-XP. It represents the causal pattern of an enemy
submarines’ path to a specific location and its mine laying action, later these mines might be
detected by an autonomous agent if they are on the transit to survey some areas where mines are
expected. As mentioned earlier, an XP constitutes of Explains node, Pre-XP nodes and XP-asserted
nodes. The whole pattern can be structured as follows:

® XP-asserted nodel: An enemy exists (sate)

® XP-asserted node2: enemy submarine at the clear-area (state)

® XP-asserted node3: enemy submarine laying mines (action)

® Explains node: Autonomous agent detects a mine (action).

® Pre-XP node: The autonomous agent is at the specific location (state).

441



Similarly, all the causal patterns can be structured as explanation patterns. However, approaches to
learn such explanations are outside the scope of this paper, but (Ram, 1993) has sketched out a
detailed approach on learning explanation patterns.

3.2 Retrieving an Explanation Pattern

Meta-AQUA constantly tries to unify the Explains node of each abstract XP with each new state or
action. When such a unification is successful, the Pre-XP nodes of the corresponding case combines
with the observations of corresponding states or actions from the story. Also, if this unification is
successful, the case is retrieved, and a set of variable bindings are created that join the XP with the
story. Substituting these variable bindings into the consequent and the variables to fill the
antecedents reuses the retrieved abstract XP. However, after retrieval, if the XP-asserted nodes in
the reused XP contain hypothetical information, then the agent can revise the hypothetical
information further using the new knowledge obtained from the observations.

In our work, whenever an agent observes an anomalous state or action, the above retrieval process
gets a problem explanation from the case-base. In general, the agent might retrieve zero, two, or
more explanations. However, for the purpose of this paper we assume the agent retrieves exactly
one problem explanation if an anomaly is a problem. However, in the future, we would like to
address this assumption by select one problem by evaluating multiple explanations.

In an example as discussed in the previous section, when an autonomous agent detects a mine in
a clear area where mines are not expected then Meta-AQUA tries to unify the states and actions
with all the XP’s in the case-base. Mine-XP in figure 2 becomes a candidate XP and goals are
formulated from it as discussed in the next section.

3.3 Goal Formulation

Goal formulation is essential for an intelligent agent to respond to unpredictable events. In our
work, we perform formulation by chaining backward on each of the antecedents of a retrieved XP
until we reach all the antecedents to which the agent can respond. Antecedent nodes include actions
and states; therefore, when the agent wishes to prevent an undesired consequent from recurring, it
considers as potential goals the elimination of the actors that performed antecedent actions, or
objects that participate in antecedent states. The removal mapping function that takes in the agents
or objects and outputs the goals that eliminate them create potential goals.

In the example discussed in section 3.1, when Mine-XP becomes the candidate XP, elimination
of agents in the XP- asserted nodes are considered as potential goals. So, the formulated goal is to
apprehend the enemy ship.

4. Domains

To illustrate these concepts in this paper and to assess the performance of the resulting GDA agents,
it will be useful to consider them in the context of the following concrete examples from the mine
clearance domain and the labor relations domain.
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4.1 Mine Clearance Domain

To prepare a harbor for use during maritime operations, it is essential to conduct mine clearance
activities to ensure that ships can operate safely as they transit between the open sea and the port in
the harbor. As searching and clearing mines in the entire harbor is likely to be a time-consuming
and expensive undertaking, a network of safe shipping lanes is typically established to reduce the
size of the area within the harbor that needs clearing. Such a system is known as a Q-route (Li,
2009).

For experimentation, we created simulated scenarios with a fixed Q-route that consists of a single
shipping lane. In simulation, an Autonomous Underwater Vehicle (AUV) controlled by an agent
performs both mine detection and clearance. In each scenario, the agent knows of two previously
identified areas within the Q-route — green area one (GA1) and green area two (GA2) — where
mines are expected. As such, any mines encountered which do not lie within GA1 or GA2 constitute
anomalies. However, only anomalous mines within the Q-route are classified as problems, because
mines outside the Q-route will not pose a hazard to shipping. It is the role of the agent to determine
how to respond to these anomalous mines in each scenario.

Figure 3. Simulation of the mine clearance domain in Moos IvP. The Q-route extends from the left to the
right side of the map and represents the path that ships (6 yellow shapes on the left) will traverse. The remus
AUV (red) must attempt to clear mines in green areas GA1 and GA2 to support the goals of ships reaching
the shore. Unexpected mines exist within and outside of the route, and the AUV must decide which are
problems.

Figure 3 illustrates the mine clearance domain. The red, cylindrical object in the top left corner
represents the AUV named Remus and each triangle represents a ground truth mine position, not
given to the agent a priori. The area between the two horizontal lines represents the Q-route, and
the octagons on the left and right represent GA1 and GA2 respectively. In each scenario, the mines
are uniformly distributed throughout the transit area (used by Remus to enter and exit the Q-route)
and the Q-route.
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4.1.1 Example Mine Clearance Problems

In this section, we give a series of example extended planning problems in the Mine Clearance
domain and their solutions. In the Mine Clearance domain, the initial goal agenda (G,) includes the
following goals: clear the mines in GA1, clear the mines in GA2, and head back to its initial position
(home). Let us assume that the agent selects the goals in the provided order so the current goal of
the agent would be to clear the mines in GA1. Therefore, initially g, = cleared-mines(remus,gal)
is the goal. The expectation of the agent is that the mines are present only in GA1. The initial plan
(1) is comprised of several steps to achieve the first of its initial goals (gg); some of which are the
following:

= {a; =move to the location (remus, home , location-a),
a, =move_to the location (remus, location-a , location-b),
az =move_to_the location (remus, location-b , gal),
a4 =survey (gal),
as =identify-mines (gal),
ag =clear-mines (gal)}

Here location-a and location-b are locations of waypoints outside the Q-route that describe a path
to GA1 from “home”, the agent’s launching point. After reaching GA1, the plan directs the Remus
to survey locations in GA1, locate/identify any mines and clear them. In the initial state (s4), GA1
is expected to (likely) contain one or more unknown mines. After g is satisfied, however, the agent
has cleared all mines in GA1.

The agent detects a mine at location-b after it completes the action a,. This is an anomaly because
in the observed current state (s.), there is a mine at location-b, but not in the expected state (s,).
This triggers problem recognition. However, no explanation is found: a Pre-XP node of the
explanation pattern remains false as the detected mine is outside of the Q-route. The anomalous
mine is therefore not considered a problem, and goal formulation does not occur. As such, the new
solution is ¥, = (GO, @,0, tail(no)), containing the unchanged initial goal agenda, no new goal
or explanation, and the remaining actions in 7ry. The history H, = (ﬁ h Thy €n) )(h) is updated with
the unchanged goal agenda, updated plan, state, action, and explanation.

After the agent achieves g, it travels towards GA2 to achieve the next goal, g, = cleared-
mines(remus,ga2). Its new plan visits intermediate locations location-d and location-e in the route
to clearing mines in GA2. In the expected state (s, ), the Remus is at location-e between GA1 and
GA2, where there are no mines. However, in the current state (s..), a mine is observed. As described
previously, this anomaly triggers problem recognition. This time, the anomaly is a problem, as the
situation matches the explanation pattern, producing an explanation y,. with a root cause w, = mine-
at(location-e) A in-qroute(location-¢). Goal formulation then generates a new goal g,, = —mine-
at(location-e), and replanning produces a plan m, that achieves g, ; the updated goal agenda adds
this new goal: G, = G,_; U {g,}. This completes the solution (GC, I Xer nc) , which is used to
update the history H, as before. The agent then switches to the new plan 7.
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4.2 Labor Relations Domain

This domain describes a virtual institution, consisting of an institute head, employees, and
customers. The institution starts with an initial reputation and budget represented by numeric
values. The head of the institute enacts policies; implementing a policy takes a known fixed amount
of budget and increases the institute’s reputation value by a fixed amount. Disagreements about
enacted policies may occur between the head and the employees with certain intensity. Intensity is
a numeric value; high intensity disagreements may lead to a strike. Intensity values vary for each
disagreement and are unpredictable. Disagreements can be resolved by negotiating. Negotiating to
solve a disagreement also requires a budget, which varies with respect to the intensity of the
disagreement. Moreover, negotiations decrease the reputation value by a function of intensity.

The agent acts as the head of the institute with a goal to increase the reputation of the institute,
and, in order to achieve that goal, the agent must implement some policies. The expectation is that
the employees agree to the policy, but, if the employees disagree then this is considered an anomaly,
and only those disagreements that can lead to a strike are considered as problems. Therefore, the
intelligence of the agent lies in identifying the anomalies that might lead to strikes and working on
them. This domain is not related to trading and marketing agents in artificial intelligence, and is not
simulated using third-party software.

4.2.1 Example Labor Relations Domain Problems

In the Labor Relations domain, the current goal agenda (G.) include: increasing the reputation of
the institution and negotiating with employees. The initial goal g; = increased reputation(institute,
five). The agent expects (s,) that the policy should be accepted by all the employees. If the
employees do not accept the policy, then an intensity value of the rejection is provided. If that
intensity value is low then it is not considered a problem, but if the value is high then it is a problem.
Therefore, the agent explains an anomaly to be a problem based on the intensity value.

Similar to the Mine Clearance domain, if the intensity value is less than 35, then the observed
current state (s.) is not the same as the expected state (s,) and a rejection of policy among
employees occurs. This triggers problem recognition. However, no explanation is found: a Pre-XP
node of the explanation pattern remains false as the intensity is less than 35. The anomalous
situation is therefore not considered a problem, and goal formulation does not occur. As such, the
new solution is ¥, = (@0, @,0, tail(no)), which contains the unchanged initial goal agenda, no
new goal or explanation, and the remaining actions in 1y. The history H, = (@h, Th, €p, )(h) is
updated with the unchanged goal agenda, updated plan, state, action, and explanation.

In this domain, the first goal is repeated iteratively until the agent is out of resources. Let us say
an anomaly occurred again with an intensity value higher than 35. Once again the explanation is
triggered. This time, the anomaly is a problem, as the situation matches the explanation pattern,
producing an explanation y. with a root cause w, = disagreement-with(policy) A disagreement-
intensity(high). Goal formulation then generates a new goal g, = negotiated(employees), and
replanning produces a plan 7, that achieves g,,; the updated goal agenda adds this new goal: G, =
Go—1 U {gn}. This completes the solution (@C, I Xer T[C) , which is used to update the history H,
as before. The agent then switches to the new plan ...
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5. Evaluation of the Implementation in the Domains

In both domains, in order to perform the evaluation we have introduced two other agents along with
our GDA agent, namely an eager agent and a baseline agent. They each respond differently to
anomalies. The GDA agent detects all anomalies, but only works on those perceived as problems.
In contrast, the eager agent addresses all anomalies that it encounters, i.e., it tries to fix every
anomaly it encounters. The baseline agent plans only for its original goals and ignores all
anomalies. We assessed the performance of the three agents by varying the environment and
averaging the results for 10 different runs for each scenario and presented the results.

5.1 Empirical Results in Mine Clearance Domain

We calculated the performance of the agents based on the number of the ships that reach the other
side of the harbor safely in various mine density scenarios. Each scenario includes a total of six
ships and three mine densities: low, medium, and high. We also introduced deadlines ranging from
0 to 2 seconds in the domain with increments of 0.5 seconds. Please note that the seconds indicate
the simulation time, not a real world time. These deadlines specify the time gap between the agent
starting from home to clear the mines and the ships starting their journey from one end of the shore
to other.

Figure 4. Scores obtained by the agents in mine clearance domain.

Figure 4 shows the scores achieved by the three different agents in all mine density (the average
of low, medium, and high density) scenarios for the varied deadlines. The X-axis depicts the delay
with which the ships start and the Y-axis indicates the number of ships that safely traverse the Q-
route. Here, when we start looking at the values from the left side of the graph, at the delay of 0,
very few ships were able to traverse the Q-route successfully, for all three agents. Those that were
able to reach the other side were able to cross the Q-route in the low mine density scenarios, while
very few or no ships made it across in the medium and high mine density scenarios.

To understand what a delay of 0.5 seconds means, consider what each agent can accomplish
within that timeframe in a characteristic scenario. After 0.5 seconds, the baseline agent clears the
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mines in GA1 and is on its way to clear the mines in GA2. At the same point in time, the GDA
agent has cleared the mines in GA1 as well as some mines within the Q-route; the eager agent has
cleared mines outside of the Q-route and in GAL.

After 1 second, the baseline agent has cleared the mines in both green areas and is headed towards
home, the GDA agent has cleared some mines within the path from GA1 to GA2 and some mines
within GA2, whereas the eager agent is working on the mines within the Q-route after clearing the
ones in GAI.

In these conditions (delay of 0.5 and 1 seconds), the difference between the performance of the
GDA and eager agents does not seem very large. This is because the average of the various mine
density scenarios also contains low mine density fields where the two agents perform almost
identically, since the eager agent only has a few mines to clear outside of the Q-route. The
experiment is also performed on the scenario with only one problem, which is caused a minimal
difference between the agents. However, the difference in performance for medium and high mine
density scenarios is two ships and it is significant for just one problem situation.

At a delay of 1.5 seconds or greater, all agents have performed all clearance tasks intended,
thus, performance does not change for delays greater than 1.5 seconds.

5.2 Empirical Results in Labor Relations Domain

To assess the performance of the three agents in this domain, we compare the reputation values of
all agents after they implement a certain number of policies. There are some numerical values in
this domain: initial reputation is 500 and total budget is $4000. Implementing any policy reduces
the budget by $25.

The intensity value of a disagreement is a random number between 1 and 100. When a
disagreement arises, the employees can demand a budget amount, which is a random number
between 1 and 25. Providing the budget amount of any amount within 40% to 60% of the amount
demanded by employees solves the disagreement.

If there is no disagreement when a policy is implemented then the reputation of the institution is
increased by five. However, if the agent encounters a disagreement, then it has two options: to solve
the disagreement or to ignore the disagreement and strictly adhere to its initial policy. In the first
option that addresses the disagreement, the reputation is neither decreased nor increased, i.e., the
change in reputation is zero. If the agent does not address the disagreement, then the reputation
value is decreases as a function of intensity value. So, if the intensity is <=34 then Rep = -Int/100
and, if the intensity is >=35 then Rep = -[(n+2)*Int]/100 where n = integer((I-35)/5). The integer()
acts as a rounding function. There is an interest value added to the budget after implementing every
50 policies with a rate of 2.5%. Reputation values can become negative if the agent does not address
disagreements.

Figure 5 shows the reputation achieved by the three different agents over 200 policies. The X-
axis depicts the number of policies implemented and the Y-axis indicates the reputation value
scaled to 10. All the agents have an initial reputation of five. Each point on the lines contains
average of 20 policies and the reputation value is cumulative and can reach a max value of 10. In
this experiment if any agent is out of budget then it starts to behave as a baseline agent as the debt
should be as minimum as possible when the agent implements all policies.
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Figure 5. Scores obtained by the agents in labor relations domain.

Starting with the baseline agent, at the completion of 50 policies the baseline agent already has a
negative reputation because it does not address any of the disagreements, so the reputation value
drops and keeps on decreasing monotonically.

The GDA agent gets a little behind the eager agent from 50 to 120 policies because the GDA
agent will not address the anomalies with lower intensity values, whereas, the eager agent addresses
all the anomalies and spends its budget on every anomaly. However, this means the eager agent is
out of its budget much sooner than the GDA agent.

The eager agent is out of budget at 140 policies and starts behaving as a baseline agent, and
begins to drop its reputation, while the GDA agent preserves its budget and continues on its
increment streak of the reputation value for around 150. The baseline agent’s reputation value is
still sinking to much lower values but the scale is adjusted such that the negative values are only
visible up to -10. These results indicate that the GDA agent should perform better overtime and
maintain a higher reputation than the eager agent by a significant amount. The GDA agent
underperformed by a negligible amount for a period of time when compared to eager agent because
of the higher amount of resources. A smart agent is not needed if the amount of resources present
are infinite, but this is not very realistic and as long as resources have a limit, then there will be a
need for the GDA agent to use them sustainably.

6. Related Research

Statistical anomaly detection has been the subject of extensive research because of its applications
to a variety of detection tasks such as network intrusion (Kumar, 2005), credit card fraud
(Aleskerov, Freisleben, & Rao, 1997), and malignant tumors from MRIs (Spence, Parra, & Sajda,
2001) among many others (Chandola, Banerjee, & Kumar, 2009). Those works rely on large
volumes of data to build statistical models of expected patterns. In that context, anomalies
correspond to outlier patterns deviating from expected patterns. There is also the work on execution
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monitoring (Fritz, 2005; Alcazar et. al., 2010; Langley et. al., 2017; Sapena & Onaindia, 2002)
whenever the current plan is not valid or an anomaly is detected the agents performs replanning.
However, our work differs from execution monitoring by addressing only some of the anomalies
when replanning is not possible. In our work, our models are planning models and anomalies
correspond to deviations of those models. One of the most challenging problems of statistical
anomaly detection is the potentially large number of false positives, which trigger unnecessary
alarms. In our work, in contrast to the previously mentioned works, explanations for an anomaly
are generated to determine the nature of the anomaly and decide if the agent must deal with it.

The concept of anomaly detection has played a central role in GDA research. In this work, we
are focusing on environmental failures since the anomalies are the result of the partial observability
in the environment. Munoz-Avila et al. (2010), observed that not all anomalies require triggering a
new goal. In that study, the GDA agent is operating in an adversarial environment with a reward
function (i.e., the score of the game). A reward function is also used in Jaidee et al (2011) which
uses reinforcement learning techniques to show GDA knowledge. With both of these, when the
current plan is resulting in a positive reward rate, the agent will ignore anomalies. In contrast, in
our work, we do not assume a reward function; instead, we generate a causal linkage to determine
if a problem underlies the anomaly.

ARTUE (Molineaux, Klenk, & Aha, 2010) is a GDA system that was used to provide control in
a Naval strategic simulation of an adversarial and partially observable environment. In this work,
explanations were generated using a truth maintenance system that identifies plausible worlds that
are consistent with the observations made by the agent and triggers a new goal as a result. ARTUE
explains all anomalies, whether problematic or not; goal formulation is responsible for
determination of whether the agent should respond. The initial version of ARTUE used rule-based
knowledge; extended versions incorporated learning of goal selection knowledge (Powell,
Molineaux, & Aha, 2011) and domain-independent motivations (Wilson, Molineaux, & Aha, 2013)
responsible for identifying situations that require response. However, these techniques modified
the goal formulation process, rather than incorporating a separate problem recognition step prior to
explanation generation.

Other kinds of explanations also exist; external explanations describe an agent’s anomalous
behavior to others (Floyd & Aha, 2016), while internal explanations hypothesize the cause of an
anomaly for its own needs (Aamodt, 1993; Molineaux, Kuter, & Klenk, 2012). In our work, we use
a variant of the internal explanations called problem explanations.

More recently, the notion of GDA agent’s expectations has been extended to consider only the
necessary effects of the plan executed so far as opposed to considering the whole state
(Dannenhauer & Munoz-Avila, 2015).Our work uses this form of expectations.

Our work is motivated by work on introspective reasoning, where the agent reasons about the
decisions that lead to actions taken and how these actions affect the environment. Meta-AQUA
(Cox & Ram, 1999) reasons about the processes that lead to a decision which resulted in an anomaly
and considers three types of anomalies: novel situations, incorrect background knowledge and mix-
indexed knowledge structure; the difference between the last two is that in the latter the agent has
the knowledge but it is not retrieved in the appropriate circumstances. Fox and Leake (1995) present
a mechanism to fix these retrieval mechanisms using introspective reasoning techniques. In our
work, we are focusing on novel situations when there is an expectation failure.
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7. Conclusion and Future Research

We have described a formalism for agents that enables them to distinguish between those anomalies
that they must deal with from those that they do not. The crucial factor in this is the use of
explanation patterns so that an agent can formulate its own goals to adapt to unexpected
events/situations that require the agent’s attention.

Real world scenarios often deal with deadlines and it is practically impossible for an agent to
worry about all the anomalies it comes across, reason, react and achieve its primary goals within
the given deadline. Although our experiment setting is simulated, adding a deadline to our
experiment clearly shows that the performance of the GDA agent is better than the eager and the
baseline agents.

For future work, we would like to work on several different enhancements that can improve the
performance and reasoning capabilities of the GDA agent in our future research. First, adding an
importance factor to the problem formalism would help the agent to prioritize anomalies that are
classified as a problem with the goals it possesses. Moreover, given that an agent only has finite
resources, prioritizing the anomalies could also assist an agent to delegate goals to other agents.
Second, adding goal monitors (Dannenhauer & Cox, 2018) after formulating goals could help an
agent to adapt as the world changes. For example, during mine clearance, if the establishment of a
Q-route changed from one location to another then it is highly likely that it would not need to
continue to clear mines along the originally proposed Q-route. In the labor relations domain, the
budget could be created through profits or donations, thus changing the world. Finally, if the
number of anomalies flagged were excessive given what might be anticipated in a particular
context, then this could serve as a cue for the agent to generate a goal with a broader scope than the
current goal. For example, our experimental setting has around ten mines within the proposed Q-
route. Instead of clearing just the mines on the agent’s path from GA1l to GA2, if the number of
mines encountered were too great, then the agent could generate, or delegate to another agent, a
goal to survey the entire region between GA1 and GA2. Finally, in the labor relations domain, we
would like to explore adding other factors such as customer satisfaction, profits, or time and
possibly go a step further and create a multiagent scenario.
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