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ABSTRACT

Science and engineering fields use computer simulation extensively.

These simulations are often run at multiple levels of sophistication

to balance accuracy and efficiency. Multi-fidelity surrogate model-

ing reduces the computational cost by fusing different simulation

outputs. Cheap data generated from low-fidelity simulators can be

combined with limited high-quality data generated by an expen-

sive high-fidelity simulator. Existing methods based on Gaussian

processes rely on strong assumptions of the kernel functions and

can hardly scale to high-dimensional settings. We propose Multi-

fidelity Hierarchical Neural Processes (MF-HNP), a unified neural

latent variable model for multi-fidelity surrogate modeling. MF-HNP
inherits the flexibility and scalability of Neural Processes. The latent

variables transform the correlations among different fidelity levels

from observations to latent space. The predictions across fidelities

are conditionally independent given the latent states. It helps al-

leviate the error propagation issue in existing methods. MF-HNP
is flexible enough to handle non-nested high dimensional data at

different fidelity levels with varying input and output dimensions.

We evaluate MF-HNP on epidemiology and climate modeling tasks,

achieving competitive performance in terms of accuracy and uncer-

tainty estimation. In contrast to deep Gaussian Processes [6] with

only low-dimensional (< 10) tasks, our method shows great promise

for speeding up high-dimensional complex simulations (over 7, 000
for epidemiology modeling and 45, 000 for climate modeling).
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1 INTRODUCTION

In scientific and engineering applications, a computational model,

often realized by simulation, characterizes the input-output relation-

ship of a physical system. The input describes the properties and

environmental conditions, and the output describes the quantities

of interest. For example, in epidemiology, computational models

have long been used to forecast the evolution of epidemic outbreaks

and to simulate the effects of public policy interventions on the epi-

demic trajectory [5, 13, 24]. In the case of COVID-19 [3, 8], model

inputs range across virus and disease characteristics (e.g. transmis-

sibility and severity), non-pharmaceutical interventions (e.g. travel

bans, school closures, business closures), and individual behavioral

responses (e.g. changes in mobility and contact rates); while the

output describes the evolution of the pandemic (e.g. the time series

of the prevalence and incidence of the virus in the population).

Computational models can be simulated at multiple levels of

sophistication. High-fidelity models produce accurate output at

a higher cost, whereas low-fidelity models generate less accurate

output at a cheaper cost. To balance the trade-off between compu-

tational efficiency and prediction accuracy, multi-fidelity modeling

[30] aims to learn a surrogate model that combines simulation out-

puts at multiple fidelity levels to accelerate learning. Therefore,

we can obtain predictions and uncertainty analysis at high fidelity

while leveraging cheap low-fidelity simulations for speedup.

Since the pioneering work of Kennedy and Hagan [17] on mod-

eling oil reservoir simulator, Gaussian processes (GPs) [36] have

become the predominant tools in multi-fidelity modeling. GPs effec-

tively serve as surrogate models to emulate the output distribution

of complex physical systems with uncertainty [21, 32, 43]. How-

ever, GPs often struggle with high-dimensional data and require

prior knowledge for kernel design. Multi-fidelity GPs also require

a nested data structure [31] and the same input dimension at each

fidelity level [6], which significantly hinders their applicability in

the real world. Therefore, efforts to combine deep learning and

GPs have undergone significant growth in the machine learning

community [7, 35, 37, 44]. One of the most scalable frameworks of

such combinations is Neural processes (NP) [10, 11, 19], which is a

neural latent variable model.

Unfortunately, existing NPmodels aremainly designed for single-

fidelity data and cannot handle multi-fidelity outputs. While we can

train multiple NPs separately, one for each fidelity, this approach

fails to exploit the relations among multi-fidelity models governed
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by the same physical process. Furthermore, models with more fi-

delity levels require more training data, which leads to higher com-

putational costs. An alternative is to learn the relationship between

low- and high-fidelity model outputs and model the correlation

function with NP [42]. But this approach always requires paired

data at the low- and high-fidelity level. Another limitation is high

dimensionality. The correlation function maps from the joint input-

output space of the low-fidelity model to the high-fidelity output,

which is prone to over-fitting.

In this work, we propose Multi-Fidelity Hierarchical Neural

Process (MF-HNP), the first unified framework for scalable multi-

fidelity modeling in neural processes family. Specifically, MF-HNP
inherits the properties of Bayesian neural latent variable model

while learning the joint distribution of multi-fidelity output. We

design a unified evidence lower bound (ELBO) for the joined dis-

tribution as a training loss. The code and data are available on

https://github.com/Rose-STL-Lab/Hierarchical-Neural-Processes.

In summary, our contributions include:

• A novel multi-fidelity surrogate model, Multi-fidelity Hier-

archical Neural Processes (MF-HNP). Its unified framework

makes it flexible to fuse data with varying input and output

dimensions at different fidelity levels.

• A novel Neural Process architecture with conditional inde-

pendence at each fidelity level. It fully utilizes the multi-

fidelity data, reduces the input dimension, and alleviates

error propagation in forecasting.

• Real-world large-scale multi-fidelity application on epidemi-

ology and climate modeling to show competitive accuracy

and uncertainty estimation performance.

2 RELATEDWORK

Multi-fidelityModeling. Multi-fidelity surrogatemodeling is widely

used in science and engineering fields, from climate science [15, 39]

to aerospace systems [2]. The pioneering work of [17] uses GP to re-

late models at multiple fidelity levels with an autoregressive model.

[21] proposed recursive GP with a nested structure in the input

domain for fast inference. [32, 33] deals with high-dimensional GP

settings by taking the Fourier transformation of the kernel function.

[31] proposed multi-fidelity Gaussian processes (NARGP) but it

assumes a nested structure in the input domain to enable a sequen-

tial training process at each fidelity level. An extreme case that

we include in our experiment is when the data sets at low- and

high-fidelity levels are disjoint. None of the high-fidelity data could

be used for training, which is a failure case for NARGP. Addition-

ally, the prediction error of the low-fidelity model will propagate

to high-fidelity output and explode as the number of fidelity levels

increases. [43] proposed a Multi-Fidelity High-Order GP model

to speed up the physical simulation. They extended the classical

Linear Model of Coregionalization (LMC) to nonlinear case and

placed a matrix GP prior on the weight functions. Their method

is designed for high-dimensional outputs rather than both high-

dimensional inputs and outputs. Deep Gaussian processes (DGP)

[6] designs a single objective to optimize the kernel parameters

at each fidelity level jointly. However, the DGP architecture intro-

duces a constraint that requires the inputs at each fidelity level to

be defined by the same domain with the same dimension. Moreover,

DGP is still based on GPs, which are not scalable for applications

with high-dimensional data. In contrast, NP is flexible and much

more scalable.

Deep learning has been applied to multi-fidelity modeling. For

example, [12] uses deep neural networks to combine parameter-

dependent output quantities. [27] propose a composite neural net-

work for multi-fidelity data from inverse PDE problems. [26] pro-

pose Bayesian neural nets for multi-fidelity modeling. [9] use trans-

fer learning to fine-tune the high-fidelity surrogate model with the

deep neural network trained with low-fidelity data. [6, 14] propose

deep Gaussian process to capture nonlinear correlations between

fidelities, but their method cannot handle the case where different

fidelities have data with different dimensions. Tangentially, multi-

fidelity methods have also recently been investigated in Bayesian

optimization, active learning, and bandit problems [16, 22, 23, 34].

Neural Processes. Neural Processes (NPs) [10, 18, 25, 38] provide

scalable and expressive alternatives to GPs for modeling stochastic

processes. However, none of the existing NP models can efficiently

incorporate multi-fidelity data. Earlier work by [35] combines multi-

fidelity GP with deep learning by placing a GP prior on the features

learned by deep neural networks. However, their model remains

closer to GPs. Quite recently, [42] proposed multi-fidelity neural

process with physics constraints (MFPC-Net). They use NP to learn

the correlation between multi-fidelity data by mapping both the

input and output of the low-fidelity model to the high-fidelity model

output. But their model requires paired data and cannot utilize the

remaining unpaired data at the low-fidelity level.

3 BACKGROUND

3.1 Muti-Fidelity Modeling

Formally, given input domain X ⊆ R𝑑𝑥 and output domain Y ⊆

R
𝑑𝑦 , a model is a (stochastic) function 𝑓 : X → Y. Evaluations

of 𝑓 incur computational costs 𝑐 > 0. The computational costs

𝑐 are much higher at higher fidelity level. Therefore, we assume

that a limited amount of expensive high-fidelity data is available

for training. In multi-fidelity modeling, we have a set of functions

{𝑓1, · · · , 𝑓𝐾 } that approximate 𝑓 with increasing accuracy and com-

putational cost. We aim to learn a surrogate model 𝑓𝐾 that combines

information from low-fidelity models with a small amount of data

from high-fidelity models.

Given parameters 𝑥𝑘 at fidelity level 𝑘 , we query the simulator

to obtain data set from different scenarios D𝑘 ≡ {𝑥𝑘,𝑖 , [𝑦𝑘,𝑖 ]
𝑆
𝑠=1}𝑖 ,

where [𝑦𝑘,𝑖 ]
𝑆
𝑠=1 are 𝑆 samples generated by 𝑓𝑘 (𝑥𝑘,𝑖 ) for scenario

𝑖 . In epidemic modeling, for example, each scenario corresponds

to a different effective reproduction number of the virus, con-

tact rates between individuals, or the effects of policy interven-

tions. For each scenario, we simulate multiple epidemic trajec-

tories as samples from the stochastic function. We aim to learn

a deep surrogate model that approximates the data distribution

𝑝 (𝑦𝑡𝐾 |𝑥
𝑡
𝐾 ,D

𝑐
1 ,D

𝑐
2 , ...,D

𝑐
𝐾 ) at the highest fidelity level 𝐾 over the

target set𝑦𝑡𝐾 , given context sets at different fidelity levelsD
𝑐
𝑘
⊂ D𝑘

and the corresponding 𝑥𝑡𝐾 .
For simplicity, we use two levels of fidelity, but our framework

can be generalized easily. Let us denote the low-fidelity data asD𝑙 ≡

{𝑥𝑙,𝑖 , [𝑦𝑙,𝑖 ]
𝑆
𝑠=1}𝑖 and high-fidelity data as Dℎ ≡ {𝑥ℎ,𝑖 , [𝑦ℎ,𝑖 ]

𝑆
𝑠=1}𝑖 . If
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Figure 1: Graphical models for Single-Fidelity Neural Process (left), Multi-Fidelity Neural Process (middle), Multi-Fidelity

Hierarchical Neural Process (right). Shaded circles denote observed variables and hollow circle represent latent variables. The

directed edges represent conditional dependence.

Dℎ ⊂ D𝑙 , the data domain has the nested structure. If Dℎ = D𝑙 ,

we say the low- and high-fidelity data sets are paired. Low-fidelity

data can be split into context sets D𝑐
𝑙
≡ {𝑥𝑐

𝑙,𝑛
, [𝑦𝑐

𝑙,𝑛
]𝑆𝑠=1}

𝑁𝑙
𝑛=1 and

target sets D𝑡
𝑙
≡ {𝑥𝑡

𝑙,𝑚
, [𝑦𝑡

𝑙,𝑚
]𝑆𝑠=1}

𝑀𝑙
𝑚=1. Similarly, high-fidelity data

can be split into context sets D𝑐
ℎ
≡ {𝑥𝑐

ℎ,𝑛
, [𝑦𝑐

ℎ,𝑛
]𝑆𝑠=1}

𝑁ℎ
𝑛=1 and target

sets D𝑡
ℎ
≡ {𝑥𝑡

ℎ,𝑚
, [𝑦𝑡

ℎ,𝑚
]𝑆𝑠=1}

𝑀ℎ
𝑚=1.

3.2 Neural Processes

Neural processes (NPs) [11] are the family of conditional latent

variable models for implicit stochastic processes (SP𝑠) [41]. NPs
are in between GPs and neural networks (NNs). Like GPs, NPs

can represent distributions over functions and estimate the un-

certainty of the predictions. But they are more scalable in high

dimensions and can easily adapt to new observations. According

to Kolmogorov Extension Theorem [29], NPs meet exchangeability

and consistency conditions to define SP𝑠 . Formally, NP includes

local latent variables 𝑧 ∈ R𝑑𝑧 and global latent variables 𝜃 and

is trained by the context set D𝑐 ≡ {𝑥𝑐𝑛, [𝑦
𝑐
𝑛]

𝑆
𝑠=1}

𝑁
𝑛=1 and target

sets D𝑡 ≡ {𝑥𝑡𝑚, [𝑦𝑡𝑚]𝑆𝑠=1}
𝑀
𝑚=1. Learning the posterior of 𝑧 and 𝜃 is

equivalent to maximizing the following posterior likelihood:

𝑆∏
𝑠=1

𝑝 (𝑦𝑡𝑠,1:𝑀 |𝑥𝑡1:𝑀 ,D𝑐 , 𝜃 ) =

𝑆∏
𝑠=1

∫
𝑝 (𝑧𝑠 |D

𝑐 , 𝜃 )
𝑀∏

𝑚=1

𝑝 (𝑦𝑡𝑠,𝑚 |𝑧𝑠 , 𝑥
𝑡
𝑚, 𝜃 )𝑑𝑧𝑠

We omit the sample index 𝑠 in what follows.

Approximate Inference. Since marginalizing over the local

latent variables 𝑧 is intractable, the NP family [11, 19] introduces

approximate inference on latent variables and derives the corre-

sponding evidence lower bound (ELBO) for the training process.

log𝑝 (𝑦𝑡1:𝑀 |𝑥𝑡1:𝑀 ,D𝑐 , 𝜃 ) ≥

E𝑞𝜙 (𝑧 |D𝑐∪D𝑡 )

[ 𝑀∑
𝑚=1

log𝑝 (𝑦𝑡𝑚 |𝑧, 𝑥𝑡𝑚, 𝜃 ) + log
𝑞𝜙 (𝑧 |D

𝑐 )

𝑞𝜙 (𝑧 |D𝑐 ∪ D𝑡 )

]

Note that this variational approach approximates the intractable

true posterior 𝑝 (𝑧 |D𝑐 , 𝜃 ) with the approximate posterior 𝑞𝜙 (𝑧 |D
𝑐 )

. This approach is also an amortized inference method as the global

parameters 𝜙 are shared by all context data points. It is efficient

during the test time (no per-data-point optimization) [40].

NPs use NNs to represent 𝑞𝜙 (𝑧 |D
𝑐 ), and 𝑝 (𝑦𝑡𝑚 |𝑧, 𝑥𝑡𝑚, 𝜃 ). 𝑞𝜙 () is

referred as the encoder network (Enc, determined by the parameters

𝜙). 𝑝 (.|𝜃 ) is referred as the decoder network (Dec, determined by

parameters 𝜃 ). These two networks assume that the latent variable

𝑧 and the outputs 𝑦 follow the factorized Gaussian distribution

determined by mean and variance.

𝑞𝜙 (𝑧 |D
𝑐 ) = N(𝑧 |𝜇𝑧 , diag(𝜎

2
𝑧 ))

𝜇𝑧 = Enc𝜇𝑧 ,𝜙 (D
𝑐 ), 𝜎2𝑧 = Enc𝜎2

𝑧 ,𝜙
(D𝑐 )

𝑝 (𝑦𝑡𝑚 |𝑧, 𝑥𝑡𝑚, 𝜃 ) = N(𝑦𝑡𝑚 |𝜇𝑦, diag(𝜎
2
𝑦))

𝜇𝑦 = Dec𝜇𝑦 ,𝜃 (𝑧, 𝑥
𝑡
𝑚), 𝜎2𝑦 = Dec𝜎2

𝑦 ,𝜃
(𝑧, 𝑥𝑡𝑚)

Context Aggregation. Context aggregation aggregates all con-

text points D𝑐 to infer latent variables 𝑧. To meet the exchange-

ability condition, the context information acquired by NPs should

be invariant to the order of the data points. Garnelo et al. [10,

11], Kim et al. [18] use mean aggregation (MA). They map the

data pair(𝑥𝑐𝑛, 𝑦
𝑐
𝑛) to a latent representation 𝑟𝑛 = Enc𝑟,𝜙 (𝑥

𝑐
𝑛, 𝑦

𝑐
𝑛) ∈

R
𝑑𝑟 , then apply the mean operation to the entire set {𝑟𝑛}

𝑁
𝑛=1 to

obtain the aggregated latent representation 𝑟 . 𝑟 can be mapped

to 𝜇𝑧 and 𝜎2𝑧 to represent the posterior 𝑞𝜙 (𝑧 |D
𝑐 ) with an addi-

tional neural network encoder. MA uses two encoder networks.

Enc𝑟,𝜙 (𝑥
𝑐
𝑛, 𝑦

𝑐
𝑛) ∈ R

𝑑𝑟 maps the data pair(𝑥𝑐𝑛, 𝑦
𝑐
𝑛) to 𝑟𝑛 for context

aggregation. Enc𝑧,𝜙 (𝑟 ) ∈ R
𝑑𝑧 maps 𝑟 to 𝜇𝑧 and 𝜎2𝑧 for latent param-

eter inference.

Volpp et al. [40] proposed Bayesian aggregation (BA), which

merges these two steps. They define a probabilistic observation

model 𝑝 (𝑟 |𝑧) for 𝑟 depended on 𝑧, and update 𝑝 (𝑧) posterior using
the Bayes rule 𝑝 (𝑧 |𝑟𝑛) = 𝑝 (𝑟𝑛 |𝑧)𝑝 (𝑧) |𝑝 (𝑟𝑛) given latent observa-

tion 𝑟𝑛 = Enc𝑟,𝜙 (𝑥
𝑐
𝑛, 𝑦

𝑐
𝑛). The corresponding factorized Gaussian

for the inference step:

𝑝 (𝑟𝑛 |𝑧) = N(𝑟𝑛 |𝑧, diag(𝜎
2
𝑟𝑛 ))

𝑟𝑛 = Enc𝑟,𝜙 (𝑥
𝑐
𝑛, 𝑦

𝑐
𝑛)

𝜎2𝑟𝑛 = Enc𝜎2
𝑟𝑛 ,𝜙

(𝑥𝑐𝑛, 𝑦
𝑐
𝑛)

They use a factorizedGaussian prior 𝑝0 (𝑧) ≡ N (𝑧 |𝜇𝑧,0, diag(𝜎
2
𝑧,0))

to derive the parameters of posterior 𝑞𝜙 (𝑧 |D
𝑐 ):
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𝜎2𝑧 =
[
(𝜎2𝑧,0)

	 +

𝑁∑
𝑛=1

(𝜎2𝑟𝑛 )
	)
] 	

,

𝜇𝑧 = 𝜇𝑧,0 + 𝜎2𝑧 


𝑁∑
𝑛=1

(𝑟𝑛 − 𝜇𝑧,0) � (𝜎2𝑟𝑛 ).

Compared with MA, which treats every context sample equally,

BA uses observation variance 𝜎2𝑟𝑛 to weigh the importance of each

latent representation 𝑟𝑛 . BA also represents a permutation-invariant

operation on D𝑐 .

4 METHODOLOGY

In this section, we introduce our proposed Multi-fidelity Hierar-

chical Neural Processes (MF-HNP) model in three subsections. The

first section discusses the unique architecture of hierarchical neu-

ral processes for the multi-fidelity problem. Then, we develop the

corresponding approximate inference method with a unified ELBO.

Finally, we introduce 3 ELBO variants for scalable training.

4.1 Multi-fidelity Hierarchical Neural
Processes

Our high-level goal is to train a deep surrogate model to mimic the

behavior of a complex stochastic simulator at the highest level of

fidelity. MF-HNP inherits the properties of Bayesian neural latent

variable model while learning the joint distribution of multi-fidelity

output. It adopts a single objective function for multi-fidelity train-

ing. It reduces the input dimension and alleviates error propagation

by introducing the hierarchical structure in the dependency graph.

Figure 1 compares the graphical model of MF-HNP with Multi-

fidelity Neural Process (MF-NP) [42] and Single-Fidelity Neural

Process (SF-NP). SF-NP assumes that the high-fidelity data is inde-

pendent of the low-fidelity data and reduces the model to vanilla

NP setting. Details of SF-NP and MF-NP are shown in Appendix A.

MF-HNP assignes latent variables 𝑧𝑙 and 𝑧ℎ at each fidelity level. The

prior of 𝑧ℎ is conditioned on 𝑧𝑙 , parameterized by a neural network.

We use Monte Carlo (MC) sampling method to approximate the

posterior of 𝑧𝑙 and 𝑧ℎ to calculate the ELBO.

One key feature of MF-HNP is that the model outputs at each

fidelity level are conditionally independent given the correspond-

ing latent state. This design transforms the correlations between

fidelity levels from the input and output space to the latent space.

Specifically, compared with MF-NP where 𝑦ℎ depends on (𝑥ℎ, 𝑦𝑙 )
input pairs given 𝑧,𝑦ℎ only depends on input 𝑥ℎ given 𝑧ℎ in MF-HNP.
It helps MF-HNP to significantly reduce the high-fidelity input di-

mension. In addition, local latent variables at each level of fidelity

enable MF-HNP to perform both inference and generative modeling

separately at each fidelity level. It means MF-HNPcan fully utilize the
low-fidelity data and is applicable to arbitrary multi-fidelity data

sets. As MF-HNPcan reduce the input dimension and fully utilize the

training data, its prediction performance is significantly improved

with limited training data.

Note that in two fidelity setup, MF-HNP is related to Doubly Sto-

chastic Variational Neural Process (DSVNP) model proposed by

Wang and Van Hoof [41] which introduces local latent variables

together with the global latent variables. Different from DSVNP,

MF-HNP gives latent variables with separable representations. 𝑧𝑙 , 𝑧ℎ
represent the low- and high-fidelity functional, respectively.

4.2 Unified ELBO

We design a unified ELBO as the objective for MF-HNP. Unlike vanilla
NPs, we need to infer the latent variables 𝑧𝑙 and 𝑧ℎ at each fidelity

level instead of the global 𝑧. For the two-fidelity level setup, we

use two encoders 𝑞𝜙𝑙
(𝑧𝑙 |D

𝑐
𝑙
), 𝑞𝜙ℎ

(𝑧ℎ |𝑧𝑙 ,D
𝑐
ℎ
), and two decoders

𝑝 (𝑦𝑡
𝑙
|𝑧𝑙 , 𝑥

𝑡
𝑙
, 𝜃𝑙 ), 𝑝 (𝑦

𝑡
ℎ
|𝑧ℎ, 𝑥

𝑡
ℎ
, 𝜃ℎ). These four networks approximate

the distributions of the latent variables 𝑧𝑙 , 𝑧ℎ and outputs 𝑦𝑙 and 𝑦ℎ .
Assuming a factorized Gaussian distribution, we can parameterize

the distributions by their mean and variance.

𝑞𝜙𝑙
(𝑧𝑙 |D

𝑐
𝑙 ) = N(𝑧𝑙 |𝜇𝑧𝑙 , diag(𝜎

2
𝑧𝑙 ))

𝑞𝜙ℎ
(𝑧ℎ |𝑧𝑙 ,D

𝑐
ℎ) = N(𝑧ℎ |𝜇𝑧ℎ , diag(𝜎

2
𝑧ℎ ))

𝑝 (𝑦𝑡𝑙,𝑚 |𝑧𝑙 , 𝑥
𝑡
𝑙,𝑚, 𝜃𝑙 ) = N(𝑦𝑡𝑙,𝑚 |𝜇𝑙,𝑚, diag(𝜎2𝑦𝑙 ))

𝑝 (𝑦𝑡ℎ,𝑚 |𝑧ℎ, 𝑥
𝑡
ℎ,𝑚, 𝜃ℎ) = N(𝑦𝑡ℎ,𝑚 |𝜇ℎ,𝑚, diag(𝜎2𝑦ℎ ))

where

𝜇𝑧𝑙 = Enc𝜇𝑧𝑙 ,𝜙𝑙
(D𝑐

𝑙 ), 𝜎2𝑧𝑙 = Enc𝜎2
𝑧𝑙
,𝜙𝑙

(D𝑐
𝑙 )

𝜇𝑧ℎ = Enc𝜇𝑧ℎ ,𝜙ℎ
(𝑧𝑙 ,D

𝑐
ℎ), 𝜎2𝑧ℎ = Enc𝜎2

𝑧ℎ
,𝜙ℎ

(𝑧𝑙 ,D
𝑐
ℎ)

𝜇𝑦𝑙 = Dec𝜇𝑦𝑙 ,𝜃𝑙
(𝑧𝑙 , 𝑥

𝑡
𝑙,𝑚), 𝜎2𝑦𝑙 = Dec𝜎2

𝑦𝑙
,𝜃𝑙

(𝑧𝑙 , 𝑥
𝑡
𝑙,𝑚)

𝜇𝑦ℎ = Dec𝜇𝑦ℎ ,𝜃ℎ
(𝑧ℎ, 𝑥

𝑡
ℎ,𝑚), 𝜎2𝑦ℎ = Dec𝜎2

𝑦ℎ
,𝜃ℎ

(𝑧ℎ, 𝑥
𝑡
ℎ,𝑚)

We derive the unified ELBO containing these four terms:

log𝑝 (𝑦𝑡𝑙 , 𝑦
𝑡
𝑙 |𝑥

𝑡
𝑙 , 𝑥

𝑡
ℎ,D

𝑐
𝑙 ,D

𝑐
ℎ, 𝜃 )

≥ E𝑞𝜙 (𝑧𝑙 ,𝑧ℎ |D
𝑐
𝑙
∪D𝑡

𝑙
,D𝑐

ℎ
∪D𝑡

ℎ
)

[
log𝑝 (𝑦𝑡𝑙 , 𝑦

𝑡
ℎ |𝑧𝑙 , 𝑧ℎ, 𝑥

𝑡
𝑙 , 𝑥

𝑡
ℎ, 𝜃 )

+ log
𝑞𝜙 (𝑧𝑙 , 𝑧ℎ |D

𝑐
𝑙
,D𝑐

ℎ
)

𝑞𝜙 (𝑧𝑙 , 𝑧ℎ |D
𝑐
𝑙
∪ D𝑡

𝑙
,D𝑐

ℎ
∪ D𝑡

ℎ
)

]

= E𝑞𝜙ℎ (𝑧ℎ |𝑧𝑙 ,D
𝑐
ℎ
∪D𝑡

ℎ
)𝑞𝜙𝑙 (𝑧

𝑙 |D𝑐
𝑙
∪D𝑡

𝑙
)

[
log𝑝 (𝑦𝑡ℎ |𝑧ℎ, 𝑥

𝑡
ℎ, 𝜃ℎ)

+ log𝑝 (𝑦𝑡𝑙 |𝑧𝑙 , 𝑥
𝑡
𝑙 , 𝜃𝑙 ) + log

𝑞𝜙ℎ
(𝑧ℎ |𝑧𝑙 ,D

𝑐
ℎ
)

𝑞𝜙ℎ
(𝑧ℎ |𝑧𝑙 ,D

𝑐
ℎ
∪ D𝑡

ℎ
)

+
𝑞𝜙𝑙

(𝑧𝑙 |D
𝑐
𝑙
)

𝑞𝜙𝑙
(𝑧𝑙 |D

𝑐
𝑙
∪ D𝑡

𝑙
)

]
(1)

The derivation is based on the conditional independence of

MF-HNParchitecture shown in Figure 1.

4.3 Scalable Training

To calculate the ELBO in Equation 1 for the proposed MF-HNPmodel,

we use Monte Carlo (MC) sampling to optimize the following ob-

jective function:

L𝑀𝐶 =
1

𝐾

𝐾∑
𝑘=1

[ 1
𝑆

𝑆∑
𝑠=1

log𝑝 (𝑦𝑡ℎ |𝑥
𝑡
ℎ, 𝑧

(𝑠)
ℎ

, 𝑧
(𝑘)
𝑙

)

− KL[𝑞(𝑧ℎ |𝑧
(𝑘)
𝑙

,D𝑐
ℎ,D

𝑡
ℎ))‖𝑝 (𝑧ℎ |𝑧

(𝑘)
𝑙

,D𝑐
ℎ]
]

+
1

𝐾

𝐾∑
𝑘=1

log𝑝 (𝑦𝑡𝑙 |𝑥
𝑡
𝑙 , 𝑧

(𝑘)
𝑙

) − KL
[
𝑞(𝑧𝑙 |D

𝑐
𝑙 ,D

𝑡
𝑙 )‖𝑝 (𝑧𝑙 |D

𝑐
𝑙 )
]



Multi-fidelity Hierarchical Neural Processes KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 1: Comparison of different NP models at high-fidelity level.

Neural Processes Family Prior Distribution Posterior Distribution Generative model

SF-NP [11] 𝑞(𝑧ℎ |D
𝑐
ℎ
) 𝑝 (𝑧 |D𝑐

ℎ
,D𝑡

ℎ
) 𝑝 (𝑦𝑡

ℎ
|𝑥𝑡
ℎ
, 𝑧)

MF-NP [42] 𝑞(𝑧ℎ |D
𝑐
ℎ
) 𝑝 (𝑧 |D𝑐

ℎ
,D𝑡

ℎ
) 𝑝 (𝑦𝑡

ℎ
|𝑥𝑡
ℎ
, 𝑦𝑡

𝑙
, 𝑧)

MF-HNP(as) 𝑞(𝑧ℎ |𝑧
(𝑠)
𝑙

,D𝑐
ℎ
) 𝑝 (𝑧ℎ |𝑧

(𝑠)
𝑙

,D𝑐
ℎ
,D𝑡

ℎ
) 𝑝 (𝑦𝑡

ℎ
|𝑥𝑡
ℎ
, 𝑧ℎ)

MF-HNP(mean) 𝑞(𝑧ℎ |𝜇𝑧𝑙 ,D
𝑐
ℎ
) 𝑝 (𝑧ℎ |𝜇𝑧𝑙 ,D

𝑐
ℎ
,D𝑡

ℎ
) 𝑝 (𝑦𝑡

ℎ
|𝑥𝑡
ℎ
, 𝑧ℎ)

MF-HNP(mean,std) 𝑞(𝑧ℎ |𝜇𝑧𝑙 , 𝜎𝑧𝑙 ,D
𝑐
ℎ
) 𝑝 (𝑧ℎ |𝜇𝑧𝑙 , 𝜎𝑧𝑙 ,D

𝑐
ℎ
,D𝑡

ℎ
) 𝑝 (𝑦𝑡

ℎ
|𝑥𝑡
ℎ
, 𝑧ℎ)

where the latent variables 𝑧
(𝑘)
𝑙

and 𝑧
(𝑠)
ℎ

are sampled by𝑞𝜙𝑙
(𝑧𝑙 |D

𝑐
𝑙
)

and 𝑞𝜙ℎ
(𝑧ℎ |𝑧

(𝑘)
𝑙

,D𝑐
ℎ
) respectively. This standard MC sampling

method requires nested sampling. For data sets with multiple fi-

delity levels, it is computationally challenging.

An alternative way is to use ancestral sampling [41] (denoted by

MF-HNP(AS)) for scalable training and write the estimation as:

L𝐴𝑆 =
1

𝑆

𝑆∑
𝑠=1

[
log𝑝 (𝑦𝑡ℎ |𝑥

𝑡
ℎ, 𝑧

(𝑠)
ℎ

, 𝑧
(𝑠)
𝑙

)

− KL[𝑞(𝑧ℎ |𝑧
(𝑠)
𝑙

,D𝑐
ℎ,D

𝑡
ℎ))‖𝑝 (𝑧ℎ |𝑧

(𝑠)
𝑙

,D𝑐
ℎ]
]

+
1

𝐾

𝐾∑
𝑘=1

log𝑝 (𝑦𝑡𝑙 |𝑥
𝑡
𝑙 , 𝑧

(𝑘)
𝑙

) − KL
[
𝑞(𝑧𝑙 |D

𝑐
𝑙 ,D

𝑡
𝑙 )‖𝑝 (𝑧𝑙 |D

𝑐
𝑙 )
]

(2)

We also design two different techniques to infer 𝑧ℎ using either

low-level mean of latent variables 𝜇𝑧𝑙 (denoted byMF-HNP(MEAN))

or both low-level mean and standard deviation (𝜇𝑧𝑙 , 𝜎
2
𝑧𝑙 )(denoted

by MF-HNP(MEAN,STD)). The corresponding ELBOs are:

L𝜇 =
1

𝑆

𝑆∑
𝑠=1

log𝑝 (𝑦𝑡ℎ |𝑥
𝑡
ℎ, 𝑧

(𝑠)
ℎ

, 𝜇𝑧𝑙 )

− KL[𝑞(𝑧ℎ |𝜇𝑧𝑙 ,D
𝑐
ℎ,D

𝑡
ℎ))‖𝑝 (𝑧ℎ |𝜇𝑧𝑙 ,D

𝑐
ℎ]

+
1

𝐾

𝐾∑
𝑘=1

log𝑝 (𝑦𝑡𝑙 |𝑥
𝑡
𝑙 , 𝑧

(𝑘)
𝑙

) − KL
[
𝑞(𝑧𝑙 |D

𝑐
𝑙 ,D

𝑡
𝑙 )‖𝑝 (𝑧𝑙 |D

𝑐
𝑙 )
]
(3)

L𝜇,𝜎 =
1

𝑆

𝑆∑
𝑠=1

log𝑝 (𝑦𝑡ℎ |𝑥
𝑡
ℎ, 𝑧

(𝑠)
ℎ

, 𝜇𝑧𝑙 , 𝜎𝑧𝑙 )

− KL[𝑞(𝑧ℎ |𝜇𝑧𝑙 , 𝜎𝑧𝑙 ,D
𝑐
ℎ,D

𝑡
ℎ))‖𝑝 (𝑧ℎ |𝜇𝑧𝑙 , 𝜎𝑧𝑙 ,D

𝑐
ℎ]

+
1

𝐾

𝐾∑
𝑘=1

log 𝑝 (𝑦𝑡𝑙 |𝑥
𝑡
𝑙 , 𝑧

(𝑘)
𝑙

) − KL
[
𝑞(𝑧𝑙 |D

𝑐
𝑙 ,D

𝑡
𝑙 )‖𝑝 (𝑧𝑙 |D

𝑐
𝑙 )
]

(4)

We include Equation 2, Equation 3, and Equation 4 as the training

loss functions for ablation study. The comparison of different NP

models including SF-NP, MF-NP, MF-HNP variants for high-fidelity

level inference and output generation is shown in Table 1.

5 EXPERIMENTS

We benchmark the performance of different methods on two multi-

fidelity modeling tasks: stochastic epidemiology modeling and cli-

mate forecasting. Epidemiology modeling is age-stratified and cli-

mate (temperature) modeling is on a regular grid.

High Fidelity
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Figure 2: AS-SIR Modeling Framework: First, high-fidelity

population-level contact matrices are generated using

macro (census) and micro (survey) data [28]. Second, low-

fidelity contact matrices are obtained by grouping individu-

als in fewer age brackets. Distinct age-stratified SIR models

are used to simulate the epidemic at the two fidelity levels.

5.1 Experiment Setup.

For all experiments, we compare our proposed MF-HNP model with

both the GP and NP baselines.

• GP baselines include the nonlinear autoregressive multi-

fidelity GP regressionmodel (NARGP) [31] and single-fidelity

Gaussian Processes (SF-GP) which assumes that the data are

independent at each fidelity level.

• NP baselines include single-fidelity Neural Processes (SF-NP)

and multi-fidelity Neural Processes (MF-NP) [42].
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• For our proposed MF-HNP model, we provide 3 variants to

approximate inference for ablation study, including inference

by low-level mean of latent variables (MF-HNP(MEAN)),

low-level mean and standard deviation of latent variables

(MF-HNP(MEAN,STD)), and ancestral sampling method (MF-

HNP(AS)). Details have been discussed in Section 4.3.

For NP models, we also consider two different context aggre-

gation methods discussed in Section 3.2, including mean context

aggregation and Bayesian context aggregation. Both are applied

to generate latent variables 𝑧 at each fidelity level. For the NARGP

and MF-NP baseline, they only work for the data with nested data

structure based on their model architecture and assumption [31].

For MF-NP, it requires both low-fidelity simulation output 𝑦𝑙 and

high-fidelity input 𝑥ℎ as model input. Therefore, we assume that 𝑦𝑙

is known for the validation and test set for MF-NP, which means

MF-NP requires more data compared with MF-HNPand other base-

lines.

We report the mean absolute error (MAE) for accuracy esti-

mation. For uncertainty estimation, we use mean negative log-

likelihood (NLL). For age-stratified Susceptible-Infectious-Recovered

(AS-SIR) experiment, we perform a log transformation on the num-

ber of infections in the output space to deal with the long-tailed

distribution. NLL for AS-SIR experiment is calculated in the log

space, while MAE is calculated in the original space. For climate

modeling experiment, both NLL and MAE are measured in the orig-

inal space. We calculate the NLL based on the Gaussian distribution

determined by model outputs of mean and standard deviation, and

MAE between the mean predictions and the truth.

5.2 Age-Stratified SIR Compartmental Model

We use an age-stratified Susceptible-Infectious-Recovered (AS-SIR)

epidemic model:

𝑆𝑖 = −𝜆𝑖𝑆𝑖 , 𝐼𝑖 = 𝜆𝑖𝑆𝑖 − 𝛾𝐼𝑖 , 𝑅𝑖 = 𝛾𝐼𝑖

where 𝑆𝑖 , 𝐼𝑖 , and 𝑅𝑖 denote the number of susceptible, infected, and

recovered individuals of age 𝑖 , respectively. The age-specific force
of infection is defined by 𝜆𝑖 and it is equal to:

𝜆𝑖 = 𝛽
∑
𝑗

𝑀𝑖, 𝑗
𝐼 𝑗

𝑁 𝑗
,

where 𝛽 denotes the transmissibility rate of the infection, 𝑁 𝑗

is the total number of individuals of age 𝑗 , and 𝑀𝑖, 𝑗 is the overall

age-stratified contact matrices describing the average number of

contacts with individuals of age 𝑗 for an individual of age 𝑖 .
This model assumes heterogeneous mixing between age groups,

where the population-level contact matrices𝑀 are generated using

highly detailed macro (census) and micro (survey) data on key socio-

demographic features [28] to realistically capture the social mixing

differences that exist between different countries/regions of the

world and that will affect the spread of the virus.

Dataset. We include overall 109 scenarios at different locations

in China, U.S., Europe. The data in China is at the province level. The

data in the U.S. is at state level. The data in Europe is at the country

level. For each scenario, we generate 30 samples for 100 day’s new

infection prediction at low- and high-fidelity levels based on the

corresponding initial conditions, 𝑅0, age-stratified population, and

the overall age-stratified contact matrices. The high-fidelity data, as

shown in Figure 2, has 85 age groups. The size of the age-stratified

contact matrices𝑀ℎ,𝑖 𝑗 is 85×85. For low-fidelity data, we aggregate

the data and obtain 18 age groups, resulting in a contact matrix

𝑀𝑙,𝑖 𝑗 of size 18 × 18.

We randomly split 31 scenarios for training candidate set, 26

scenarios for the validation set and 52 scenarios for test set at both

fidelity levels. In the nested data set case, we first randomly select

26 scenarios from the training candidate set as the training set at

low-fidelity level, then randomly select 5 scenarios from them as

the training set at high-fidelity level. In the non-nested data set case,

we randomly split 26 scenarios as the training set at low-fidelity

level and 5 scenarios as the training set at high-fidelity level. The

validation and test set are both at high-fidelity level.

Performance Analysis. Table 2 compares the prediction per-

formance for 2 GP methods and 10 NP methods for 100 day ahead

infection forecasting. The performance is reported in MAE and

NLL over 100 days. MF-HNP(MEAN)-BA has the best prediction per-

formance in terms of MAE for both the scenario with nested data

structure and non-nested data structure. GP baselines SF-GP and

NARGP have similar worst MAE, which means the low-fidelity

data does not help NARGP learn useful information. Because in

high-dimensions, the strict assumption of no observation noise at

low-fidelity level does not hold for NARGP.

For NP baselines, MF-NP-(MA/BA) baselines have worse accu-

racy performance compared with the SF-NP-(MA/BA) baselines.

This is due to the limited number of paired training data that MF-

NP can utilize. The small number of training data plus the high-

dimensional input and output space makes it difficult for MF-NP to

learn the correct pattern for model predictions. For all NP models,

we find Bayesian aggregation improves the performance. With re-

spect to different hierarchical inference methods of MF-HNP. Table 2
shows MF-HNP(AS) and MF-HNP(MEAN) have superior performance

compared to MF-HNP(MEAN,STD) in terms of both NLL and MAE.

Figure 3 visualizes the prediction results of two randomly se-

lected scenarios in the nested dataset. It shows the truth, our MF-HNP
prediction together with two other baselines representing the best

GP baseline and the best NP baseline in four age groups (10,30,50,70).

In this experiment, the best GP is NARGP and the best NP is SF-NP.

One interesting finding is that although SF-GP has the best NLL

score, the visualization shows its prediction is very conservative by

generating a large confidence interval, which is not informative. On

the contrary, MF-HNPprediction is able to generate a narrower con-

fidence interval while covering the truth at the same time (shown

in Figure 3).

When switching to non-nest data set, the MF-HNP model is still

reliable for this much harder task. In fact, the MAE performance of

MF-HNP(MEAN)-BA is even better.

5.3 Climate Model for Temperature.

We further test our method on the multi-fidelity climate dataset

provided by Hosking [15]. The dataset includes low-fidelity and

high-fidelity climate model temperature simulations over a region

in Peru. The left part of Figure 4 shows the region of interest.

Dataset.The low-fidelity data is generated by low-fidelity Global

Climate Model with spatial resolution 14×14 [20]. The high-fidelity
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Figure 3: 100 days ahead infectious incidence compartment forecasting of randomly selected scenario at each row, analyzed

in 4 age groups. Natural log scale for 𝑦 axis.

Table 2: Prediction performance comparison on Age-Stratified SIR data sets.

Data Method MAE (nested) ↓ NLL (nested) ↓ MAE (non-nested) ↓ NLL (non-nested) ↓

nested

SF-GP 342.99 ± 0.04 1.71 ± 0.06 342.99 ± 0.04 1.71 ± 0.06
NARGP 342.72 ± 0.13 1.78 ± 0.1 × ×

SF-NP-MA 333.41 ± 100.73 6.14 ± 4.11 333.41 ± 100.73 6.14 ± 4.11
MF-NP-MA 341.08 ± 0.18 6.5 ± 0.58 × ×

MF-HNP(mean)-MA 257.39 ± 24.17 11.09 ± 11.93 249.5 ± 25.82 10.58 ± 11.33
MF-HNP(mean,std)-MA 257.0 ± 23.13 9.26 ± 9.38 254.04 ± 18.0 13.04 ± 14.84

MF-HNP(as)-MA 266.17 ± 16.13 10.59 ± 11.06 262.61 ± 10.68 11.66 ± 12.71
SF-NP-BA 294.3 ± 75.81 36.35 ± 46.5 294.3 ± 75.81 36.35 ± 46.5
MF-NP-BA 340.22 ± 1.51 4.34 ± 2.23 × ×

MF-HNP(mean)-BA 201.56 ± 61.15 1.97 ± 0.44 199.75 ± 64.51 1.95 ± 0.5
MF-HNP(mean,std)-BA 229.09 ± 77.44 8.24 ± 9.54 203.05 ± 65.84 6.66 ± 7.19

MF-HNP(as)-BA 205.26 ± 49.1 2.69 ± 1.0 205.43 ± 43.79 3.24 ± 1.59

data is generated by high-fidelity Regional Climate Model [1] with

spatial resolution 87×87. The example is shown in Figure 4. Both in-

clude monthly data from 1980 to 2018 over the same region (latitude

range: (−7.5,−10.7), longitude range: (280.5, 283.7)).
The task is to use 6 month data as input to generate the next

6 month predictions as output. We randomly split 119 scenarios

for training candidate set, 50 scenarios for validation set, and 50

scenarios for the test set at both fidelity level. In the nested data

set case, we first randomly select 87 scenarios from the training

candidate set as the training set at low-fidelity level, then randomly

select 32 scenarios from them as the training set at high-fidelity level.

In the non-nested data set case, we randomly split 87 scenarios as

the training set at low-fidelity level and 32 scenarios as the training

set at high-fidelity level. The validation and test set are both at

high-fidelity level.

Performance Analysis. Table 3 compares the prediction per-

formance for 2 GP methods and 10 NP methods to predict the next

6 months temperature based on the past 6 months temperature data.

The performance is reported in MAE and NLL. The results of this

task are consistent with what we found in AS-SIR infection predic-

tion task. MF-HNP has significantly better performance compared

with either GP or NP baselines. But this time MF-HNP(MC)-BA is the

most accurate one with or without a nested data structure. Consider-

ing both MAE and NLL, we still recommend using MF-HNP(MC)-BA

and MF-HNP(MEAN)-BA.

Figure 4: Left: Region of interest [4]. Upper Right: sample

from low-fidelity temperature model. Lower Right: sample

from high-fidelity temperature model.

Figure 5 is the visualization of predictions among the best MF-HNP
variant, GP and NP baselines on a randomly selected scenario in the

test set. To highlight the performance difference, we visualize the

residual between the predictions and the truth from 1 to 6 months
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Figure 5: MF-HNP vs. SF-NP vs. NARGP for 6 month ahead temperature prediction residual.

Table 3: Prediction performance comparison on climate data sets.

Method MAE (nested) ↓ NLL (nested) ↓ MAE (non-nested) ↓ NLL (non-nested) ↓

SF-GP 0.91 ± 0.365 2.288 ± 0.004 0.91 ± 0.365 2.288 ± 0.004
NARGP 0.91 ± 0.365 2.3 ± 0.006 × ×

SF-NP-MA 0.778 ± 0.01 1.489 ± 0.026 0.778 ± 0.01 1.489 ± 0.026
MF-NP-MA 0.902 ± 0.005 1.889 ± 0.012 × ×

MF-HNP(mean)-MA 0.765 ± 0.004 1.535 ± 0.059 0.788 ± 0.029 1.666 ± 0.174
MF-HNP(mean,std)-MA 0.773 ± 0.011 1.592 ± 0.057 0.768 ± 0.027 1.607 ± 0.089

MF-HNP(as)-MA 0.758 ± 0.024 1.578 ± 0.079 0.769 ± 0.02 1.594 ± 0.098
SF-NP-BA 0.751 ± 0.052 1.546 ± 0.133 0.751 ± 0.052 1.546 ± 0.133
MF-NP-BA 0.954 ± 0.019 1.909 ± 0.028 × ×

MF-HNP(mean)-BA 0.706 ± 0.049 1.549 ± 0.164 0.714 ± 0.027 1.58 ± 0.061
MF-HNP(mean,std)-BA 0.717 ± 0.045 1.606 ± 0.106 0.695 ± 0.03 1.548 ± 0.068

MF-HNP(as)-BA 0.678 ± 0.026 1.506 ± 0.027 0.68 ± 0.009 1.58 ± 0.012

ahead predictions. Higher value means lower accuracy. It can be

found that MF-HNP outperforms all the baselines for the predictions

for each month.

6 CONCLUSION & LIMITATION

We propose Multi-Fidelity Hierarchical Neural Process (MF-HNP),
the first unified framework for scalable multi-fidelity surrogate

modeling in the neural processes family. Our model is more flexible

and scalable compared with existing multi-fidelity modeling ap-

proaches. Specifically, it no longer requires a nested data structure

for training and supports varying input and output dimensions at

different fidelity levels. Moreover, the latent variables introduce

conditional independence for different fidelity levels, which alle-

viates the error propagation issue and improves the accuracy and

uncertainty estimation performance. We demonstrate the superi-

ority of our method on two real-world large-scale multi-fidelity

applications: age-stratified epidemiologymodeling and temperature

outputs from different climate models.

Regarding future work, it is natural to extend our multi-fidelity

Hierarchical Neural Process to active learning setup. Instead of

passively training the neural processes, we can proactively query

the simulator, gather training data, and incrementally improve the

surrogate model performance.
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Table 4: Hyperparameters for NP baselines and our pro-

posed MF-HNPmodel, including learning rate, batch size, and

patience.

learning rate batch size patience

AS-SIR 1𝑒−3 128 1000

climate 5𝑒−3 32 250

A NEURAL PROCESSS BASELINES

A.1 Single-Fidelity Neural Processes (SF-NP).

A simple way to apply NP to the multi-fidelity problem is to train

NP only using the data at high-fidelity level only assuming it is

not correlated with the data at the low-fidelity level. We name it

as Single-Fidelity Neural Processes baseline (SF-NP). During the

training process, the high-level training data can be randomly split

into context set D𝑐
ℎ
and target set D𝑡

ℎ
. We use the corresponding

evidence lower bound (ELBO) as the training loss function:

log𝑝 (𝑦𝑡ℎ,1:𝑀 |𝑥𝑡ℎ,1:𝑀 ,D𝑐
ℎ, 𝜃 ) ≥

E𝑞𝜙 (𝑧 |D𝑐
ℎ
∪D𝑡

ℎ
)

[ 𝑀∑
𝑚=1

log𝑝 (𝑦𝑡ℎ,𝑚 |𝑧, 𝑥𝑡ℎ,𝑚, 𝜃 ) + 𝑙𝑜𝑔
𝑞𝜙 (𝑧 |D

𝑐
ℎ
)

𝑞𝜙 (𝑧 |D
𝑐
ℎ
∪ D𝑡

ℎ
)

]

where 𝑝 (𝜃 ) is a decoder in a neural network and 𝑞𝜙 indicates a

encoder to infer the latent variable 𝑧.

A.2 Multi-Fidelity Neural Processes (MF-NP).

Multi-Fidelity Neural Processes (MF-NP) [42] assume a compre-

hensive correlation between multi-fidelity models 𝑦ℎ and 𝑦𝑙 can be

represented as:

𝑦ℎ (𝑥) = G(𝑦𝑙 (𝑥)) + 𝛿 (𝑥),

where G is a nonlinear function mapping the low-fidelity data to

high-fidelity data, and 𝛿 (𝑥) is space dependent bias between fi-

delity levels. To train MF-NP model, we take data pairs (𝑥,𝑦𝑙 (𝑥))
as the input to predict the corresponding 𝑦ℎ (𝑥). The correspond-

ing context sets D𝑐
𝑙
≡ {𝑥𝑐

ℎ,𝑛
, 𝑦𝑐

𝑙,𝑛
, 𝑦𝑐

ℎ,𝑛
}
𝑁𝑙
𝑛=1 and target sets D𝑡

𝑙
≡

{𝑥𝑡
ℎ,𝑚

, 𝑦𝑡
𝑙,𝑚

, 𝑦𝑡
ℎ,𝑛

}
𝑀𝑙
𝑚=1. The ELBO for the training process is:

log𝑝 (𝑦𝑡ℎ,1:𝑀 |𝑥𝑡ℎ,1:𝑀 , 𝑦𝑡𝑙,1:𝑀 ,D𝑐
ℎ, 𝜃 ) ≥

E𝑞𝜙 (𝑧 |D𝑐
ℎ
∪D𝑡

ℎ
)

[ 𝑀∑
𝑚=1

log𝑝 (𝑦𝑡ℎ,𝑚 |𝑧, 𝑥𝑡ℎ,𝑚, 𝑦𝑡𝑙,𝑚, 𝜃 )+

𝑙𝑜𝑔
𝑞𝜙 (𝑧 |D

𝑐
ℎ
)

𝑞𝜙 (𝑧 |D
𝑐
ℎ
∪ D𝑡

ℎ
)

]

Since this method requires (𝑥,𝑦𝑙 (𝑥), 𝑦ℎ (𝑥)) for input and output,
it can not fully utilize the training data at low-fidelity level which

𝑦ℎ (𝑥) is unknown. Furthermore, MF-NP requires a nested data

structure, which means the training inputs of high-fidelity level

need to be a subset of the training inputs of low-fidelity level. On

the contrary, if the training inputs at the different fidelity level are

disjoint, no data set can be used for training.

B EXPERIMENT DETAILS

For GP baselines, we use RBF kernels. The optimal learning rate

is 5𝑒−2 for both AS-SIR and climate modeling tasks. We train 2000

epochs with patience equal to 100 to ensure convergence. For NP

baselines and our proposed MF-HNP model, the hyperparameters

can be found in Table 4.


