

Friday, 28-Jan-2022

Dear Fei Qin,

Your abstract (ID: 3724512) entitled:

"Influence of Oxygen Vacancy and Top Electrode on Switching Behavior of InGaZnO Based Resistive Random Access Memory"

has been submitted to the 64th Electronic Materials Conference. Please print and retain a copy of this message. Notification of your abstract status (Accepted or Not Accepted) will be sent to you in mid-March.

Your abstract submission is below:

Control ID # (3724512)

Title: "Influence of Oxygen Vacancy and Top Electrode on Switching Behavior of InGaZnO Based Resistive Random Access Memory"

Abstract Body: Abstract Body

Biomimetic synaptic processes, which are imitated by functional memory devices in the computer industry, are a key focus of artificial intelligence (AI) research. It is critical to develop a memory technology that is compatible with Brain-Inspired Computing in order to eliminate the von Neumann bottleneck that restricts the efficiency of traditional computer designs. Due to restrictions such as high operation voltage, poor retention capacity, and high power consumption, silicon-based flash memory, which presently dominates the data storage devices market, is having difficulty meeting the requirements of future data storage device development. The developing resistive random-access memory (RRAM) has sparked intense investigation because of its simple two-terminal structure: two electrodes and a switching layer. RRAM has a resistive switching phenomenon which is a cycling behavior between the high resistance state and the low resistance state. This developing device type is projected to outperform traditional memory devices. Indium gallium zinc oxide (IGZO) has attracted great attention for the RRAM switching layer because of its high transparency and high atomic diffusion property of oxygen atoms. More importantly, by controlling the oxygen ratio in the sputter gas, its electrical properties can be easily tuned. The IGZO has been applied to the thin-film transistor (TFT), thus, it is very promising to integrate RRAM with TFT.

In this work, we proposed IGZO-based RRAMs. ITO was chosen as the bottom electrode towards achieving a fully transparent memristor. And for the IGZO switching layer, we varied the O₂/Ar ratio during the deposition to modify the oxygen vacancy of IGZO. Through the XPS measurement, we confirmed that the higher O₂/Ar ratio can lower the oxygen vacancy concentration. We also chose ITO as the top electrode, for the comparison, two active metals copper and silver were tested for the top electrode materials. For our IGZO layer, the best ratio of O₂/Ar is the middle value. And copper top electrode device has the most stable cycling switching and the silver one is perfect for large memory window, however, it encounters a stability issue. The optical transmission examination was performed using a UV-Vis spectrometer, and the average transmittance of the complete devices in the visible-light wavelength range was greater than 90%, indicating good transparency. 50nm, 100nm, and 150nm RS layers of IGZO RRAM were produced to explore the thickness dependency on the characteristics of the RS layer. Also, because the oxygen vacancy concentration influences the RS and RRAM performance, the oxygen partial pressure during IGZO sputtering was modified to maximize the property. Electrode selection is critical and can have a significant influence on the device's overall performance. As a result, Cu TE was chosen for our second type of device because Cu ion diffusion

can aid in the development of conductive filaments (CF). Finally, between the TE and RS layers, a 5 nm SiO₂ barrier layer was used to limit Cu penetration into the RS layer. Simultaneously, this SiO₂ inserting layer can offer extra interfacial series resistance in the device, lowering the off current and, as a result, improving the on/off ratio and overall performance.

In conclusion, transparent IGZO-based RRAMs have been created. The thickness of the RS layer and the sputtering conditions of the RS layer were modified to tailor the property of the RS layer. A series of TE materials and a barrier layer were incorporated into an IGZO-based RRAM and the performance was evaluated in order to design the TE material's diffusion capabilities to the RS layer and the BE. Our positive findings show that IGZO is a potential material for RRAM applications and overcoming the existing memory technology limitation.

NOTE: Any special characters in your title or abstract are shown in ASCII code but will be converted in the published program.

LOG-IN INFORMATION:

<https://mrsemc2022.abstractcentral.com>

Your user ID is: qjn231

If you have forgotten your password, please click the following to reset it: [Forgot Password Link](#)

You may edit your submitted abstract at any time before the abstract deadline date of January 28, 2022. You will need your User ID and your Password to re-enter the system. In order to edit a previously submitted abstract, you MUST first return it to "draft" status, make corrections, and RESUBMIT the revised version.

It's IMPORTANT that you resubmit the edited abstract in order to return it to the meetings database. If you DO NOT re-submit your abstract, the symposium organizers WILL NOT review it so it WILL NOT be considered for the meeting.

SPECIAL NOTE: Symposium Organizers will review ONLY the version of your abstract that is received by the submission deadline. Any abstract changes after January 28, 2022 should be submitted to meetings@mrs.org (Subject: ABSTRACT REVISION) and must include your 7-digit control ID number. Please state where the revisions are located (e.g., title, authors, body, etc.) and specify the exact new text. Changes made after January 28, 2022 may be reflected in the final program if it has not been finalized yet.

If you have any questions, please feel free to contact me.

Sincerely,

MRS Admin
Senior Technical Program Administrator
Materials Research Society
meetings@mrs.org