Improved Understanding of Optical Cycling in TIF
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Introduction Fluorescence Measurements Comparison Cycling Transitions

* Thallium fluoride is a candidate for laser cooling and tests | | The molecular beam passes through a resonantly-tuned laser | | To confirm the accuracy of the simulations we use each of the R(1)
of parity and time-reversal symmetry violation. multipass. Fluorescence is recorded with a PMT as a function of | | transitions as a SC to estimate the number of cycles of the other R(1) + For excitation of the simultaneous Q(1), F, = 1/2, F' = 0 & 1 excitation scheme the

* Optical cycling of BTl (v, = 0) < X'E* (v, = 0) has been| | laser frequency. Multiple scans are combined and fit with a Voigt | | transitions. These transitions are limited primarily by rotational frequency of the laser exciting F’ = 1 is scanned, while the F’ = 0 laser remains fixed
investigated by imaging the fluorescence from the laser | | profile. Peak heights of these scans are then compared. branching. Here we consider only the simple case of excitation by two (note the offset in Fig. 9).
excitation of a cryogenic molecular beam. modulating orthogonal polarizations (XZ). Each row corresponds to a

30! specific SC whereas each column represents the transition of interest; Q) F/=1/2, F=0&1XYZ Q(1)F/=1/2, F=1XYZ

* We compare the fluorescence of the various cycling transitions to an R(1) SC.
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+ Predicted to cycle on average ~100 photons per molecule + To determine how many times #branching . : : : Fig. ?’Comparative scans of an R1 Fig. 10 ,Comparative scans of Q(1) F;’
before being limited by vibrational branching transitions of interest cycle we transition and the simultaneous =1/2, FF=0 and an R1 SC.
, , oo L compare their fluorescence to the Table 1. R(1) SC measurements. Row #simulation and #branching excitation scheme. See Fig. 4 for
* Simulations indicate three orthogonal polarizations are - fluorescence of standard candle denote expected photons calculated by simulation and pure rotational zoomed in view of the former.

necessary for such optical cycling. (SC) calibration transitions whose branching respectively. — . .
, cycling rates are known. * 60f = F.1g. 11. Companson. between
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polarizations. The cycling rate out of these dark states can 30 6 50 100 150 200 250 300 SroUNC States. indicated transition. When excited by only two polarizations,
be changed by rapidly switching the laser’s polarization. O Time [us] stationary Zeeman dark states dramatically limit cycling. The inclusion * We demonstrate that quantum mechanical simulations are both internally
S State Categorization of a third polarization allows for increased cycling. The integrated area consistent and in qualitative agreement with experimental measurements.
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Fig. 3 Modulation levels (Fig 6b) where it ceases to cycle. multipass intensity, both normalized.
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