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Abstract

What are the units of text that we want to
model? From bytes to multi-word expres-
sions, text can be analyzed and generated
at many granularities. Until recently, most
natural language processing (NLP) models
operated over words, treating those as dis-
crete and atomic tokens, but starting with
byte-pair encoding (BPE), subword-based
approaches have become dominant in many
areas, enabling small vocabularies while still
allowing for fast inference. Is the end of the
road character-level model or byte-level pro-
cessing? In this survey, we connect several
lines of work from the pre-neural and neu-
ral era, by showing how hybrid approaches
of words and characters as well as subword-
based approaches based on learned segmen-
tation have been proposed and evaluated. We
conclude that there is and likely will never
be a silver bullet singular solution for all ap-
plications and that thinking seriously about
tokenization remains important for many ap-
plications.

1 Introduction

“‘tokens’ are not a real thing. they are a

computer generated illusion created by

a clever engineer” —@dril_gpt1

When we first introduce people to NLP models,
we often take for granted the idea that text is cut up
into little pieces that are fed to a computer, eventu-
ally as nothing but a sequence of integers. Follow-
ing Webster and Kit (1992), we call these (usually)

∗Working group chairs
1A Twitter bot with (human-curated) outputs of a language

model based on GPT2 (Radford et al., 2019) and trained on
tweets of Twitter poet @dril; https://twitter.com/
dril_gpt2/status/1373596260612067333.
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Figure 1: A taxonomy of segmentation and tokenization
algorithms and research directions

contiguous substrings tokens. In teaching settings
and in fact historically in NLP, these tokens are
somewhat naturally implied to be words—at first,
perhaps naively as “space-separated substrings” in
English. Understandably, as soon as we try to split
punctuation from words, things get a little tricky.
Take the word “don’t” for example: not splitting
it is reasonable, but if we split on all punctuation,
we would get three somewhat nonsensical tokens
(don ’ t)—and we might argue that the most sensi-
ble split actually ought to yield the two units “do”
and “n’t”, as found in the Penn Treebank (Marcus
et al., 1993).

This survey deals with such questions of tok-

enization and we will elaborate on fundamental
questions and terminology in §2, and show how
this important if somewhat unglamorous part of all
NLP work has historically been treated (§3). How-
ever, since especially in the last five years there
has been renewed interest in going beyond intu-
itive definitions of a “token” as a somewhat atomic
word-like space-separated unit. One way to do
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so is to use word-internal information to augment
word-like units (§4), which neural modeling has
made easier than ever, leading to models that can
even learn word boundaries with no overt indica-
tion (e.g., when spaces are present). That notion
of unsupervised word segmentation or discovery
has been present on its own in decades of work
(§5), but we will find it useful to consider when
finally looking at the now prevalent idea of using
subword units as atomic tokens (§6). We will close
out this survey with a look at some issues of sharing
and competition in multilingual vocabularies (§7)
and work using the simplest tokenization possible:
maximal decomposition into characters, bytes, or
even pixels (§8).

Equipped with all this knowledge, we will con-
clude the survey in §9 by making a case for why
“complicated” tokenization is something to practice
or even learn about even now in 2021 when the easy
solution of bytes seems in reach. We will argue that
while recent advances like CANINE (Clark et al.,
2021), ByT5 (Xue et al., 2021), or Charformer (Tay
et al., 2021) make maximally decomposed process-
ing feasible for certain domains and use-cases, they
do not cover the wide variety of NLP scenarios and
come with their own drawbacks and biases.

2 Tokens, word-forms, and sub-words

In NLP, textual data has been traditionally seg-
mented into “sentences” (or “utterances”, etc.) and
“words” due to linguistic motivations and technical
constraints. The macroscopic units (“sentences”)
are often considered independently from one an-
other and themselves segmented into microscopic
units. The definition of these microscopic units
has always been a matter of approximation and
compromise. On the one hand, these units re-
ceive linguistic annotations (e.g. part-of-speech
tags, morphosyntactic annotation, syntactic depen-
dency information), which would require them to
be linguistically motivated units. On the other
hand, a large range of phenomena make it highly
non-trivial to identify and even to consistently de-
fine linguistic units, denoted by the Morphologi-
cal Annotation Framework (MAF) ISO standard
(Clément et al., 2005) as word-forms. Such phe-
nomena include contractions (e.g. English don’t,
cited above, and French aux ‘to thepl’), compounds
(e.g. French copier-coller ‘copy-paste’2), morpho-

2Cf. inflected forms copié-collé ‘copy-pasted’, lit. ‘copied-
pasted’, but copie-collerai ‘will1sg copy-paste’.

logical derivatives (e.g. English or French anti-

Trump), as well as numerous classes of named en-
tities and other sequences following type-specific
grammars (e.g. numbers, URLs).

As a result, typographic units, generally called
tokens have been used as an approximation for
such linguistically motivated units. For instance,
MAF defines a token as a “non-empty contiguous
sequence of graphemes or phonemes in a docu-
ment.” In the case of writing systems using a ty-
pographic separator such as the whitespace, now
universally used with the Latin script for instance,
tokens have been widely used and broadly defined
as either contiguous sequences of non-punctuation
non-whitespace marks or punctuation marks. Pro-
vided a few arbitrary decisions are made regarding
certain punctuation marks (e.g. the hyphen or the
apostrophe), such a definition makes it possible to
deterministically split a sentence into atomic units,
resulting in a segmentation into tokens that are ac-
ceptable approximations of word-forms. Crucially,
as discussed in detail by Clément et al. (2005),
Sagot and Boullier (2008) and elsewhere, there is
no one-to-one correspondence between tokens and
word-forms; a word-form can be made of several
tokens (e.g. French or English sine die) whereas
several word-forms can be represented by the same
token (e.g. English don’t = do + not, Spanish
damélo = da + me + lo). This is what the Uni-
versal Dependencies guidelines3 refer to as “multi-
token words” and “multiword tokens,” respectively,
a topic further discussed by More et al. (2018). In
fact, both phenomena can interfere in non trivial
ways (e.g. French à l’instar du = à_l’instar_de +

le).4

In recent years, the spread of approaches based
on neural language models resulted in an evolu-
tion in how sentences are split into atomic units,
thereby resulting in a redefinition of the notion of
tokenization. Indeed, based both on scientific re-
sults (e.g. the impact of sub-word segmentation on
machine translation performance (Sennrich et al.,
2016)) and on technical requirements (e.g. lan-
guage models such as BERT that require a fixed-
size vocabulary), the need for the atomic processing
units (still called tokens) to be an approximation of

3https://universaldependencies.org/u/

overview/tokenization.html
4When the writing system at hand does not have a typo-

graphic separator, tokens must be defined differently. With
scripts like the Chinese or Japanese script, an option for in-
stance is to consider each character as a token on its own.
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word-forms has faded out. As a result, in current
NLP, the notion of token still perfectly matches
its MAF definition, but it no longer corresponds
to the traditional definition of a typographic unit.
“Tokenization” now denotes the task of segment-
ing a sentence into such non-typographically (and
indeed non-linguistically) motivated units, which
are often smaller than classical tokens and word-
forms, and therefore often called sub-words. Ty-
pographic units (the “old” tokens) are now often
called “pre-tokens,” and what used to be called
“tokenization” is therefore called nowadays “pre-
tokenization.” This term is motivated by the fact
that the first approaches to the new notion of “to-
kenization” often involved segmenting sentences
into proper typographic units (i.e. the “old” notion
of tokenization) before further segmenting (some
of) the resulting units (formerly “tokens”, now “pre-
tokens”) into “sub-words”.

3 Pre-tokenization yields word-like

typographic units

As a compromise between the linguistic irrelevance
of purely typographic tokens and the difficulty of
automatically splitting a text into linguistically mo-
tivated word-forms, units that are halfway between
purely typographic tokens and purely linguistic
word-forms have been widely used,5 albeit often
(improperly) denoted by the term “token” before
the spread of sub-word tokenization, and “pre-
token” since then. Many tools, formerly known
as “tokenizers” and nowadays as “pre-tokenizers”,
have been developed and used for a long time.
Some of them are relatively simple and remain
faithful to the typographic token. Amongst the
most widely used, we can cite the venerable Moses
(Koehn et al., 2007) tokenizer6 and the more recent
pre-tokenizers package in Hugging Face’s
Tokenizers package.7 This practice resulted in the
word “tokenization,” now “pre-tokenization,” end-
ing up denoting the task of segmenting sentences
into atomic units in general, i.e “basic units which
need not be decomposed in a subsequent process-
ing” (Webster and Kit, 1992), even when such units
are closer to word-forms than to typographic units.

5Cf. the Penn TreeBank (Marcus et al., 1993), where don’t

is split into two units do and n’t, as mentioned above.
6https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/

tokenizer/tokenizer.perl
7https://github.com/huggingface/

tokenizers

Moreover, it is fairly common for tokenizers to
not only segment sentences but also modify the raw
text, for instance for normalization, spelling cor-
rection or named entity detection purposes, thereby
departing from the standard definition of token.
Thus a string like “some ‘quoted’ text” might be
tokenized into five units: “some " quoted " text.”
On the other hand, a number of tools have been
developed and used that attempt a joint segmenta-
tion of sentences into tokens (which remain proper
substrings of the input text) and word-forms (which
can be the output of normalization, spelling correc-
tion and named entity recognition steps). Some
of these tools take into account the inherent non-
determinism of the mapping between the two types
of units (Sagot and Boullier, 2008). Normalization
operations like these or conflation and merging of
different whitespace symbols leads to most tokeniz-
ers being irreversible, i.e., we cannot recover the
raw text definitively from the tokenized output.8,9

4 Augmenting word-level pretokenizer

tokens with character information

While word-level models are conceptually easy to
understand and in the neural era (Bengio et al.,
2001; Collobert and Weston, 2008; Mikolov et al.,
2013) offer features at an interpretable granularity,
their central weakness is the inability to deal with
rare and novel words, i.e., words that were seen
very rarely during training or not even at all (out-
of-vocabulary, OOV)—they are closed-vocabulary

models. In particular, historically rare word types
were replaced with a new word type UNK (un-

known) at training time; at test time, any token
that was not part of the model’s vocabulary could
then be replaced by UNK. That approach however
comes with a number of drawbacks: 1) UNKs are
not acceptable when performing natural language
generation (NLG), 2) they do not allow us to extract
features for novel words that are useful anchors of
meaning and not just one-off events (Church, 2000)
when used in large-scale models like ELMo (Peters
et al., 2018) or BERT (Devlin et al., 2018), and

8While this is not a major issue for most applications,
it means that we no longer model the original text, but a
string that may correspond to many original strings, inflating
probability estimates of language models; this issue is also
highlighted in the context of ambiguous tokenization (see
§6.4.3) by Cao and Rimell (2021).

9The “reversible” language-agnostic tokenizer of Mielke
and Eisner (2018) attempts to remedy some of these issues,
but still conflates whitespace.
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3) in languages other than English, in particular
those with more productive morphology and thus
higher type-token-ratio, removing rare words is in-
feasible (Cotterell et al., 2018; Mielke et al., 2019).
Nevertheless, since the word is a fundamental unit
of language, a number of approaches emerged to
improve handling of rare and novel words under
a fundamentally word-based framework by basing
their handling on the characters that make up a
word. We will present some of these approaches in
this section, for a more comprehensive treatment
of word representation, Pinter (2021) surveys lin-
guistic background and multiple approaches.

4.1 Augmenting word-level models with

spelling information

The idea of somehow using information about
the spellings of a word to inform the word’s rep-
resentations of course is decades old. In neu-
ral models for language, research in the 90s and
2000s often forewent the focus on words altogether
and processed strings of characters instead (see
§8 and §4.2), but as soon as neural models be-
came important in NLP, combinations of word- and
character-level information for use in neural net-
works emerged there, too.

Dos Santos and Zadrozny (2014) first proposed
to use information about the words themselves to
aid word embedding estimation. Soon thereafter
Ling et al. (2015), Kim et al. (2016), and Jozefow-
icz et al. (2016) popularized the idea of determin-
istically constructing a word’s embedding from its
spelling,10 both for textual input as well as for gen-
erative language modeling, that is, prediction of
strings. However, even when replacing embedding
matrices with convolutional neural network (CNN)
layers, their generative models are still closed-

vocabulary, meaning they can only predict words
that were seen (often enough) in training data, so
the CNN construction only helps with rare words,
not novel words. Furthermore, constructing embed-
dings from spellings for each token (as opposed
to every type like Mielke and Eisner (2018), see
§4.2) implicitly trains the CNN-powered embed-
ding function to “get frequent words right” instead
of anticipating novel words, an issue discussed in
Mielke and Eisner (2018). Similar constructions

10It should be noted that Jozefowicz et al. (2016) also pro-
pose a variant in which output tokens are not scored through
a softmax, but generated character by character, anticipat-
ing the advancements described in §4.2, but still staying in a
closed-vocabulary setup.

led to advances in other classic NLP tasks like POS
tagging (Plank et al., 2016) and ultimately pow-
ered the first big contextual word embedding model
ELMo (Peters et al., 2018).

The popular fastText embeddings (Bojanowski
et al., 2017) propose constructing word embed-
dings not from characters, but from overlapping
𝑛-grams, allowing one to obtain embeddings for
novel words (making it “open-vocabulary” in that
sense, though not in the generative sense). Ataman
and Federico (2018a) likewise obtain better perfor-
mance on machine translation by using (overlap-
ping) 𝑛-grams instead of characters (also beating
BPE on morphologically rich languages).

In more recent times, El Boukkouri et al. (2020,
CharacterBERT) and Ma et al. (2020, CharBERT)
use the same CNN construction as in Kim et al.
(2016) on a modern BERT-style model, this time
enhancing the BPE units’ embedding with their
constituent characters’ embedding, motivated by
better handling noisy texts with spelling errors or
transferring to new domains like medical text; con-
currently, Aguilar et al. (2021) do almost the same,
but using a small Transformer instead of CNNs.

Finally, construction-based approaches have also
been integrated into pretrained word-level input
models. Specifically, Pinter et al. (2017) learn a
model that is trained to mimic the embedding of a
word given its spelling using a helper RNN model
that is called whenever an unknown word appears
during test time.

4.2 Open-vocabulary language modeling

with (tokenizer-defined) words made of

characters

Extending closed-vocabulary generative models to
open-vocabulary models, i.e., those that can predict
and generate novel words at test time, is somewhat
more difficult than being open-vocabulary on the
input side because it must be possible to hold out
probability mass for the infinite set of sentences
that contain completely novel words.

Inspired by Luong and Manning (2016), Mielke
and Eisner (2018) propose a probabilistic two-
stage model that essentially augments the ordinary
closed-vocab word-level recurrent neural network
language model (RNNLM) setup by regularizing
word embeddings to be predictive of their spellings
using a smaller character-level RNNLM and us-
ing that smaller model to generate novel words
on the fly whenever the word-level RNNLM pre-
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dicts UNK, yielding an open-vocabulary model mo-
tivated by linguistic notions and intuitive modeling
and proven successful qualitatively and quantita-
tively.

Independently developed, the model of
Kawakami et al. (2017) follows a similar two-level
setup of word- and character-level RNN, but
where each word has to be spelled out using
a character-level RNN if it cannot be directly
copied from the recent past using a cache model
(Grave et al., 2016).11 Their analysis shows clearly
that the cache model not only copies “bursty”
unknown words like Noriega (Church, 2000),
but also extremely common function words like
the in an attempt to keep itself from forgetting
them. The idea is picked up by Ataman et al.
(2019) for a machine translation decoder (creating
word embeddings on the encoder side from
character-level BiRNNs as in ELMo (Peters et al.,
2018, see §4.1)) and later extended by Ataman
et al. (2020) with some additional stochasticity that
is intended to pick up on lemmata and inflections
unsupervisedly.

A different approach is having higher layers of
multi-layer RNNs run at lower speed (skipping up-
dates to the hidden state) This is an old idea, first
present in El Hihi and Bengio (1995) (building
on Schmidhuber (1991, 1992)’s “neural sequence
chunker”) and revived in Koutnik et al. (2014) for
fixed-frequency skipping and Hwang and Sung
(2017) for skipping on word boundaries (which are
assumed to be observed).12 This approach leads
to the first of a number of ways in which we can
actually learn word boundaries and thus segmenta-
tions.

5 Learning segmentations to find

concatenative word-like pretokenizer

tokens

So far we have relied on having a predefined notion
of word (or pretokenization output) despite the con-

11As mentioned before, the idea of spelling out words in
isolation from hidden states had previously proven unsuccess-
ful in Jozefowicz et al. (2016)’s comparison, but this was
in a closed-vocab setup and without the caching mechanism
Kawakami et al. (2017) employ.

12Specifically, Hwang and Sung (2017) describe an archi-
tecture in which character-level and word-level models run
in parallel from left to right and send vector-valued messages
to each other. The word model sends its hidden state to the
character model, which generates the next word, one character
at a time, and then sends its hidden state back to update the
state of the word model.

ceptual struggles outlined in §2. But what if such
a definition is not given, not obtainable, or sim-
ply not desirable (for reasons of robustness and in
languages other than English etc.)? Is there a way
to let our data-driven machine learning approach
also learn the tokenization? Most approaches de-
scribed in this section propose to tackle tokeniza-
tion by treating the implied segmentation as a latent
variable (with an exponentially-sized domain) on
which we can perform approximate or (using more
assumptions) exact inference to find segments and
boundaries that hopefully correspond to meaning-
ful units. The various techniques described in this
section yield units of varying size and quality.

5.1 Character-level neural models that learn

to skip steps at higher levels

Already in the 90s, Elman (1990) manually ana-
lyzed character-level RNNs and correlated their
prediction surprisal with word boundaries. This
idea that was then expanded on in Schmidhuber
(1991, 1992)’s “neural sequence chunker”. More
recently, surprisal was applied to not only character-
level neural models but also n-gram models under
a beam search framework by Doval and Gómez-
Rodríguez (2019) to split microblog texts in which
spaces are deleted.

Instead of using post-hoc surprisal threshold-
ing, the HM-RNN (Chung et al., 2017) takes the
idea of multiple timescales motivated in §4.2, but
learns the binary decision to skip or update (thereby
providing a sense of word boundaries), optimiz-
ing with approximate gradient descent using the
straight-through estimator (Bengio et al., 2013). In
their model, communication between layers hap-
pens bidirectionally: the lower network reports its
final state to the higher one; that higher network
reports its new state to the lower layer that then
proceeds to run by itself and so on. While they
“recover” word boundaries when including spaces
in their data, Kawakami et al. (2019) claim to get
unusable segments with this model when not in-
cluding spaces. Furthermore, when trying to use
the HM-RNN for NMT, Cherry et al. (2018) report
that it took a lot of fixing to get it to train at all; its
performance on the task was competitive but not
superior. This finding corroborates that of Kádár
et al. (2018), who dedicate a paper to trying to get
the HM-RNN to train well, ablating it, and also
showing subpar segmentations on text data (as well
as the worrying inability to reach the original re-
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ported numbers). Kreutzer and Sokolov (2018) try
to use a similar paradigm of skipping steps and gen-
erating summaries with lower layers for NMT and
find (similarly to Kádár et al. (2018)) that skipping
is rarely used and thus seems to be unnecessary
for good performance. Nevertheless, the model is
extended to phrase- and sentence-level boundaries
by Luo and Zhu (2021).

It is worth pointing out that despite having
coarser layers of computation, these models still
have to “spell out” a word every time it is gener-
ated, i.e., they cannot memoize tokens as reusable
units.

5.2 Marginalization over all possible

segmentations

Finally, a conceptually straightforward approach
is to treat the segmentation of a string as a latent
variable that needs to be marginalized over both
at training and test time. This essentially means
having a vocabulary that contains strings of differ-
ing lengths that overlap, i.e., it may contain “cat,”
“at,” and “foster cat,” such that the string “my foster
cat” can be decomposed a number of ways corre-
sponding to different sequences of latent units. As
the number of segmentations is exponential in the
sequence or context length, we need to either resort
to approximations for marginalizing over latent de-
compositions (§5.2.1) or simplify the model with
independence assumptions e.g. by using an 𝑛-gram
model (§5.2.2).

5.2.1 Approximate marginalization

Chan et al. (2017) propose an estimator to approxi-
mate the marginal probability of observations using
approximate MAP inference through beam search.
They find that the model is very hard to train, but
manage to obtain promising results. Buckman
and Neubig (2018) confirm this model’s instability
and propose some approximate inference schemes
based on averaging RNN hidden states that produce
better results in terms of LM perplexity. Hiraoka
et al. (2020) implement a similar model, based
on a Unigram LM tokenization proposal distribu-
tion (see §6.4.3), whose 𝑛-best tokenizations of a
sentence are fed into any sentence encoder model
independently and whose resulting sentence em-
beddings are averaged in line with their a priori
tokenization likelihood. Hiraoka et al. (2021) ex-
tend this model to sequence-to-sequence settings
by training a tokenizer and downstream model with
separate losses, the former by rewarding tokeniza-

tions that produced a low downstream loss, and the
latter using just one tokenization sampled from the
conditioned (and tempered) LM.

5.2.2 Exact marginalization using additional

independence assumptions: segmental

neural language models

The more popular solution of segmental neural lan-

guage models was pioneered by Kong et al. (2016),
who cast the problem of segmentation as a mono-
tonic13 seq2seq task, going from characters to a
covering sequence of substrings, i.e., a segmenta-
tion. By conditioning segment prediction on the
entire raw string, processed and embedded using
a BiRNN, segmentation decisions/scores can use
context, but by scoring every individual possible
substring independently as a segment using these
embeddings and then adding up individual scores
to score entire segmentations, they can find a cov-
ering of the entire input string with segments effi-
ciently using dynamic programming. The reason
for this ability is the central independence assump-
tion: the model does not depend on any other seg-

ments when scoring a segment, but merely on sur-
rounding characters. Wang et al. (2017) extend
this by also having a per-segment RNN over char-
acters for the outputs that can run without knowing
the segmentation and whose past representations
can thus be used by the individual segment gener-
ation processes, allowing for left-to-right sharing
of information about segments without breaking
dynamic programming.

The jump to LMing is now made simply by
omitting the conditioning on an input, yielding the
model of Sun and Deng (2018), who coin the term
segmental language model, training on Chinese
characters and using the unsupervisedly learned
segments to compete on Chinese Word Segmenta-
tion. To keep the computation of the quadratic num-
ber of segments feasible, they restrict the segments
to a maximum length of 4 characters (a sensible
prior for Chinese). Grave et al. (2019) make the
same jump independently, using Transformers as
the independent character-level global backbone.
When evaluating on English open-vocabulary lan-
guage modeling, Grave et al. (2019) notice im-
proved perplexity, but not using or evaluating the
obtained segmentation, most likely because they,
too, only use 4-grams that appear at least 400

13Interestingly, with some reordering of the input one can
break monotonicity between input and output, making the
model similar to phrase-based MT (Huang et al., 2018).
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times. Contemporaneously, Kawakami et al. (2019)
use the same independence idea, but have emis-
sions of string segments come from a context-
dependent mixture of a character-level model like
in Kawakami et al. (2017) (see §4.2) and a large
set of substrings (up to 10-grams that appear often
enough in training data) with learned embeddings.
They evaluate not only on perplexity, but also on
word segmentation performance, where they do
beat some baselines (see §5.3), but still perform
much worse than some previous models,14 which
they argue tuned their hyperparameters on segmen-
tation performance instead of marginal likelihood
and thus have an unfair advantage.

Interestingly, when training on image captions,
Kawakami et al. (2019) find that both perplex-
ity and segmentation performance improve when
the model also has access to the image that is be-
ing described, showing that learning segmentation
only from monolingual and unimodal text may be
harder than when other modalities or languages are
present. This observation is shared by He et al.
(2020), who build a similar segmental model (in
their case, a Transformer-based version that still
follows the character backbone idea to allow for
dynamic programming) as the target-side generator
in an NMT system and use it not as the final model,
but merely as a learned tokenizer. This is easy
to achieve by changing the dynamic program from
marginalization to maximization and thus obtaining
a new segmentation, called DPE, that can be used
in place of BPE or unigram LM (see §6.4). He et al.
(2020) proceed to show that learning to tokenize
with a small Transformer-based NMT model15 pro-
duces better segmentations than BPE for use in a
bigger model; in particular, training the tokenizing
model on the translation task produces different
segmentations depending on the source language,
and, more importantly, better segmentations (as
measured through downstream translation perfor-
mance) than training on target-side language mod-
eling alone.

The idea of conditioning on characters and pre-

14On English they cite the pre-neural models of Johnson
and Goldwater (2009) and Berg-Kirkpatrick et al. (2010) as
significantly better; on Chinese, they are beaten by pre-neural
models like the one of Mochihashi et al. (2009) and the neural
model of Sun and Deng (2018). More information about some
pre-neural models is given in §5.3.

15Unlike previously mentioned papers, they however re-
strict the vocabulary to units of an input BPE vocabulary
instead of using length and frequency heuristics.

dicting segments is extended to the adirectional
masked language modeling setting found in Trans-
formers and left-to-right autoregressive Transform-
ers by Downey et al. (2021), though results do not
outperform RNN-based SNLMs consistently.

Note that many of these models can also be seen
as relatives of models based on UnigramLM, which
we will cover in §6.4.3.

5.3 Finding words through Bayesian

non-parametrics

In the era of 𝑛-gram and word-based language
models, MacKay and Peto (1995) noticed that a
Bayesian view of autoregressive language models
may prove beneficial, reinterpreting smoothing and
backoff in 𝑛-gram models as inference in a hierar-
chical model where higher-order distributions are
drawn from a Dirichlet distribution whose mean is
a lower-order distributions. Teh (2006) extends this
thinking, proposing a hierarchical PYP language
model where we again have 𝑛-gram distributions
of arbitarily large orders, drawn through a hierar-
chy of PYP distributions that lead to a model that
still bears resemblance to 𝑛-gram language model
smoothing, but offers a principled way to forego
the choice of 𝑛. The pinnacle of this idea of model-
ing was reached in Wood et al. (2011)’s sequence
memoizer, which boasted great compression perfor-
mance for arbitrary binary data and still performed
very well on language modeling tasks, although
neural models at this time already proved to be
strong competitors.

At the same time, Goldwater et al. (2006b) ex-
tended this Bayesian perspective to also explain
how new words are first coined and how they are
then used in running text: a process they call two-
stage language modeling (see §4.2), with the two
stages being referred to as generator (which creates
new lexemes) and adaptor (which governs reuse;
here, a Pitman-Yor Process (PYP)), relating the
resulting interaction between types and tokens to
interpolated Kneser-Ney smoothing as presented
in Chen and Goodman (1999).16 Given such a two-
stage model to explain text and the use of Bayesian
nonparametrics that can assign positive probability
to an infinite number of possible lexemes, it be-
comes possible to also try to infer word boundaries,
that is to perform unsupervised word segmentation.

16The formalism of generators and adaptors is extended
and formally specified under the name adaptor grammars in
Johnson et al. (2007) and used very successfully for state-of-
the-art word segmentation in Johnson and Goldwater (2009).
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Motivated more by trying to explain and model cog-
nitive processes and in particular child language
acquisition, Goldwater et al. (2009)17 summarize
Unigram and Bigram Dirichlet Processes (DPs)
for segmenting transcribed infant-directed speech,
showing superiority over older non-Bayesian ap-
proaches. Mochihashi et al. (2009) extend the idea
from bigram DPs to ∞-gram nested/hierarchical
PYPs to improve word segmentation for English
written text; Elsner et al. (2013) additionally model
phonotactic processes that convert a sequence of
segments into observed realizations.

5.4 Related task: Unsupervised Chinese

Word Segmentation

Word segmentation for languages without white-
space delimiters such as Chinese, Japanese and
Vietnamese (Shao et al., 2018) is an important area
of research and can be notoriously tricky.

In Chinese word segmentation (CWS), there is
growing interest in exploring unsupervised word
segmentation involving neural language models.
Traditionally, popular unsupervised approaches
take on two primary paths: 1) discriminative mod-
els and 2) generative models. Discriminative mod-
els rely on goodness measures for candidate seg-
mentation. These statistical measures incude Mu-
tual Information (MI), normalized Variation of
Branching Entropy (nVBE) and Minimum Descrip-
tion Length (MDL), etc., see §6.3. Generative
models focus on designing statistical models to
find the optimal segmentation of the highest gen-
erative probability. These models include Hidden
Markov Model (HMM), Hierarchical Dirichlet Pro-
cess (HDP), Nested Pitman-Yor Process (NPY),
etc., see §5.3. It is trivial to extend discriminative
approaches by replacing 𝑛-gram language model
with neural language models. For generative ap-
proaches, previous work has shown that construct-
ing a neural language model with a context encoder
and a segment decoder achieves competitive perfor-
mance to its statistical counterparts (Sun and Deng,
2018, see previous subsection §5.2.2).

6 Learning subword vocabularies and

segmentations

As teased in §3, subword units allow for a smooth
transition between a word-level model and a

17The idea and partial results are already presented in Gold-
water et al. (2006a), but the authors request citing the updated
2009 paper. Goldwater et al. (2011) summarized this thread
of research.

character-level model: split the word-like tokens
obtained by pre-tokenization into smaller units: the
set of all possible subword units is finite and can
be determined from training data, but it is assumed
to include all characters (or bytes, see §8.3) that
appear at test time, making it possible to explain
any novel word in held-out data.

While thinking about subword information may
have more tradition for processing morphologi-
cally rich languages, Mikolov et al. (2012) already
proposed using subword units18 instead of words
for language modeling English to avoid out-of-
vocabulary (OOV) issues. Since Sennrich et al.
(2016), however, it has become customary in many
if not most current-day NLP models to combat
large and infinite vocabulary size.

What then should we use as subword units? One
option are manually constructed, linguistically in-
formed rule-based systems (§6.1), another is given
by data-driven segmentation learners, which tradi-
tionally have been motivated and evaluated either
linguistically (§6.3) or given by simple heuristics
to be fast and easy and improve downstream per-
formance (§6.4).

It is important to point out that despite reason-
able motivation, segmentation may be a bad idea in
for example Semitic languages like Arabic and He-
brew (Shapiro and Duh, 2018) or other languages
with non-concatenative morphological phenomena,
which Amrhein and Sennrich (2021) claim are bet-
ter served by character-level models or those with
very small subword inventories.

6.1 Manually constructed linguistic analyzers

Morphological analysis is of great importance for
morphologically rich languages and various tools
have been developed to analyze word forms into
their lemmata and inflections, earliest and most fa-
mous of them the Porter stemmer (Porter, 1980)
for English. These tools are often constructed
manually by linguists using finite-state tools (FST;
Beesley and Karttunen, 2003) as often morphologi-
cal processes lend themselves to systematic descrip-
tion, making it faster and cheaper to manually con-
struct finite-state analyzers than to try to learn com-
plicated data-driven models (Beemer et al., 2020).

Interestingly, such finite-state tools can not only
be used for overt segmentation or discovery of lem-
mata and other subword units, but even a morpho-

18They don’t supply many details, but claim that the units
they use are syllables—and that they help.
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logical tagger can be used to induce segmentations,
as finite-state machines allow for easy tracking
of what parts of an input string resulted in out-
put choices, allowing one to identify for example
affixes.

It is worth pointing out that such analysis, yes,
relies on manual annotation, but beyond that is of-
ten considered slow and needlessly complicated.
Nevertheless combinations of lemmatization of tag-
ging have been used successfully to tackle large
and potentially noisy vocabularies, for example by
Tan et al. (2020)’s BITE, which converts inflected
forms into lemma and tag to protect against noise
and improve on dialectal data.

An important difference to the rest of this sur-
vey is that such an approach has the potential to be
stronger even, as foregoing purely concatenative
segmentation allows one to “segment” for exam-
ple the word “hoping” as “hope V.PTCP;PRS” or
“ate” as “eat PST,” allowing sharing of informa-
tion with other forms in the respective paradigm.
The benefit of such an approach is also shown by
Hofmann et al. (2021), who observe that undoing
derivational processes by splitting words into mor-
phemes before tokenizing can improve sentiment
and topicality classification results.

6.2 Other Language-Specific Methods

German, where compounds are never separated
with spaces, has prompted research into compound
splitting (Koehn and Knight, 2003; Braschler and
Ripplinger, 2004; Macherey et al., 2011). Another
tricky example is Sanskrit, where segmentation is
complicated by the fact that there are processes that
occur at / cross word boundaries (Krishna et al.,
2017; Huet, 2003). More recently, in the era of
neural and subword-based models, questions of
tokenization have most recently been researched
for Arabic, where Alyafeai et al. (2021) examined
various language-agnostic and language-specific
tokenizers and find that the performance varies de-
pending on factors like the size and morphological
complexity of the datasets. For Chinese, Si et al.
(2021) converted characters into stroke orders or
romanization sequences before applying BPE in or-
der to capture potential sub-character information
based on glyph or pronunciation. Park et al. (2020)
shows that a hybrid approach of morphological seg-
mentation followed by BPE (§6.4) works best for
most Korean datasets.

6.3 Unsupervised morphological

segmentation

While subword representations are now commonly
evaluated based on their use for a downstream ap-
plication, initial work in this space often directly
assessed the linguistic validity of subword19 seg-
mentations by means of databases such as CELEX
(Baayen et al., 1995) or annotations from linguistic
grammars and analyzers.

In both computational models of corpora and
speakers, it has been found that “distributional regu-
larity and phonotactic constraints are useful for seg-
mentation” (Brent and Cartwright, 1996). de Mar-
cken (1996) proposed to deconstruct text recur-
sively from sentences over words and morphs into
characters through “composition and perturbation,”
presenting results towards recovering linguistically
plausible words. Brent et al. (1995) proposed an
essentially minimum description length (MDL; Ris-
sanen, 1989) based approach to morphological seg-
mentation, in which the sum of potential vocabu-
lary units’ length and the length of text encoded
with this vocabulary is minimized. MDL-based
approaches were prolifically adapted and expanded
for unsupervised morphological segmentation, as
in Linguistica (Goldsmith, 2001), and found to gen-
erate segmentations with high correlations to mor-
pheme boundaries on English and Romance lan-
guages (Baroni, 2000; Goldsmith, 2001). Initially,
these approaches were only lightly guided by ad-
ditional information about possible morphological
structure or paradigms—partitioning word types
into sets of stems with either suffixes20 or prefixes,
they could not recursively split morphs into addi-
tional subwords or account for conditioned char-
acter changes—and so with only one morpheme
boundary they were most appropriate only for the
languages on which they were initially tested.

The use of morphological ‘categories’ and ad-
ditional structure within segmentation models ex-
panded their recall and applicability. The Morfes-

sor family21 comprises several unsupervised and
semi-supervised segmentation models which aimed
to incorporate linguistic biases to improve initial
naïve MDL models. Morfessor 1.0 (Creutz and
Lagus, 2002), later called the Morfessor Baseline,

19The resulting units are often termed ‘morphs’ in such
settings, representing the surface forms of morphemes.

20Termed ‘signatures’ by Goldsmith (2001)
21A Python implementation of the Morfessor algorithms is

provided by Smit et al. (2014).
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is a recursive MDL model based on unigram morph
frequencies and lengths; without additional struc-
ture it has a clear tendency to over-segment and
create spurious splits such as ‘s + plit.’ Morfes-

sor CatMAP (Creutz and Lagus, 2005), or cate-
gories maximum-a-posteriori, added a hierarchi-
cal HMM-based model of the sequential nature of
loose morphological categories (prefixes, stems,
and suffixes), where priors could be learned in a
semi-supervised way from wordlists; this model
remained ideal for the concatenative morphology
found in such languages as evaluated in the Morpho
Challenge22—English, Finnish, Turkish, German
(Kurimo et al., 2010). The FlatCat model (Grön-
roos et al., 2014) flattened this structure, which
reduced accuracy under unsupervised conditions
but simplified and improved semi-supervised learn-
ing. The most recent Morfessor model, EM+Prune

(Grönroos et al., 2020) merges the above tradition
with recent techniques, leading to a model that is a
strict generalization of Unigram LM (Kudo, 2018,
see §6.4.3).

Many of the approaches to morphological seg-
mentation implicitly treated the task as paradigm

learning by incorporating the notion of morpho-
logical paradigms and inflection classes. Within
this perspective, one research arch focused on ex-
panding the limited paradigmatic structure in early
MDL models either through explicit rules, cluster-
ing, or ‘chains’ (Snover and Brent, 2002; Creutz
and Lagus, 2005; Monson et al., 2007, 2009; Lig-
nos, 2010; Narasimhan et al., 2015). Another fo-
cused on improving segmentation by discovering
forms with shared paradigms, by inducing mor-
phological relatedness across surface forms and
further allowing for e.g., spelling changes to im-
prove discovery of shared structure across irregu-
lar forms (Schone and Jurafsky, 2001; Snover and
Brent, 2001; Yarowsky and Wicentowski, 2000;
Bergmanis and Goldwater, 2017). While segmen-
tation from this perspective can result in more com-
pact corpus representations, with higher segmen-
tation recall and greater corpus-level consistency,
their precision is often lower than with e.g., Mor-

fessor or frequency-driven techniques. As briefly
discussed in §6.5, use of morphological segmenta-
tion as tokenization for downstream tasks provides
only inconsistent improvements compared to the

22An evaluation campaign from 2005-10 which focused on
unsupervised morphological segmentation; see Virpioja et al.
(2011) for evaluation methodology.

lighter-weight techniques of §6.4, with recent work
predominantly electing for the simplicity of these
approaches.

6.4 Modern fast subword segmentation

algorithms

As explained earlier, the breakthrough for subword
tokenization nowadays considered central was the
use of Byte-Pair-Encoding (BPE; Gage, 1994) by
Sennrich et al. (2016) for machine translation.23

6.4.1 BPE (Gage, 1994; Sennrich et al., 2016)

BPE is a compression algorithm from a fam-
ily termed “macro-schemas” (Storer and Szyman-
ski, 1982) in which substrings are replaced with
references to them. The name was coined in
Gage (1994), although equivalent algorithms have
been applied for pattern discovery in natural lan-
guage (Wolff, 1975) and complexity of genetic se-
quences (Ángel Jiménez-Montaño, 1984) earlier.24

When learning a tokenization, BPE replaces pairs
of adjacent symbols with a new symbol represent-
ing that pair, iteratively merging all occurrences of
the pair that occurs most often at any given time.
At test time, the same procedure of merging can be
performed by executing all recorded merges in the
order in which they were conducted during training
of the tokenization model.

Byte-Level BPE (Wang et al., 2019) applies BPE
not to characters, but raw bytes (see §8.3); it is
used in GPT-2 (Radford et al., 2019) and other
models. BPE-dropout (Provilkov et al., 2020) is an
extension allowing for subword regularization (see
§6.4.3.

6.4.2 WordPiece (Schuster and Nakajima,

2012)

A very similar technique had been proposed under
the name “WordPiece” by Schuster and Nakajima
(2012) for Japanese and Korean text (where re-
liance on space-separated tokens is impossible as
text is written without spaces), though it is also
used in BERT (Devlin et al., 2018) and other mod-
els. Unlike BPE, WordPiece doesn’t merge the

23In language modeling, van Merriënboer et al. (2017) were
the first to apply BPE to language modeling and Mielke and
Eisner (2018) show that a BPE-based baseline beat all state-
of-the-art and even their proposed model on some languages,
but the idea didn’t really take off until really put to the test by
state-of-the-art models like the GPT models (Radford et al.,
2018) and BERT (Devlin et al., 2018).

24See Gallé (2019) for more historical connection and cor-
responding analyses, e.g., its linear-time implementation by
Larsson and Moffat (2000).
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most often co-occuring pair but pairs that increase
the likelihood that an 𝑛-gram based language model
trained with this updated vocabulary reaches on
data (the fact that only some counts need to be
updated in such a model and the use of frequency-
based heuristics for selecting and batching of multi-
ple merge candidates keep the process computation-
ally feasible). To segment text, WordPiece follows
a per-word left-to-right longest-match-first strategy,
allowing for very fast linear-time processing (Song
et al., 2021).

6.4.3 UnigramLM (Kudo, 2018)

Kudo (2018) picks up on the idea of judging sub-
word candidates by evaluating their use in a lan-
guage model, but it uses a simple unigram lan-
guage model (hence calling the algorithm unigram

LM) and iteratively removes subword units from a
starting vocabulary that contains far more subword
units than are desired: on every iteration, the uni-
gram LM is trained using EM and then the lowest-
probability items are pruned from the vocabulary—
the process is repeated a few times until a desired
vocabulary size has been reached.

Interestingly, this probabilistic setup also cleanly
models the fact that there are many possible seg-
mentations that are consistent with a given string
(in the extreme case, one could always fall back to
characters). They report that training with sampled

segmentation (termed “subword regularization”) in-
stead of just using one deterministic segmentation
indeed improves machine translation performance.
The same motivation led Provilkov et al. (2020)
to propose BPE-dropout where the skipping of in-
dividual merges in the BPE construction leads to
variety in segmentations. Subword regularization
not only has been shown to help in monolingual
in-domain tasks, but also for improving transfer in
multilingual models, see §7.

The observation that sampling segmentation
helps is confirmed by Hiraoka et al. (2019), who
employ a Bayesian nonparametric model (see §5.3)
as the LM that defines the tokenization.

Wang et al. (2021a) build a similar model where
the unigram LM is based on character-level BiL-
STM encodings of the input and apply it to unsu-
pervised Chinese Word Segmentation (see §5.4).25

25Note that this thus character-conditioned model can also
be seen as an example of segmental neural language models
(§5.1).

6.4.4 SentencePiece (Kudo and Richardson,

2018)

Not itself an algorithm as often assumed, but ac-
tually a software package, SentencePiece (Kudo
and Richardson, 2018) offers both BPE and Un-
igram LM algorithms (so specifying “Sentence-
Piece” is certainly not informative enough). Impor-
tantly, unlike their other implementations it does
not treat spaces as special guaranteed word bound-
aries, allowing learned units to cross these bound-
aries and obviating the need for pre-tokenization
in languages without whitespace-tokenized words
like Chinese and Japanese.

6.5 Comparing morphological segmentation

to BPE and friends

Several studies have compared linguistically moti-
vated segmentation with data-driven ones, without
conclusive results (to say the least).

Bostrom and Durrett (2020) claim that Uni-
gramLM obtains better segmentation than BPE,
both qualitatively (they tend to better correspond
to morphemes and Morfessor (Creutz and Lagus,
2007) morphs) and quantitatively (they improve
BERT-style models’ performance on modern NLP
tasks a little in English and a lot in Japanese).

When using (manually analyzed or gold) mor-
phological analysis, Matthews et al. (2018) show
that language modeling can be improved for ag-
glutinative languages like Turkish. In Schwartz
et al. (2020)’s low-resource study shows Morfessor-
based language models (and character-based ones,
see §8) outperform BPE-based ones. Pan et al.
(2020) likewise improve NMT on Turkish and
Uyghur by using morphological analyzers before
applying BPE.

Using unsupervisedly obtained “morphological”
subwords on the other hand, only Ataman and
Federico (2018b) find that a model based on Mor-
fessor FlatCat can outperform BPE; Zhou (2018),
Domingo et al. (2018), Macháček et al. (2018),
and Saleva and Lignos (2021) find no reliable im-
provement over BPE for translation. Banerjee and
Bhattacharyya (2018) analyze translations obtained
segmenting with Morfessor and BPE, and conclude
that a possible improvement depends on the simi-
larity of the languages. Huck et al. (2017) propose
thus to combine both approaches.

As a possible explanation for the good perfor-
mance of BPE, Gallé (2019) claims that the perfor-
mance of BPE is related to its compression capac-
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ity: with respect to members from the same class
of compression algorithm, BPE performs close to
the top in data compression benchmarks.

6.6 How many units do we need?

Another open question is the question of how many
merges (or what other prior) one should select for
optimal performance. The best-performing number
may depend on the task and the domain and differ
by language (Mielke et al., 2019; Domingo et al.,
2018).26 More and thus larger subword units allow
for and lead to more memorization (Kharitonov
et al., 2021), which may or may not be desired
depending on the application.

Predicting the number of merges that works best
without having to try different sizes would be de-
sirable and Gowda and May (2020) claim to have
found one such heuristic: merge as much as possi-
ble to shorten the overall sequence lengths while
making sure that 95% of subword units appear at
least 100 times (presumably in training data). Their
motivation is that neural machine translation mod-
els are frequency-biased in their outputs and thus
maintaining a more uniform frequency distribution
is better.27 A similar study undertaken by Ding
et al. (2019) reiterate how contradictory sugges-
tions for number of merges in past work are and
add that in low-resource scenarios far fewer merges
seem to be better, a trend with Transformers which
differs from that with LSTMs, leading to an inter-
esting question: should smaller corpora mean you
can’t afford characters or is it rather that you can’t
afford words?

A simple online answer to the question of how to
select merges is presented by Salesky et al. (2018):
while training an NMT model using BPE segments,
gradually increase the vocabulary size by merg-
ing BPE vocabulary items, adding new, bigger
BPE segments until they obtain diminishing re-
turns. Embeddings for the newly introduced sub-
words are initialized by merging the embeddings
of the two merged BPE segments with an autoen-
coder. Formulating the vocabulary selection prob-

26Relatedly, Novotný et al. (2021) show that the subword
size matters and differs somewhat systematically between lan-
guages in the 𝑛-gram based fastText embeddings (Bojanowski
et al., 2017).

27A somewhat similar approach is taken by Gutierrez-
Vasques et al. (2021), who look at the entropy (and trans-
formations) of the distribution over subword types to identify
a “turning point” at which one of the transformed quantities is
minimal—but this turning point happens with far fewer merges
than are generally required to reach good performance.

lem as a search for the set of tokens with the high-
est entropy, Xu et al. (2021) proposes an optimal
transport driven selection from BPE units that ob-
tains vocabulary merges that often outperform a
language-independent standard setting for transla-
tion. Another recent method that comes with a
stopping criteria (and therefore dispenses with an
additional hyperparameter) is Vilar and Federico
(2021) which defines the likelihood of a vocabu-
lary with respect to a sequence, and improves that
likelihood greedily.

7 Shared vocabularies in multilingual

models

Many NLP applications process text in more than
one language at a time, the most obvious example
perhaps being a machine translation system. In
such cases, one could either use (and potentially
learn) a tokenizer per language or a single tok-
enizer for both languages (also allowing sharing of
embeddings if desired). Building a highly multi-
lingual system that translates between more than
two languages, Johnson et al. (2017) perform the
former and first encounter questions like whether
to oversample low-resource languages for learning
a data-driven tokenizer and if so to which degree.
These questions are addressed differently in the
now more common highly multilingual pre-trained
Transformers like mBERT (Devlin et al., 2018)
and XLM (CONNEAU and Lample, 2019), and
XLM-R (Conneau et al., 2020). In these models
the sharing of learned representations is hypothe-
sized to help transfer between languages by Pires
et al. (2019), though Wu and Dredze (2019) pro-
vide inclonclusive results for this claim. It is worth
pointing out that K et al. (2020) disagree and claim
that subword overlap is not as important for trans-
fer.

Even though all these models settle make sure to
oversample low-resource languages at least some
amount, Ács (2019) and Rust et al. (2021) show
that tokenization in BERT-based Transformers is
still biased towards high-resource languages. This
bias is visible in a word’s “fertility,” i.e., the num-
ber of subwords a word is split into on average
(which for example is much lower for English than
it is for, say, Finnish), but they also find it affecting
results in controlled (comparing monolingual to
multilingual tokenization) downstream tasks. Ma-
ronikolakis et al. (2021) find that these granularity
differences in tokenization between languages also
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greatly affect sharing of semantic representations.
For selecting appropriate tokenization in a mul-

tilingual setting, Chung et al. (2020) offer an ap-
proach for retraining models from scratch, select-
ing subword vocabularies for language clusters to
explicitly control for allocation and sharing. If
on the other hand retraining from scratch is not
feasible, one option is to add new subword units
for the underresourced/oversegmented languages.
Wang et al. (2020b) and Chau et al. (2020) both
propose such additions with randomly initialized
embeddings, but these approaches did not perform
well when studied by Ebrahimi and Kann (2021);
extending the idea, Liu et al. (2021) propose to
use information about existing subword units to es-
timate embeddings instead of initializing newly
added units randomly (similar to Salesky et al.
(2018)). A different option is proposed by Wang
et al. (2021b), who instead force the model to use
(already existing) smaller subword units in high-
resource languages like English to make the seg-
mentations across languages more similar and thus
aid transfer—thus avoiding the complete retraining
that comes with changing the segmentation method
or allocation. In particular, they fine-tune the model
to perform the target task 1) well with the deter-
ministic segmentation (that undersegments high-
resource languages relative to low-resource ones),
2) well with sampled segmentations (so even high-
resource languages’ words are segmented more),
and 3) equally (in terms of a low divergence be-
tween the respective output distributions) between
the two.

8 “Tokenization-free” character- and

byte-level modeling

In sections §4.1 and §4.2 we discussed augmenting
word models with character-level information in
closed- and open-vocabulary settings. The idea of
pure character- or byte-level modeling seems like
an obvious simplification. Indeed, Sutskever et al.
(2011) successfully modeled strings one charac-
ter at a time using multiplicative RNNs, Chrupała
(2013) suggest using character-level RNN model-
ing for agglutinative languages and tasks that re-
quire character information like character-level text
segmentation (even anticipating contextualized em-
beddings!), and Conneau et al. (2017) successfully
perform text classification from raw characters.
The big breakthrough for generative character/byte-
level models however came only with Al-Rfou et al.

(2019), who showed that sufficiently deep Trans-
formers (64 layers in their case) can greatly out-
perform previous subword-based and hybrid (§4.2)
open-vocabulary language models. This finding
was updated by Choe et al. (2019), who again man-
age to match previous word- and subword-based
state-of-the-art language modeling results.

8.1 Characters?

A major factor limiting the adoption of character-
level models is the fact that character sequences
tend to be much longer than their word- or subword-
level counterparts, making training and inference
slower. To improve training speed and efficiency,
Libovický and Fraser (2020) propose to start with
a subword-based model and then fine-tune that
model to instead work over characters, though they
find improvements only in one of two evaluated
language pairs. The more common approach to
both training and inference however are various ar-
chitectures for subsampling sequences, particularly
in applications to machine translation: Chung et al.
(2016) introduce a bi-scale recurrent neural net-
work to enable the decoder of an encoder-decoder
model to produce character sequences; they demon-
strate improved performance over a subword-level
decoder. Lee et al. (2017) (and later Gao et al.
(2020)) advocate for the use of convolution and
pooling layers at the input of the encoder. Cherry
et al. (2018) evaluate various temporal pooling
strategies including the HM-RNN of Chung et al.
(2017) (discussed in §5.1) and conclude that none
of them offered a suitable trade-off of performance
and speed.

It has been argued that character-level models
are more robust to noise and out-of-distribution
data (Gupta et al., 2019), possibly because a word-
or subword-level token sequence will change dra-
matically in the presence of noise. Libovický et al.
(2021) however survey multiple character-level MT
systems and conclude that they “show neither bet-
ter domain robustness, nor better morphological
generalization, despite being often so motivated,” a
finding corroborated by Rosales Núñez et al. (2021)
for noisy user-generated text. Specifically under
the lens of gender bias, Gaido et al. (2021) argue
that character-level processing can lead to less gen-
der bias in models: data-driven BPE vocabularies
are biased towards male forms, for one because
of frequency, but also because in languages like
French and Italian, female forms are often con-
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structed by affixing male forms, leading to a dispar-
ity in tokenization. They show that character-level
processing can ameliorate these disparities to some
degree.

8.2 Character hashes?

In massively multilingual settings, naïve use of a
character-level model can result in a very large
vocabulary. For example, Unicode 13.0 speci-
fies 143,859 codepoints, most of which will never
be seen in training. This can lead to “out-of-
vocabulary” problems just like the ones encoun-
tered with words (discussed in §4). One possible
solution is used in Clark et al. (2021)’s CANINE,
where instead of giving each character its own em-
bedding, they hash all possible codepoints with
multiple hash functions into smaller sets to share
parameters across codepoints (similar to Svenstrup
et al. (2017)). CANINE further includes down-
sampling and upsampling operations to attain rea-
sonable computational efficiency, and focuses on
non-generative sequence labeling tasks.

8.3 Bytes?

An alternative way to avoid the huge-vocabulary
problem of character-level models is to instead
represent text using the byte sequence resulting
from a standard encoding like UTF-8. This can be
seen as using a fixed tokenization scheme that was
created by a standards body (the Unicode consor-
tium) rather than a linguistically- or statistically-
informed process. The main advantage of using
Unicode bytes specifically is their incredible scope
– the Unicode consortium states that their goal is
to cover “all the characters for all the writing sys-
tems of the world, modern and ancient” in addi-
tion to “technical symbols, punctuations, and many
other characters used in writing text”.28 Separately,
byte-level modeling is presented as a natural choice
by Graves (2013) when following the “principle
of modelling the smallest meaningful units in the
data”. As shown recently by ByT5 (Xue et al.,
2021), byte-level models confer similar benefits to
character-level models (better robustness to noise,
avoidance of out-of-vocabulary issues, etc.) with
similar drawbacks (longer training and inference
time due to longer sequences). As such, similar re-
sults and models have been proposed for byte-level
models as for character-level. For example, the re-
cent Charformer model (Tay et al., 2021) downsam-

28https://unicode.org/faq/basic_q.html

ples input sequences to avoid increased computa-
tional costs, and Al-Rfou et al. (2019) demonstrate
strong language modeling performance with a deep
byte-level Transformer.

8.4 So are these maximal decompositions the

solution then?

While byte-level modeling is often presented as
an unbiased, token-free approach, we argue it is
more constructive to consider byte-level modeling
as simply using a fixed, predefined, and standard-
ized tokenization scheme (that incidentally is often
the same as the way that underlying the text data
is stored on disk). This tokenization scheme is by
no means the “best” or most fundamental – indeed,
the Unicode standard was not created with any
linguistically-motivated goal in mind, apart from
being able to represent a huge variety of content.
Indeed, using a Unicode-based byte-level tokeniza-
tion scheme will result in significantly different
trade-offs for different languages by virtue of the
way the standard was created: Latin (i.e. ASCII)
characters are represented as a single byte, whereas
characters in other languages are represented as
multiple bytes. An immediate consequence is that
a UTF-8-based byte-level tokenization scheme can
result in dramatically longer sequences when repre-
senting the same underlying semantic content in dif-
ferent languages. This could unfairly increase com-
putational costs for downstream users of a model
who do not communicate in ASCII symbols.

8.5 Visual featurization: Pixels?

Another approach to “tokenization-free” modeling
utilizes visual rather than byte-based representa-
tions. Where byte-level models aim to cover the
full underlying ‘vocabulary’ as represented on disk,
visual representations aim to encode similarities
among characters which human readers may use
when processing text. One motivation is robust-
ness: byte-level models are reliant on consistent
observed sequences, which leaves them susceptible
to variation and noise which may render similarly
visually.29

The initial motivation for much work on us-
ing visual features were to create embeddings that
reflected the shared character components found
in e.g., Chinese characters (radicals) or Korean

29For languages without a digital orthographic standard
(e.g., Pashto), multiple byte sequences render similarly and
are in free variation among speakers.
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syllable blocks, and so were better able to gen-
eralize to rare or unseen characters. The first
work in this space initialized embeddings for Chi-
nese by linearizing bitmaps of characters or words
(Aldón Mínguez et al., 2016; Costa-jussà et al.,
2017). Subsequent work focused on character seg-
mentation, either through pre-computed embed-
dings based on linearized images (Wang et al.,
2020a) or learned with the downstream task via
convolutions (Liu et al., 2017; Dai and Cai, 2017;
Broscheit, 2018; Meng et al., 2019), improving re-
sults for rare characters. Character segmentation
was in part motivated by application to Chinese
and the focus on sub-character components, but
also enabled the use of fixed-width images, a prob-
lem which Sun et al. (2018, 2019) instead tackled
by rendering words into square images, wrapping
characters as necessary.

Recent work has proposed “tokenization-free”

visual representations (Mansimov et al., 2020;
Salesky et al., 2021). Rather than rendering images
for a given segmentation into words, characters,
or bytes, and thus incorporating their previously
discussed challenges, they render each sentence
as an image and translate directly from pixel de-
compositions. Salesky et al. (2021) show that such
models can perform competitively across a range
of languages and scripts for machine translation
and are significantly more robust to induced noise,
including but not limited to unicode errors. Man-
simov et al. (2020) explore pixel-to-pixel models;
a challenging setting that is not yet competitive
but neatly sidesteps many concerns with text-based
models.

9 Discussion and Conclusion

Tokenization, both the process and the term itself,
has evolved significantly since the early days of
NLP. In this paper, we traced their evolution and
highlighted major changes over the years, connect-
ing disparate intuitions.

Despite significant advancement, we have seen
that there is no perfect method of handling tok-
enization. All options—from whitespace-delimited
pre-tokens to learned subwords and down to bytes—
have drawbacks and strengths. Many desiderata
may be fundamentally at odds with each other, e.g.,
the desire to decompose maximally for simple and
robust processing with a desire to be computation-
ally efficient in a way that is fair across languages—
a question that particularly pertinent as the field

turns its attention to greener NLP. While there
are applications for which characters and bytes
or even pixels may be the tool of choice, there
are a myriad of applications in which larger dis-
crete tokens are desirable, both for interpretability
and efficiency. Recent work gives us new exam-
ples of this: Zhang et al. (2021) improve BERT
by feeding inputs tokenized multiple ways and
Dossou and Emezue (2021) use human-annotated
larger-than-word vocabulary units to improve low-
resource MT. Itzhak and Levy (2021) show that
using subword units need not mean giving up on
spelling-information, showing that spellings can be
recovered from subword-based pretrained models.

In conclusion, despite all the promises of neural
networks of allowing “end-to-endness”, tokeniza-
tion is a clear testimony that that promised land
is still far away. Like often, this drawback is evi-
dent for practitioners who have to verify that the
pre-trained models matches the tokenizer that is
being used (a separated model in most NLP frame-
works). The fact that tokenization is handled com-
pletely independent of the down-stream tasks adds
to this separation. As Henderson (2020) puts it: “It
remains to find effective neural architectures for
learning the set of entities jointly with the rest of
the neural model, and for generalising such meth-
ods from the level of character strings to higher
levels of representation”.
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