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Abstract 
Goal reasoning agents can solve novel problems by detecting an anomaly between expectations and 
observations; generating explanations about plausible causes for the anomaly; and formulating goals 
to remove the cause. Yet not all anomalies represent problems. We claim that the task of discerning 
the difference between benign anomalies and those that represent an actual problem by an agent will 
increase its performance. Furthermore, we present a new definition of the term “problem” in a goal 
reasoning context. This paper discusses the role of explanations and goal formulation in response to 
developing problems and implements the response. The paper illustrates goal formulation in a mine 
clearance domain and a labor relations domain. We also show the empirical difference between a 
standard planning agent, an agent that detects anomalies and an agent that recognizes problems. 

Keywords: Goal reasoning, cognitive architecture, case-based reasoning, explanation, goal formulation 

1. Introduction
An intelligent, autonomous agent in a partially observable world should formulate its own goals, 
make plans to achieve those goals and successfully execute those plans. An agent can formulate its 
own goals based on an anomaly, i.e., the difference between an expected state and an observed 
state, by generating a hypothesis that explains this anomaly and generating new goals that respond 
to the hypothesis. However, many anomalies that arise in the real world do not represent a problem 
to an agent’s mission or goal. For example, the playing of unexpected loud music may or may not 
be a problem for roommates. If a roommate is preparing for an upcoming exam, the music is a 
problem. If, on the other hand, she is doing her laundry, it is not a problem. Generally speaking, an 
agent does not need to respond to every observed anomaly; an intelligent agent should be capable 
of distinguishing between those that signal a problem and those that do not. 

The Goal Driven Autonomy (GDA) approach (Cox, 2007; 2013; Molineaux et al., 2010; Munoz-
Avila et al., 2010) to agency represents an appropriate response for an autonomous agent’s 
anomalies. However, the existing research does not formally address the issue of which anomalies 
should be considered problems; for example, ARTUE (Klenk, Molineaux, & Aha, 2011) 
motivations implicitly consider certain situations to require new goals, but the system provides no 
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formal basis for determining whether a certain situation is problematic. In this paper, we consider 
the task of recognizing whether an anomaly should constitute a problem for an agent. Performing 
this efficiently will improve both the effectiveness and robustness of the agent. We use the term 
problem in this paper to refer to anomalies that require a response in order to meet the agent’s goals. 
Then, we present such an approach and further discuss the role of explanations and goal formulation 
in recognizing and responding to problems. We show empirical results illustrating the effectiveness 
of this approach as part of a GDA agent in two uncertain, dynamic environments. 
 The paper continues as follows. Section 2 defines the problem recognition task and presents a 
formalism to represent the problem. Section 3 describes explanation patterns (XP) and their role in 
understanding problems as well as the goals formulated when an agent detects a problem. Section 
4 discusses the implementation of the problem recognition task in two domains: mine clearance 
domain and labor relations domain. The evaluation of GDA agents and the presentation of the 
results follows in Section 5. We consider related research in Section 6 and conclude with Section 
7 with a discussion about some ideas for future research. 

2. Formalities and Notation
An anomaly occurs when the expected state of the agent does not match its current observed state, 
but a problem only occurs when the agent needs to address the above anomaly. As such, problem 
recognition refers to reasoning about the anomaly and deciding whether it is something that the 
agent needs to handle. There might be different types of problems as well as different ways to 
recognize and address them. One such problem is the planning problem.  

2.1  Classical Planning Problem Representation 

A classical planning domain is defined as a finite state-transition system in which each state 𝑠𝑠 ∈ 𝑆𝑆 
is represented by a finite set of ground atoms (Ghallab, Nau, & Traverso, 2004). A planning action 
model is a triple 𝛼𝛼 = (ℎ𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼),𝑝𝑝𝑝𝑝𝑝𝑝(𝛼𝛼), 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼)), where 𝑝𝑝𝑝𝑝𝑝𝑝(𝛼𝛼) and 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼) are preconditions 
and effects. Each action 𝑎𝑎 ∈  𝐴𝐴 is a ground instance of some action model. An action 𝑎𝑎 is 
executable in a state 𝑠𝑠 if 𝑠𝑠 ⊨ 𝑝𝑝𝑝𝑝𝑝𝑝(𝑎𝑎). The state-transition system is a tuple Σ =  (𝑆𝑆,𝐴𝐴, 𝛾𝛾), where S 
is the set of all states and A is the set of all actions as above. In addition, 𝛾𝛾 is a state transition 
function 𝛾𝛾 ∶ 𝑆𝑆 × 𝐴𝐴 → 𝑆𝑆 that returns the resulting state following action execution. 

A classical planning problem is a triple 𝑃𝑃 = (Σ, 𝑠𝑠0,𝑔𝑔), where Σ is a planning domain, 𝑠𝑠0 is the 
initial state, and the goal 𝑔𝑔 is a conjunction of first-order literals. A state 𝑠𝑠𝑔𝑔 satisfies a goal if 𝑠𝑠𝑔𝑔 ⊨ 
𝑔𝑔; in this situation we refer to 𝑠𝑠𝑔𝑔 as a goal state. A plan 𝜋𝜋𝑔𝑔𝜖𝜖 П represents a solution to 𝑃𝑃 if it consists 
of a sequence of plan steps (𝑎𝑎1,𝑎𝑎2,… 𝑎𝑎𝑛𝑛) that incrementally changes the world, starting from the 
initial state 𝑠𝑠0 and ending in a goal state. That is, it is a solution if 𝛾𝛾�𝜋𝜋𝑔𝑔, 𝑠𝑠0� =
𝛾𝛾(. . . 𝛾𝛾(𝛾𝛾(𝑠𝑠0, 𝑎𝑎1), 𝑎𝑎2)…, 𝑎𝑎𝑛𝑛) ⊨ 𝑔𝑔.  

2.2  Extended Planning Problem Representation 

Our extended definition of planning problems is intended for usage during execution. New 
problems arise during problem solving and execution, necessitating updated solutions. These 
iterated online planning problems therefore incorporate an agent’s prior expectations and 
knowledge about the execution context. The extended problem also considers whether an agent 

438



should formulate new goals in response to the changing world. Solutions to the extended problem 
comprise, in addition to a plan, an explanation of an encountered anomaly and an updated goal 
agenda. Critically, the plan need not solve every goal in the goal agenda. Formally, we define an 
extended planning problem  𝒫𝒫𝑥𝑥 = (𝑠𝑠𝑐𝑐 , 𝑠𝑠𝑒𝑒 ,𝐵𝐵𝐵𝐵,𝐻𝐻𝑐𝑐) where: 

• 𝑠𝑠𝑐𝑐 ∈ 𝑆𝑆 is the current state of the environment,
• 𝑠𝑠𝑒𝑒 ∈ 𝑆𝑆 is the state the agent previously expects to hold at this point in time,
• 𝐵𝐵𝐵𝐵 is the agent’s background knowledge,
• 𝐻𝐻𝑐𝑐 is an episodic history.

A solution 𝛹𝛹𝑥𝑥  to a problem 𝒫𝒫𝑥𝑥 is of the form �𝐺𝐺�𝑐𝑐,𝑔𝑔𝑛𝑛,𝜒𝜒𝑐𝑐 ,𝜋𝜋𝑐𝑐� where: 
• 𝐺𝐺�𝑐𝑐 is an updated goal agenda (set of pending goals for the agent to accomplish),
• 𝑔𝑔𝑛𝑛 is a goal from the agenda (i.e., 𝑔𝑔𝑛𝑛 ∈ 𝐺𝐺�𝑐𝑐) chosen to address next,
• 𝜒𝜒𝑐𝑐 is an causal explanation that accounts for any discrepancy between 𝑠𝑠𝑐𝑐 and 𝑠𝑠𝑒𝑒, and
• 𝜋𝜋𝑐𝑐 is a plan that will accomplish 𝑔𝑔𝑖𝑖, at least one goal, 𝑔𝑔 ∈ 𝐺𝐺�𝑐𝑐 in at least one possible world.

Note that the subscript “c” refers to the current iteration throughout this definition and later in this 
section; as the extended planning problem is iterative, this explicitly links present outputs to future 
inputs. 

The agent’s background knowledge 𝐵𝐵𝐵𝐵 is a tuple (𝛴𝛴,  ∆) consisting of the planning domain 𝛴𝛴 as 
defined in the classical planning problem along with a set ∆ of goal operation models δ =
 (ℎ𝑒𝑒𝑒𝑒𝑒𝑒(δ), 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(δ), 𝑝𝑝𝑝𝑝𝑝𝑝(δ), 𝑟𝑟𝑟𝑟𝑟𝑟(δ)). In a goal operation 𝑝𝑝𝑝𝑝𝑝𝑝(δ) and 𝑟𝑟𝑟𝑟𝑟𝑟(δ) are a set of 
preconditions and a result. The transformation’s identifier is ℎ𝑒𝑒𝑒𝑒𝑒𝑒(δ), and its input goal argument 
is 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(δ). Any goal operation model δ with no input goal (written 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(δ) = ∅) 
models a goal formulation operation. Otherwise, δ represents goal change operations. Collectively, 
the agent’s goal operation models ∆ define an interpretation function 𝛽𝛽: 𝑆𝑆 × 𝐺𝐺→ 𝐺𝐺 that transforms 
an earlier goal into a desired goal (Cox, Dannenhauer, & Kondrakunta, 2017). See prior work for 
additional detail on the function 𝛽𝛽. 
 The episodic history 𝐻𝐻𝑐𝑐 is a tuple (𝐺𝐺�ℎ ,𝜋𝜋ℎ, ԑℎ,𝜒𝜒ℎ) that includes the agent’s memory of past goal 
agendas 𝐺𝐺�ℎ = (𝐺𝐺�1,𝐺𝐺�2, …𝐺𝐺�𝑐𝑐−1), plans 𝜋𝜋ℎ = (𝜋𝜋1,𝜋𝜋2, …𝜋𝜋𝑐𝑐−1), and causal explanations 𝜒𝜒ℎ =
(𝜒𝜒1,𝜒𝜒2, … 𝜒𝜒𝑐𝑐−1), as well as the execution history containing states and actions ԑℎ =
(𝑠𝑠0,𝑎𝑎1, 𝑠𝑠1,𝑎𝑎2, … 𝑠𝑠𝑐𝑐−1,𝑎𝑎𝑐𝑐). 

2.3  Problem Recognition Subproblem 

We describe three subproblems we address: problem recognition, goal formulation and change, and 
replanning. Problem recognition requires the agent to determine what problem, if any, occurred. 
Specifically, given the extended planning problem tuple (𝑠𝑠𝑐𝑐 , 𝑠𝑠𝑒𝑒 ,𝐵𝐵𝐵𝐵,𝐻𝐻𝑐𝑐), problem recognition 
outputs a problem, root cause, and explanation pair (𝑑𝑑,𝜔𝜔𝑐𝑐 ,𝜒𝜒𝑐𝑐) such that: 

∃𝑑𝑑,𝑔𝑔𝑖𝑖: 𝑠𝑠𝑐𝑐 ⊨ 𝑑𝑑 ∧ 𝑠𝑠𝑒𝑒 ⊭ 𝑑𝑑 ∧ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑔𝑔𝑖𝑖, 𝑑𝑑,𝛴𝛴) ∧ 𝑔𝑔𝑖𝑖 ∈ 𝐺𝐺�𝑐𝑐−1 ∧ 𝜔𝜔𝑐𝑐 𝜒𝜒𝑐𝑐
→ 𝑑𝑑 ∧  𝜔𝜔 ∉ 𝐺𝐺�𝑐𝑐−1

 This is read: There is some discrepancy, a literal conjunct 𝑑𝑑, that was observed (i.e., entailed by 
𝑠𝑠𝑐𝑐) but not expected  (i.e., not entailed by 𝑠𝑠𝑒𝑒). The discrepancy 𝑑𝑑 restricts how the agent can address 
a goal 𝑔𝑔𝑖𝑖 in its legacy goal agenda 𝐺𝐺�𝑐𝑐. The discrepancy 𝑑𝑑 was caused by a root cause 𝜔𝜔𝑐𝑐 (a literal 
conjunct) according to explanation 𝜒𝜒𝑐𝑐. Finally, the root cause 𝜔𝜔 was not intended (i.e., not in the 
legacy agenda 𝐺𝐺�𝑐𝑐). In the above, a goal 𝑔𝑔𝑖𝑖  is restricted by a discrepancy 𝑑𝑑 if there is no plan π that 
can accomplish the goal 𝑔𝑔𝑖𝑖 without eliminating discrepancy 𝑑𝑑. The explanation 𝜒𝜒𝑐𝑐  is a logical 
derivation or proof tree. When this condition is met, the discrepancy 𝑑𝑑 is considered a problem. 
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2.4  Goal Formulation and Change Subproblem 

Once a problem is recognized, the agent must update its goal agenda to respond. Given a current 
state 𝑠𝑠𝑐𝑐, problem cause 𝜔𝜔𝑐𝑐 , explanation 𝜒𝜒𝑐𝑐, and legacy goal agenda 𝐺𝐺�𝑐𝑐−1; goal formulation and 
change must find a new goal agenda (𝐺𝐺�𝑐𝑐 ,𝑔𝑔𝑛𝑛) that responds “appropriately”. Currently, no 
recognized definition of what constitutes a correct or strong goal agenda outside of a particular 
target problem exists. 

2.5  Replanning Subproblem 
The replanning subproblem finds a revised or new plan to accomplish the newly formulated goal 
𝑔𝑔𝑛𝑛. This problem is much the same as the classical planning problem, adding only a legacy plan. It 
is defined by the tuple (Σ, 𝑠𝑠𝑐𝑐 ,𝑔𝑔𝑛𝑛,𝜋𝜋𝑐𝑐−1), and the solution is the new plan 𝜋𝜋𝑐𝑐. We do not further 
consider replanning within the scope of this paper, choosing to reuse results of other research. 

3. Explanation and Goal Formulation
In this work, an explanation is a causal structure that represents a hypothesis about the cause of an 
anomaly. Problem explanations hypothesize the cause of an anomaly that limits an agent’s goals. 
For example, in the context of doing laundry, an explanation such as “thoughtless neighbors cause 
loud music” is not a problem explanation. However, in the context of studying for an exam, it is a 
problem explanation. Moreover, reasoning about a hypothesis allows an agent to formulate its own 
goals to deal with a problem. In a nutshell, explanations help an agent to decide whether an anomaly 
is a problem or not, while goal formulation helps an agent to resolve a problem. 

To implement our ideas, we modified Meta-AQUA (Cox & Ram, 1999), an open-source story 
understanding system, to generate grounded explanations. In prior work, Meta-AQUA was 
supplied with a case-base of explanation patterns that explain anomalous actions performed by 
actors in a story. In our work, we extended Meta-AQUA to retrieve an explanation from memory 
and adapt it for goal formulation whenever an agent encounters a problem.  

3.1  Explanation Pattern 

In our work, we use a case-base of problem explanations engineered manually to fit the domain. 
Each explanation in our case-base is an abstract explanation pattern (XP) (Schank, 2013) as shown 
in Figure 1. An XP is a data structure that represents a causal relationship between multiple states 
and/or actions; variables adapted during or after case retrieval abstractly define each action/state. 
An action or state is referred to as a node and different types of nodes are described based on their 
role in an XP as follows: 

• Explains node: An observed unpredictable action/state (i.e., the target of the XP).
• Pre-XP node: An observed action/state along with the Explains node.
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• XP-asserted node: An action, state, or XP that contributes to the explanation’s cause. In the
case of a causing XP, the effects of the cause XP can be seen as direct causes and the causes of
that XP indirect causes, of the effect XP.

 An explanation pattern represents a causal structure in which XP-asserted nodes form an 
antecedent and Pre-XP nodes form the consequent. The Pre-XP nodes represent those states that 
must hold for the XP to be a candidate, including the Explains node itself.  

Figure 2 represents an example of an abstract explanation pattern i.e., an explanation pattern 
whose nodes refer to unbound variables, Mine-XP. It represents the causal pattern of an enemy 
submarines’ path to a specific location and its mine laying action, later these mines might be 
detected by an autonomous agent if they are on the transit to survey some areas where mines are 
expected. As mentioned earlier, an XP constitutes of Explains node, Pre-XP nodes and XP-asserted 
nodes. The whole pattern can be structured as follows: 
• XP-asserted node1: An enemy exists (sate)
• XP-asserted node2: enemy submarine at the clear-area (state)
• XP-asserted node3: enemy submarine laying mines (action)
• Explains node: Autonomous agent detects a mine (action).
• Pre-XP node: The autonomous agent is at the specific location (state).

Figure 1. XP Structure. 

Figure 2. Mine-XP  
Bolded symbols represent variables (e.g., enemy-sub, autonomous-agent) 
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Similarly, all the causal patterns can be structured as explanation patterns. However, approaches to 
learn such explanations are outside the scope of this paper, but (Ram, 1993) has sketched out a 
detailed approach on learning explanation patterns.  

3.2  Retrieving an Explanation Pattern 

Meta-AQUA constantly tries to unify the Explains node of each abstract XP with each new state or 
action. When such a unification is successful, the Pre-XP nodes of the corresponding case combines 
with the observations of corresponding states or actions from the story. Also, if this unification is 
successful, the case is retrieved, and a set of variable bindings are created that join the XP with the 
story. Substituting these variable bindings into the consequent and the variables to fill the 
antecedents reuses the retrieved abstract XP. However, after retrieval, if the XP-asserted nodes in 
the reused XP contain hypothetical information, then the agent can revise the hypothetical 
information further using the new knowledge obtained from the observations. 
 In our work, whenever an agent observes an anomalous state or action, the above retrieval process 
gets a problem explanation from the case-base. In general, the agent might retrieve zero, two, or 
more explanations. However, for the purpose of this paper we assume the agent retrieves exactly 
one problem explanation if an anomaly is a problem. However, in the future, we would like to 
address this assumption by select one problem by evaluating multiple explanations. 
 In an example as discussed in the previous section, when an autonomous agent detects a mine in 
a clear area where mines are not expected then Meta-AQUA tries to unify the states and actions 
with all the XP’s in the case-base. Mine-XP in figure 2 becomes a candidate XP and goals are 
formulated from it as discussed in the next section.  

3.3  Goal Formulation 

Goal formulation is essential for an intelligent agent to respond to unpredictable events. In our 
work, we perform formulation by chaining backward on each of the antecedents of a retrieved XP 
until we reach all the antecedents to which the agent can respond. Antecedent nodes include actions 
and states; therefore, when the agent wishes to prevent an undesired consequent from recurring, it 
considers as potential goals the elimination of the actors that performed antecedent actions, or 
objects that participate in antecedent states. The removal mapping function that takes in the agents 
or objects and outputs the goals that eliminate them create potential goals.  
 In the example discussed in section 3.1, when Mine-XP becomes the candidate XP, elimination 
of agents in the XP- asserted nodes are considered as potential goals. So, the formulated goal is to 
apprehend the enemy ship. 

4. Domains
To illustrate these concepts in this paper and to assess the performance of the resulting GDA agents, 
it will be useful to consider them in the context of the following concrete examples from the mine 
clearance domain and the labor relations domain. 
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4.1  Mine Clearance Domain 

To prepare a harbor for use during maritime operations, it is essential to conduct mine clearance 
activities to ensure that ships can operate safely as they transit between the open sea and the port in 
the harbor. As searching and clearing mines in the entire harbor is likely to be a time-consuming 
and expensive undertaking, a network of safe shipping lanes is typically established to reduce the 
size of the area within the harbor that needs clearing. Such a system is known as a Q-route (Li, 
2009). 

For experimentation, we created simulated scenarios with a fixed Q-route that consists of a single 
shipping lane. In simulation, an Autonomous Underwater Vehicle (AUV) controlled by an agent 
performs both mine detection and clearance. In each scenario, the agent knows of two previously 
identified areas within the Q-route – green area one (GA1) and green area two (GA2) – where 
mines are expected. As such, any mines encountered which do not lie within GA1 or GA2 constitute 
anomalies. However, only anomalous mines within the Q-route are classified as problems, because 
mines outside the Q-route will not pose a hazard to shipping. It is the role of the agent to determine 
how to respond to these anomalous mines in each scenario. 

 Figure 3 illustrates the mine clearance domain. The red, cylindrical object in the top left corner 
represents the AUV named Remus and each triangle represents a ground truth mine position, not 
given to the agent a priori. The area between the two horizontal lines represents the Q-route, and 
the octagons on the left and right represent GA1 and GA2 respectively. In each scenario, the mines 
are uniformly distributed throughout the transit area (used by Remus to enter and exit the Q-route) 
and the Q-route. 

Figure 3. Simulation of the mine clearance domain in Moos IvP. The Q-route extends from the left to the 
right side of the map and represents the path that ships (6 yellow shapes on the left) will traverse. The remus 
AUV (red) must attempt to clear mines in green areas GA1 and GA2 to support the goals of ships reaching 
the shore. Unexpected mines exist within and outside of the route, and the AUV must decide which are 
problems. 
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4.1.1  Example Mine Clearance Problems 

In this section, we give a series of example extended planning problems in the Mine Clearance 
domain and their solutions. In the Mine Clearance domain, the initial goal agenda (𝐺𝐺�𝑐𝑐) includes the 
following goals: clear the mines in GA1, clear the mines in GA2, and head back to its initial position 
(home). Let us assume that the agent selects the goals in the provided order so the current goal of 
the agent would be to clear the mines in GA1. Therefore, initially 𝑔𝑔0 = cleared-mines(remus,ga1) 
is the goal. The expectation of the agent is that the mines are present only in GA1. The initial plan 
(𝜋𝜋0) is comprised of several steps to achieve the first of its initial goals (𝑔𝑔0); some of which are the 
following: 

𝜋𝜋 = { 𝑎𝑎1 =move_to_the_location (remus, home , location-a), 
𝑎𝑎2 =move_to_the_location (remus, location-a , location-b), 
𝑎𝑎3 =move_to_the_location (remus, location-b , ga1), 
𝑎𝑎4 =survey (ga1), 
𝑎𝑎5 =identify-mines (ga1), 
𝑎𝑎6 =clear-mines (ga1)} 

Here location-a and location-b are locations of waypoints outside the Q-route that describe a path 
to GA1 from “home”, the agent’s launching point. After reaching GA1, the plan directs the Remus 
to survey locations in GA1, locate/identify any mines and clear them. In the initial state (𝑠𝑠0), GA1 
is expected to (likely) contain one or more unknown mines. After 𝑔𝑔0 is satisfied, however, the agent 
has cleared all mines in GA1.  

The agent detects a mine at location-b after it completes the action 𝑎𝑎1. This is an anomaly because 
in the observed current state (𝑠𝑠𝑐𝑐), there is a mine at location-b, but not in the expected state (𝑠𝑠𝑒𝑒). 
This triggers problem recognition. However, no explanation is found: a Pre-XP node of the 
explanation pattern remains false as the detected mine is outside of the Q-route. The anomalous 
mine is therefore not considered a problem, and goal formulation does not occur.   As such, the new 
solution is 𝛹𝛹𝑥𝑥 =  �𝐺𝐺�0,∅,∅, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜋𝜋0)�, containing the unchanged initial goal agenda, no new goal 
or explanation, and the remaining actions in 𝜋𝜋0. The history 𝐻𝐻𝑐𝑐  =  �𝐺𝐺�ℎ ,𝜋𝜋ℎ, ԑℎ,𝜒𝜒ℎ� is updated with 
the unchanged goal agenda, updated plan, state, action, and explanation. 

After the agent achieves 𝑔𝑔0, it travels towards GA2 to achieve the next goal, 𝑔𝑔1 = cleared-
mines(remus,ga2). Its new plan visits intermediate locations location-d and location-e in the route 
to clearing mines in GA2. In the expected state (𝑠𝑠𝑒𝑒), the Remus is at location-e between GA1 and 
GA2, where there are no mines. However, in the current state (𝑠𝑠𝑐𝑐), a mine is observed. As described 
previously, this anomaly triggers problem recognition. This time, the anomaly is a problem, as the 
situation matches the explanation pattern, producing an explanation 𝜒𝜒𝑐𝑐 with a root cause 𝜔𝜔𝑐𝑐 = mine-
at(location-e) ∧ in-qroute(location-e). Goal formulation then generates a new goal 𝑔𝑔𝑛𝑛 = ¬mine-
at(location-e), and replanning produces a plan 𝜋𝜋𝑐𝑐 that achieves 𝑔𝑔𝑛𝑛; the updated goal agenda adds 
this new goal: 𝐺𝐺�𝑐𝑐 = 𝐺𝐺�𝑐𝑐−1 ∪ {𝑔𝑔𝑛𝑛}. This completes the solution �𝐺𝐺�𝑐𝑐 ,𝑔𝑔𝑛𝑛,𝜒𝜒𝑐𝑐 ,𝜋𝜋𝑐𝑐� , which is used to 
update the history 𝐻𝐻𝑐𝑐 as before. The agent then switches to the new plan 𝜋𝜋𝑐𝑐. 

444



4.2  Labor Relations Domain 

This domain describes a virtual institution, consisting of an institute head, employees, and 
customers. The institution starts with an initial reputation and budget represented by numeric 
values. The head of the institute enacts policies; implementing a policy takes a known fixed amount 
of budget and increases the institute’s reputation value by a fixed amount. Disagreements about 
enacted policies may occur between the head and the employees with certain intensity. Intensity is 
a numeric value; high intensity disagreements may lead to a strike. Intensity values vary for each 
disagreement and are unpredictable. Disagreements can be resolved by negotiating. Negotiating to 
solve a disagreement also requires a budget, which varies with respect to the intensity of the 
disagreement. Moreover, negotiations decrease the reputation value by a function of intensity. 
 The agent acts as the head of the institute with a goal to increase the reputation of the institute, 
and, in order to achieve that goal, the agent must implement some policies. The expectation is that 
the employees agree to the policy, but, if the employees disagree then this is considered an anomaly, 
and only those disagreements that can lead to a strike are considered as problems. Therefore, the 
intelligence of the agent lies in identifying the anomalies that might lead to strikes and working on 
them. This domain is not related to trading and marketing agents in artificial intelligence, and is not 
simulated using third-party software. 

4.2.1  Example Labor Relations Domain Problems 

In the Labor Relations domain, the current goal agenda (𝐺𝐺�𝑐𝑐) include: increasing the reputation of 
the institution and negotiating with employees. The initial goal 𝑔𝑔𝑖𝑖 = increased reputation(institute, 
five). The agent expects (𝑠𝑠𝑒𝑒) that the policy should be accepted by all the employees. If the 
employees do not accept the policy, then an intensity value of the rejection is provided. If that 
intensity value is low then it is not considered a problem, but if the value is high then it is a problem. 
Therefore, the agent explains an anomaly to be a problem based on the intensity value. 

Similar to the Mine Clearance domain, if the intensity value is less than 35, then the observed 
current state (𝑠𝑠𝑐𝑐) is not the same as the expected state (𝑠𝑠𝑒𝑒) and a rejection of policy among 
employees occurs. This triggers problem recognition. However, no explanation is found: a Pre-XP 
node of the explanation pattern remains false as the intensity is less than 35. The anomalous 
situation is therefore not considered a problem, and goal formulation does not occur.   As such, the 
new solution is 𝛹𝛹𝑥𝑥 =  �𝐺𝐺�0,∅,∅, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜋𝜋0)�, which contains the unchanged initial goal agenda, no 
new goal or explanation, and the remaining actions in 𝜋𝜋0. The history 𝐻𝐻𝑐𝑐  =  �𝐺𝐺�ℎ,𝜋𝜋ℎ, ԑℎ ,𝜒𝜒ℎ� is 
updated with the unchanged goal agenda, updated plan, state, action, and explanation. 
 In this domain, the first goal is repeated iteratively until the agent is out of resources. Let us say 
an anomaly occurred again with an intensity value higher than 35. Once again the explanation is 
triggered. This time, the anomaly is a problem, as the situation matches the explanation pattern, 
producing an explanation 𝜒𝜒𝑐𝑐 with a root cause 𝜔𝜔𝑐𝑐 = disagreement-with(policy) ∧ disagreement-
intensity(high). Goal formulation then generates a new goal 𝑔𝑔𝑛𝑛 = negotiated(employees), and 
replanning produces a plan 𝜋𝜋𝑐𝑐 that achieves 𝑔𝑔𝑛𝑛; the updated goal agenda adds this new goal: 𝐺𝐺�𝑐𝑐 =
𝐺𝐺�𝑐𝑐−1 ∪ {𝑔𝑔𝑛𝑛}. This completes the solution �𝐺𝐺�𝑐𝑐 ,𝑔𝑔𝑛𝑛,𝜒𝜒𝑐𝑐 ,𝜋𝜋𝑐𝑐� , which is used to update the history 𝐻𝐻𝑐𝑐 
as before. The agent then switches to the new plan 𝜋𝜋𝑐𝑐. 
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5. Evaluation of the Implementation in the Domains
In both domains, in order to perform the evaluation we have introduced two other agents along with 
our GDA agent, namely an eager agent and a baseline agent. They each respond differently to 
anomalies. The GDA agent detects all anomalies, but only works on those perceived as problems. 
In contrast, the eager agent addresses all anomalies that it encounters, i.e., it tries to fix every 
anomaly it encounters. The baseline agent plans only for its original goals and ignores all 
anomalies. We assessed the performance of the three agents by varying the environment and 
averaging the results for 10 different runs for each scenario and presented the results. 

5.1  Empirical Results in Mine Clearance Domain 

We calculated the performance of the agents based on the number of the ships that reach the other 
side of the harbor safely in various mine density scenarios. Each scenario includes a total of six 
ships and three mine densities: low, medium, and high. We also introduced deadlines ranging from 
0 to 2 seconds in the domain with increments of 0.5 seconds. Please note that the seconds indicate 
the simulation time, not a real world time. These deadlines specify the time gap between the agent 
starting from home to clear the mines and the ships starting their journey from one end of the shore 
to other.  

 Figure 4 shows the scores achieved by the three different agents in all mine density (the average 
of low, medium, and high density) scenarios for the varied deadlines. The X-axis depicts the delay 
with which the ships start and the Y-axis indicates the number of ships that safely traverse the Q-
route. Here, when we start looking at the values from the left side of the graph, at the delay of 0, 
very few ships were able to traverse the Q-route successfully, for all three agents. Those that were 
able to reach the other side were able to cross the Q-route in the low mine density scenarios, while 
very few or no ships made it across in the medium and high mine density scenarios. 
 To understand what a delay of 0.5 seconds means, consider what each agent can accomplish 
within that timeframe in a characteristic scenario. After 0.5 seconds, the baseline agent clears the 

Figure 4. Scores obtained by the agents in mine clearance domain. 
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mines in GA1 and is on its way to clear the mines in GA2. At the same point in time, the GDA 
agent has cleared the mines in GA1 as well as some mines within the Q-route; the eager agent has 
cleared mines outside of the Q-route and in GA1. 
 After 1 second, the baseline agent has cleared the mines in both green areas and is headed towards 
home, the GDA agent has cleared some mines within the path from GA1 to GA2 and some mines 
within GA2, whereas the eager agent is working on the mines within the Q-route after clearing the 
ones in GA1.  
 In these conditions (delay of 0.5 and 1 seconds), the difference between the performance of the 
GDA and eager agents does not seem very large. This is because the average of the various mine 
density scenarios also contains low mine density fields where the two agents perform almost 
identically, since the eager agent only has a few mines to clear outside of the Q-route. The 
experiment is also performed on the scenario with only one problem, which is caused a minimal 
difference between the agents. However, the difference in performance for medium and high mine 
density scenarios is two ships and it is significant for just one problem situation. 

At a delay of 1.5 seconds or greater, all agents have performed all clearance tasks intended; 
thus, performance does not change for delays greater than 1.5 seconds. 

5.2  Empirical Results in Labor Relations Domain 

To assess the performance of the three agents in this domain, we compare the reputation values of 
all agents after they implement a certain number of policies. There are some numerical values in 
this domain: initial reputation is 500 and total budget is $4000. Implementing any policy reduces 
the budget by $25.  
 The intensity value of a disagreement is a random number between 1 and 100. When a 
disagreement arises, the employees can demand a budget amount, which is a random number 
between 1 and 25. Providing the budget amount of any amount within 40% to 60% of the amount 
demanded by employees solves the disagreement.  
 If there is no disagreement when a policy is implemented then the reputation of the institution is 
increased by five. However, if the agent encounters a disagreement, then it has two options: to solve 
the disagreement or to ignore the disagreement and strictly adhere to its initial policy. In the first 
option that addresses the disagreement, the reputation is neither decreased nor increased, i.e., the 
change in reputation is zero. If the agent does not address the disagreement, then the reputation 
value is decreases as a function of intensity value. So, if the intensity is <=34 then Rep = -Int/100 
and, if the intensity is >=35 then Rep = -[(n+2)*Int]/100 where n = integer((I-35)/5). The integer() 
acts as a rounding function. There is an interest value added to the budget after implementing every 
50 policies with a rate of 2.5%. Reputation values can become negative if the agent does not address 
disagreements. 
 Figure 5 shows the reputation achieved by the three different agents over 200 policies. The X-
axis depicts the number of policies implemented and the Y-axis indicates the reputation value 
scaled to 10. All the agents have an initial reputation of five. Each point on the lines contains 
average of 20 policies and the reputation value is cumulative and can reach a max value of 10. In 
this experiment if any agent is out of budget then it starts to behave as a baseline agent as the debt 
should be as minimum as possible when the agent implements all policies. 
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Starting with the baseline agent, at the completion of 50 policies the baseline agent already has a 
negative reputation because it does not address any of the disagreements, so the reputation value 
drops and keeps on decreasing monotonically.  
 The GDA agent gets a little behind the eager agent from 50 to 120 policies because the GDA 
agent will not address the anomalies with lower intensity values, whereas, the eager agent addresses 
all the anomalies and spends its budget on every anomaly. However, this means the eager agent is 
out of its budget much sooner than the GDA agent.  
 The eager agent is out of budget at 140 policies and starts behaving as a baseline agent, and 
begins to drop its reputation, while the GDA agent preserves its budget and continues on its 
increment streak of the reputation value for around 150. The baseline agent’s reputation value is 
still sinking to much lower values but the scale is adjusted such that the negative values are only 
visible up to -10. These results indicate that the GDA agent should perform better overtime and 
maintain a higher reputation than the eager agent by a significant amount. The GDA agent 
underperformed by a negligible amount for a period of time when compared to eager agent because 
of the higher amount of resources. A smart agent is not needed if the amount of resources present 
are infinite, but this is not very realistic and as long as resources have a limit, then there will be a 
need for the GDA agent to use them sustainably. 

6. Related Research
Statistical anomaly detection has been the subject of extensive research because of its applications 
to a variety of detection tasks such as network intrusion (Kumar, 2005), credit card fraud 
(Aleskerov, Freisleben, & Rao, 1997), and malignant tumors from MRIs (Spence, Parra, & Sajda, 
2001) among many others (Chandola, Banerjee, & Kumar, 2009). Those works rely on large 
volumes of data to build statistical models of expected patterns. In that context, anomalies 
correspond to outlier patterns deviating from expected patterns. There is also the work on execution 

Figure 5. Scores obtained by the agents in labor relations domain. 
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monitoring (Fritz, 2005; Alcázar et. al., 2010; Langley et. al., 2017; Sapena & Onaindia, 2002) 
whenever the current plan is not valid or an anomaly is detected the agents performs replanning. 
However, our work differs from execution  monitoring by addressing only some of the anomalies 
when replanning is not possible. In our work, our models are planning models and anomalies 
correspond to deviations of those models. One of the most challenging problems of statistical 
anomaly detection is the potentially large number of false positives, which trigger unnecessary 
alarms. In our work, in contrast to the previously mentioned works, explanations for an anomaly 
are generated to determine the nature of the anomaly and decide if the agent must deal with it. 
 The concept of anomaly detection has played a central role in GDA research. In this work, we 
are focusing on environmental failures since the anomalies are the result of the partial observability 
in the environment. Munoz-Avila et al. (2010), observed that not all anomalies require triggering a 
new goal. In that study, the GDA agent is operating in an adversarial environment with a reward 
function (i.e., the score of the game). A reward function is also used in Jaidee et al (2011) which 
uses reinforcement learning techniques to show GDA knowledge. With both of these, when the 
current plan is resulting in a positive reward rate, the agent will ignore anomalies. In contrast, in 
our work, we do not assume a reward function; instead, we generate a causal linkage to determine 
if a problem underlies the anomaly.  
 ARTUE (Molineaux, Klenk, & Aha, 2010) is a GDA system that was used to provide control in 
a Naval strategic simulation of an adversarial and partially observable environment. In this work, 
explanations were generated using a truth maintenance system that identifies plausible worlds that 
are consistent with the observations made by the agent and triggers a new goal as a result. ARTUE 
explains all anomalies, whether problematic or not; goal formulation is responsible for 
determination of whether the agent should respond. The initial version of ARTUE used rule-based 
knowledge; extended versions incorporated learning of goal selection knowledge (Powell, 
Molineaux, & Aha, 2011) and domain-independent motivations (Wilson, Molineaux, & Aha, 2013) 
responsible for identifying situations that require response. However, these techniques modified 
the goal formulation process, rather than incorporating a separate problem recognition step prior to 
explanation generation. 
 Other kinds of explanations also exist; external explanations describe an agent’s anomalous 
behavior to others (Floyd & Aha, 2016), while internal explanations hypothesize the cause of an 
anomaly for its own needs (Aamodt, 1993; Molineaux, Kuter, & Klenk, 2012). In our work, we use 
a variant of the internal explanations called problem explanations.  
 More recently, the notion of GDA agent’s expectations has been extended to consider only the 
necessary effects of the plan executed so far as opposed to considering the whole state 
(Dannenhauer & Munoz-Avila, 2015).Our work uses this form of expectations. 
 Our work is motivated by work on introspective reasoning, where the agent reasons about the 
decisions that lead to actions taken and how these actions affect the environment. Meta-AQUA 
(Cox & Ram, 1999) reasons about the processes that lead to a decision which resulted in an anomaly 
and considers three types of anomalies: novel situations, incorrect background knowledge and mix-
indexed knowledge structure; the difference between the last two is that in the latter the agent has 
the knowledge but it is not retrieved in the appropriate circumstances. Fox and Leake (1995) present 
a mechanism to fix these retrieval mechanisms using introspective reasoning techniques. In our 
work, we are focusing on novel situations when there is an expectation failure. 
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7. Conclusion and Future Research
We have described a formalism for agents that enables them to distinguish between those anomalies 
that they must deal with from those that they do not. The crucial factor in this is the use of 
explanation patterns so that an agent can formulate its own goals to adapt to unexpected 
events/situations that require the agent’s attention. 

Real world scenarios often deal with deadlines and it is practically impossible for an agent to 
worry about all the anomalies it comes across, reason, react and achieve its primary goals within 
the given deadline. Although our experiment setting is simulated, adding a deadline to our 
experiment clearly shows that the performance of the GDA agent is better than the eager and the 
baseline agents. 

For future work, we would like to work on several different enhancements that can improve the 
performance and reasoning capabilities of the GDA agent in our future research. First, adding an 
importance factor to the problem formalism would help the agent to prioritize anomalies that are 
classified as a problem with the goals it possesses. Moreover, given that an agent only has finite 
resources, prioritizing the anomalies could also assist an agent to delegate goals to other agents. 
Second, adding goal monitors (Dannenhauer & Cox, 2018) after formulating goals could help an 
agent to adapt as the world changes. For example, during mine clearance, if the establishment of a 
Q-route changed from one location to another then it is highly likely that it would not need to 
continue to clear mines along the originally proposed Q-route. In the labor relations domain, the 
budget could be created through profits or donations, thus changing the world. Finally, if the 
number of anomalies flagged were excessive given what might be anticipated in a particular 
context, then this could serve as a cue for the agent to generate a goal with a broader scope than the 
current goal. For example, our experimental setting has around ten mines within the proposed Q-
route. Instead of clearing just the mines on the agent’s path from GA1 to GA2, if the number of 
mines encountered were too great, then the agent could generate, or delegate to another agent, a 
goal to survey the entire region between GA1 and GA2. Finally, in the labor relations domain, we 
would like to explore adding other factors such as customer satisfaction, profits, or time and 
possibly go a step further and create a multiagent scenario. 
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