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ABSTRACT

The neural Hawkes process (Mei & Eisner, 2017) is a generative model of ir-
regularly spaced sequences of discrete events. To handle complex domains with
many event types, Mei et al. (2020a) further consider a setting in which each
event in the sequence updates a deductive database of facts (via domain-specific
pattern-matching rules); future events are then conditioned on the database con-
tents. They show how to convert such a symbolic system into a neuro-symbolic
continuous-time generative model, in which each database fact and possible event
has a time-varying embedding that is derived from its symbolic provenance.

In this paper, we modify both models, replacing their recurrent LSTM-based
architectures with flatter attention-based architectures (Vaswani et al., 2017), which
are simpler and more parallelizable. This does not appear to hurt our accuracy,
which is comparable to or better than that of the original models as well as (where
applicable) previous attention-based methods (Zuo et al., 2020; Zhang et al., 2020a).

1 INTRODUCTION

It has recently become common to model event sequences by embedding each event into R”. Event
sequences are ubiquitous in real-world applications, such as healthcare, finance, education, commerce,
gaming, audio, news, security, and social media. Event embeddings could be used in a variety of
downstream applied tasks, similar to word token embeddings in BERT (Devlin et al., 2018).

In this paper, we embed each event using attention over the previous events, using continuous-time
positional encodings so as to consider their timing. To build a left-to-right generative model, we also
embed possible events at future times in exactly the same way, and use their embeddings to predict
their instantaneous probabilities at those times.

Attention-based models (Vaswani et al., 2017) have already become extremely popular for generative
modeling of discrete-time sequences, such as natural-language documents (Radford et al., 2019;
Brown et al., 2020) and proteins (Rao et al., 2021). As we confirm here, they are also effective for
modeling sequences that are irregularly spaced in continuous time, even in lower-data regimes.

Our past work on modeling event sequences (Mei & Eisner, 2017; Mei et al., 2019; 2020a;b) used
neural architectures based on LSTMs (Hochreiter & Schmidhuber, 1997). That is, predictions at
time ¢ were derived from a recurrent encoding of the sequence of timestamped events at times < .
However, an attention-based (Transformer-style) architecture has three potential advantages:

® A Transformer does not summarize the past. Our predictions at time ¢ can examine an unboundedly
large representation of the past (embeddings in R? of every event before t), not merely a fixed-
dimensional summary that was computed greedily from left to right (an LSTM’s state at time ).

@ A Transformer’s computation graph is broader and shallower. The breadth makes it easier to learn
long-distance influences. The shallowness does make it impossible to represent inherently deep
concepts such as parity (Hahn, 2020), but it enables greater parallelism: the layer-¢ embeddings can
be computed in parallel during training, as they depend only on layer ¢ — 1 and not on one another.

® The Transformer architecture is simpler and arguably more natural, while remaining competitive
in our experiments. To model the temporal distribution of the next event, all of our models posit
embeddings of possible future events that depend on the future event’s time ¢. To accomplish this,
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Figure 1: These figures show how embeddings in the model flow through layers (bottom to top) and through
time (left to right). There are two possible event types, ¢ and £, which represent email messages. At the upper
right corner of each figure, we obtain their modeled intensities at a certain time ¢, Ae (¢) and A (¢), based on
the embeddings of the three previous, irregularly spaced observed events. This requires embedding e and £ at
time ¢ as if they were observed. If either one actually occurs at time ¢, we will keep its embeddings, which will
then affect embeddings of events at times > ¢. Figure (a) shows the basic model of section 3, in which each
event’s embedding at layer ¢ depends (—>) on all preceding events at layer £ — 1. (The dashed arrows

reflect residual connections as well as the fact that each event or fact also attends to itself.) Section 4 explains
that the e £ influences can be prevented by dropping the rule £ e. Figure (b) shows an A-NDTT model
from section 5, in which the company forum’s embedding at layer ¢ depends (—>) on all preceding events at
layer £ — 1 (via < rules). The events or possible events at layer £ do not depend directly on preceding events;
instead, their embeddings at time ¢ are derived (—>) from the forum’s embedding at time ¢ (via :- rules).

Mei & Eisner (2017) had to stipulate an arbitrary family of parametric decay functions on ¢, and
the neuro-symbolic framework of Mei et al. (2020a) required a complex method for pooling the
parameters of these decay functions. But in our present method, no decay functions are required
to allow embeddings and probabilities to drift over time. The embeddings are constructed “from
scratch” at each time ¢ simply by attending to the set of previous events, using t-specific query vec-
tors that include a continuous positional embedding of ¢. As ¢ increases, the attention weights over
the previous events vary continuously with ¢, so the embeddings and probabilities do so as well.

We present a series of increasingly sophisticated methods. Section 2 explains how to embed events in
context (like continuous-time BERT). Section 3 turns this into a generative point process model that
can predict the time and type of the next event (like continuous-time GPT). In section 4, we allow a
domain expert to write simple rules that control attention, constraining which events can “see” which
previous events and with what parameters. Finally, section 5 allows the domain expert to write more
complex rules, using our previously published Datalog through time formalism (Mei et al., 2020a).
These rules allow events to interact with a symbolic deductive database that tracks facts over time so
that the neural architecture does not have to learn how to do so. As in Mei et al. (2020a), we define
time-varying embeddings for all facts in the database and all events that are possible given those facts,
using parameters associated with the rules that established the facts and possible events.

In the end, we arrive at attention-based versions of the NHP (Mei & Eisner, 2017) and NDTT (Mei
et al., 2020a) frameworks, which we refer to as A-NHP (section 3) and A-NDTT (section 5). We
evaluate them in section 7, showing comparable or better accuracy. We release our code.

2 CONTINUOUS-TIME TRANSFORMER FOR EMBEDDING EVENTS

Suppose we observe I events over a fixed time interval [0, T"). Each event is denoted mnemonically
as eat (i.e., “type e at time ¢”), where e € & is the type of event (drawn from a finite set £). The
observed event sequence is e1@t1, es@to, ..., erat;, where 0 < t; <to < ... <ty <T.

For any event eat, we can compute an embedding [¢](t) € RP by attending to its history
‘H(eat)—a set of relevant events. (For the moment, imagine that H(eat) consists of all the
observed events e;at;.) More precisely, [e](¢) is the concatenation of layer-wise embeddings
[e]©@ @), [e] ™M), - . ., [e] ) (t). For £ > 0, the layer-¢ embedding of et is computed as

90 L ] () +tanh ) v (fas) o) (fas, eat) o

1+ aO(fas, eat
residual connection f@seH(eQt) Ef@se’H(e@t) ( )
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where the unnormalized attention weight on each relevant event fas € H(kat) is

a(l)(f@s, eat) & exp <\/15 k(l)(f@s)Tq(Z)(e@t)> eR )

In layer ¢, viO, k(z), and q“) are known as the value, key, and query vectors and are extracted from
the layer-(/— 1) event embeddings using learned layer-specific matrices v KO, Q(Z):

vO(eat) £ VO [13t]; [(] V(1)) (3a)
k) (eat) KO [15[1]: )V (1) (3b)
aeat) £ QO [1: [1]: [)“ ()] (o)

As the base case, [¢]©@(t) £ [e]© is a learned embedding of the event type e. [t] denotes an

embedding of the time ¢. We cannot learn absolute embeddings for all real numbers, so we fix
[t]a = sin(t/(m - (34)5)) if d is even [t]a = cos(t/(m - (%M)%)) if disodd  (4)
where 0 < d < D are the dimensions and our choices of m, M are explained in Appendix A.

Crucially, to compute the layer-¢ embedding of an event, equations (1)—(3) need only the layer-(/—1)
embeddings of the relevant events in its history. This lets us compute the layer-¢ embeddings of all
events in parallel. Note that equations (1)—(3) are simplifications of the traditional Transformer, since
this ablation performed equally well in our pilot experiments (see Appendix A).

The set of relevant events # (eat) could be defined in a task-specific way. For example, to pretrain
BERT-like embeddings (Devlin et al., 2018), we might use a corrupted version of {e;aty, ..., erats}
in which some e;at; have been removed or replaced with maskat;. Such embeddings could be
pretrained with a BERT-like objective and then fine-tuned to predict properties of the observed events.

3 GENERATIVE MODELING OF CONTINUOUS-TIME EVENT SEQUENCES

In this paper, we focus on the task of predicting future events given past ones. At any time ¢, we
would like to know what will happen at that time, given the actual events that happened before t. Our
generative model is analogous to a Transformer language model (Radford et al., 2019; Brown et al.,
2020), which, at each time ¢ € N, defines a probability distribution over the words in the vocabulary.

In our setting, however, t € R. With probability 1, nothing happens at time ¢. Each possible event e in
our vocabulary has only an infinitesimal probability of occurring at time ¢. We write this probability
as Ac(t)dt where \.(t) € R* is called the (Poisson) intensity of type-e events at time ¢. More
formally, the probability of such an event occurring during [¢, ¢ + €) approaches \.(t) € as € —T 0.

Thus, our modeling task is to model A.(¢) (as in, e.g., Hawkes, 1971; Du et al., 2016; Mei & Eisner,
2017). We model \.(t) as a function of the top-layer embedding of the possible event eat:

Ae(t) & softplus(w, [1;[e]*(¢)],7.) where softplus(z,7) = 7log(1 + exp(z/7)) >0  (5)
with learnable parameters w. and 7. > 0. We do this separately for each possible eat, computing
the embedding [e] *(¢) using equations (1)—(3). The softplus transfer function is inherited from the
neural Hawkes process (Mei & Eisner, 2017). To ensure that our model is generative, we compute
[e](t) from only previous events. That is, H(eat) in equation (1) may contain any or all of the
previously generated events e;at; for ¢; < t, but it may not contain any for which ¢; > ¢. We call this
model the attentive Neural Hawkes process, or A-NHP, and evaluate it in section 7.

Our model’s log-likelihood has the same form as for any autoregressive multivariate point process:
I T FE
D loghe (t) = [ Y Ac(t)dt (©6)
i=1 t=0 =1

Derivations of this formula can be found in previous work (e.g., Hawkes, 1971; Liniger, 2009; Mei
& Eisner, 2017). We can estimate the parameters by locally maximizing the log-likelihood (6) by
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any stochastic gradient method. Intuitively, each log A, (¢;) is increased to explain why the observed

event e; happened at time ¢;, while .ff;o Zle Ae(t)dt is decreased to explain why no event of any
possible type e € {1, ..., E} ever happened at other times.

Appendix D gives training details, including Monte Carlo approximations to the integral in equa-
tion (6), as well as noting alternative training objectives. Given the learned parameters, we may wish
to sample from the model given the past history, or make a minimum Bayes risk prediction about the
next event. Recipes can be found in Appendix E.

Notice that equation (5) is rather expensive compared to previous work, since it computes a deep
embedding of the possible event eat just for the purpose of finding its intensity—and the algorithms
of Appendices D-E require computing the intensities of many possible events. Appendix A offers a
speedup that shares embeddings among similar events, but it also explains why different events may
sometimes have to be embedded differently to support the selective attention in sections 4-5 below.

4 MULTI-HEAD SELECTIVE ATTENTION

We now present a simple initial version of selective attention. As in a graphical model, not all events
should be able to influence one another directly. Consider a scenario with two event types: € means
that Eve emails Adam, while £ means that Frank emails Eve. As Frank does not know when Eve
emailed Adam, past events of type e cannot influence his behavior. Therefore, H (£ @at) should include
past events of type £ but not e, so that the embedding of fat and hence the intensity function )+ (¢)
pay zero attention to e events. In contrast, H(c@t) should still include past events of both types, since
both are visible to Eve and can influence her behavior.

We describe this situation with the edges £ f, e e, e £. These are akin to the edges in
a directed graphical model. They specify the sparsity pattern of the influence matrix (or Granger
causality matrix) that describes which past events can influence which future events. There is a long
history of estimating this matrix from observed sequence data (e.g., Xu et al., 2016; Zhang et al.,
2021), even with neural influence models (Zhang et al., 2020b). In the present paper, however, we do
not attempt to estimate this sparsity pattern, but assume it is provided by a human domain expert.
Incorporating such domain knowledge into the model can reduce the amount of training data that is
needed. Edges like e £ can be regarded as simple cases of the NDTT rules in section 5 below.

Such rules also affect how we apply attention. When Eve decides whether to email Adam (eat),
we may reasonably suppose that she separately considers the embeddings of the past ¢ events (e.g.,
“when were my last relevant emails fo Adam?””) versus the past £ events (e.g., “what have I heard
recently from Frank?”). Hence, we associate different attention heads with the two rules that affect
e, namely e eand e £. These heads may have different parameters, so that they seek out
and obtain different information from the past via different queries, keys, and values. In general, we
replace equation (1) with

(]9 () © [e] =V (¢) + tanh (Z ﬁ“(t)) @

(£) (£)
f«“(t) def Z vy’ (fas) ap ' (fas, eat) ®

(0)
fase, (eat) 1 T Zf@se’}-t,‘(e@t) ar”’(fas, eat)

where 7 in the summation ranges over rules e -+ -. The history #,-(e@t) contains only those past
events fas that rule r makes visible to e. If there are no such events, or they have small attention
weights (are only weakly relevant to eat) as discussed in Appendix A, then rule r will contribute
little or nothing to the sum in equation (7). The attention weights . and vectors v, are defined using
versions of equations (2)—(3) with 7-specific parameters.’

In short, each rule looks at the context separately, through its own attention weights determined by its
own parameters. The rule already specifies symbolically which past events can get nonzero attention
in the first place, so it makes sense for the rule to also provide the parameters that determine the
attention weights and value projections. Further discussion is given in Appendix A.
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5 ATTENTIVE NEURAL DATALOG THROUGH TIME

Edges such as e £ can be regarded as simple examples of rules in an NDTT program (Mei et al.,
2020a, section 2). We briefly review this formalism and then extend our approach from section 4 to
handle all NDTT programs.

A Datalog through time (DTT) program describes possible sequences of events, much as a regular
expression describes legal sequences of characters. A DTT program for a particular domain specifies
how each event automatically updates a database, adding or removing facts. In this way, the past
events ey, . . ., e; sequentially construct a database. This database then determines which event types
(if any) can happen next: the next event e;; can be £ only if £ is currently a fact in the database.

Thus, an event may appear in the database as a fact, meaning that the event is possible. We use
variables e, f to range over events, but variables g, i to range over any facts (both events and non-
events). Literal examples of facts are shown in orange if they are events (e.g., £), and in blue otherwise.

A neural Datalog through time (NDTT) program is a DTT program augmented with some dimen-
sionality declarations (Appendix C). A rule that adds a fact to the database now also computes a vector
embedding of that fact, or updates the existing embedding if the fact was already in the database.

Notice that the dimensionality of the embedded database changes as the database grows and shrinks
over time. Nonetheless, the model has a fixed number of parameters associated with the fixed set of
rules of the NDTT program. As we will see, rules can contain variables, allowing a small set of rules
to model a large set of event types (i.e., parameter sharing).

If £ is a fact in the database at time ¢, meaning that event £ is possible at time ¢, then its embedding
[£]*(t) determines its intensity )¢ (¢) via equation (5), as before. Thus, where a DTT program only de-
scribes which event sequences are possible, an NDTT program also describes how probable they are.

Although the set of database facts is modified only when an event occurs, the facts’ embeddings are
time-sensitive and evolve as the events that added them to the database recede into the past. This
allows event intensities such as )¢ (¢) to wax and wane continously as time elapses.

Datalog. We now give details. We begin with Datalog (Ceri et al., 1989), a traditional formalism for
deductive databases. A deductive database holds both extensional facts, which are placed there by
some external process, and intensional facts, which are transitively deduced from the extensional
facts. A Datalog program is simply a set of rules that govern these deductions:

*h = g1, ..., gpnsaystodeduce h at any time ¢t when g1, ..., g, are all true (in the database).

A single rule can license many deductions. That is because the facts can have structured names, and
h, 91, .. .gn can be patterns that match against those names, using capitalized identifiers as variables.
A model of filesystem properties might have a rule like open(U,D) :- user(U), group(G),
document (D), member(U,G), readable(D,G). In English, this says that U can open D at any
time when user U is a member of some group G such that document D is readable by G.

Datalog through time. Whenever extensional facts are added or removed, the intensional facts are
instantly recomputed according to the deductive rules. DTT is an extension in which extensional
facts are automatically added and removed when the database is notified of the occurrence of events.
This behavior is governed by two additional rule types:

* h fs 91, --., gnsaystoadd h at any time s when event f occurs and the g; are all true.
e Ih fs 91, ..., gnsaystoremove h at any time s satisfying the same conditions.

Thus, the proposition A is true at time ¢ (i.e., appears as a fact in the database at time ¢) iff either @ h
is deduced at time ¢, or @ h was added at some time s < ¢ and never removed at any time in (s, t).

In our previous example, editing(U,D) open(U,D), member(U,G), writeable(U,G)
records in the database that user U is editing D, once they have opened it with appropriate permissions.
(As a result, edit events might become possible via a deductive rule (U,D) :- editing(U,D).)

Neural Datalog through time. It would be difficult to train a neural architecture to encode thousands
or millions of structured boolean facts about the world in its state and to systematically keep those
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facts up to date in response to possibly rare events. As a neuro-symbolic method, NDTT delegates that
task to a symbolic database governed by manually specified DTT rules. However, it also augments
the database: iff a proposition h appears as a fact in the NDTT database at time ¢, it will be associated
not only with the simple truth value t rue but also with an embedding [A](¢). This embedding is a
learned representation of that fact at that time, and can be trained to be useful in downstream tasks.
It captures details of when and how that fact was established (the fact’s provenance), since it is
computed using learned parameters associated with the rules that deduced and/or added it.

For example, a user’s embedding might be constructed using attention over all the past events that
have affected the user, via rules of the form user (U) - ... This summarizes the user’s state.
Similarily, a document’s embedding might be constructed using attention over all the edits to it,
considering the editing user’s state at the time of the edit: document (D) U,D), user(U).

Embeddings from NDTT rules. Our goal is to provide new formulas for the embeddings [2](%),
based on Transformer-style attention rather than LSTM-style recurrence. We call this attentive
NDTT, or A-NDTT. This gives a new way to map an NDTT program to a neural architecture. The
potential advantages for accuracy, efficiency, and simplicity were explained in section 1.

Intuitively, the <- rules will govern the “horizontal” flow of information through time (by defining
attentional connections as we saw in section 4), while the :- rules will govern the “vertical” flow of
information at a given time (by defining feed-forward connections). These are, of course, the two
major mechanisms in Transformer architectures.

Under A-NDTT, the layer-¢ embedding of hat is

[A]9 () & [1]“D(t) + tanh ([h] Q)+ [ (t>> ®)

which is an augmented version of equation (7). Suppose h is true at time ¢ because it was added by

rule r (i.e., condition @). Then the summand g) (t) exists and is computed much as in equation (8),
now with attention over all “add times” s. In other words, H,.(hat) in equation (8) includes just
those past events fas such that f added & via r at some time s < ¢ and h was never removed at any
time in (s, t). It also includes hat itself, as before.

More precisely, when the rule h fs g1, --., gn causes hat to attend to the specific past
event fas, we actually want attention to consider the embedding at time s not just of f, but of
the entire add condition f,g1,...,g,. Thus, we replace fas with (f,g1,...,g,)@s throughout

def

equation (8). The attention key of this add condition is defined as k) ((f, g1,..., gn)as) =
K (1] 14D (s); [ ]“ D (s);- - - [92]“"V(s)] (compare equation (3b)). Its attention

T

value vIO ((f, g1, ..., gn)as) is defined analogously, using a different matrix V(.

The above handles the < rules. As for the :- rules, the vector [1](“)(t) in equation (9) sums over all
the ways that h can be deduced at time ¢ (i.e., condition @). This does not involve attention, so we
exactly follow Mei et al. (2020a, equations (3)—(6)):

WO =" & W,L[a]®):: ls.] 1) 10

r 9l 9n

where r ranges over rules, and (g1, . . ., g, ) ranges over all tuples of facts at time ¢ such that A :-

g1, - - - gn, matches rule r (and thus deduces h at time ). The operator @ﬁ " is a softmax-pooling
operator with a learned inverse temperature [3,.. If h is not deduced at time ¢ by any instantiation of ,

then r has no effect on the sum (10), since pooling the empty set with @ﬁ " returns 0.

Example. Mei et al. (2020a) give many examples of NDTT programs. Here is a simple example
to illustrate the use of :- rules. e means that Eve posts a message to the company forum, while £
means that Frank does so. Once the forum is created by a event, its existence is a fact (called
forum) whose embedding (called [forum]) always reflects all messages posted so far to the forum.
Until the forum is destroyed, Eve and Frank can post to it, and the embeddings and intensities of their
messages depend on the current state of the forum:

1| forum . 3| forum e. 5|e = forum.
2| 'forum . 4| forum £f. 6| £ = forum.



Published as a conference paper at ICLR 2022 [this version has more relaxed spacing

The resulting neural architecture is drawn in Figure 1b. If the company grows from 2 to K employees,
then the program needs O(K) rules and hence O (K') parameters, which define how each employee’s
messages affect the forum and vice-versa. Without the :- rules, we would have to list out O(K?)
rules such as e £ and hence would need O(K?) parameters, which define how each employee’s
messages affect every other employee’s messages directly; this case is drawn in Figure 1a.

Appendix B and Figure 4 spell out an enhanced version of this example that makes use of variables,
so that all K employees can be governed by a constant (O(1)) number of rules.

Discussion. NDTT rules enrich the notion of “influence matrix” from section 4. Events traditionally
influence the intensities of subsequent events, but NDTT <- rules more generally let them influence
the embeddings of subsequent facts (and hence the intensities of any events among those facts).
Furthemore, NDTT :- rules let facts influence the embeddings of contemporaneous facts.

Each < rule r can be seen as defining the fixed sparsity pattern of a large influence matrix, along
with parameters for computing its nonzero entries from context at each attention layer. The size of
this matrix is determined by the number of ways to instantiate the variables in the rule. The entries of
the matrix are normalized versions of the attention weights «,.. The influences of different <- rules r
are combined by equation (9) and are modulated by nonlinearities.

Overall, (A-)NDTT models learn representations, much like pretrained language models (Peters et al.,
2018; Radford et al., 2019). They learn continuous embeddings of the facts in a discrete database, us-
ing a neural architecture that is derived from the symbolic rules that deduce these facts and update them
in response to events. The facts change at discrete times but their embeddings change continuously.
We train the model so that the embeddings of possible events predict how likely they are to occur.

6 RELATED WORK

Multivariate point processes have been widely used in real-world applications, including document
stream modeling (He et al., 2015; Du et al., 2015a), learning Granger causality (Xu et al., 2016; Zhang
et al., 2020b; 2021), network analysis (Choi et al., 2015; Etesami et al., 2016), recommendation
systems (Du et al., 2015b), and social network analysis (Guo et al., 2015; Lukasik et al., 2016).

Over the recent years, various neural models have been proposed to expand the expressiveness of
point processes. They mostly use recurrent neural networks, or LSTMs (Hochreiter & Schmidhuber,
1997): in particular Du et al. (2016); Mei & Eisner (2017); Xiao et al. (2017a;b); Omi et al. (2019);
Shchur et al. (2020); Mei et al. (2020a); Boyd et al. (2020). Models of this kind enjoy continuous and
infinite state spaces, as well as flexible transition functions, thus achieving superior performance on
many real-world datasets, compared to classical models such as the Hawkes process (Hawkes, 1971).

The Transformer Hawkes process (Zuo et al., 2020) and self-attentive Hawkes process (Zhang
et al., 2020a) were the first papers to adapt generative Transformers (Vaswani et al., 2017; Radford
et al., 2019; Brown et al., 2020) to point processes. The Transformer architecture allows their
models to enjoy unboundedly large representations of histories, as well as great parallelism during
training (see @ and @ in section 1). As section 3 discussed, both models—as well as subsequent
attention-based models (Enguehard et al., 2020; Sharma et al., 2021)—derive the intensity A (t)
from [f](s) where fas is the latest actual event before ¢. (The THP takes A.(t) to be a softplus
function of w/ [1;¢/s; [f](s)]. The SAHP defines A.(-) as a function that exponentially decays
toward an asymptote, computing the 3 parameters of this function from e and [f](s).) In contrast
(see @ in section 1), our model derives A.(¢) from [e]t—the embedding of the possible event eat,
which is computed using e- and ¢-specific attention over all past events. Zhu et al. (2021, section 3.1)
independently proposed this approach but did not evaluate it experimentally.

7 EXPERIMENTS

On several synthetic and real-world datasets, we evaluate our model’s held-out log-likelihood, and
its success at predicting the time and type of the next event. We compare with multiple strong
competitors. Experimental details not given in this section can be found in Appendix F.

We implemented our A-NDTT framework using PyTorch (Paszke et al., 2017) and pyDatalog
(Carbonell et al., 2016), borrowing substantially from the public implementation of NDTT (Mei
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et al., 2020a). We also built a faster, GPU-friendly PyTorch implementation of our more restricted
A-NHP model (see section 7.1 below). Our code and datasets are available at https://github.
com/yangalanl23/anhp—-andtt.

For the competing models, we made use of their published implementations.! References and URLs
are provided in Appendix F.2.

7.1 COMPARISON OF DIFFERENT TRANSFORMER ARCHITECTURES

We first verify that our continuous-time Transformer is competitive with three state-of-the-art neural
event models. The four models we compare are

Transformer Hawkes Process (THP) (Zuo et al., 2020). See section 6.
Self-Attentive Hawkes Process (SAHP) (Zhang et al., 2020a). See section 6.

Neural Hawkes Process (NHP) (Mei & Eisner, 2017). This is not an attention-based model. At
any time ¢, NHP uses a continuous-time LSTM to summarize the events over [0,¢) into a multi-
dimensional state vector, and conditions the intensities A.(¢) of all event types on that state.

Attentive Neural Hawkes Process (A-NHP) This is our unstructured generative model from sec-
tion 3. Since this model does not use selective attention, we speed up the intensity computations by
defining them in terms of a single coarse event type, as described in Appendix A. Thus, each event
intensity A.(t) is computed by attention over all previous events, where the attention weights are
independent of e. This parameter-sharing mechanism resembles the NHP, except that we now use a
Transformer in place of an LSTM.

In a pilot experiment, we drew sequences from randomly initialized models of all 4 types (details
in Appendix F.1.1), and then fit all 4 models on each of these 4 synthetic datasets. We find that NHP,
SAHP, and A-NHP have very close performance on all 4 datasets (outperforming THP, especially at
predicting timing, except perhaps on the THP dataset itself); see Figure 5 in Appendix F.1.1 for results.
Thus, A-NHP is still a satisfactory choice even when it is misspecified. This result is reassuring
because A-NHP has less capacity in some ways (the circuit depth of a Transformer is fixed, whereas
the circuit depth of an LSTM grows with the length of the sequence) and excess capacity in other
ways (the Transformer has unbounded memory whereas the LSTM has finite-dimensional memory).
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intervals® on the two real-
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We then fit all 4 models to the following two benchmark real-world datasets.”

'On some datasets, our replicated results are different from their papers. We confirmed that our results are

correct via personal communication with the lead authors of Zhang et al. (2020a) and Zuo et al. (2020).

'If we are not taking enough Monte Carlo samples to get a stable estimate of log-likelihood, then this
will appropriately be reflected in wider error bars. This is because when computing a bootstrap replicate, we
recompute our Monte Carlo estimate of the log-likelihood of each sequence. Hence, our bootstrap confidence
intervals take care to include the variance due to the stochastic evaluation metric. For the Monte Carlo settings
we actually used (Appendix D), this amounts to about 1% of the width of the error bars.

2For these datasets, we used the preprocessed versions provided by Mei & Eisner (2017). More details about
them can be found in Appendix F.1.2.
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MIMIC-II (Lee et al., 2011). This dataset is a collection of de-identified clinical visit records of
Intensive Care Unit patients for 7 years.Each patient has a sequence of hospital visit events, and each
event records its time stamp and disease diagnosis.

StackOverflow (Leskovec & Krevl, 2014). This dataset represents two years of user awards on a
question-answering website: each user received a sequence of badges (of 22 different types).

On MIMIC-II data (Figure 2a), our A-NHP is always a co-winner on each of these tasks; but the other
co-winner (NHP or THP) varies across tasks. On StackOverflow data (Figure 2b), our A-NHP is
clearly a winner on 2 out of 3 tasks and is tied with NHP on the third. Compared to NHP, A-NHP also
enjoys a computational advantage, as discussed in sections 1 and 2. Empirically, training an A-NHP
only took a fraction of the time that was needed to train an NHP, when sequences are reasonably long.
Details can be found in Table 2 of Appendix F.3.

7.2 A-NDTT vs. NDTT

Now we turn to the structured modeling approach presented in section 5. We compare A-NDTT with
NDTT on the RoboCup dataset and IPTV dataset proposed by Mei et al. (2020a). In both cases, we
used the NDTT program written by Mei et al. (2020a). The rules are unchanged; the only difference
is that our A-NDTT has the new continuous-time Transformer in lieu of the LSTM architecture. We
also evaluated the unstructured NHP and A-NHP models on these datasets.

RoboCup (Chen & Mooney, 2008). This dataset logs the actions (e.g., kick, pass) of robot soccer
players in the RoboCup Finals 2001-2004. The ball is frequently transferred between players (by pass-
ing or stealing), and this dynamically changes the set of possible event types (e.g., only the ball pos-
sessor can kick or pass). There are K = 528 event types over all time, but only about 20 of them are
possible at any given time. For each prefix of each held-out event sequence, we used minimum Bayes
risk to predict the next event’s time, and to predict its participant(s) given its time and action type.

IPTV (Xu et al., 2018). This dataset contains records of 1000 users watching 49 TV programs over
the first 11 months of 2012. Each event has the form (U,P). Given each prefix of the test
event sequence, we attempted to predict the next test event’s time ¢, and to predict its program P
given its actual time ¢ and user U.
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The Robocup results are shown in Figure 3a. As in section 7.1, we find that A-NHP performs better
than NHP on all the evaluation metrics; on log-likelihood and event type prediction, A-NHP is sig-
nificantly better (paired permutation test, p < 0.05). We now inject domain knowledge into both the
LSTM and Transformer approaches, by deriving architectures based on the RoboCup NDTT program
(which specifies, for example, that only the ball possessor can kick or pass). The resulting models—
NDTT and A-NDTT—are substantial and significant improvements, considerably reducing both the
log-likelihood and the very high error rate on event type prediction. NDTT and A-NDTT are not sig-
nificantly different from each other: since NDTT already knows which past events might be relevant,
perhaps it is not sorely in need of the Transformer’s ability to scan an unbounded history for relevant
events.® Appendix F.5 includes more results of A-NDTT vs. NDTT broken down by action types.

3While NDTT still uses a fixed-dimensional history—@ in section 1—the dimensionality is often very high,
as the NDTT’s state consists of embeddings of many individual facts. Moreover, each fact’s NDTT embedding
is computed by rule-specific LSTMs that see only events that are relevant to that fact, so there is no danger that
intervening irrelevant events will displace the relevant ones in the fixed-dimensional LSTM states.
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Additionally, while A-NDTT does not improve the overall accuracy for this particular NDTT program
and dataset, it does achieve overall comparable accuracy with a simpler and shallower architecture
(@-® in section 1). Like other Transformers, the A-NDTT architecture could be trained on a GPU
with parallelism, as outlined in Appendix F.4 (future work).

The IPTV results are shown in Figure 3b. In this case, the log-likelihood of NHP can be substantially
and significantly improved either by using rules (as for Robocup) or by using attention, or both.
The error rate on predicting the next event type is again very high for NHP, and is substantially and
significantly reduced by using rules—although not as much under the A-NDTT architecture as under
the original NDTT architecture.

8 CONCLUSION

We showed how to generalize the Transformer architecture to sequences of discrete events in contin-
uous time. Our architecture builds up rich embeddings of actual and possible events at any time ¢,
from lower-level representations of those events and their contexts. We usually train the model so
that the embedding of a possible event predicts its intensity, yielding a flexible generative model that
supports parallel computation of log-likelihood. We showed in section 7.1 that it outperforms other
Transformer-based models on multiple real-world datasets and also beats or ties them on multiple
synthetic datasets.

We also showed how to integrate this architecture with NDTT, a neural-symbolic framework that
automatically derives neural models from logic programs. Our attention-based modification of NDTT
has shown competitive performance, despite having a simpler and shallower architecture. Our code
and datasets are available at https://github.com/yangalanl23/anhp-andtt.
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Appendices

A DISCUSSION OF ARCHITECTURAL DETAILS

Simplification. Equation (1) is a simplification of the original Transformer architecture (Vaswani
etal., 2017). In the original architecture, [¢]*) (t) would be obtained as LayerNorm(x + FFN(¥) (x)),
where x is the LayerNorm transformation (Ba et al., 2016) of the right-hand side of equation (1), and
the nonlinear transform FEN(¥) is computed by a learned two-layer feed-forward network.

In our preliminary experiments, we found that the LayerNorm and FFN steps did not help, so for
simplicity and speed, we omitted them from equation (1) and from the remaining experiments.
However, it is possible that they might help on other domains or with larger training datasets, so our
code supports them via command-line arguments.

Graceful degradation. Another change to equation (1) (and equation (8)) is that when normalizing
the attention weights, we included an additional summand of 1 in the denominator.* We do this so
that when the history H(eat) is “rather irrelevant” to eat, the architecture behaves roughly as if
H (eat) were the empty set. In equation (1), this means that [e] (“) (¢) will then be close to [e] =) ().
Similarly, equation (7) will not be much influenced by rule r if rule  finds only events #,.(eat) that
it considers to be “rather irrelevant” to eat.

A “rather irrelevant” history is one for which the unnormalized attention weights are small in foto, so
that the denominator is dominated by the 1 summand. This may occur, for example, if events in the
distant past tend to have small attention weights, and the history consist only of old events (and not
too many of them). When the history is rather irrelevant, the argument to tanh in equation (1) and

the summand ie) (t) in equation (7) are close to 0; when H (eat) = (), they are exactly 0.

Direct access to time embeddings. Another difference from Vaswani et al. (2017)—perhaps not
an important one—is that in equation (3), we chose to concatenate [[¢] to the rest of the embedding
rather than add it (cf. Kitaev & Klein, 2018; He et al., 2020). Furthermore we did so at every layer
and not just layer 0. The intuition here is that the extraction of good key and query vectors at each
layer may benefit from “direct access” to [t]. For example, this should make it easy to learn keys and
queries such that the attention weight is highest when s ~ ¢ — A (since for every A € R, there exists
a sparse linear operator that transforms [t] — [t — A]).

Range of wavelengths for time embeddings. Our time embedding [¢] in (4) uses dimensions that
are sinusoidal in ¢, with wavelengths forming a geometric progression from 27m to 2w (5M ). Setting
m = 1, M = 2000 would recover the standard scheme of Vaswani et al. (2017) (previously used in
continuous time by Zuo et al. (2020)).

We instead set m and M from data so that we are robust to datasets of different time scales. Part
of the intuition behind using sinusoidal embeddings is that nearby times can be distinguished by
different values in their short-wavelength dimensions, whereas the long-wavelength dimensions make
it easy to inspect and compare faraway times, since those dimensions are nearly linear on ¢ € [0, M].
We therefore take m to be the shortest gap between any two events in the same history,

s = s'l, Y

m = min min
eQt f@s,f'Qs’eH(e@Qt)
as computed over training data, and take M greater than all 7" in training data (where each observed
sequence is observed over an interval [0, 7).

If we were modeling sequences of words as in Brown et al. (2020), our procedure would indeed
recover the values m = 1 and M = 2000 that they used to model text documents. Multiplying or
dividing all ¢ values in the dataset by 1000 (e.g., switching between second and millisecond units)
would have no effect on the time embeddings, as it would scale m and M in the same way.

Coarse event embeddings for speed. As noted at the end of section 3, the intensity model equa-
tion (5) involves a full embedding of each eat. This may be expressive, but it is also expensive. The

*Including the summand of 1 is equivalent to saying that eat attends not only to relevant events ‘H(eat) but
also to a dummy object whose key and value are fixed at 0. The dummy object gets an unnormalized attention
weight of 1, drawing attention away from H (eat).
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attention weight vectors o). .., a(F) used to compute this embedding must be computed from
scratch for each e and ¢. Why is this necessary?

Like other neural sequence models—both RNN-based and Transformer-based—we derive the proba-
bility that the next sequence element is e from an inner product of the form w/ [1; [H (eat)]], where
in our equation (5), the role of the history embedding [# (eat)] is played by [e](¢). However, for
many previous models, the history embedding does not depend on e, so it can be computed once at
each time ¢ and reused across all e.

* In neural language models, typically all previous events are taken to be relevant. [H(eat)]
can then be defined as an RNN encoding of the sequence all past events (Mikolov et al.,
2010), or alternatively a Transformer embedding of the single most recent past event (which
depends on the entire sequence of past events). This does not depend on e.

* When modeling irregularly spaced events, ¢ is not necessarily an integer, and the past events
in H(eat) do not necessarily take place at 1,2,...,t — 1. Thus, the encoding [H (eat)]
must somehow be improved to also consider the elapsed time ¢ — ¢; since the most recent
past event (Du et al., 2016; Mei & Eisner, 2017; Zuo et al., 2020; Zhang et al., 2020a). So
now [H(eat)] must look at ¢, but it is still independent of e.

* In contrast, in sections 4-5, we will allow the more general case where [H (eat)] varies
with e as well, since NDTT rules determine which past events should be attended to by e.
The original NDTT paper essentially defined [# (eat)] as the state at time ¢ of an e-specific
continuous-time LSTM, which is updated by just the events that are relevant to e. In our
attention-based approach, we instead define it to be [e¢]*(¢), yielding equation (5).

To reduce this computational cost, we can associate each event type e with a coarse event type é
that is guaranteed to have the same set of relevant past events, and replace [e]” () with [e]*(¢) in
equation (5). (However, equation (5) still uses the fine-grained w,.) Now to compute A.(t), we only
have to embed éeat, which is a speedup if many of the possible event types e are associated with the
same €. In the case where we do not use selective attention, we can get away with using only a single
coarse event type for the whole model—saving a runtime factor of |£| as in the cheaper approach.
Note that the history H still uses fine-grained embeddings, so if eat actually occurs, we must then

compute [e]°(t), ..., [e]*(t).

Concatenation vs. summation. Equation (7) uses summation to combine the outputs (8) of different
attention heads r. Vaswani et al. (2017) instead combined such outputs by projecting their concatena-
tion, but that becomes trickier in our setting: different events e would need to concatenate different
numbers of attention heads r (for just the rules r that can take the form e -+ ), resulting in
projection matrices of different dimensionalities. Especially when NDTT rules can contain variables
(section 5 below), it is not immediately obvious how one should construct these matrices or share
parameters among them. These presentational problems vanish with our simpler summation approach.

Our approach loses no expressive power: projecting a concatenation of g) (t) values, as Vaswani
et al. would suggest, is equivalent to summing up an r-specific projection of fz) (t) for each r, as

we do, where our projection of itz) (t) has implicitly been incorporated into the projection (3a) that

produces v,(l). That is, if we can learn Vg) = V in equation (3a), then we can also learn Vg) =PV,

where P is the desired projection matrix for rule . To make our method fully equivalent to Vaswani
et al.’s, we would have to explicitly parameterize Vy) as a matrix product of the form PV, forcing it
to be low-rank.

B NDTT EXAMPLE WITH VARIABLES

The company message forum program in section 5 had only 2 users and 1 forum. However, if the
company employs many persons P and has a forum for each team T, NDTT rules can use capitalized
variables to define the whole system concisely, using only O(1) rules and O(1) parameters. Here the
possible facts and events have structured names like e(eve,sales, joke), which denotes
an event in which employee eve posts a joke to the sales team’s forum.

7| forum(T) (T). 9 e(P,T,C) - empl(P), forum(T), content(C).
8| forum(T) e(P,T,C). 10| 'forum(T) (T).
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Figure 4: The solid green arrows correspond to instantiations of the attentional <- rules 8 and 13. They can
capture the real-world property that thanks to Eve’s joke at time ¢, the sales forum still feels more humorous at
time ¢ and Frank, another member of that forum, is still in a good mood. This raises the probability A (t)d¢
that Frank posts his own joke at time ¢, where e = e (frank,sales, joke). More formally, Ac(t) is
determined by the layer-L embedding of Frank’s possible message eat. In general, the layer-/ embedding of
this message reflects the layer-(¢ — 1) embeddings of both Frank and the forum at time ¢, as well as the fact
that the possible message is a joke. If the message is actually sent (i.e., the possible event actually happens), its
layer-¢ embedding would in turn affect the layer-(¢ 4+ 1) embeddings of the forum and its readers at times > ¢.
An arrow with multiple inputs means that the input embeddings are concatenated before being transformed into
a contribution to the output embedding. Other visual conventions are as in Figure 1. Not all facts, events, or
arrows are shown in this drawing.

This generalizes the previous program, allowing multiple forums and saying that any employee (not
just Eve and Frank) can post any type of message to any forum, affecting the embedding of that
forum. We could modify rule 9 by adding an additional condition member (P, T), so that employees
can only post to forums of which they are members. Membership could be established and tracked by

1] join(P,T) = empl(P), forum(T).

12| member (P, T) o0in(P,T).

13| empl (P) e(P2,T,C), member(P,T).

Rules 8 and 13 ensure that a message to a forum affects the subsequent embedding of that forum
and also the subsequent embeddings of all employees who were members of that forum when the
message was sent. This may affect which employees join which forums in future, and what they post
to the forums, as drawn in Figure 4 in the appendices. For further examples, see the full presentation
of NDTT in Mei et al. (2020a).

How are variables treated in the computation of embeddings? In equations (7)—(8), r refers to a rule
with variables. However, e refers to a specific fact, without variables. An instantiation of r is a copy
of r in which each variable has been consistently replaced by an actual value. In our modified version
of equation (8), the summations range over all values of (f, g1,...,g,)@s such that e fs g1,

.» gn is an instantiation of r that added e at time s (i.e., an instantiation of r such that f occurred
at time s and gy, ..., g, were all true at time s). Thus, the attentional competition may consider
(f,q1,-..,9n)as values that are derived from many different instantiations of r. Their attentional
weights a&f ) are all obtained using the shared parameters associated with rule 7. The summation in
equation (7) ranges only over rules r with at least one instantiation that adds eat, so it skips rules that
are irrelevant to e.

SMei et al. (2020a, Appendix B) provide a notation to optionally reduce the amount of parameter sharing.
A rule may specify, for example, that each value of variable T should get its own parameters. In this case, we
regard the rule as an abbreviation for several rules, one for each value of T. Each of these rules corresponds to a
different r in equation (7), and so corresponds to a separate attention head (8) that sets up its own attentional
competition using its own parameters. One use of this mechanism would be to allocate multiple attention heads
to a single rule.
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C PARAMETER DIMENSIONALITY SPECIFICATION FOR A-NDTT

In this section we discuss the dimensionality of the fact embeddings [A](t) in section 5.

As in the original NDTT paper Mei et al. (2020a), the type of a fact in the database is given by its
functor (forum, member, , etc.). All facts of the same type have embedding vectors of the
same dimensionality, and these dimensionalities are declared by the NDTT program.

This is enough to determine the dimensions of the parameter matrices associated with the deduction
rules (Mei et al., 2020a). How about the add rules, however? The form of equation (9) implies that

the value vectors vg) for add rule r have the same dimensionality as the embedding of the head of r.
The key and query vectors for rule r (as used in equation (2)) can share this dimensionality by default,
although we are free to override this and specify a different dimensionality for them. The foregoing

choices determine the dimensions of the parameter matrices Vﬁ?), Kg), Q?) associated with rule 7.

D LIKELIHOOD COMPUTATION DETAILS

In this section we discuss the log-likelihood formulas in section 3.

Derivations of the log-likelihood formula (6) can be found in previous work (e.g., Hawkes, 1971;
Liniger, 2009; Mei & Eisner, 2017). Derivations of this formula appear in previous work (e.g.,
Hawkes, 1971; Liniger, 2009; Mei & Eisner, 2017). Intuitively, when training to increase the log-
likelihood (6), each log A, (t;) is increased to explain why the observed event e; happened at time ¢;,

while ftio Zle Ae(t)dt is decreased to explain why no event of any possible type e € {1,..., E'}
ever happened at other times. Note that there is no log under the integral in equation (6). Why? The
probability that there was not an event of any type in the infinitesimally wide interval [¢, ¢ + dt) is
1 — A(t)dt, whose log is —A(t)dt.

The integral term in equation (6) is computed using the Monte Carlo approximation given by Mei
& Eisner (2017, Algorithm 1), which samples times ¢. This yields an unbiased stochastic gradient.
For the number of Monte Carlo samples, we follow the practice of Mei & Eisner (2017): namely, at
training time, we match the number of samples to the number of observed events at training time, a
reasonable and fast choice, but to estimate log-likelihood when tuning hyperparameters or reporting
final results, we take 10 times as many samples. The small remaining variance in this procedure is
shown in our error bars, as explained in footnote 6.

At each sampled time ¢, the Monte Carlo method still requires a summation over all events to obtain
A(t). This summation can be expensive when there are many event types. This is not a serious
problem for our standalone A-NHP implementation since it can leverage GPU parallelism. But for
the general A-NDTT implementation, it is hard to parallelize the A\ (¢) computation over k and ¢. In
that case, we use the downsampling trick detailed in Appendix D of Mei et al. (2020a).

An alternative would be to replace maximum-likelihood estimation with noise-contrastive estimation,
which is quite effective at training NHP and NDTT models (Mei et al., 2020b).

E How 1O PREDICT EVENTS

It is possible to sample event sequences exactly from an A-NHP or A-NDTT model, using the
thinning algorithm that is traditionally used for autoregressive point processes (Lewis & Shedler,
1979; Liniger, 2009). In general, to apply the thinning algorithm to sample the next event at time > ¢,
it is necessary to have an upper bound on {\.(t) : t € [tg,00)} for each event type ¢. An explicit
construction for the NHP (or NDTT) model was given by Mei & Eisner (2017, Appendix B.3). For
A-NHP and A-NDTT, observe that \.(¢) is a continuous real-valued function of [¢] (the particular
function depends on e and the history of events at times < ty). Since [[¢] falls in the compact set
[—1,1]¢ (thanks to the sinusoidal embedding (4)), it follows that A (¢) is indeed bounded. Actual
numerical bounds can be computed using interval arithmetic. That is, we can apply our continuous
function not to a particular value of [t] but to all of [—1, 1]¢, where for any elementary continuous
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DATASET K # OF EVENT TOKENS SEQUENCE LENGTH
TRAIN DEV TEST MIN MEAN  MAX
SYNTHETIC 10 59904 7425 7505 49 75 99
MIMIC-II 75 1930 252 237 2 4 33
STACKOVERFLOW 22 345116 38065 97233 41 72 736
RoBoCuP 528 2195 817 780 780 948 1336

Table 1: Statistics of each dataset.

function f : R — R, we have defined f([z1o, zi]) to return some bounded interval that contains f(x)
for all € [z}, 2p;i]. The result will be a bounded interval that contains \.(t) for all ¢ € [tg, 00).

Section 7 includes a task-based evaluation where we try to predict the time and type of just the next
event. More precisely, for each event in each held-out sequence, we attempt to predict its time given
only the preceding events, as well as its type given both its true time and the preceding events.

We evaluate the time prediction with average Lo loss (yielding a root-mean-squared error, or RMSE)
and evaluate the argument prediction with average 0-1 loss (yielding an error rate).

Following Mei & Eisner (2017), we use the minimum Bayes risk (MBR) principle to predict the time
and type with lowest expected loss. For completeness, we repeat the general recipe in this section.

For the i event, its time #; has density p;(t) = A(t) exp(— ft ). We choose [ ° ¢, tpi(t)dt

as the time prediction because it has the lowest expected Lo loss The 1ntegra1 can be estlmated using
i.i.d. samples of ¢; drawn from p;(¢) by the thinning algorithm.

Given the next event time ¢;, we choose the most probable type arg max, A.(¢;) as the type prediction
because it minimizes expected 0-1 loss. In some circumstances, one might also like to predict the
most probable type out of a restricted set &' C {1, ..., E}. This allows one to answer questions like
“If we know that some event of the form e(eve,T) happened at time ¢;, then what was the
forum T, given all past events?” The answer will simply be arg max,cgs Ae(t;).

F EXPERIMENTAL DETAILS

F.1 DATASET DETAILS

Table 1 shows statistics about each dataset that we use in this paper.

F.1.1 PiLOT EXPERIMENTS ON SIMULATED DATA

In this experiment, we draw data from randomly initialized NHP, A-NHP, SAHP, and THP. For
all of them, we take the number of event types to be £ = 10. For NHP, the dimensions of event
embeddings and hidden states are all 32; for A-NHP, the number of layers (L in our paper) is 2, and
the dimensions of time embeddings and event embeddings are 32; for SAHP, the number of layers is
4, and the dimension of hidden states is 32; for THP, the number of layer is 7, and the dimension of
hidden states is 32.

For each model, we draw 800, 100, and 100 sequences for training, validation and testing, respectively.
For each sequence, the sequence length [ is drawn from Uniform(49, 99). We take the maximum
observation time 7" to be ¢; 4 1, one time step after the final event.

We fit all 4 models on each of these 4 synthetic datasets. The results are graphed in Figure 5 and show
that NHP, SAHP, and A-NHP have very close performance on all 4 datasets (outperforming THP,
especially at predicting timing, except perhaps on the THP dataset itself). Notably, THP fits the time
intervals poorly when it is misspecified, perhaps because its family of intensity functions (section 6)
is not a good match for real data: THP requires that the intensity of e between events changes more
slowly later in the event sequence, and that if it increases over time, it approaches linear growth rather
than an asymptote.
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Figure 5: Log-likelihood on held-out data (in nats, with 95% bootstrap confidence intervals®). Larger values are
better. Each column is a different experiment, on a single synthetic dataset generated from a different distribution
family (shown at the bottom of the column). Within each column, the red dashed horizontal line represents the
log-likelihood of the true distribution that generated the data. Within each column, we train and test 4 models:
THP, SAHP, NHP, and A-NHP (from left to right). The model from the correct family is shown in red; compare
this to our A-NHP model (the rightmost model). Other models are shown in lighter ink. Note that log-likelihood
for continuous variables can be positive (as in the second row), since it uses the log of a probability density that
may be > 1.

F.1.2 OTHER DATA DETAILS

For MIMIC-II and StackOverflow, we used the version processed by Du et al. (2016); more details
(e.g., about processing) can be found in their paper.

For RoboCup, we used the version processed by Chen & Mooney (2008); please refer to their paper
for more details (e.g., data description, processing method, etc)

F.2 IMPLEMENTATION DETAILS

For NHP, our implementation is based on the public Github repositories at https://github.com/
HMEIatJHU/neurawkes (Mei & Eisner (2017), with MIT License) and https://github.com/
HMEIatJHU/neural-hawkes-particle-smoothing (Mei et al. (2019), with BSD 3-Clause
“New” or “Revised” License). We made a considerable amount of modifications to their code (e.g.,
model, thinning algorithm), in order to migrate it to PyTorch 1.7. We built the standalone GPU
implementation of A-NHP upon our NHP code.

For NDTT, we used the public Github repository at https://github.com/HMEIatJHU/
neural-datalog-through-time (Mei et al. (2020a), with MIT License). We built A-NDTT
upon NDTT.

For THP, we used the public Github repository at https://github.com/SimiaoZuo/
Transformer-Hawkes—Process (Zuo et al. (2020), no license specified).

For SAHP, we used the public Github repository at https://github.com/QiangAIResearcher/
sahp_repo (Zhang et al. (2020a), no license specified).

F.3 TRAINING DETAILS

For each model in section 7, we had to specify various dimensionalities. For simplicity, we used a
single hyperparameter D and took all vectors to be in R”. This includes the state vectors of NHP,
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DATASET TRAINING TIME (MILLISECONDS) / SEQUENCE

NHP A-NHP
SYNTHETIC 208.7 56.3
MIMIC-II 2.9 32.6
STACKOVERFLOW 156.6 65.7

Table 2: Training time of NHP and A-NHP for experiments in section 7.1.

the fact embeddings of NDTT and A-NDTT, and the query, key, and value vectors for the models
with attention mechanisms (THP, SAHP, A-NHP, and A-NDTT). For the models with attention
mechanisms, we also had to choose the number of layers L.

We tuned these hyperparameters for each combination of model, dataset, and training size (e.g.,
each bar in Figures 2, 3a and 5), always choosing the combination of D and L that achieved
the best performance on the dev set. Our search spaces were D € {4,8,16,32,64,128} and
L e€{1,2,3,4,5,6}. In practice, the optimal D for a model was usually 32 or 64; the optimal L was
usually 1, 2, or 3.

To train the parameters for a given model, we used the Adam algorithm (Kingma & Ba, 2015) with
its default settings. We performed early stopping based on log-likelihood on the held-out dev set.

For the experiments in section 7.1, we used the standalone PyTorch implementations for NHP and
A-NHP, which are GPU-friendly. We trained each model on an NVIDIA K80 GPU. Table 2 shows
their training time per sequence on each dataset.

For section 7.2, we run our NDTT and A-NDTT models only on CPUs. This follows Mei et al.
(2020a), who did not find an efficient method to leverage GPU parallelism for training NDTT models.
The machines we used for NDTT and A-NDTT are 6-core Haswell architectures. On RoboCup,
the training time of NDTT and A-NDTT was 62 and 149 seconds per sequence, respectively. See
Appendix F.4 for future work on improving the latter time by exploiting GPU parallelism.

For the NHP and A-NHP models in section 7.2, we ran the specialized code for these models on CPU
as well, rather than on GPU as in section 7.1, since the RoboCup sequences were too long to fit in
the memory of our K80 GPU. The training time was 66 and 95 seconds per sequence for NHP and
A-NHP, respectively.

F.4 TRAINING PARALLELISM

We point out that in the future, GPU parallelism could be exploited through the following procedure,
given a GPU with enough memory to handle long training sequences. (The layers can be partitioned
across multiple GPUs if needed.)

For each training minibatch, the first step is to play each event sequence e @ty, ex@ts, . .., eyaty for-
ward to determine the contents of the database on each interval (0, t1], (¢1,t2], ..., (ti—1, tr], (t1, T
This step runs on CPU, and computes only the boolean facts (“Datalog through time”’) without their
embeddings (“neural Datalog through time”).

Let F be the set of facts that ever appeared in the database during this minibatch and let R be the set
of rules that were ever used to deduce or add them (section 5). Furthermore, let 7 be the set of times
consisting of {¢1,...,¢r} together with the times ¢ that are sampled for the Monte Carlo integral
(Appendix D).

A computation graph of size O(|R|-I) can now be constructed, as illustrated in Figure 1b, to compute
the embeddings [](¢) of all facts h € F at all times ¢ € 7. The layer-¢ embeddings at time ¢ € T
depend on the layer-(¢ — 1) embeddings at times ¢; < ¢, according to the add rules in R. The layer-¢
embedding of a fact that is deduced at time ¢ also depends on the layer-¢ embeddings at time ¢ of the
facts that it is deduced from, according to the deduction rules in R; this further increases the depth of
the computation graph.
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For a given fact h € F, [h]¥)(¢) can be computed in parallel for all event sequences and all times
t € T (even times ¢ when h is not true, although those embeddings will not be used). Multiple facts
that are governed by the same NDTT rule » € R can also be handled in parallel, since they use
the same r-specific parameters. Thus, a GPU can be effective for this phase. The computation of

7("[) (t) in equation (9) must take care to limit its attention to just those earlier times when an event

occurred that added A via rule r, and the computation of [h](¥) (t) in equation (9) must take care to
consider only rules r that in fact deduce & at time ¢ because their conditions are true at time ¢. This
masks unwanted parts of the computation, rendering parts of the GPU idle. GPU parallelism will
still be worthwhile if a substantial fraction of the computation remains unmasked—which is true for
relatively homogenous settings where most facts in  hold true for a large portion of the observed
interval [0, T), even if their embeddings fluctuate.

F.5 MORE RESULTS

The performance of A-NDTT and NDTT is not always comparable for specific action types, as shown
in Figure 6. In terms of data fitting (left figure), A-NDTT is significantly better at the events
while NDTT is better at the others. For time prediction (middle figure), A-NDTT is significantly
better at the goal, , and events, but the differences for the other action types are not
significant. For action participant prediction (right figure), A-NDTT is significantly better at the

events while there is no difference for the others; both do perfectly well at the goal and
kick events such that their dots overlap at the origin.

8 @ goal i 20.01 @& goal R 1.01 & goal =
Kick = kick kick T
7| & kickoff 1;3 & Kickoff 0.81 & kickoff By
@ pass = . @ pass # pass
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' HE— 25 '
3 0.0L* 0.0
3 4 5 6 7 8 0 2 4 6 8101214161820 0.0 0.2 04 06 0.8 1.0
NDTT NDTT NDTT
negative log likelihood RMSE error rate %

Figure 6: Results of NDTT and A-NDTT in Figure 3a broken down by action types, with horizontal and vertical
error bars, respectively.

In Figure 7, we show that Figure 6 does not change qualitatively when re-run with different random
seeds.
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Figure 7: Replications of Figure 6 (one per row) with different random seeds used during training.

22




	Introduction
	Continuous-Time Transformer for Embedding Events
	Generative Modeling of Continuous-Time Event Sequences
	Multi-Head Selective Attention
	Attentive Neural Datalog Through Time
	Related Work
	Experiments
	Comparison of Different Transformer Architectures
	A-NDTT vs. NDTT

	Conclusion
	Discussion of Architectural Details
	NDTT Example With Variables
	 Parameter Dimensionality Specification for A-NDTT
	Likelihood Computation Details
	How to Predict Events
	Experimental Details
	Dataset Details
	Pilot Experiments on Simulated Data
	Other Data Details

	Implementation Details
	Training Details
	Training Parallelism
	More Results


