
Noise-Contrastive Estimation for Multivariate Point

Processes

Hongyuan Mei Tom Wan Jason Eisner
Department of Computer Science, Johns Hopkins University

3400 N. Charles Street, Baltimore, MD 21218 U.S.A
{hmei,tom,jason}@cs.jhu.edu

Abstract

The log-likelihood of a generative model often involves both positive and negative
terms. For a temporal multivariate point process, the negative term sums over all
the possible event types at each time and also integrates over all the possible times.
As a result, maximum likelihood estimation is expensive. We show how to instead
apply a version of noise-contrastive estimation—a general parameter estimation
method with a less expensive stochastic objective. Our specific instantiation of
this general idea works out in an interestingly non-trivial way and has provable
guarantees for its optimality, consistency and efficiency. On several synthetic and
real-world datasets, our method shows benefits: for the model to achieve the same
level of log-likelihood on held-out data, our method needs considerably fewer
function evaluations and less wall-clock time.

1 Introduction

Maximum likelihood estimation (MLE) is a popular training method for generative models. How-
ever, to obtain the likelihood of a generative model given the observed data, one must compute the
probability of each observed sample, which often includes an expensive normalizing constant. For
example, in a language model, each word is typically drawn from a softmax distribution over a large
vocabulary, whose normalizing constant requires a summation over the vocabulary.

This paper aims to alleviate a similar computational cost for multivariate point processes. These
generative models are natural tools to analyze streams of discrete events in continuous time. Their
likelihood is improved not only by raising the probability of the observed events, but by lowering the
probabilities of the events that were observed not to occur. There are infinitely many times at which
no event of any type occurred; to predict these non-occurrences, the likelihood must integrate the
infinitesimal event probability for each event type over the entire observed time interval. Therefore,
the likelihood is expensive to compute, particularly when there are many possible event types.

As an alternative to MLE, we propose to train the model by learning to discriminate the observed
events from events sampled from a noise process. Our method is a version of noise-contrastive
estimation (NCE), which was originally developed for unnormalized (energy-based) distributions
and then extended to conditional softmax distributions such as language models. To our best knowl-
edge, we are the first to extend the method and its theoretical guarantees (for optimality, consistency
and efficiency) to the context of multivariate point processes. We will also discuss similar efforts in
related areas in section 4.

On several datasets, our method shows compelling results. By evaluating fewer event intensities,
training takes much less wall-clock time while still achieving competitive log-likelihood.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

2 Preliminaries

2.1 Event Streams and Multivariate Point Processes

Given a fixed time interval [0, T), we may observe an event stream x[0,T): at each continuous time

t, the observation xt is one of the discrete types {∅, 1, . . . ,K} where ∅ means no event. An non-∅
observation is called an event. A generative model of an event stream is called a multivariate point
process.*

We wish to fit an autoregressive probability model to observed event streams. In a discrete-time
autoregressive model, events would be generated from left to right, where xt is drawn from a dis-
tribution that depends on x0, . . . , xt−1. The continuous-time version still generates events from left
to right,1 but at any specific time t we have p(xt = ∅) = 1, with only an infinitesimal probability
of any event. (For a computationally practical sampling method, see section 3.1.) The model is a
stochastic process defined by functions λk that determine a finite intensity λk(t | x[0,t)) ≥ 0 for
each event type k 6= ∅ at each time t > 0. This intensity depends on the history of events x[0,t)

that were drawn at times < t. It quantifies the instantaneous rate at time t of events of type k. That
is, λk(t | x[0,t)) is the limit as dt→+ 0 of 1

dt times the expected number of events of type k on the

interval [t, t+ dt), where the expectation is conditioned on the history.

As the event probabilities are infinitesimal, the times of the events are almost surely distinct. To en-
sure that we have a point process, the intensity functions must be chosen such that the total number of
events on any bounded interval is almost surely finite. Models of this form include inhomogeneous
Poisson processes (Daley & Vere-Jones, 2007), in which the intensity functions ignore the history,
as well as (non-explosive) Hawkes processes (Hawkes, 1971) and their modern neural versions (Du
et al., 2016; Mei & Eisner, 2017).

Most models use intensity functions that are continuous between events. Our analysis requires only

Assumption 1 (Continuity). For any event stream x[0,T) and event type k ∈ {1, . . . ,K}, λk(t |
x[0,t)) is Riemann integrable, i.e., bounded and continuous almost everywhere w.r.t. time t.

2.2 Maximum Likelihood Estimation: Usefulness and Difficulties

In practice, we parameterize the intensity functions by θ. We write pθ for the resulting probability
density over event streams. When learning θ from data, we make the conventional assumption that
the true point process p∗ actually falls into the chosen model family:

Assumption 2 (Existence). There exists at least one parameter vector θ∗ such that pθ∗ = p∗.

Then as proved in Appendix A, such a θ∗ can be found as an argmax of

JLL(θ)
def
= Ex[0,T)∼p∗

[
log pθ(x[0,T))

]
(1)

Given assumption 1, the θ values that maximize JLL(θ) are exactly the set Θ∗ of values for which
pθ = p∗: any θ for which pθ 6= p∗ would end up with a strictly smaller JLL(θ) by increasing the
cross entropy −p∗ log pθ over some interval (t, t′) for a set of histories with non-zero measure.

If we modify equation (1) to take the expectation under the empirical distribution of event streams
x[0,T) in the training dataset, then JLL(θ) is proportional to the log-likelihood of θ. For any x[0,T)

that satisfies the condition in assumption 1, the log-density used in equation (1) can be expressed in
terms of λk(t | x[0,t)):

log pθ(x[0,T)) =
∑

t:xt 6=∅

log λxt
(t | x[0,t))−

∫ T

t=0

K∑

k=1

λk(t | x[0,t))dt (2)

Notice that the second term lacks a log. It is expensive to compute in the following cases:

• The total number of event types K is large, making
∑K

k=1 slow.

• The integral
∫ T

t=0
is slow to estimate well, e.g., via a Monte Carlo estimate T

J

∑J
j=1

∑K
k=1 λk(tj)

where each tj is randomly sampled from the uniform distribution over [0, T).
• The chosen model architecture makes it hard to parallelize the λk(tj) computation over j and k.

*This paper uses endnotes instead of footnotes. They are found at the start of the supplementary material.

2

2.3 Noise-Contrastive Estimation in Discrete Time

For autoregressive models of discrete-time sequences, a similar computational inefficiency can be
tackled by applying the principle of noise-contrastive estimation (Gutmann & Hyvärinen, 2010),

as follows. For each history x0:t
def
= x0x1 . . . xt−1 in training data, NCE trains the model pθ to

discriminate the actually observed datum xt from some noise samples whose distribution q is known.
The intuition is: optimal performance is obtained if and only if pθ matches the true distribution p∗.

More precisely, given a bag {x0
t , x

1
t , . . . , x

M
t }, where exactly one element of the bag was drawn from

p∗ and the rest drawn i.i.d. from q, consider the log-posterior probability (via Bayes’ Theorem2) that
x0
t was the one drawn from p∗:

log
p∗(x0

t |x0:t)
∏M

m=1 q(xm
t |x0:t)

∑
M
m=0 p∗(xm

t |x0:t)
∏

m′ 6=m q(xm′

t |x0:t)
(3)

The “ranking” variant of NCE (Jozefowicz et al., 2016) substitutes pθ for p∗ in this expression, and
seeks θ (e.g., by stochastic gradient ascent) to maximize the expectation of the resulting quantity
when x0

t is a random observation in training data,3 x0:t is its history, and x1
t , . . . , x

M
t are drawn

i.i.d. from q(· | x0:t).

This objective is really just conditional maximum log-likelihood on a supervised dataset of (M+1)-
way classification problems. Each problem presents an unordered set of M + 1 samples—one
drawn from p∗ and the others drawn i.i.d. from q. The task is to guess which sample was drawn
from p∗. Conditional MLE trains θ to maximize (in expectation) the log-probability that the model
assigns to the correct answer. In the infinite-data limit, it will find θ (if possible) such that these log-
probabilities match the true ones given by (3). For that, it is sufficient for θ to be such that pθ = p∗.
Given assumption 2, Ma & Collins (2018) show that pθ = p∗ is also necessary, i.e., the NCE task
is sufficient to find the true parameters. Although the NCE objective does not learn to predict the
full observed sample xt as MLE does, but only to distinguish it from the M noise samples, their
theorem implies that in expectation over all possible sets of M noise samples, it actually retains all
the information (provided that M > 0 and q has support everywhere that p∗ does).

This NCE objective is computationally cheaper than MLE when the distribution pθ(· | x0:t) is a
softmax distribution over {1, . . . ,K} with large K. The reason is that the expensive normalizing
constants in the numerator and denominator of equation (3) need not be computed. They cancel out
because all the probabilities are conditioned on the same (actually observed) history.

3 Applying Noise-Contrastive Estimation in Continuous Time

The expensive
∫ ∑

term in equation (2) is rather similar to a normalizing constant,4 as it sums over

non-occurring events. We might try to avoid computing it5 by discretizing the time interval [0, T)
into finitely many intervals of width ∆ and applying NCE. In this case, we would be distinguishing
the true sequence of events on an interval [i∆, (i + 1)∆) from corresponding noise sequences on
the same interval, given the same (actually observed) history x[0,i∆). Unfortunately, the distribution

pθ(· | x[0,i∆)) in the objective still involves an
∫ ∑

term where the integral is over [i∆, (i + 1)∆)
and the inner sum is over k. The solution is to shrink the intervals to infinitesimal width dt. Then
our log-posterior over each of them becomes

log
pθ(x

0
[t,t+dt) | x0

[0,t))
∏M

m=1 q(x
0
[t,t+dt) | x0

[0,t))
∑M

m=0 pθ(x
m
[t,t+dt) | x0

[0,t))
∏

m′ 6=m q(xm′

[t,t+dt) | x0
[0,t))

(4)

We will define the noise distribution q in terms of finite intensity functions λq
k, like the ones λk

that define pθ. As a result, at a given time t, there is only an infinitesimal probability that any of
{x0

t , x
1
t , . . . , x

M
t } is an event. Nonetheless, at each time t ∈ [0, T), we will consider generating

a noise event (for each m > 0) conditioned on the actually observed history x[0,t). Among these

uncountably many times t, we may have some for which x0
t 6= ∅ (the observed events), or where

xm
t 6= ∅ for some 1 ≤ m ≤M (the noise events).

Almost surely, the set of times t with a real or noise event remains finite. Our NCE objective is the
expected sum of equation (4) over all such times t in an event stream, when the stream is drawn
uniformly from the set of streams in the training dataset—as in section 6—and the noise events are
then drawn as above.

3

Our objective ignores all other times t, as they provide no information about θ. After all, when
x0
t = · · · = xM

t = ∅, the probability that x0
t is the one drawn from the true model must be

1/(M + 1) by symmetry, regardless of θ. At these times, the ratio in equation (4) does reduce to
1/(M + 1), since all probabilities are 1.

At the times t that we do consider, how do we compute equation (4)? Almost surely, exactly one
of x0

t , . . . , x
M
t is an event k for some k 6= ∅. As a result, exactly one factor in each product is

infinitesimal (dt times the λk or λq
k intensity), and the other factors are 1. Thus, the dt factors cancel

out between numerator and denominator, and equation (4) simplifies to

log
λk(t|x

0
[0,t))

λk(t|x0
[0,t)

)+Mλq
k
(t|x0

[0,t)
)

if x0
t = k and log

λq
k
(t|x0

[0,t))

λk(t|x0
[0,t)

)+Mλq
k
(t|x0

[0,t)
)

if x0
t = ∅ (5)

When a gradient-based optimization method adjusts θ to increase equation (5), the intuition is as
follows. If x0

t = k, the model intensity λk(t) is increased to explain why an event of type k
occurred at this particular time t. If x0

t = ∅, the model intensity λk(t) is decreased to explain why
an event of type k did not actually occur at time t (it was merely a noise event xm

t = k, for some
m 6= 0). These cases achieve the same qualitative effects as following the gradients of the first and
second terms, respectively, in the log-likelihood (2).

Our full objective is an expectation of the sum of finitely many such log-ratios:6

JNC(θ)
def
= Ex0

[0,T)
∼p∗,x1:M

[0,T)
∼q




∑

t:x0
t 6=∅

log
λ
x0
t
(t|x0

[0,t))

λ
x0
t
(t|x0

[0,t)
)
+

M∑

m=1

∑

t:xm
t 6=∅

log
λq
xm
t

(t|x0
[0,t))

λxm
t

(t|x0
[0,t)

)



 (6)

where λk(t | x0
[0,t))

def
= λk(t | x0

[0,t)) +Mλq
k(t | x0

[0,t)). The expectation is estimated by sampling:

we draw an observed stream x0
[0,T) from the training dataset, then draw noise events x1:M

[0,T) from

q conditioned on the prefixes (histories) given by this observed stream, as explained in the next
section. Given these samples, the bracketed term is easy to compute (and we then use backprop to
get its gradient w.r.t. θ, which is a stochastic gradient of the objective (6)). It eliminates the

∫ ∑
of

equation (2) as desired, replacing it with a sum over the noise events. For each real or noise event,
we compute only two intensities—the true and noise intensities of that event type at that time.

3.1 Efficient Sampling of Noise Events

The thinning algorithm (Lewis & Shedler, 1979; Liniger, 2009) is a rejection sampling method for
drawing an event stream over a given observation interval [0, T) from a continuous-time autoregres-
sive process. Suppose we have already drawn the first i − 1 times, namely t1, . . . , ti−1. For every
future time t ≥ ti−1, let H(t) denote the context x[0,t) consisting only of the events at those times,

and define λ(t | H(t)) def
=
∑K

k=1 λk(t | H(t)). If λ(t | H(t)) were constant at λ, we could draw

the next event time as ti ∼ ti−1 + Exp(λ). We would then set xt = ∅ for all of the intermediate
times t ∈ (ti−1, ti), and finally draw the type xti of the event at time ti, choosing k with probability

λk(ti | H(t)) / λ. But what if λ(t | H(t)) is not constant? The thinning algorithm still runs the

foregoing method, taking λ to be any upper bound: λ ≥ λ(t | H(t)) for all t ≥ ti−1. In this case,
there may be “leftover” probability mass not allocated to any k. This mass is allocated to ∅. A draw
of xti = ∅ means there was no event at time ti after all (corresponding to a rejected proposal). Ei-
ther way, we now continue on to draw ti+1 and xti+1

, using a version ofH(t) that has been updated

to include the event or non-event xti . The update toH(t) affects λ(t | H(t)) and the choice of λ.

How to sample noise streams. To draw a stream xm
[0,t) of noise events, we run the thinning al-

gorithm, using the noise intensity functions λq
k. However, there is a modification: H(t) is now

defined to be x0
[0,t)—the history from the observed event stream, rather than the previously sampled

noise events—and is updated accordingly. This is because in equation (6), at each time t, all of
{x0

t , x
1
t , . . . , x

M
t } are conditioned on x0

[0,t) (akin to the discrete-time case).7 The full pseudocode is

given in Algorithm 1 in the supplementary material.

Coarse-to-fine sampling of event types. Although our NCE method has eliminated the need to
integrate over t, the thinning algorithm above still sums over k in the definition of λq(t | H(t)).
For large K, this sum is expensive if we take the noise distribution on each training minibatch to

4

be, for example, the pθ with the current value of θ. That is a statistically efficient choice of noise
distribution, but we can make a more computationally efficient choice. A simple scheme is to first
generate each noise event with a coarse-grained type c ∈ {1, . . . , C}, and then stochastically choose
a refinement k ∈ {1, . . . ,K}:

λq
k(t | x0

[0,t))
def
=

C∑

c=1

q(k | c)λq
c(t | x0

[0,t)) for k = 1, 2, . . . ,K (7)

This noise model is parameterized by the functions λq
c and the probabilities q(k | c). The total

intensity is now λq(t | H(t)) =∑C
c=1 λ

q
c(t), so we now need to examine only C intensity functions,

not K, to choose λ in the thinning algorithm. If we partition the K types into C coarse-grained
clusters (e.g., using domain knowledge), then evaluating the noise probability (7) within the training
objective (6) is also fast because there is only one non-zero summand c in equation (7). This simple
scheme works well in our experiments. However, it could be elaborated by replacing q(k | c) with
q(k | c, x0

[0,t)), by partitioning the event vocabulary automatically, by allowing overlapping clusters,

or by using multiple levels of refinement: all of these elaborations are used by the fast hierarchical
language model of Mnih & Hinton (2009).

How to draw M streams. An efficient way to draw the union of M i.i.d. noise streams is to run the
thinning algorithm once, with all intensities multiplied by M . In other words, the expected number
of noise events on any interval is multiplied by M . This scheme does not tell us which specific
noise stream m generated a particular noise event, but the NCE objective (6) does not need to know
that. The scheme works only because every noise stream m has the same intensities λq

k(t | x0
[0,t))

(not λq
k(t | xm

[0,t))) at time t: there is no dependence on the previous events from that stream.

Amusingly, NCE can now run even with non-integer M .

Fractional objective. One view of the thinning algorithm is that it accepts the proposed time ti
with probability µ = λ(ti)/λ, and in that case, labels it as k with probability λk(ti)/λ(ti). To
get a greater diversity of noise samples, we can accept the time with probability 1, if we then scale
its term in the objective (6) by µ. This does not change the expectation (6) but may reduce the

sampling variance in estimating it. Note that increasing the upper bound λ now has an effect similar
to increasing M : more noise samples.8

3.2 Computational Cost Analysis

State-of-the-art intensity models use neural networks whose state summarizes the history and is
updated after each event. So to train on a single event stream x with I ≥ 0 events, both MLE and
NCE must perform I updates to the neural state. Both MLE and NCE then evaluate the intensities
λk(t | x[0,t)) of these I events, and also the intensities of a number of events that did not occur,

which almost surely fall at other times.9

Consider the number of intensities evaluated. For MLE, assume the Monte Carlo integration tech-
nique mentioned in section 2.2. MLE computes the intensity λ for I observed events and for all
K possible events at each of J sampled times. We take J = ρI (with randomized rounding to an
integer), where ρ > 0 is a hyperparameter (Mei & Eisner, 2017). Hence, the expected total number
of intensity evaluations is I + ρIK.

For NCE with the coarse-to-fine strategy, let J be the total number of times proposed by the thinning

algorithm. Observe that E [I] =
∫ T

0
λ∗(t | x[0,t))dt, and E [J] = M ·

∫ T

0
λ(t | x[0,t))dt. Thus,

E [J] ≈ M · E [I] if (1) λ at any time is a tight upper bound on the noise event rate λq at that
time and (2) the average noise event rate well-approximates the average observed event rate (which
should become true very early in training). To label or reject each of the J proposals, NCE evaluates
C noise intensities λq

c ; if the proposal is accepted with label k (perhaps fractionally), it must also
evaluate its model intensity λk. The noise and model intensities λq

c and λk must also be evaluated
for the I observed events. Hence, the total number of intensity evaluations is at most (C+1)J+2I ,
which ≈ (C + 1)MI + 2I in expectation.

Dividing by I , we see that making (M + 1)(C + 1) ≤ ρK suffices to make NCE’s stochastic
objective take less work per observed stream than MLE’s stochastic objective. M = 1 and C = 1
is a valid choice. But NCE’s objective is less informed for smaller M , so its stochastic gradient

5

carries less information about θ∗. In section 5, we empirically investigate the effect of M and C on
NCE and compare to MLE with different ρ.

3.3 Theoretical Guarantees: Optimality, Consistency and Efficiency

The following theorem implies that stochastic gradient ascent on NCE converges to a correct θ (if
one exists):

Theorem 1 (Optimality). Under assumptions 1 and 2, θ ∈ argmaxθ JNC(θ) if and only if pθ = p∗.

This theorem falls out naturally when we rearrange the NCE objective in equation (6) as
∫ T

t=0

∑

x0
[0,t)

p∗(x0
[0,t))

K∑

k=1

λ∗
k(t | x0

[0,t))

(
λ∗
k(t|x

0
[0,t))

λ∗
k
(t|x0

[0,t)
)
log

λk(t|x
0
[0,t))

λk(t|x
0
[0,t)

)
+M

λq

k
(t|x0

[0,t))

λ∗
k
(t|x0

[0,t)
)
log

λq

k
(t|x0

[0,t))

λk(t|x
0
[0,t)

)

)

︸ ︷︷ ︸

a negative cross entropy

dt

where λ∗
k is the intensity under p∗ and λ∗

k is defined analogously to λk: see full derivation in Ap-
pendix B.1. Obviously, pθ = p∗ is sufficient to maximize the negative cross-entropy for any k given
any history and thus maximize JNC(θ). It turns out to be also necessary because any θ for which
pθ 6= p∗ would, given assumption 1, end up decreasing the negative cross-entropy for some k over
some interval (t, t′) given a set of histories with non-zero measure. A full proof can be found in
Appendix B.2: as we’ll see there, although it resembles Theorem 3.2 of Ma & Collins (2018), the
proof of our Theorem 1 requires new analysis to handle continuous time, since Ma & Collins (2018)
only worked on discrete-time sequential data.

Moreover, our NCE method is strongly consistent for any M ≥ 1 and approaches Fisher efficiency
when M is large. These properties are the same as in Ma & Collins (2018) and the proofs are also
similar. Therefore, we leave the related theorems together with their assumptions and proofs to
Appendices B.3 and B.4.

4 Related Work

The original “binary classification” NCE principle was proposed by Gutmann & Hyvärinen (2010) to
estimate parameters for joint models of the form pθ(x) ∝ exp(score(x, θ)). Gutmann & Hyvärinen
(2012) applied it to natural image statistics. It was then widely applied to natural language pro-
cessing problems such as language modeling (Mnih & Teh, 2012), learning word representations
(Mikolov et al., 2013) and machine translation (Vaswani et al., 2013). The “ranking-based” vari-
ant (Jozefowicz et al., 2016)10 is better suited for conditional distributions (Ma & Collins, 2018),
including those used in autoregressive models, and has shown strong performance in large-scale
language modeling with recurrent neural networks.

Guo et al. (2018) tried NCE on (univariate) point processes but used the binary classification version.
They used discrimination problems of the form: “Is event k at time t′ the true next event following
history x[0,t], or was it generated from a noise distribution?” Their classification-based NCE variant
is not well-suited to conditional distributions (Ma & Collins, 2018): this complicates their method
since they needed to build a parametric model of the local normalizing constant, giving them weaker
theoretical guarantees and worse performance (see section 5). In contrast, we choose the ranking-
based variant: our key idea of how to apply this to continuous time is new (see section 3) and requires
new analysis (see Appendices A and B).

5 Experiments

We evaluate our NCE method on several synthetic and real-world datasets, with comparison to MLE,
Guo et al. (2018) (denoted as b-NCE), and least-squares estimation (LSE) (Eichler et al., 2017). b-
NCE has the same hyper-parameter M as our NCE, namely the number of noise events. LSE’s
objective involves an integral over times [0, T), so it has the same hyper-parameter ρ as MLE.

On each of the datasets, we will show the estimated log-likelihood on the held-out data achieved by
the models trained on the NCE, b-NCE, MLE and LSE objectives, as training consumes increasing
amounts of computation—measured by the number of intensity evaluations and the elapsed wall-
clock time (in seconds).11 We always set the minibatch size B to exhaust the GPU capacity, so
smaller ρ or M allows larger B. Larger B in turn increases the number of epochs per unit time (but
decreases the possibly beneficial variance in the stochastic gradient updates).

6

0.0 0.5 1.0 1.5 2.0
of intensities computed 1e10

50
45
40
35
30
25
20
15
10

lo
g-

lik
el

ih
oo

d

=0.01
B=150=0.01

B=180
=1

B=10

M=1000
B=10

M=10
B=35

M=1000
B=10

LSE
MLE
b-NCE
NCE

0 500 1000 1500 2000 2500 3000 3500
wall-clock time

50
45
40
35
30
25
20
15
10

lo
g-

lik
el

ih
oo

d

=0.01
B=150

=1
B=10

=0.01
B=180

=1
B=10

M=1000
B=10

M=10
B=35

M=1000
B=10

LSE
MLE
b-NCE
NCE

(a) Synthetic-1: p∗ = q.

0.0 0.5 1.0 1.5 2.0
of intensities computed 1e10

100

80

60

40

20

lo
g-

lik
el

ih
oo

d

=0.1
B=50

=1
B=10

=0.01
B=180

=0.1
B=50

=1
B=10

M=1000
B=10

M=10
B=40

M=1000
B=10

LSE
MLE
b-NCE
NCE

0 500 1000 1500 2000 2500 3000
wall-clock time

100

80

60

40

20

lo
g-

lik
el

ih
oo

d

=0.1
B=50

=1
B=10

=0.01
B=180

=0.1
B=50

=1
B=10

M=1000
B=10

M=10
B=40

M=1000
B=10

LSE
MLE
b-NCE
NCE

(b) Synthetic-2: p∗ and pθ are of the same family.

Figure 1: Learning curves of MLE and NCE on synthetic datasets. The displayed ρ and M values are among
the better ones that we found during hyperparameter search. The horizontal red line marks the highest held-out
log-likelihood achieved by MLE. The shaded area of each curve shows the range of log-likelihood of three
independent runs; most of them are too narrow to be easily noticed.

5.1 Synthetic Datasets

In this section, we work on two synthetic datasets with K = 10000 event types. We choose the neu-
ral Hawkes process (NHP) (Mei & Eisner, 2017) to be our model pθ.12 For the noise distribution
q, we choose C = 1 and also parametrize its intensity function as a neural Hawkes process.

The first dataset has sequences drawn from the randomly initialized q such that we can check how
well our NCE method could perform with the “ground-truth” noise distribution q = p∗; the se-
quences of the second dataset were drawn from a randomly initialized neural Hawkes process to
evaluate both methods in the case that the model family pθ is well-specified. We show (the zoomed-
in views of the interesting parts of) multiple learning curves on each dataset in Figure 1: NCE is
observed to consume substantially fewer intensity evaluations and less wall-clock time than MLE
to achieve competitive log-likelihood, while b-NCE and LSE are slower and only converge to lower
log-likelihood. Note that the wall-clock time may not be proportional to the number of intensities
because computing intensities is not all of the work (e.g., there are LSTM states of both pθ and q to
compute and store on GPU).

We also observed that models that achieved comparable log-likelihood—no matter how they were
trained—achieved comparable prediction accuracies (measured by root-mean-square-error for time
and error rate for type). Therefore, our NCE still beats other methods at converging quickly to the
highest prediction accuracy.

Ablation Study I: Always or Never Redraw Noise Samples. During training, for each observed
data, we can choose to either redraw a new set of noise samples every time we train on it or keep
reusing the old samples: we did the latter for Figure 1. In experiments doing the former, we observed
better generation for tiny M (e.g., M = 1) but substantial slow-down (because of sampling) with
no improved generalization for large M (e.g, 1000). Such results suggest that we always reuse old
samples as long as M is reasonably large: it is then what we do for all other experiments throughout
the paper. See Appendix D.4 for more details of this ablation study, including learning curves of the
“always redraw” strategy in Figure 5.

5.2 Real-World Social Interaction Datasets with Large K

We also evaluate the methods on several real-world social interaction datasets that have many event
types: see Appendix D.1 for details (e.g, data statistics, pre-processing, data splits, etc). In this
section, we show the learning curves on two particularly interesting datasets (explained below) in
Figure 2 and leave those on the other datasets (which look similar) to Appendix D.3.

EuroEmail (Paranjape et al., 2017). This dataset contains time-stamped emails between
anonymized members of a European research institute. We work on a subset of 100 most active
members and then end up with K = 10000 possible event types and 50000 training event tokens.

BitcoinOTC (Kumar et al., 2016). This dataset contains time-stamped rating (positive/negative)
records between anonymized users on the BitcoinOTC trading platform. We work on a subset of
100 most active users and then end up with K = 19800 (self-rating not allowed) possible event
types but only 1000 training event tokens: this is an extremely data-sparse setting.

On these datasets, our model pθ is still a neural Hawkes process. For the noise distribution q, we ex-
periment with not only the coarse-to-fine neural process with C = 1 but also a homogeneous Poisson

7

0.0 0.5 1.0 1.5 2.0
of intensities computed 1e10

140

120

100

80

60

40

20

0

lo
g-

lik
el

ih
oo

d
=0.01

B=180

=0.01
B=180

=0.1
B=40 =1

B=10

M=1000
B=10

M=100
B=20

M=1000
B=10

LSE
MLE
b-NCE
NCE

0 1000200030004000500060007000
wall-clock time

140

120

100

80

60

40

20

0

lo
g-

lik
el

ih
oo

d

=0.01
B=180

=1
B=10

=0.01
B=180

=0.1
B=40

=1
B=10

M=1000
B=10

M=100
B=20

M=1000
B=10

LSE
MLE
b-NCE
NCE

(a1) EuroEmail: neural q

0.0 0.5 1.0 1.5 2.0
of intensities computed 1e10

140

120

100

80

60

40

20

0

lo
g-

lik
el

ih
oo

d

=0.01
B=180

=0.01
B=180

=0.1
B=40

=1
B=10M=1000

B=10

M=100
B=20

M=1000
B=10

LSE
MLE
b-NCE
NCE

0 1000200030004000500060007000
wall-clock time

140

120

100

80

60

40

20

0

lo
g-

lik
el

ih
oo

d

=0.01
B=180

=1
B=10

=0.01
B=180

=0.1
B=40

=1
B=10

M=1000
B=10

M=100
B=20

M=1000
B=10

LSE
MLE
b-NCE
NCE

(a2) EuroEmail: Poisson q

0.0 0.5 1.0 1.5 2.0 2.5
of intensities computed 1e10

400
350
300
250
200
150
100

50
0

lo
g-

lik
el

ih
oo

d

=0.01
B=100

=0.01
B=100

=0.1
B=30

=1
B=5

M=500
B=20

M=5000
B=5

M=500
B=20

M=5000
B=5

LSE
MLE
b-NCE
NCE

0 1000 2000 3000 4000 5000 6000 7000
wall-clock time

400
350
300
250
200
150
100

50
0

lo
g-

lik
el

ih
oo

d
=0.01

B=100

=1
B=5

=0.01
B=100

=0.1
B=30

=1
B=5

M=500
B=20

M=5000
B=5

M=500
B=20

M=5000
B=5

LSE
MLE
b-NCE
NCE

(b1) BitcoinOTC: neural q.

0.0 0.5 1.0 1.5 2.0 2.5
of intensities computed 1e10

400
350
300
250
200
150
100

50
0

lo
g-

lik
el

ih
oo

d

=0.01
B=100

=0.01
B=100

=0.1
B=30

=1
B=5

M=500
B=20

M=5000
B=5

M=500
B=20

M=5000
B=5

LSE
MLE
b-NCE
NCE

0 1000200030004000500060007000
wall-clock time

400
350
300
250
200
150
100

50
0

lo
g-

lik
el

ih
oo

d

=0.01
B=100

=1
B=5

=0.01
B=100

=0.1
B=30

=1
B=5

M=500
B=20

M=5000
B=5

M=500
B=20

M=5000
B=5

LSE
MLE
b-NCE
NCE

(b2) BitcoinOTC: Poisson q.

Figure 2: Learning curves of MLE and NCE on the real-world social interaction datasets.

0 100000200000300000400000500000
of intensities computed

40

35

30

25

20

15

10

5

lo
g-

lik
el

ih
oo

d

=2

=1
=0.5

M=5

M=10

M=1

M=5

M=10

LSE
MLE
b-NCE
NCE

0 250 500 750 1000 1250 1500 1750
wall-clock time

40

35

30

25

20

15

10

5

lo
g-

lik
el

ih
oo

d

=2
=1

=0.5

M=5

M=10

M=1
M=5

M=10

LSE
MLE
b-NCE
NCE

(a) RoboCup: C = 5

0.2 0.4 0.6 0.8 1.0
of intensities computed 1e7

50

45

40

35

30

25

20

15

10

lo
g-

lik
el

ih
oo

d =0.0001
M=1

M=5

LSE
MLE
b-NCE
NCE

20000 40000 60000 80000 100000
wall-clock time

50

45

40

35

30

25

20

15

10

lo
g-

lik
el

ih
oo

d

=0.0001

M=1

M=5

M=10
LSE
MLE
b-NCE
NCE

(b) IPTV: C = 49

Figure 3: Learning curves of MLE and NCE on RoboCup and IPTV datasets.

process. As shown in Figure 2, our NCE tends to perform better with the neural q: this is because
a neural model can better fit the data and thus provide better training signals, analogous to how a
good generator can benefit the discriminator in the generative adversarial framework (Goodfellow
et al., 2014). NCE with Poisson q also shows benefits through the early and middle training stages,
but it might suffer larger variance (e.g., Figure 2a2) and end up with slightly worse generalization
(e.g., Figure 2b2). MLE with different ρ values all eventually achieve the highest log-likelihood
(≈ −10 on EuroEmail and ≈ −15 on BitcoinOTC), but most of these runs are so slow that their
peaks are out of the current views. The b-NCE runs with different M values are slower, achieve
worse generalization and suffer larger variance than our NCE; interestingly, b-NCE prefers Poisson
q to neural q (better generalization on EuroEmail and smaller variance on BitcoinOTC). In general,
LSE is the slowest, and the highest log-likelihood it can achieve (≈ −30 on EuroEmail and ≈ −25
on BitcoinOTC) is lower than that of MLE and our NCE.

Ablation Study II: Trained vs. Untrained q. The noise distributions (except the ground-truth q
for Synthetic-1) that we have used so far were all pretrained on the same data as we train pθ. The
training cost is cheap: e.g., on the datasets in this section, the actual wall-clock training time for the
neural q is less than 2% of what is needed to train pθ, and training the Poisson q costs even less.1314

We also experimented with untrained noise distributions and they were observed to perform worse
(e.g., worse generalization, slower convergence and larger variance). See Appendix D.5 for more
details, including learning curves (Figure 6).

5.3 Real-World Dataset with Dynamic Facts

In this section, we let pθ be a neural Datalog through time (NDTT) model (Mei et al., 2020). Such
a model can be used in a domain in which new events dynamically update the set of event types and
the structure of their intensity functions. We evaluate our method on training the domain-specific
models presented by Mei et al. (2020), on the same datasets they used:

RoboCup (Chen & Mooney, 2008). This dataset logs actions of robot players during RoboCup soc-
cer games. The set of possible event types dynamically changes over time (e.g., only ball possessor
can kick or pass) as the ball is frequently transferred between players (by passing or stealing). There
are K = 528 event types over all time, but only about 20 of them are possible at any given time.

8

IPTV (Xu et al., 2018). This dataset contains time-stamped records of 1000 users watching 49 TV
programs over 2012. The users are not able to watch a program until it is released, so the number of
event types grows from K = 0 to K = 49000 as programs are released one after another.

The learning curves are displayed in Figure 3. On RoboCup, NCE only progresses faster than MLE
at the early to middle training stages: M = 5 and M = 10 eventually achieved the highest log-
likelihood at the same time as MLE and M = 1 ended up with worse generalization. On IPTV, NCE
with M = 1 turned out to learn as well as and much faster than MLE. The dynamic architecture
makes it hard to parallelize the intensity computation; MLE in particular performs poorly in wall-
clock time, and we needed a remarkably small ρ to let MLE finish within the shown time range.
On both datasets, b-NCE and LSE drastically underperform MLE and NCE: their learning curves
increase so slowly and achieve such poor generalization that only b-NCE with M = 5 and M = 10
are visible on the graphs.

Ablation Study III: Effect of C. In the above figures, we used the coarse-to-fine neural model as
q. On RoboCup, each action (kick, pass, etc.) has a coarse-grained intensity, so C = 5. On IPTV,
we partition the event vocabulary by TV program, so C = 49. We also experimented with C = 1:
this reduces the number of intensities computed during sampling on both datasets, but has (slightly)
worse generalization on RoboCup (since q becomes less expressive). See Appendix D.6 for more
details, including learning curves (Figure 7).

6 Conclusion

We have introduced a novel instantiation of the general NCE principle for training a multivariate
point process model. Our objective has the same optimal parameters as the log-likelihood objective
(if the model is well-specified), but needs fewer expensive function evaluations and much less wall-
clock time in practice. This benefit is demonstrated on several synthetic and real-world datasets.
Moreover, our method is provably consistent and efficient under mild assumptions.

Broader Impact

Our method is designed to train a multivariate point process for probabilistic modeling of event
streams. By describing this method and releasing code, we hope to facilitate probabilistic modeling
of continuous-time sequential data in many domains. Good probabilistic models make it possible
to impute missing events, anticipate possible future events, and react accordingly. They can also be
used in exploratory data analysis.

In addition to making it more feasible and more convenient for domain experts to train complex
models with many event types, our method reduces the energy cost necessary to do so.

Examples of event streams with potential social impact include a person’s detailed
food/exercise/sleep/medical event log, their social media interactions, their interactions with edu-
cational exercises or games, or their educational or workplace events (for time management and
career planning); a customer’s interactions with a particular company or its website or other user
interface; a company’s sales and purchases; geopolitical events, financial events, human activity
modeling, music modeling, and dynamic resource requests.

We are not aware of any negative broader impacts that might stem from publishing this work.

Disclosure of Funding Sources

This work was supported by a Ph.D. Fellowship Award to the first author by Bloomberg L.P. and a
National Science Foundation Grant No. 1718846 to the last author, as well as two Titan X Pascal
GPUs donated by NVIDIA Corporation and compute cycles from the Maryland Advanced Research
Computing Center.

Acknowledgments

We thank the anonymous NeurIPS reviewers and meta-reviewer as well as Hongteng Xu for helpful
comments on this paper.

9

References

Baran, I., Demaine, E. D., and Katz, D. A. Optimally adaptive integration of univariate Lipschitz
functions. Algorithmica, 2008.

Chen, D. L. and Mooney, R. J. Learning to sportscast: A test of grounded language acquisition. In
Proceedings of the International Conference on Machine Learning (ICML), 2008.

Daley, D. J. and Vere-Jones, D. An Introduction to the Theory of Point Processes, Volume II: General
Theory and Structure. Springer, 2007.

Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., and Song, L. Recurrent marked
temporal point processes: Embedding event history to vector. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

Eichler, M., Dahlhaus, R., and Dueck, J. Graphical modeling for multivariate Hawkes processes
with nonparametric link functions. Journal of Time Series Analysis, 38(2):225–242, March 2017.

Ferguson, T. S. A Course in Large Sample Theory. Chapman and Hall, 1996.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems
(NeurIPS), 2014.

Guo, R., Li, J., and Liu, H. INITIATOR: Noise-contrastive estimation for marked temporal point
process. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
2018.

Gutmann, M. and Hyvärinen, A. Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS), 2010.

Gutmann, M. U. and Hyvärinen, A. Noise-contrastive estimation of unnormalized statistical models,
with applications to natural image statistics. Journal of Machine Learning Research, 2012.

Hawkes, A. G. Spectra of some self-exciting and mutually exciting point processes. Biometrika,
1971.

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu, Y. Exploring the limits of language
modeling. arXiv preprint arXiv:1602.02410, 2016.

Kingma, D. and Ba, J. Adam: A method for stochastic optimization. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2015.

Kumar, S., Spezzano, F., Subrahmanian, V., and Faloutsos, C. Edge weight prediction in weighted
signed networks. In Proceedings of the International Conference on Data Mining (ICDM), 2016.

Leskovec, J., Huttenlocher, D., and Kleinberg, J. Governance in social media: A case study of the
Wikipedia promotion process. In Proceedings of the International Conference on Web and Social
Media (ICWSM), 2010.

Lewis, P. A. and Shedler, G. S. Simulation of nonhomogeneous Poisson processes by thinning.
Naval Research Logistics Quarterly, 1979.

Liniger, T. J. Multivariate Hawkes processes. PhD thesis, Eidgenössische Technische Hochschule
ETH Zürich, Nr. 18403, 2009.

Ma, Z. and Collins, M. Noise-contrastive estimation and negative sampling for conditional models:
Consistency and statistical efficiency. arXiv preprint arXiv:1809.01812, 2018.

Mei, H. and Eisner, J. The neural Hawkes process: A neurally self-modulating multivariate point
process. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

10

Mei, H., Qin, G., Xu, M., and Eisner, J. Neural Datalog through time: Informed temporal modeling
via logical specification. In Proceedings of the International Conference on Machine Learning
(ICML), 2020.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Distributed representations of
words and phrases and their compositionality. In Advances in Neural Information Processing
Systems (NeurIPS), 2013.

Mnih, A. and Hinton, G. E. A scalable hierarchical distributed language model. In Advances in
Neural Information Processing Systems (NeurIPS), 2009.

Mnih, A. and Teh, Y. W. A fast and simple algorithm for training neural probabilistic language
models. 2012.

Panzarasa, P., Opsahl, T., and Carley, K. M. Patterns and dynamics of users’ behavior and interac-
tion: Network analysis of an online community. Journal of the American Society for Information
Science and Technology, 2009.

Paranjape, A., Benson, A. R., and Leskovec, J. Motifs in temporal networks. 2017.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga,
L., and Lerer, A. Automatic differentiation in PyTorch. In Autodiff Workshop at NeurIPS 2017,
2017.

Vaswani, A., Zhao, Y., Fossum, V., and Chiang, D. Decoding with large-scale neural language
models improves translation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2013.

Xu, H., Luo, D., and Carin, L. Online continuous-time tensor factorization based on pairwise
interactive point processes. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2018.

11

Notes
1A special event x0 is sometimes given at time 0 to mark the beginning of the sequence; the model then

generates the rest of the sequence conditioned on x0.

2The product p∗(xm
t | x0:t)

∏
m′ 6=m

q(xm′

t | x0:t) is the likelihood of xm
t being the one drawn from p∗.

The prior is uniform since any m in the unordered bag was a priori equally probable.

3In practice, it is more convenient to maximize the expected sum over t in a sequence drawn uniformly
from the set of sequences in the training dataset. This scales the objective up by the average sequence length,
preserving the property that longer sequences have more weight.

4Our model does not need any normalization: p(xt = ∅) +
∑K

k=1 p(xt = k) = 1 +
(infinitesimal quantities) = 1.

5 While this paper’s speedup over the MLE objective (2) comes from avoiding the integral, an alternative
would be to estimate the integral more efficiently. One might try randomized adaptive quadrature (Baran et al.,
2008) modified for our discontinuous intensity functions and GPU hardware; or importance sampling of (t, k)
pairs where the proposal distribution is roughly proportional to λk(t)—much like the noise distribution we will
develop for NCE.

6We remark that JNC(θ) is the expected log-probability of a discrete choice, whereas JLL(θ) was the
expected log-density of an observation that includes continuous times. A density must be integrated to yield a
probability.

7This is not essential to the NCE approach, since in principle the M + 1 elements of the bag could all be
drawn from different distributions. However, the homogeneity simplifies equations (5)–(6), and not having to
keep track of previous noise samples simplifies bookkeeping. Furthermore, much as in a GAN, we expect the
discrimination task to be most challenging and informative when the noise intensity λq

k at time t is close to the

true intensity λ∗
k(t | x

0
[0,t)). Therefore we give the function λq

k access to the true history x0
[0,t), and will train

it to predict something like the true intensity.

8This trick does carry computational cost: we need to train (via backpropagation) on proposals that might
not have been accepted otherwise. This cost is perhaps not worth it when µ(t) is too low: it might be better
spent on increasing M or running more training epochs for a fixed M . As a compromise, if µ is small (≤ 0.05
in our current experiments), we revert to the original approach of accepting the time with probability µ and not
scaling it.

9In between the events, even if the neural state remains constant, the intensity functions need not be constant.

10Jozefowicz et al. (2016) considered it a competitor to NCE; Ma & Collins (2018) argued for regarding it
as a variant.

11Our code is written in PyTorch (Paszke et al., 2017) and will be released upon paper acceptance. Our
experiments were run on NVIDIA Tesla K80.

12We use the public PyTorch implementation. NHP is a thoughtfully designed framework that has been
demonstrated effective on temporal data, but our method can also be used for other models with parametric
intensity functions.

13We train q by MLE: summing C intensities is not expensive when C is small. In Appendix C.2, we
document an alternative strategy that uses q as the noise distribution to train itself by NCE.

14For the experiments in section 5.3, training the neural q takes only < 1/100 of what needed to train pθ .

12

Appendices

A Proof Details for MLE

In this section, we prove the claim in section 2.2 that argmaxθ JLL(θ) = Θ∗ def
= {θ∗ : pθ∗ = p∗}.

For this purpose, we first rearrange JLL(θ) = Ep∗(x[0,T))

[
log pθ(x[0,T))

]
as below:

∑

x[0,T)

p∗(x[0,T)) log pθ(x[0,T)) (8a)

=

∫ T

t=0

∑

x[0,t)

p∗(x[0,t))
∑

x[t,t+dt)

p∗(x[t,t+dt) | x[0,t)) log pθ(x[t,t+dt) | x[0,t))

︸ ︷︷ ︸

call it Hθ(t,x[0,t))

(8b)

The intuition for equation (8b) is that due to the form of the autoregressive model, log pθ(x[0,T))
in equation (8a) can be broken up into a sum of log (infinitesimal) probabilities of x[t,t+dt) on the

infinitesimal intervals [t, t+dt), each probability being conditioned on the past history x[0,t). When
we take the expectation under p∗, each summand gets weighted by the probability that x[0,t) and
x[t,t+dt) would take on the values in that summand. This gives a form (8b) that aggregates the

infinitesimal quantities Hθ(t, x[0,t)) over possible times t ∈ [0, T) and possible histories x[0,t).

Proof. We first observe that Hθ(t, x[0,t)) is the negative cross-entropy between the conditional dis-
tributions of p∗ and pθ at time t (both conditioned on history x[0,t)). Technically, x[t,t+dt) will

have an event of type k with probability λ∗
k(t)dt under p∗ (λk(t)dt under pθ) or has no event

at all with probability 1 − ∑K
k=1 λ

∗
k(t)dt under p∗ (1 − ∑K

k=1 λk(t)dt under pθ). So the term
Hθ(t, x[0,t)) is actually the negative cross entropy between the following two discrete distributions

over {∅, 1, . . . ,K}:
[(

1−
K∑

k=1

λ∗
k(t | x[0,t))dt

)

, λ∗
1(t | x[0,t))dt, . . . , λ

∗
K(t | x[0,t))dt

]

(9a)

[(

1−
K∑

k=1

λk(t | x[0,t))dt

)

, λ1(t | x[0,t))dt, . . . , λK(t | x[0,t))dt

]

(9b)

The (infinitesimal) negative cross-entropy between them is always smaller than or equal to the neg-
ative entropy of the distribution in equation (9a): it will be strictly smaller if these two distributions
are distinct, and equal when they are identical.

It is then obvious that any θ∗ ∈ Θ∗ maximizes JLL(θ) because it maximizes the negative cross-
entropy for any history x[0,t) at any time t.

To check if any other θ̄ /∈ Θ∗ maximizes JLL(θ) as well, we analyze

JLL(θ̄)− JLL(θ
∗) =

∫ T

t=0

∑

x[0,t)

p∗(x[0,t))(Hθ̄(t, x[0,t))−Hθ∗(t, x[0,t)))
︸ ︷︷ ︸

denote it as Gθ̄(t,x[0,t))dt

(10)

where θ∗ can be any member in Θ∗. Note that we can denote Hθ̄ − Hθ∗ as Gθ̄dt because the
probabilities in H and thus the entropy changes (if any) are all infinitesimal.

According to the definition of θ̄ and θ∗, there must exist a stream x̄[0,T), a time t̄ ∈ (0, T) and a type

k̄ ∈ {1, . . . ,K} such that λk̄(t̄ | x̄[0,t̄)) 6= λ∗
k̄
(t̄ | x̄[0,t̄)). Therefore, we have Gθ̄(t̄, x̄[0,t̄)) < 0 since

the distributions in equation (9) are distinct for the given history x̄[0,t̄). Does this difference lead to
any overall change of the entire objective?

Actually, according to Lemma 1 (that we will prove shortly), the existence of such x̄[0,T), t̄ and k̄
implies that there exists an interval (t′, t′′) ⊂ [0, T) such that, for any t ∈ (t′, t′′), there exists a set

13

X (t) of histories with non-zero measure such that any x[0,t) ∈ X (t) satisfies λk̄(t | x[0,t)) 6= λ∗
k̄
(t |

x[0,t)). That is to say, the fraction of the integral over (t′, t′′) is a non-infinitesimal negative number:

∫ t′′

t=t′

∑

x[0,t)

p∗(x[0,t))Gθ̄(t, x[0,t))dt (11a)

=

∫ t′′

t=t′

∑

x[0,t)∈X (t)

p∗(x[0,t))Gθ̄(t, x[0,t))dt

︸ ︷︷ ︸
<0

+

∫ t′′

t=t′

∑

x[0,t) /∈X (t)

p∗(x[0,t))Gθ̄(t, x[0,t))dt

︸ ︷︷ ︸

≤0

(11b)

where the second integral ≤ 0 because Gθ always ≤ 0. For the same reason, we also have
∫ t′

t=0

∑

x[0,t)
p∗(x[0,t))Gθ̄(t, x[0,t))dt ≤ 0 and

∫ T

t=t′′

∑

x[0,t)
p∗(x[0,t))Gθ̄(t, x[0,t))dt ≤ 0. Then

the overall difference must be strictly negative, i.e.,

JLL(θ̄)− JLL(θ
∗) < 0 (12)

Note that this inequality holds for any θ̄ /∈ Θ∗ and any θ∗ ∈ Θ∗, meaning that θ∗ ∈ Θ∗ is necessary
to maximize the objective.

Now the proof of argmaxθ JLL(θ) = Θ∗ is complete.

Lemma 1. Suppose that we have two intensity functions that meet assumption 1: they have different
parameters θ and θ∗ and are denoted as λk(t | x[0,t)) and λ∗

k(t | x[0,t)) respectively. If there exists a

stream x̄[0,T), a time t̄ ∈ (0, T) and a type k̄ ∈ {1, . . . ,K} such that λk̄(t̄ | x̄[0,t̄)) 6= λ∗
k̄
(t̄ | x̄[0,t̄)),

then there exists an open interval (t′, t′′) ⊂ [0, T) such that, for any t ∈ (t′, t′′), there exists a set X
of histories with non-zero measure such that any x[0,t) ∈ X satisfies λk̄(t | x[0,t)) 6= λ∗

k̄
(t | x[0,t)).

This lemma says: if θ and θ∗ are meaningfully different in that they predict different intensities at
time t for some history, then they actually do so for a set of histories of non-zero measure, mak-
ing this difference visible in the objective functions like JLL(θ) (see above) and JNC(θ) (see Ap-
pendix B). Note that previous work did not encounter this since they only worked on either non-
sequential data (e.g., Gutmann & Hyvärinen (2010, 2012)) or discrete-time sequential data (e.g., Ma
& Collins (2018)).

Proof. We first prove the existence of an interval (t′, t′′) such that λk̄(t | x̄[0,t)) 6= λ∗
k̄
(t | x̄[0,t))

for the given stream x̄[0,T) and any time t ∈ (t′, t′′). It turns out to be straightforward under
assumption 1: since the intensity functions are continuous between events, we can construct this
interval by expanding from the given time t̄ until λk̄(t | x̄[0,t)) = λ∗

k̄
(t | x̄[0,t)).

We use d to denote the maximal difference between the intensities over (t′, t′′), i.e., d
def
=

maxt∈(t′,t′′) |λk̄(t | x̄[0,t)) − λ∗
k̄
(t | x̄[0,t))|. Then, to facilitate the rest of the proof, we shrink

the interval (t′, t′′) such that |λk̄(t | x̄[0,t))− λ∗
k̄
(t | x̄[0,t))| > d/2 for any time t ∈ (t′, t′′).

Now, for any time t ∈ (t′, t′′), we prove the existence of the set described in Lemma 1 by construct-
ing it.

We initialize this set as {x̄[0,t)}. If x̄[0,t) doesn’t have any event, then its probability p(x̄[0,t)) =

exp(−
∫ t

s=0

∑K
k=1 λk(s | x̄[0,s))ds) is not infinitesimal and this set already has non-zero measure.

What if x̄[0,t) has I ≥ 1 events at times 0 < t1 < . . . < tI < t? Intuitively, we can construct
many other histories satisfying the intensity inequality by slightly shifting the time of each event: as
long as they aren’t shifted by too far, the d/2 difference between intensities won’t vanish (even if it
decreases). See the formal proof as below.

In the case of I ≥ 1, the probability p(x̄[0,t)) is infinitesimal in the order of (dt)I : p(x̄[0,t)) =
∏I

i=1(λx̄ti
(ti | x̄[0,ti))dt) exp(−

∫ t

s=0

∑K
k=1 λk(s | x̄[0,s))ds). Therefore, to construct a set with

non-zero measure, the number of histories satisfying the inequality has to be in the order of (1
dt)

I .

14

We define an open interval (t′1, t
′′
1) that covers t1 but not any other event time. Now we can construct

uncountably many—in the order of 1
dt—histories x[0,t) by freely shifting the event time t1 inside

(t′1, t
′′
1). Suppose that t1 has been shifted by ∆ ∈ R. Under assumption 1, there is a continuous

function c(∆) such that c(0) = 0 and

λk̄(t | x[0,t))− λ∗
k̄(t | x[0,t)) = λk̄(t | x̄[0,t))− λ∗

k̄(t | x̄[0,t)) + c(∆) (13)

meaning that the intensity difference will change by c(∆). By triangle inequality, we have
∣
∣λk̄(t | x[0,t))− λ∗

k̄(t | x[0,t))
∣
∣ ≥

∣
∣
∣
∣λk̄(t | x̄[0,t))− λ∗

k̄(t | x̄[0,t))
∣
∣− |c(∆)|

∣
∣ (14)

Since c(∆) is continuous, as long as we make |∆| small enough, we’ll have |c(∆)| ≤ d/2 and then
the following inequality holds:
∣
∣λk̄(t | x[0,t))− λ∗

k̄(t | x[0,t))
∣
∣ ≥

∣
∣λk̄(t | x̄[0,t))− λ∗

k̄(t | x̄[0,t))
∣
∣− |c(∆)| > d/2− d/2 = 0 (15)

meaning that the intensities given the new history are still different. Therefore, as long as we keep the
interval (t′1, t

′′
1) small enough, we’ll have order- 1

dt many histories and the inequality in equation (15)
holds given any of them.

Recall that we need order-(1
dt)

I many such histories. We can obtain them by simply defining I
disjoint open intervals (t′1, t

′′
1), . . . , (t

′
I , t

′′
I) such that ti ∈ (t′i, t

′′
i) and freely shifting each event

time ti inside (t′i, t
′′
i). Suppose that ti has been shifted by ∆i ∈ R, Under assumption 1, there is a

continuous function c(∆1, . . . ,∆I) such that c(0, . . . , 0) = 0 and

λk̄(t | x[0,t))− λ∗
k̄(t | x[0,t)) = λk̄(t | x̄[0,t))− λ∗

k̄(t | x̄[0,t)) + c(∆1, . . . ,∆I) (16)

Since c is a continuous function, there exist I positive real numbers ∆̄1, . . . , ∆̄I such that
|c(∆1, . . . ,∆I)| ≤ d/2 as long as |∆i| ≤ ∆̄i holds for all i = 1, . . . , I . In this case, by trian-
gle inequality, we still have

∣
∣λk̄(t | x[0,t))− λ∗

k̄(t | x[0,t))
∣
∣ ≥

∣
∣λk̄(t | x̄[0,t))− λ∗

k̄(t | x̄[0,t))
∣
∣− |∆i| > 0 (17)

Now we have order-(1
dt)

I many histories: each of them has order-(dt)I probability and the inequal-
ity in equation (17) holds given any of them. That is to say, the set of these histories has non-zero
measure and we have λk̄(t | x[0,t)) 6= λ∗

k̄
(t | x[0,t)) given any x[0,t) in this set.

This completes the proof.

B NCE Details

In this section, we will discuss the theoretical guarantees of our NCE method in detail.

B.1 Derivation Details

In this section, we show how to get the rearranged NCE objective in section 3.3 from equation (6).

First of all, we observe that:

Ex0
[0,T)

∼p∗,x1:M
[0,T)

∼q




∑

t:x0
t 6=∅

log
λ
x0
t
(t|x0

[0,t))

λ
x0
t
(t|x0

[0,t)
)
+

M∑

m=1

∑

t:xm
t 6=∅

log
λq
xm
t

(t|x0
[0,t))

λxm
t

(t|x0
[0,t)

)



 (18a)

=

∫ T

t=0

Ex0
[0,t)

∼p∗

[
K∑

k=1

λ∗
k(t | x0

[0,t))dt log
λ
x0
t
(t|x0

[0,t))

λ
x0
t
(t|x0

[0,t)
)
+

M∑

m=1

K∑

k=1

λq
k(t | x0

[0,t))dt log
λq
xm
t

(t|x0
[0,t))

λxm
t

(t|x0
[0,t)

)

]

(18b)

This rearrangement is similar to that of equations (8a)–(8b). The intuition of equation (18a) is that
we sample M i.i.d. noise streams x1

[0,T), . . . , x
M
[0,T) for each possible real data x0

[0,T), sum up the

log-ratio whenever x0:M
t has an event, and then take the expectation over all the possible real data

x0
[0,T). The intuition of equation (18b) is that we draw noise samples x1

t , . . . , x
M
t for each real

15

history x0
[0,t) at each time t, compute the log-ratio if x0:M

t has an event, take the expectation of the

log-ratio over all the possible real histories and then sum over all the possible times. Therefore,
these two expectations are equal.

We further rearrange equation (18) as

=

∫ T

t=0

Ex0
[0,t)

∼p∗

[
K∑

k=1

(

λ∗
k(t | x0

[0,t))dt log
λk(t|x

0
[0,t))

λk(t|x
0
[0,t)

)
+

M∑

m=1

λq
k(t | x0

[0,t))dt log
λq
k
(t|x0

[0,t))

λk(t|x
0
[0,t)

)

)]

(19a)

=

∫ T

t=0

Ex0
[0,t)

∼p∗

[
K∑

k=1

(

λ∗
k(t | x0

[0,t))dt log
λk(t|x

0
[0,t))

λk(t|x
0
[0,t)

)
+Mλq

k(t | x0
[0,t))dt log

λq
k
(t|x0

[0,t))

λk(t|x
0
[0,t)

)

)]

(19b)

=

∫ T

t=0

Ex0
[0,t)

∼p∗

[
K∑

k=1

λ∗
k(t | x0

[0,t))dt

(
λ∗
k(t|x

0
[0,t))

λ∗
k
(t|x0

[0,t)
)
log

λk(t|x
0
[0,t))

λk(t|x
0
[0,t)

)
+M

λq
k
(t|x0

[0,t))

λ∗
k
(t|x0

[0,t)
)
log

λq
k
(t|x0

[0,t))

λk(t|x
0
[0,t)

)

)]

(19c)

where λ∗
k(t | x0

[0,t))
def
= λ∗

k(t | x0
[0,t)) +Mλq

k(t | x0
[0,t)) can be thought of as the intensity of type k

under the superposition of p∗ and M copies of q.

Now we obtain the final rearranged objective:

∫ T

t=0

∑

x0
[0,t)

p∗(x0
[0,t))

K∑

k=1

λ∗
k(t | x0

[0,t))

(
λ∗
k(t|x

0
[0,t))

λ∗
k
(t|x0

[0,t)
)
log

λk(t|x
0
[0,t))

λk(t|x
0
[0,t)

)
+M

λq

k
(t|x0

[0,t))

λ∗
k
(t|x0

[0,t)
)
log

λq

k
(t|x0

[0,t))

λk(t|x
0
[0,t)

)

)

︸ ︷︷ ︸

call it Hθ(k,t,x0
[0,t)

)

dt

(20)

B.2 Optimality Proof Details

In this section, we prove Theorem 1 that we stated in section 3.3. Recall the theorem:

Theorem 1 (Optimality). Under assumptions 1 and 2, θ ∈ argmaxθ JNC(θ) if and only if pθ = p∗.

We first need to highlight the key insight that Hθ(k, t, x
0
[0,t)) in equation (20) is the negative cross-

entropy between the following two discrete distributions over {∅, 1, . . . ,K}:

[
λ∗
k(t|x

0
[0,t))

λ∗
k
(t|x0

[0,t)
)
,
λq

k
(t|x0

[0,t))

λ∗
k
(t|x0

[0,t)
)
, . . . ,

λq

k
(t|x0

[0,t))

λ∗
k
(t|x0

[0,t)
)
] (21a)

[
λk(t|x

0
[0,t))

λk(t|x
0
[0,t)

)
,
λq

k
(t|x0

[0,t))

λk(t|x
0
[0,t)

)
, . . . ,

λq

k
(t|x0

[0,t))

λk(t|x
0
[0,t)

)
︸ ︷︷ ︸

length is M

] (21b)

This negative cross-entropy is always smaller than or equal to the negative entropy of the distribution
in equation (21a): it will be strictly smaller if these two distributions are distinct and equal when
they are identical. Notice that in contrast to the negative cross-entropy at equation (9), this negative
cross-entropy here is not infinitesimal.

Proof. The “if” part is straightforward to prove. Any θ for which pθ = p∗ would make λk(t |
x0
[0,t)) = λ∗

k(t | x0
[0,t)), thus maximizing the negative cross-entropy between the two distributions

in equation (21), for any type k and any real history x0
[0,t) at any time t. Then the NCE objective in

equation (20) is obviously maximized.

To check if any other θ̄ /∈ Θ∗ def
= {θ∗ : pθ∗ = p∗} maximizes JNC(θ) as well, we analyze

JNC(θ̄)− JNC(θ
∗) =

∫ T

t=0

∑

x0
[0,t)

p∗(x0
[0,t))

K∑

k=1

λ∗
k(t | x0

[0,t))
(

Hθ̄(k, t, x
0
[0,t))−Hθ∗(k, t, x0

[0,t))
)

︸ ︷︷ ︸

denote it as Gθ̄(k,t,x
0
[0,t)

)

dt

16

where θ∗ can be any member in Θ∗. Note that Gθ̄ is not infinitesimal because the probabilities in H
and thus the entropy changes (if any) are not infinitesimal.

According to the definition of θ̄ and θ∗, there must exist a stream x̄[0,T), a time t̄ ∈ (0, T) and a type

k̄ ∈ {1, . . . ,K} such that λk̄(t̄ | x̄[0,t̄)) 6= λ∗
k̄
(t̄ | x̄[0,t̄)). Therefore, we have Gθ̄(k̄, t̄, x̄[0,t̄)) < 0

since the distributions in equation (21) are distinct for the given history x̄[0,t̄). Does this difference
lead to any overall change of the entire objective?

Actually, according to Lemma 1 in Appendix A, the existence of such x̄[0,T), t̄ and k̄ implies that

there exists an interval (t′, t′′) ⊂ [0, T) such that, for any t ∈ (t′, t′′), there exists a set X (t) of
histories with non-zero measure such that any x[0,t) ∈ X (t) satisfies λk̄(t | x[0,t)) 6= λ∗

k̄
(t | x[0,t)).

Then, given any of these histories, the entropy difference Gθ̄ would be < 0. That is to say, the
following integral must be a non-infinitesimal negative number:

∫ T

t=0

∑

x0
[0,t)

p∗(x0
[0,t))λ

∗
k̄(t | x0

[0,t))Gθ̄(k̄, t, x
0
[0,t))dt (22a)

=

∫ t′′

t=t′

∑

x0
[0,t)

∈X (t)

p∗(x0
[0,t))λ

∗
k̄(t | x0

[0,t))Gθ̄(k̄, t, x
0
[0,t))dt (< 0) (22b)

+

∫ t′′

t=t′

∑

x0
[0,t)

/∈X (t)

p∗(x0
[0,t))λ

∗
k̄(t | x0

[0,t))Gθ̄(k̄, t, x
0
[0,t))dt (≤ 0) (22c)

+

∫ t′

t=0

∑

x0
[0,t)

p∗(x0
[0,t))λ

∗
k̄(t | x0

[0,t))Gθ̄(k̄, t, x
0
[0,t))dt (≤ 0) (22d)

+

∫ T

t=t′′

∑

x0
[0,t)

p∗(x0
[0,t))λ

∗
k̄(t | x0

[0,t))Gθ̄(k̄, t, x
0
[0,t))dt (≤ 0) (22e)

Therefore, the overall difference must be < 0 as well:

JLL(θ̄)− JLL(θ
∗) =

∫ T

t=0

∑

x0
[0,t)

p∗(x0
[0,t))

K∑

k=1

λ∗
k(t | x0

[0,t))Gθ̄(k, t, x
0
[0,t))dt (23a)

=

∫ T

t=0

∑

x0
[0,t)

p∗(x0
[0,t))λ

∗
k̄(t | x0

[0,t))Gθ̄(k̄, t, x
0
[0,t))dt (< 0) (23b)

+

∫ T

t=0

∑

x0
[0,t)

p∗(x0
[0,t))

∑

k 6=k̄

λ∗
k(t | x0

[0,t))Gθ̄(k, t, x
0
[0,t))dt (≤ 0) (23c)

Note that JLL(θ̄) − JLL(θ
∗) < 0 holds any θ̄ /∈ Θ∗ and any θ∗ ∈ Θ∗, meaning that θ∗ ∈ Θ∗ is

necessary to maximize the objective. Then the proof of the “only if” part is complete.

Now we have proved both the “if” and “only if” parts so the proof is complete.

B.3 Consistency Proof Details

To discuss the statistical consistency (in this section) and efficiency (in Appendix B.4), we first need
to spell out the empirical version of the objective

JN
NC(θ) =

1
N

N∑

n=1




∑

t:x0
t,n 6=∅

log
λ
x0
t,n

(t|x0
[0,t),n)

λ
x0
t,n

(t|x0
[0,t),n

)
+

M∑

m=1

∑

t:xm
t,n 6=∅

log
λq
xm
t,n

(t|x0
[0,t),n)

λxm
t,n

(t|x0
[0,t),n

)



 (24)

where the subscript n denotes the nth i.i.d. draw of the observed sequence and the M noise samples
for this sequence. It is obvious that limN→∞ JN

NC(θ)→ JNC(θ).

To analyze the consistency, we make the following assumptions:

17

Assumption 3 (Continuity wrt. θ). For any history x[0,t) and event type k ∈ {1, . . . ,K}, λk(t |
x[0,t)) is continuous with respect to θ.

Assumption 4 (Compactness). The set of optimal parameters Θ∗ is contained in the interior of a

compact set Θ ⊂ R
|θ|.

They are analogous to assumptions 4.2 and 4.3 of Ma & Collins (2018) respectively.

Our NCE method turns out to be strongly consistent in the sense that:

Theorem 2 (Consistency). Under assumptions 2, 3 and 4, for any θ ∈ ΘN
NC

def
= argmaxθ J

N
NC(θ)

and M ≥ 1, with probability 1, we have limN→∞ minθ∗∈Θ∗ ‖θ − θ∗‖ = 0 where ‖ · ‖ is the L2

norm.

The intuition of this theorem is that: since the two functions JN
NC(θ) and JNC(θ) will become the

same as N →∞ and they are continuous with respect to θ, then any θ ∈ argmaxθ J
N
NC(θ) has to be

close to some member of the set argmaxθ JNC(θ). The full proof is almost identical to the proof of
Theorem 4.2 in Ma & Collins (2018). But we will still spell it out in our notation for completeness.

Proof. Under the assumption in Theorem 2, by classical large sample theory (Ferguson, 1996), we
have

P

[

lim
N→∞

sup
θ∈Θ′

|JN
NC(θ)− JNC(θ)| = 0

]

= 1 for any compact set Θ′ ⊂ Θ (25)

where P stands for “probability”. Since |JN
NC(θ)− JNC(θ)| ≥ JN

NC(θ)− JNC(θ), we have

P

[

lim sup
N→∞

sup
θ∈Θ′

(JN
NC(θ)− JNC(θ)) ≤ 0

]

= 1 (26)

Moreover, for any θ′N ∈ argmaxθ∈Θ′ JN
NC(θ), we have

sup
θ∈Θ′

(JN
NC(θ)− JNC(θ)) ≥ JN

NC(θ
′N)− JNC(θ

′N) ≥ sup
θ∈Θ′

JN
NC(θ)− sup

θ∈Θ′

JNC(θ) (27)

Plugging equation (27) into equation (26) gives

P

[

lim sup
N→∞

sup
θ∈Θ′

JN
NC(θ)− sup

θ∈Θ′

JNC(θ) ≤ 0

]

= P

[

lim sup
N→∞

sup
θ∈Θ′

JN
NC(θ) ≤ sup

θ∈Θ′

JNC(θ)

]

= 1

(28)

For any δ > 0, we define Θδ
def
= {θ : minθ∗∈Θ∗ ‖θ − θ∗‖ > δ} and have

P

[

lim sup
N→∞

sup
θ∈Θδ

JN
NC(θ) ≤ sup

θ∈Θδ

JNC(θ) < sup
θ∈Θ

JNC(θ)

]

= 1 (29)

On the other hand, we also have |JN
NC(θ)− JNC(θ)| ≥ JNC(θ)− JN

NC(θ), which gives

P

[

lim sup
N→∞

sup
θ∈Θ′

(JNC(θ)− JN
NC(θ)) ≤ 0

]

= 1 (30)

For any θ′ ∈ argmaxθ∈Θ′ JNC(θ), we have

sup
θ∈Θ′

(JNC(θ)− JN
NC(θ)) ≥ JNC(θ

′)− JN
NC(θ

′) ≥ sup
θ∈Θ′

JNC(θ)− sup
θ∈Θ′

JN
NC(θ) (31)

Plugging equation (31) into equation (30) gives

P

[

sup
θ∈Θ′

JNC(θ) + lim sup
N→∞

(− sup
θ∈Θ′

JN
NC(θ)) ≤ 0

]

= P

[

lim inf
N→∞

sup
θ∈Θ′

JN
NC(θ) ≥ sup

θ∈Θ′

JNC(θ)

]

= 1

(32)

which, when we let Θ′ = Θ, gives

P

[

lim inf
N→∞

sup
θ∈Θ

JN
NC(θ) ≥ sup

θ∈Θ
JNC(θ)

]

= 1 (33)

Combining equation (29) and equation (33), we have that, for any θN ∈ ΘN def
= argmaxθ J

N
NC(θ)

(defined in Theorem 2), there exists an integer N ′ such that for any N ≥ N ′

P
[
θN /∈ Θδ

]
= 1 (34)

which holds for any δ > 0 and thus gives

P

[

lim
N→∞

min
θ∗∈Θ∗

‖θN − θ∗‖ = 0

]

= 1 (35)

which completes the proof of Theorem 2.

18

B.4 Efficiency Proof Details

To quantify the statistical efficiency of our method, we make the following assumptions:

Assumption 5 (Identifiability). There is only one parameter vector θ∗ such that pθ∗ = p∗.

Assumption 6 (Differentiability). For any history x[0,t) and event type k ∈ {1, . . . ,K}, λk(t |
x[0,t)) is twice continuously differentiable with respect to θ.

Assumption 7 (Singularity). The Fisher information matrix I∗ under the model pθ is non-singular.

They are analogous to assumptions 4.4, 4.6 and 4.7 of Ma & Collins (2018) respectively.

Before we show the efficiency of our method, we first spell out the definition of I∗:

I∗
def
= Ex[0,T)∼p∗

[
∇θ log pθ∗(x[0,T))∇θ log pθ∗(x[0,T))

⊤
]

(36)

where ∇θ log pθ∗ stands for “the gradient of log pθ with respect to θ at θ = θ∗.” This formula can
be rearranged as

∫ T

t=0

Ex[0,t)∼p∗

[
Ex[t,t+dt)∼p∗

[
∇θ log pθ∗(x[t,t+dt) | x[0,t))∇θ log pθ∗(x[t,t+dt) | x[0,t))

⊤
]]

(37a)

=

∫ T

t=0

Ex[0,t)∼p∗

[

Ex[t,t+dt)∼p∗

[

∇θpθ∗ (x[t,t+dt)|x[0,t))

pθ∗ (x[t,t+dt)|x[0,t))

∇θpθ∗ (x[t,t+dt)|x[0,t))

pθ∗ (x[t,t+dt)|x[0,t))

⊤
]]

(37b)

=

∫ T

t=0

Ex[0,t)∼p∗




∑

x[t,t+dt)

∇θpθ∗ (x[t,t+dt)|x[0,t))∇θpθ∗ (x[t,t+dt)|x[0,t))
⊤

pθ∗ (x[t,t+dt)|x[0,t))



 (37c)

Technically, x[t,t+dt) will have an event of type k with probability λ∗
k(t)dt under p∗ (λk(t)dt under

pθ) or has no event at all with probability 1−
∑K

k=1 λ
∗
k(t)dt under p∗ (1−

∑K
k=1 λk(t)dt under pθ).

In the former case, we have ∇θpθ∗∇θp
⊤
θ∗/pθ∗ = ∇θλ

∗
k(t)∇θλ

∗
k(t)

⊤dt/λ∗
k(t); in the latter case,

we have ∇θpθ∗ = −∑K
k=1∇θλ

∗
k(t)dt but pθ∗ ≈ 1, so ∇θpθ∗∇θp

⊤
θ∗/pθ∗ = o(dt) can be ignored.

Plugging these quantities into equation (37) gives us

I∗ =

∫ T

t=0

Ex[0,t)∼p∗

[
K∑

k=1

∇θλ
∗
k(t|x[0,t))∇θλ

∗
k(t|x[0,t))

⊤

λ∗
k
(t|x[0,t))

dt

]

(38a)

=

∫ T

t=0

∑

x[0,t)

p∗(x[0,t))

K∑

k=1

∇θλ
∗
k(t|x[0,t))∇θλ

∗
k(t|x[0,t))

⊤

λ∗
k
(t|x[0,t))

dt (38b)

Note that ∇θλ
∗
k(t) stands for “the gradient of λk(t) with respect to θ at θ = θ∗.”

Now we proceed to our efficiency theorem. We denote the unique optimal parameter vector as θ∗

and use θ̂ for the estimate given by maximizing JN
NC(θ). It turns out that our method approaches

Fisher efficiency as M grows.

Theorem 3 (Efficiency). Under assumptions 2 and 4–7, there exists an integer M̄ such that for all
M > M̄

√
N(θ̂ − θ∗)→ Normal(0, I−1

M) as N →∞ (39)

for some non-singular matrix I−1

M . Moreover, there exist a constant C > 0 such that for all M > M̄

‖I−1

M − I
−1

∗ ‖ ≤ C/M (40)

where ‖I‖ is the spectral norm of matrix I.

Proof. We first prove that
√
N(θ̂ − θ∗) is asymptotically normal. By the Mean-Value Theorem, we

have

∇θJ
N
NC(θ̂) = ∇θJ

N
NC(θ

∗) + (θ̂ − θ∗)

∫ 1

u=0

∇2
θJ

N
NC(θ

∗ + u(θ̂ − θ∗))dt (41)

19

Since θ̂ maximizes JN
NC, we have

θ̂ − θ∗ =

[

−
∫ 1

u=0

∇2
θJ

N
NC(θ

∗ + u(θ̂ − θ∗))dt

]−1

∇θJ
N
NC(θ

∗) (42)

By Law of Large Numbers and Theorem 2, we have

∫ 1

u=0

∇2
θJ

N
NC(θ

∗ + u(θ̂ − θ∗))dt→ Ex0
[0,T)

∼p∗,x1:M
[0,T)

∼q

[
∇2

θL(θ
∗)
]

︸ ︷︷ ︸

short as E[∇2
θ
L(θ∗)]

as N →∞ (43)

where L(θ) is defined as the objective for a random draw of x0:M
[0,T) and thus is just the term inside

the expectation of equation (6):

L(θ)
def
=

∑

t:x0
t 6=∅

log
λ
x0
t
(t|x0

[0,t))

λ
x0
t
(t|x0

[0,t)
)
+

M∑

m=1

∑

t:xm
t 6=∅

log
λq
xm
t

(t|x0
[0,t))

λxm
t

(t|x0
[0,t)

)
(44)

The term ∇2
θL(θ

∗) stands for “the Hessian matrix of L(θ) with respect to θ at θ = θ∗.” As for

∇θJ
N
NC(θ

∗), by Central Limit Theorem, we have

√
N∇θJ

N
NC(θ

∗)→ Normal(0,Ex0
[0,T)

∼p∗,x1:M
[0,T)

∼q

[
∇θL(θ

∗)∇θL(θ
∗)⊤
]

︸ ︷︷ ︸

short as V[∇θL(θ∗)]

) (45)

Combining equations (42), (43) and (45), we obtain the asymptotic normality
√
N(θ̂ − θ∗)→ Normal(0,E

[
∇2

θL(θ
∗)
]−1

V[∇θL(θ
∗)]E

[
∇2

θL(θ
∗)
]−1

) (46)

Now we compute the covariance matrix of the asymptotic normal distribution. Following steps
similar to equations (18) and (19), we rearrange E

[
∇2

θL(θ
∗)
]

to be

E
[
∇2

θL(θ
∗)
]
=

∫ T

t=0

Ex0
[0,t)

∼p∗

[
K∑

k=1

(

λ∗
k(t)dt∇2

θ log
λ∗
k(t)

λ∗
k
(t) +Mλq

k(t)dt∇2
θ log

λq
k
(t)

λ∗
k
(t)

)
]

(47a)

=

∫ T

t=0

Ex0
[0,t)

∼p∗

[
K∑

k=1

(1
λ∗
k
(t) − 1

λ∗
k
(t))∇θλ

∗
k(t)∇θλ

∗
k(t)

⊤dt

]

(47b)

=

∫ T

t=0

p∗(x0
[0,t))

K∑

k=1

(1
λ∗
k
(t) − 1

λ∗
k
(t))∇θλ

∗
k(t)∇θλ

∗
k(t)

⊤dt (47c)

where we omit the condition x0
[0,t) in the probabilities and intensities for presentation simplicity. We

also omit the tedious arithmetic manipulation that spells∇2
θ log(λ/λ) out.

Following similar steps, we then rearrange V[∇θL(θ
∗)] to be

∫ T

t=0

Ex0
[0,t)

∼p∗

[
K∑

k=1

(

λ∗
k(t)dt∇θ∇⊤

θ log
λ∗
k(t)

λ∗
k
(t) +Mλq

k(t)dt∇θ∇⊤
θ log

λq

k
(t)

λ∗
k
(t))
)
]

(48a)

=

∫ T

t=0

Ex0
[0,t)

∼p∗

[
K∑

k=1

(1
λ∗
k
(t) − 1

λ∗
k
(t))∇θλ

∗
k(t)∇θλ

∗
k(t)

⊤dt

]

(48b)

=E
[
−∇2

θL(θ
∗)
]

(48c)

where we use ∇θ∇⊤
θ f(θ) to denote (∇θf(θ))(∇θf(θ))

⊤. For presentation simplicity, we omit the

arithmetic manipulation that spells∇θ∇⊤
θ log(λ/λ) out.

Then we can simplify the asymptotic normality to be
√
N(θ̂ − θ∗)→ Normal(0,E

[
−∇2

θL(θ
∗)
]−1

) (49)

20

We can think of IM
def
= E

[
−∇2

θL(θ
∗)
]

as the “information matrix” of our objective JNC(θ). And
its relation with the Fisher information matrix I∗ is:

IM = I∗ −
∫ T

t=0

∑

x0
[0,t)

p∗(x0
[0,t))

K∑

k=1

1
λ∗
k
(t)+Mλq

k
(t)
∇θλ

∗
k(t)∇θλ

∗
k(t)

⊤dt

︸ ︷︷ ︸

call it ∆I

(50)

Apparently, when M is large enough, IM will be non-singular. Precisely, since I∗ is non-singular,
there must exist M̄ > 0 such that, for any M > M̄ , 0 < ‖∆I‖ ≤ σ(I∗)/2 where σ(I) is the
smallest singular value of matrix I and ‖I‖ is the spectral norm, i.e., the largest singular value, of
matrix I. By Weyl’s inequality, we have σ(IM) ≥ σ(I∗) − ‖∆I‖ ≥ σ(I∗)/2, meaning that IM is
non-singular.

Now we can start analyzing ‖I−1

M − I
−1

∗ ‖. By the definition of the spectral norm, we have:

‖I−1

M − I
−1

∗ ‖ = ‖I−1

∗ (I∗ − IM)I−1

M‖ ≤ ‖I−1

∗ ‖‖∆I‖‖I−1

M‖ ≤ 1
σ(I∗)
‖∆I‖ 2

σ(I∗)
(51)

Since the intensity functions are all bounded, continuous and twice continuously differentiable,
‖∇θλ

∗
k(t)∇θλ

∗
k(t)

⊤‖ will be bounded, meaning that ‖∆I‖ will be bounded as well. Moreover,

the ratio λ∗
k(t)/λ

q
k(t) is also bounded. We define r = supx0

[0,t)
,k

λ∗
k(t|x

0
[0,t))

λq
k
(t|x0

[0,t)
)

and have Mλq
k(t) ≥

Mλ∗
k(t)/r. Then there must exist B > 0 such that we have:

‖(1 + M
r)∆I‖ ≤ B‖I∗‖ ⇒ ‖∆I‖ ≤ rB

r+M ‖I∗‖ < 1
M rB‖I∗‖ (52)

Combining equations (51) and (52), we have

‖I−1

M − I
−1

∗ ‖ ≤ 1
M

2
σ(I∗)2

rB‖I∗‖
︸ ︷︷ ︸

call it C

(53)

meaning that there exists C > 0 such that, for any M > M̄ , ‖I−1

M − I
−1

∗ ‖ ≤ C/M .

Note that the ratio r reflects the effect of λq
k(t) on the efficiency. In the special case of q = p∗, we

have r = 1 and ∆I = 1
M+1I∗ and the asymptotic covariance matrix becomes (1 + 1

M)I−1

∗ .

This completes our proof.

C Algorithm Details

C.1 NCE Objective Computation Details

Our main algorithm is presented as Algorithm 1. It covers the recipe for computing our NCE objec-
tive, as well as the algorithm to sample from q.

C.2 Training the Noise Distribution q by NCE

Before we optimize our JNC(θ), we first fit the noise distribution q to the training data. As discussed
in endnote 7, we expect that fitting the data well will give a good training signal to learn θ.

In the experiments of this paper, we used MLE to estimate the parameters φ of q, which involves
taking approximate integrals as in Mei & Eisner (2017). (After all, we did not yet know whether
NCE would work well.) To avoid the approximate integrals, however, one could instead estimate
φ using NCE. When evaluating this NCE objective during training of φ, one can take the noise
distribution to be qφold

where φold is any snapshot of φ from a recent iteration of training (even
the current iteration). The same φold must be used for both drawing noise events via the thinning
algorithm, and for scoring these noise events and their contrasting observed events.

Regardless of whether we use MLE or NCE, it is faster to train q than to train p because q only has
C event types instead of K.

The idea of using as the noise distribution a model previously trained with NCE was also considered
in the original NCE paper (Gutmann & Hyvärinen, 2010).

21

Algorithm 1 Training Objective Computation for Noise-Contrastive Estimation.

Input: observed event stream x[0,T) with I events at times 0 = t0 < t1 < . . . tI < tI+1 = T ;
model pθ; noise distribution q; number of noise samples M

Output: training objective JNC evaluated on x[0,T) and the corresponding noise samples
1: procedure COMPUTEOBJECTIVE(x, pθ, q,M)
2: ⊲ algorithm input pθ gives info to define intensity function λk(t)
3: JNC ← 0 ⊲ initialize the objective

4: initialize the neural states s and sq of pθ and q respectively ⊲ i.e., their LSTM states

5: i← 0
6: while i ≤ I :
7: i += 1
8: ⊲ use noise samples in the current interval

9: for (t, k, λq, µ) in DRAWNOISESAMPLES(ti−1, ti) :
10: compute the model intensity λk(t | s) under pθ
11: JNC += µ log λq

λk(t|s)+Mλq

12: if i > I : break
13: ⊲ use the real event at time ti
14: t← ti, k ← xti
15: compute the model intensity λk(t | s) under pθ
16: compute the noise intensity λq

k(t | sq) under q

17: JNC += log λk(t|s)
λk(t|s)+Mλq

k
(t|sq)

18: update the neural states s and sq of pθ and q respectively with this real event

19: return JNC

20: procedure DRAWNOISESAMPLES(tbeg, tend) ⊲ draw noise samples over interval (tbeg, tend)
21: ⊲ has access to q,M

22: ⊲ define the total intensity function λq(t | sq)
def
=

∑C

c=1 λ
q
c(t | s

q)
23: Q ← empty collection ⊲ collection of noise samples

24: t← tbeg; find any λ ≥ sup {λq(t | sq) : t ∈ (tbeg, tend)}
25: repeat

26: draw ∆ ∼ Exp(Mλ); t += ∆ ⊲ propose a noise time

27: if t < tend :
28: µ← λq(t | sq)/λ ⊲ compute probability to accept the proposed time

29: if µ < 0.05 : ⊲ stochastically accept t with prob µ if µ < 0.05
30: u ∼ Unif(0, 1); if u < µ : µ← 1

31: if µ ≥ 0.05 : ⊲ otherwise fractionally accept t with weight µ
32: draw c ∈ {1, . . . , C} where probability of c is ∝ λq

c(t | sq) ⊲ choose coarse type

33: draw k ∈ {1, . . . ,K} where probability of k is q(k | c) ⊲ choose refinement

34: compute the noise intensity λq
k(t | sq) under q

35: add (t, k, λq
k(t | sq), µ) to Q

36: until t ≥ tend

37: return Q

22

DATASET K # OF EVENT TOKENS SEQUENCE LENGTH

TRAIN DEV TEST MIN MEAN MAX

SYNTHETIC-1 10000 100000 10000 10000 100 100 100
SYNTHETIC-2 10000 100000 10000 10000 100 100 100
EUROEMAIL 10000 50000 10000 10000 100 100 100
BITCOINOTC 19800 1000 500 500 100 100 100
COLLEGEMSG 9900 8000 1000 1000 100 100 100
WIKITALK 10000 100000 20000 20000 100 100 100
ROBOCUP 528 2195 817 780 780 948 1336
IPTV 49000 27355 4409 4838 36602 36602 36602

Table 1: Statistics of each dataset. For IPTV, we have a single long sequence of 36602 tokens: we use the
first 27355 as training data, the next 4409 as dev data and the remaining 4838 as test data. For other datasets,
training, dev and test sequences are separate sequences.

D Experimental Details and Additional Results

D.1 Dataset Details

Besides the datasets we have introduced in section 5, we also run experiments on the following
real-world social interaction datasets:

CollegeMsg (Panzarasa et al., 2009). This dataset contains anonymized private messages sent on
an online social network at an university. Each record (u, v, t) means that user u sent a private
message to user v at time t and each u, v pair is an event type. We consider the top 100 users sorted
by the number of messages they sent and received: the total number of possible event types is then
K = 9900 since self-messaging is not allowed.

WikiTalk (Leskovec et al., 2010). This dataset contains the records of anonymized Wikipedia
users editing each other’s Talk page. Each record (u, v, t) means that user u edited user v’s talk
page at time t and each u, v pair is an event type. We consider the top 100 users sorted by the
number of edits they made and received and the total number of possible event types is K = 10000.

Table 1 shows statistics about each dataset that we use in this paper.

D.2 Training Details

For each of the chosen models in section 5, the only hyperparameter to tune is the hidden dimension
D of the neural network. On each dataset, we searched for D that achieves the best performance on
the dev set. Our search space is {4, 8, 16, 32, 64, 128}.
For learning, we used the Adam algorithm (Kingma & Ba, 2015) with its default settings. For each
ρ or M , we run training long enough so that the log-likelihood on the held-out data can converge.

D.3 More Results on Real-World Social Interaction Datasets

The learning curves on CollegeMsg and WikiTalk datasets are shown in Figure 4: they look similar
to those in Figure 2 and lead to the same conclusions.

D.4 Ablation Study I: Always or Never Redraw Noise samples

In Figure 5, we show the learning curves for the “always redraw” and “never redraw” strategies on
the first synthetic dataset. As shown in Figure 5a, with the “always redraw” strategy, NCE ()
needs considerably fewer intensity evaluations to reach the highest log-likelihood () that MLE
() can achieve on the held-out data. However, the curve with M = 1000 increases more slowly
than MLE in terms of wall-clock time since it spends too much time on drawing new noise samples.

As shown in Figure 5b, with the “never redraw” strategy, M = 1000 overtakes MLE: a single draw
of M = 1000 noise streams is able to give very good training signals and the saved computation
can be spent on training pθ repeatedly on the same samples. However, the curve of M = 1 only
achieves log-likelihood ≈ −200 and thus falls out of the zoomed-in view.

23

0.0 0.5 1.0 1.5 2.0 2.5
of intensities computed 1e10

400

350

300

250

200

150

100

50

0

lo
g-

lik
el

ih
oo

d =0.01
B=180

=0.01
B=180

=0.1
B=40

M=5000
B=10

M=1000
B=20

M=5000
B=10

LSE
MLE
b-NCE
NCE

0 2000 4000 6000 8000 10000
wall-clock time

400

350

300

250

200

150

100

50

0

lo
g-

lik
el

ih
oo

d

=0.01
B=180

=0.01
B=180

=0.1
B=40

=1
B=10

M=5000
B=10

M=1000
B=20

M=5000
B=10

LSE
MLE
b-NCE
NCE

(a1) CollegeMsg: neural q

0.0 0.5 1.0 1.5 2.0 2.5
of intensities computed 1e10

400
350
300
250
200
150
100

50
0

lo
g-

lik
el

ih
oo

d =0.01
B=180

=0.01
B=180

=0.1
B=40

M=1000
B=20

M=5000
B=10

M=1000
B=20

M=5000
B=10

LSE
MLE
b-NCE
NCE

0 2000 4000 6000 8000 10000
wall-clock time

400
350
300
250
200
150
100

50
0

lo
g-

lik
el

ih
oo

d

=0.01
B=180

=0.01
B=180

=0.1
B=40

=1
B=10

M=1000
B=20

M=5000
B=10

M=1000
B=20

M=5000
B=10

LSE
MLE
b-NCE
NCE

(a2) CollegeMsg: Poisson q

0.00 0.25 0.50 0.75 1.00 1.25 1.50
of intensities computed 1e10

60

50

40

30

20

10

lo
g-

lik
el

ih
oo

d

=0.01
B=180

=0.1
B=40

=0.01
B=180 =0.1

B=40

M=100
B=25

M=1000
B=20

M=100
B=25

M=1000
B=20

LSE
MLE
b-NCE
NCE

0 250 500 750 1000 1250 1500 1750
wall-clock time

60

50

40

30

20

10

lo
g-

lik
el

ih
oo

d

=0.01
B=180=0.1
B=40

=0.01
B=180

=0.1
B=40

M=100
B=25

M=1000
B=20

M=100
B=25

M=1000
B=20

LSE
MLE
b-NCE
NCE

(b1) WikiTalk: neural q

0.00 0.25 0.50 0.75 1.00 1.25 1.50
of intensities computed 1e10

60

50

40

30

20

10

lo
g-

lik
el

ih
oo

d

=0.01
B=180

=0.1
B=40

=0.01
B=180 =0.1

B=40

M=100
B=25

M=1000
B=20

M=100
B=25

M=1000
B=20

LSE
MLE
b-NCE
NCE

250 500 750 1000 1250 1500 1750
wall-clock time

60

50

40

30

20

10

lo
g-

lik
el

ih
oo

d

=0.01
B=180=0.1
B=40

=0.01
B=180

=0.1
B=40

M=100
B=25

M=1000
B=20

M=100
B=25

M=1000
B=20

LSE
MLE
b-NCE
NCE

(b2) WikiTalk: Poisson q

Figure 4: Learning curves of MLE and NCE on the other real-world social interaction datasets.

0.0 0.5 1.0 1.5 2.0
of intensities computed 1e10

50
45
40
35
30
25
20
15
10

lo
g-

lik
el

ih
oo

d

=0.01
B=150=0.01

B=180
=1

B=10

M=1000
B=10

M=10
B=35

M=1000
B=10

LSE
MLE
b-NCE
NCE

0 500 1000 1500 2000 2500 3000 3500
wall-clock time

50
45
40
35
30
25
20
15
10

lo
g-

lik
el

ih
oo

d

=0.01
B=150

=1
B=10

=0.01
B=180

=1
B=10

M=1000
B=10

M=10
B=35

M=1000
B=10

LSE
MLE
b-NCE
NCE

(a) Always redraw new noise samples

0.0 0.5 1.0 1.5 2.0
of intensities computed 1e10

50
45
40
35
30
25
20
15
10

lo
g-

lik
el

ih
oo

d

=0.01
B=150=0.01

B=180
=1

B=10

M=1000
B=10

M=10
B=35

M=1000
B=10

LSE
MLE
b-NCE
NCE

0 500 1000 1500 2000 2500 3000 3500
wall-clock time

50
45
40
35
30
25
20
15
10

lo
g-

lik
el

ih
oo

d

=0.01
B=150

=1
B=10

=0.01
B=180

=1
B=10

M=1000
B=10

M=10
B=35

M=1000
B=10

LSE
MLE
b-NCE
NCE

(b) Never redraw new noise samples

Figure 5: Ablation Study I. Learning curves of MLE and NCE with q = p∗ and different “redraw” strategies.

0.0 0.5 1.0 1.5 2.0
of intensities computed 1e10

140

120

100

80

60

40

20

0

lo
g-

lik
el

ih
oo

d

=0.01
B=180

=0.01
B=180

=0.1
B=40 =1

B=10

M=1000
B=10

M=100
B=20

M=1000
B=10

LSE
MLE
b-NCE
NCE

0 1000200030004000500060007000
wall-clock time

140

120

100

80

60

40

20

0

lo
g-

lik
el

ih
oo

d

=0.01
B=180

=1
B=10

=0.01
B=180

=0.1
B=40

=1
B=10

M=1000
B=10

M=100
B=20

M=1000
B=10

LSE
MLE
b-NCE
NCE

(a) EuroEmail

0.0 0.5 1.0 1.5 2.0 2.5
of intensities computed 1e10

400
350
300
250
200
150
100

50
0

lo
g-

lik
el

ih
oo

d

=0.01
B=100

=0.01
B=100

=0.1
B=30

=1
B=5

M=500
B=20

M=5000
B=5

M=500
B=20 M=5000

B=5

LSE
MLE
b-NCE
NCE

0 1000 2000 3000 4000 5000 6000 7000
wall-clock time

400
350
300
250
200
150
100

50
0

lo
g-

lik
el

ih
oo

d

=0.01
B=100

=1
B=5

=0.01
B=100

=0.1
B=30

=1
B=5

M=500
B=20

M=5000
B=5

M=500
B=20

M=5000
B=5

LSE
MLE
b-NCE
NCE

(b) BitcoinOTC

0.5 1.0 1.5 2.0 2.5
of intensities computed 1e10

400

350

300

250

200

150

100

50

0

lo
g-

lik
el

ih
oo

d =0.01
B=180=0.01

B=180 =0.1
B=40

M=5000
B=10

M=1000
B=20

M=5000
B=10

LSE
MLE
b-NCE
NCE

0 2000 4000 6000 8000 10000
wall-clock time

400

350

300

250

200

150

100

50

0

lo
g-

lik
el

ih
oo

d

=0.01
B=180

=0.01
B=180

=0.1
B=40

=1
B=10

M=5000
B=10

M=1000
B=20

M=5000
B=10

LSE
MLE
b-NCE
NCE

(c) CollegeMsg

0.00 0.25 0.50 0.75 1.00 1.25 1.50
of intensities computed 1e10

60

50

40

30

20

10

lo
g-

lik
el

ih
oo

d

=0.01
B=180

=0.1
B=40

=0.01
B=180 =0.1

B=40

M=100
B=25

M=1000
B=20

M=100
B=25

M=1000
B=20

LSE
MLE
b-NCE
NCE

250 500 750 1000 1250 1500 1750
wall-clock time

60

50

40

30

20

10

lo
g-

lik
el

ih
oo

d

=0.01
B=180

=0.1
B=40

=0.01
B=180

=0.1
B=40

M=100
B=25

M=1000
B=20

M=100
B=25

M=1000
B=20

LSE
MLE
b-NCE
NCE

(d) WikiTalk

Figure 6: Ablation Study II. Learning curves of MLE and NCE with untrained q on social interaction datasets.

0 100000200000300000400000500000
of intensities computed

40

35

30

25

20

15

10

5

lo
g-

lik
el

ih
oo

d

=2

=1
=0.5

M=5

M=10

M=1

M=5

M=10

LSE
MLE
b-NCE
NCE

0 250 500 750 1000 1250 1500 1750
wall-clock time

40

35

30

25

20

15

10

5

lo
g-

lik
el

ih
oo

d

=2
=1

=0.5

M=5

M=10

M=1
M=5

M=10

LSE
MLE
b-NCE
NCE

(a) RoboCup

0.0 0.2 0.4 0.6 0.8 1.0
of intensities computed 1e7

50

45

40

35

30

25

20

15

10

lo
g-

lik
el

ih
oo

d

=0.0001

M=1

M=5

M=10

LSE
MLE
b-NCE
NCE

20000 40000 60000 80000 100000
wall-clock time

50

45

40

35

30

25

20

15

lo
g-

lik
el

ih
oo

d

=0.0001

M=1

M=5

M=10

LSE
MLE
b-NCE
NCE

(b) IPTV

Figure 7: Ablation Study III. Learning curves of MLE and NCE using neural q with C = 1.

24

D.5 Ablation Study II: NCE with Untrained Noise Distribution

In Figure 6, we show the learning curves of NCE with untrained noise distributions on the real-
world social interaction datasets. As we can see, NCE in this setting tends to end up with worse
generalization (interestingly except on WikiTalk) and suffers slow convergence (on BitcoinOTC and
CollegeMsg) and large variance (on BitcoinOTC).

D.6 Ablation Study III: Effect of C

In Figure 7, we show learning curves of NCE using the neural q with C = 1. Taking C = 1
means that the same number of noise samples can be drawn faster (with fewer intensity evaluations).
However, more training epochs may be needed because the noise looks less like true observations
and so NCE’s discrimination tasks are less challenging (see endnote 7).

On the RoboCup dataset, C = 1 exhibits similar learning speed to C = 5 but has slightly worse
generalization. On the IPTV dataset, C = 1 gives a considerable speedup over C = 49 without
harming the final generalization. The NCE curves for M = 5 and M = 10 shift substantially to the
left, since C = 1 requires many fewer intensity evaluations.

25

	Introduction
	Preliminaries
	Event Streams and Multivariate Point Processes
	Maximum Likelihood Estimation: Usefulness and Difficulties
	Noise-Contrastive Estimation in Discrete Time

	Applying Noise-Contrastive Estimation in Continuous Time
	Efficient Sampling of Noise Events
	Computational Cost Analysis
	Theoretical Guarantees: Optimality, Consistency and Efficiency

	Related Work
	Experiments
	Synthetic Datasets
	Real-World Social Interaction Datasets with Large K
	Real-World Dataset with Dynamic Facts

	Conclusion
	Proof Details for MLE
	NCE Details
	Derivation Details
	Optimality Proof Details
	Consistency Proof Details
	Efficiency Proof Details

	Algorithm Details
	NCE Objective Computation Details
	Training the Noise Distribution q by NCE

	Experimental Details and Additional Results
	Dataset Details
	Training Details
	More Results on Real-World Social Interaction Datasets
	Ablation Study I: Always or Never Redraw Noise samples
	Ablation Study II: NCE with Untrained Noise Distribution
	Ablation Study III: Effect of C

