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Abstract: We present a modeling method that incorporates full-wave electromagnetic 
simulations and radiation force calculations to evaluate the performance of grating chips 
for compact megneto-optical traps (MOTs). 

Grating chips have been demonstrated to be a viable platform for trapping cold atoms, and have a significantly
reduced experimental footprint compared to a standard three-dimensional magneto-optical trap (MOT) [1]. How-
ever, evaluating grating chips can be challenging, as illustrated in [2]. Here, we propose a multiphysics approach
which builds on previously proposed figures of merit, such as beam overlap volume, balancing efficiency [2] [3]
and polarization of the diffracted beams [4] that allows us to correlate (fabrication and degradation) errors of the
grating chip with MOT performance.

As an example, we evaluated a two-dimensional grating chip we recently fabricated to simultaneously trap 87Rb
and 133Cs atoms, corresponding to incident beam wavelengths, λinc ∼ 780 nm and λinc ∼ 852 nm, respectively.
Fig. 1 illustrates the grating chip design.

Fig. 1. (a) For an isotropic incident beam, the grating chip that we evaluated produces first-order
diffracted beams at azimuthal angles φ = 0, π/2, π, 3π/2 and grating angle θ = 53o (at λinc ∼ 780
nm; the other wavelength not shown). The intensity efficiency of first-order diffracted beams is
η1 ∼ 23% and for zero-order diffracted beam is η0 ∼ 0.7%. (b) SEM image of the fabricated grating
structure. (c) Illustrates the beam overlap regions for both λinc.

We initially obtain the intensity and polarization of diffracted beams of the grating using finite-difference time-
domain (FDTD) simulations. Using the output of the FDTD, we numerically determine the trapping-force profile
on an idealized 87Rb atom, and optimize the grating chip design. Post-fabrication, measured the intensity and
polarization properties of the diffracted beams and used these measurements to numerically calculate the trapping-
force profile. We are able to compare the force calculations based on experimental data and based on FDTD
simulations, and thus determine the expected impact of fabrication errors on the properties of the MOT.

The FDTD simulation provides the polarization states of the diffracted beams in terms of complex electric-field
amplitudes in the linear basis (Ẽs & Ẽp), which we then transform into the spherical basis to enable radiation force
calculations. We first transform the linear basis into elliptical basis by determining the auxiliary angle α , given by
tan α = |Ẽs|/|Ẽp|. Subsequently we determine the ellipticity angle χ = sin−1[(sin 2α)sinδ ]/2, where δ denotes
the phase angle between Ẽs and Ẽp [5]. In the spherical basis, we define three unit vectors corresponding to each
light beam: ε0 = (θ ,φ); εa = (θ +π/2,φ) and εb = ε0 × εa. Overall, each light beam’s polarization vector in the
spherical basis is denoted by ε = (cos χ)εa + i(sin χ)εb.

To demonstrate the technique, we examine the MOT obtained for the D2 transition line of 87Rb atoms using
the grating chip illustrated in Fig. 1. The net radiation force on an idealized, two-level atom for the transition
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Jg = 0 → Je = 1 is given as:
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where k = 2π/λinc is the wave-number; Γ = 2π ×6.07 MHz is the natural linewidth and Is = 3.58 mW/cm2 is
the average saturation intensity [6]; δq =

qµBgeB
ℏ where µB is Bohr magneton, ge is the excited state Landé factor

and B is the magnetic field intensity; j identifies each of the N = 6 beams illustrated in Fig. 1 (a). I jq = I j |ε∗j .εBq|2,
where ε j is the beam’s polarization vector as determined above and εBq is the magnetic field polarization vector
expressed in the spherical basis; IT = ∑ j ∑q I jq. We set up our simulations with commonly-used parameters for
achieving a 87Rb MOT: a σ polarized plane wave with λinc ∼ 780 nm, detuning ∆ = −2Γ, intensity Iinc = 3Is
incident normally along with dB/dz = 10 G/cm.

Using the intensity and polarization states of the diffracted beams obtained from the FDTD simulation,
we determine the trapping-force profiles (blue curves in Fig. 2). For post-fabrication evaluation of the grat-
ing chip, we measured the intensity of the diffracted beams and determined their χ by passing each beam
through a polarizer to record the minimum and maximum power while rotating the polarizer, thereby calculating
χ = tan−1[−

√
Pmin/Pmax] and hence determined ε for each beam. Using these experimental values, we obtained

a corresponding set of trapping-force profiles, illustrated by red curves in Fig. 2.
We also compared the expected volume of the MOTs obtained via both the trapping-force profiles. The spatial

extent of a MOT can be estimated as a Gaussian distribution, so the potential energy near the trap centre can
be denoted as U(r) ∼ − 1

2 fr r2, where fr is the linear slope of the force vs r curve and r = x,y or z. The atom
density distribution scales as n(r) = noe∑r −U(r)/KBT , where KB is the Boltzmann constant and T denotes the atom
temperature. The 1/e2 width of the atom distribution is σr = 4

√
KBT/ fr and the volume is ∏r=x,y,z σr. For an

arbitrarily chosen T = 730 µK, the force profiles generated using the FDTD simulation suggest a MOT volume
∼ 2.4 mm3 with σz ∼ 0.8 mm, while the experimentally determined data suggests a MOT volume ∼ 2.9 mm3

with σz ∼ 0.8 mm. The trapping-force profiles, along with the MOT volumes, are in close agreement, while σz is
within the beam overlap volume illustrated in Fig. 1(c).

In conclusion, we demonstrated a multiphysics method for evaluating a grating chip for atom-trapping experi-
ments, while providing a direct figure of merit for evaluation.
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Fig. 2. Trapping force vs. distance from the MOT center for D2 transition of 87Rb atom obtained
using Eqn. 1. The blue curves are the trapping-force profiles obtained using FDTD simulations for
the fields while the red curves are the trapping-force profiles obtained by simulating forces based on
optical measurements of fabricated gratings.
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