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Abstract

Generation of drug-like molecules with high bind-

ing affinity to target proteins remains a difficult

and resource-intensive task in drug discovery.

Existing approaches primarily employ reinforce-

ment learning, Markov sampling, or deep gen-

erative models guided by Gaussian processes,

which can be prohibitively slow when gener-

ating molecules with high binding affinity cal-

culated by computationally-expensive physics-

based methods. We present Latent Inceptionism

on Molecules (LIMO), which significantly accel-

erates molecule generation with an inceptionism-

like technique. LIMO employs a variational

autoencoder-generated latent space and property

prediction by two neural networks in sequence to

enable faster gradient-based reverse-optimization

of molecular properties. Comprehensive experi-

ments show that LIMO performs competitively on

benchmark tasks and markedly outperforms state-

of-the-art techniques on the novel task of generat-

ing drug-like compounds with high binding affin-

ity, reaching nanomolar range against two pro-

tein targets. We corroborate these docking-based

results with more accurate molecular dynamics-

based calculations of absolute binding free en-

ergy and show that one of our generated drug-like

compounds has a predicted KD (a measure of

binding affinity) of 6 · 10−14 M against the hu-

man estrogen receptor, well beyond the affinities

of typical early-stage drug candidates and most

FDA-approved drugs to their respective targets.

Code is available at https://github.com/
Rose-STL-Lab/LIMO.
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1. Introduction
Modern drug discovery is a long and expensive process, of-

ten requiring billions of dollars and years of effort (Hughes

et al., 2011). Accelerating the process and reducing its cost

would have clear economic and human benefits. A central

goal of the first stages of drug discovery, which comprise

a significant fraction and cost of the entire drug discovery

pipeline (Paul et al., 2010), is to find a compound that has

high binding affinity to a designated protein target, while

retaining favorable pharmacologic and chemical properties

(Hughes et al., 2011). This task is difficult because there are

on the order of 1033 chemically feasible molecules in the

drug-like size range (Polishchuk et al., 2013), and only a

tiny fraction of these bind to any given target with an affin-

ity high enough to make them candidate drugs. Currently,

this is done with large experimental compound screens and

iterative synthesis and testing by medicinal chemists.

Recently, deep generative models have been proposed to

identify promising drug candidates (Guimaraes et al., 2017;

Goḿez-Bombarelli et al., 2018; Jin et al., 2018; Ma et al.,

2018; You et al., 2018; Popova et al., 2019; Zhou et al.,

2019; Jin et al., 2020b; Xie et al., 2021; Luo et al., 2021b),

potentially circumventing much of the customary experi-

mental work. However, even the best generative methods

are prohibitively slow when optimizing for molecular prop-

erties that are computationally expensive to evaluate, such

as binding affinity.

Here, we present a novel approach called Latent Inception-

ism on Molecules (LIMO), a generative modeling frame-

work for fast de novo molecule design that

• builds on the variational autoencoder (VAE) frame-

work, combined with a novel property predictor net-

work architecture;

• employs an inceptionism-like reverse optimization

technique on a latent space to generate drug-like

molecules with desirable properties;

• is much faster than existing reinforcement learning-

based methods (6− 8× faster) and sampling-based ap-

proaches (12× faster), while maintaining or exceeding

baseline performances on the generation of molecules

with desired properties;
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• allows for the generation of molecules with desired

properties while keeping a molecular substructure

fixed, an important task in lead optimization;

• markedly outperforms state-of-the-art methods in the

novel task of generating drug-like molecules with high

binding affinities to target proteins.

2. Related Work
Domain state of the art. After a protein is identified as a

potential drug target, a common drug discovery paradigm

today involves performing an initial high-throughput ex-

perimental screening of available compounds to identify

hit compounds, i.e., molecules that have some affinity to

the target. Computational methods, such as docking (e.g.

Santos-Martins et al. (2021); Friesner et al. (2004)) or more

rigorous molecular dynamics-guided binding free energy

calculations (Cournia et al., 2020) of compounds to a known

3D structure of the target protein can also play a role by pri-

oritizing compounds for testing. Once hit compounds have

been experimentally confirmed, they become starting points

for the synthesis of chemically similar lead compounds that

have improved activity but require further optimization (lead

optimization) to become a drug candidate that is deemed

promising enough to advance further through the drug dis-

covery pipeline (Hughes et al., 2011). To accelerate this

often years-long drug discovery stage, there is great interest

in novel computational technologies.

An alternative to experimentally screening existing com-

pounds is to design entirely novel compounds for synthesis

and testing. This approach, termed de novo design, takes

advantage of the target protein’s 3D structure. Genetic al-

gorithms (e.g. Spiegel & Durrant (2020)) and rule-based

approaches (e.g. Allen et al. (2017)) have been developed

for this task. However, these techniques are often slow

and tend to be too rigid to be fully integrated into the drug

discovery process, where many molecular properties and

synthesizability must be considered simultaneously. For

example, AutoGrow4 (Spiegel & Durrant, 2020), a state-

of-the-art genetic algorithm, produces molecules with high

binding affinities, but can also lead to toxic moieties and

excessive molecular weights, while also being limited in the

molecular space available for exploration. In contrast, recent

machine learning methods offer greater flexibility and hence

new promise for de novo drug design (Carracedo-Reboredo

et al., 2021), as summarized below.

Generative models for molecule design. Deep genera-

tive models use a learned latent space to represent the

distribution of drug-like molecules. Early work (Goḿez-

Bombarelli et al., 2018) applies a variational autoencoder

(VAE, Kingma & Welling (2013)) to map SMILES strings

(Weininger, 1988) to a continuous latent space. But

SMILES-based representations struggle with generating

both syntactically and semantically valid strings. Other

works address this limitation by incorporating rules into

the VAE decoder to only generate valid molecules (Kus-

ner et al., 2017; Dai et al., 2018). Junction tree VAEs (Jin

et al., 2018; 2019) use a scaffold junction tree to assem-

ble building blocks into an always-valid molecular graph,

and have been improved with RL-like sampling and opti-

mization techniques (Tripp et al., 2020; Notin et al., 2021).

DruGAN (Kadurin et al., 2017) further extends VAEs to an

implicit GAN-based generative model. OptiMol uses a VAE

to output molecular strings, but takes molecular graphs as

input (Boitreaud et al., 2020). Shen et al. (2021) forego a

latent space altogether and assemble symbols directly.

Apart from sequence generation, graph generative models

have also been proposed (Ma et al., 2018; Simonovsky &

Komodakis, 2018; De Cao & Kipf, 2018; Li et al., 2018;

Fu et al., 2022; Zang & Wang, 2020; Luo et al., 2021b; Jin

et al., 2020a; Luo et al., 2021a). As generative models do

not directly control molecular properties, existing methods

often use a surrogate model (Gaussian process or neural

network) to predict molecular properties from the latent

space, and guide optimization on the latent space toward

molecules with desired properties (e.g. logP, QED, binding

affinity). For example, MoFlow (Zang & Wang, 2020) pre-

dicts molecular properties from a latent space using a neural

network, but has difficulty generating molecules with high

property scores. Instead, we propose the prediction of prop-

erties from the decoded molecular space, which appears to

greatly increase the property scores of generated molecules.

Xie et al. (2021) propose Monte Carlo sampling to explore

molecular space and Nigam et al. (2020) propose a genetic

algorithm with a neural network-based discriminator, both

of which require an extremely large number of calls to prop-

erty functions and therefore are less useful when optimizing

complex, expensive-to-evaluate property functions.

In general, generative models are very fast in generating

molecules. However, as current generative models cannot

effectively find molecules in their latent spaces that have

desired properties, they have so far been outperformed by

reinforcement learning-based methods that directly optimize

molecules for desired properties.

Reinforcement learning-based molecule generation.
Reinforcement learning (RL) methods directly optimize

molecular properties by systematically constructing or alter-

ing a molecular graph (You et al., 2018; Zhou et al., 2019;

Jin et al., 2020b; Guimaraes et al., 2017; Popova et al., 2019;

De Cao & Kipf, 2018; Zhavoronkov et al., 2019; Olivecrona

et al., 2017; Shi et al., 2020; Luo et al., 2021b; Jeon &

Kim, 2020). These methods appear to be the most pow-

erful at generating molecules with desired properties, but

are slow and require many calls to the property estimation
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function. This is problematic when applying RL to com-

putationally expensive but highly useful property functions

like physics-based (e.g. docking) computed binding affinity,

rather than simple, easily computed measures such as logP.

RationaleRL (Jin et al., 2020b) theoretically avoids the need

to sample a large number of molecules by collecting “ra-

tionales” from existing molecules with desired properties,

and combining them into molecules with multiple desired

properties, but by design this method is not applicable to de
novo drug discovery.

3. Methodology
We present Latent Inceptionism on Molecules (LIMO), a

molecular generation framework. We use a VAE to learn

a real-valued latent space representation of the drug-like

chemical space. However, contrary to previous work, we use

two neural networks (a decoder and predictor) in sequence to

perform inceptionism-like reverse optimization of molecular

properties on the latent space. Figure 1 gives an overview

of the framework.

We use a decoder network to generate an intermediate real-

valued molecular representation to improve the prediction,

and therefore optimization, of molecular properties while

keeping the prediction differentiable, allowing the use of

efficient gradient-based optimizers. We use self-referencing

embedded strings (SELFIES, Krenn et al. (2020)) to ensure

chemical validity during optimization. With these novelties,

LIMO is able to achieve performance on par with reinforce-

ment learning methods while being orders of magnitude

faster. On the highly useful task of structure-based com-

puted binding affinity optimization, LIMO markedly outper-

forms state-of-the-art (including RL) methods, while also

being much faster.

3.1. Variational Autoencoder

Define a string representation of a molecule x =
(x1, · · · , xn). Each xi takes its value from a set of d possi-

ble symbols S = {s1, · · · , sd}, where each symbol is one

component of a self-referencing embedded string (SELF-

IES) defining a molecule (Krenn et al., 2020). We aim

to produce n independent distributions y = (y1, · · · , yn),
where each yi ∈ [0, 1]d is the parameter for a multinomial

distribution over the d symbols in S. The output string

x̂ = (x̂1, · · · , x̂n) is obtained from y by selecting the sym-

bol with the highest probability:

x̂i = sd∗
i
, d∗i = argmaxd{yi,1, · · · , yi,d} (1)

All SELFIES strings correspond to valid molecules, allow-

ing us to transform the continuous-value probabilities y into

an always-valid discrete molecule.

We train a VAE (Kingma & Welling, 2013) to encode x to

a latent space z ∈ R
m of dimensionality m and decode to

y. We optimize the VAE using the evidence lower bound

(ELBO) loss function. Each input symbol in the representa-

tion string passes through an embedding layer, and then two

fully-connected networks (the encoder and decoder). Recon-

struction loss is calculated using the negative log-likelihood

over a one-hot encoded representation of the input molecule.

Once trained, the VAE can generate novel and drug-like

molecules, with similar molecules lying next to each other

in the latent space. To generate random molecules, we sam-

ple from the latent space z using N (0m, Im), and decode it

into a string representation.

3.2. Property Predictor

We employ a separate network to predict molecular prop-

erties. While earlier works train the VAE and property

predictor jointly (Jin et al., 2018; Goḿez-Bombarelli et al.,

2018), we train the property predictor after the VAE has

been fully trained (i.e. we freeze the VAE weights) for three

reasons: firstly, generative modeling requires significantly

more molecular data than the regression task of predicting

molecular properties.There is no need to acquire property

data for all the molecules used by the generative model. This

is especially relevant when such data is expensive to obtain,

e.g. docking-based binding affinity that takes seconds to cal-

culate per molecule. Secondly, the trained generative model

allows us to query the ground-truth molecular property func-

tion with its generated molecules, giving an informative and

diverse training set for property prediction. Thirdly, adding

new properties under this training scheme does not require

retraining of the VAE, only of the property predictor, which

is much more efficient.

Crucially, we introduce a novel architecture consisting of

stacking the VAE decoder and the property predictor. The

property predictor uses the output of the VAE decoder as

its input, as opposed to predicting properties directly from

the latent space like previous works (e.g. Jin et al. (2018);

Goḿez-Bombarelli et al. (2018); Zang & Wang (2020)). The

intuition is that the map from molecular space to property

is easier to learn than that from the latent space to prop-

erty. We later present results confirming this intuition, both

in terms of prediction accuracy and overall optimization

ability, suggesting that the proposed stacking improves opti-

mization by allowing more accurate prediction of molecular

properties through a more direct molecular representation.

Using such an intermediate molecular representation from

the VAE decoder also allows us to fix a substructure of the

generated molecule, giving LIMO the ability to perform the

unique, compared to many other VAE-based architectures,

ability to perform substructure-constrained optimization.

Define the VAE encoder fenc : x �→ z and decoder

fdec : z �→ x̂, a property prediction network gθ : x̂ �→ R
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input molecule

z
latent spaceEncoder

reconstructed 
molecule

target property

(penalized) logP
QED
SA

Binding affinity 
reverse optimize

Decoder

Property Predictor

Figure 1. Overview of the LIMO framework. We train a variational autoencoder (“Encoder” and “Decoder”) to reconstruct input drug-like

molecules. Then, a property predictor is trained to predict molecular properties (“target property”) using the output of the decoder. Using

the property predictor, we generate molecules with desired properties by performing gradient descent on the output of the property

predictor with respect to the latent space z, an inceptionism-like approach.

with parameters θ, and a ground-truth property estimation

function π : x̂ �→ R that computes a molecular property

such as logP or binding affinity. We first generate examples

to train gθ by sampling random molecules from the latent

space z using a normal distribution N (0m, Im). Then, we

optimize the parameters θ of the property predictor by mini-

mizing the mean square error (MSE) of predicted properties

over the set of generated molecules:

�0(θ) = ‖gθ(fdec(z))− π(fdec(z))‖2 (2)

3.3. Reverse Optimization

After training, we freeze the weights of fdec and gθ, and

make z trainable to optimize the latent space toward loca-

tions that decode to molecules with desirable properties.

This is a similar technique to inceptionism, which involves

backpropagating from the output of a network to its input

so that the input is altered to affect the output in a desired

way (Mordvintsev et al., 2015).

To maximize properties, given a set of k property predictors

(g1, · · · , gk) and weights (w1, · · · , wk), we minimize the

following function using the Adam optimizer, initialized

from z ∼ N (0m, Im):

�1(z) = −
k∑

i=1

wi · gi(fdec(z)) (3)

Crucially, since both fdec and g are neural networks,

gradient-based techniques can be used for efficient optimiza-

tion of z. The weights (w1, · · · , wk) are hyperparameters

determined by a random grid search.

In lead optimization, a common task is to generate

molecules with desired properties while keeping a given

substructure of the molecules fixed. To apply reverse op-

timization to this task, we define a mask M ∈ {0, 1}n×d,

where Mi,j corresponds to the SELFIES symbol of index

j at position i in a molecular string. We assign Mi,j = 1
where the desired substructure is present and the correspond-

ing symbol cannot be changed, 0 otherwise. For an opti-

mization starting point, we then reconstruct a molecule xstart

that has the desired substructure: x̂start = fdec(fenc(xstart)).
To optimize z while also keeping a substructure constant,

we add an additional loss �2 to the �1 used in Equation 3:

�2(z) = λ

n∑

i=1

d∑

j=1

(Mi,j · (fdec(z)i,j − (x̂start)i,j))
2 (4)

where λ is a weighting term we set to 1,000.

3.4. Refinement

Filtering. Following multi-objective optimization, we per-

form a filtering step to exclude non drug-like molecules.

Using the distributions of quantitative estimate of drug-

likeness (QED) and synthetic accessibility (SA) scores on

drug-like datasets (Bickerton et al., 2012; Ertl & Schuffen-

hauer, 2009), we define cutoff values reasonably within the

range of currently marketed drugs. Molecules not reaching

these cutoffs are excluded from consideration. We also ex-

clude molecules with either too small or too large chemical

cycles (rings), as these are usually difficult to synthesize but

are not excluded effectively by the SA metric. Specifically,

we exclude molecules not satisfying (QED > 0.4)∧ (SA <
5.5) ∧ (no rings with < 5 or > 6 atoms).

Fine-tuning. For some tasks, we observe that LIMO is

effective in generating molecules with reasonably high prop-

erty scores that could nonetheless be improved slightly by

small, atom-level changes. To do this, we performed a

greedy local search around the chemical space of a gen-

erated molecule by systematically replacing carbons with

heteroatoms and retaining changes that lead to the most

improvement. The algorithm is detailed in Appendix A.3.
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4. Experiments
We apply LIMO to QED and penalized logP (p-logP) max-

imization, logP targeting (You et al., 2018), similarity-

constrained p-logP maximization (Jin et al., 2018),

substructure-constrained logP extremization, and single and

multi-objective binding affinity maximization. All of these

tasks are typical challenges in drug discovery, especially

optimization around a substructure and maximization of

binding affinity. See Appendix A.1 for description of each

task, and Appendix B.1 for results from the random genera-

tion of molecules.

4.1. Experimental Setup

Dataset. For all optimization tasks, we use the benchmark

ZINC250k dataset, which contains ≈250,000 purchasable,

drug-like molecules (Irwin et al., 2012). We use AutoDock-

GPU (Santos-Martins et al., 2021) to compute binding affin-

ity, as described in Appendix A.6, and RDKit to compute

other molecular properties. For the random generation task,

we train on the ZINC-based ≈2 million molecule MOSES

dataset (Polykovskiy et al., 2020).

Model training. All experiments use identical autoen-

coder weights and a latent space dimension of 1024. We

select hyperparameters using a random grid search. The

property predictor is trained independently for each of the

following properties: logP (octanol-water partition coeffi-

cient), p-logP (Jin et al., 2018), SA (Ertl & Schuffenhauer,

2009), QED (Bickerton et al., 2012), and binding affinity to

two targets (calculated by AutoDock-GPU, Santos-Martins

et al. (2021)). 100k training examples were used for all

properties except binding affinity, where 10k were used due

to speed concerns. See Appendix A.5 for model training

details.

Baselines. We compare with the following state-of-the-

art molecular design baselines: JT-VAE (Jin et al., 2018),

GCPN (You et al., 2018), MolDQN (Zhou et al., 2019),

MARS (Xie et al., 2021), and GraphDF (Luo et al., 2021b).

Each technique is described in Appendix A.4.

Protein targets. For tasks involving binding affinity opti-

mization, we target the binding sites of two human proteins:

• Human estrogen receptor (ESR1): This well-

characterized protein is a target of drugs used to treat

breast cancer. It was chosen for its disease relevance

and its many known binders, which are good points

of comparison with generated molecules. Although

known binders exist, LIMO was not fed any informa-

tion beyond a crystal structure of the protein (PDB

1ERR) used for docking calculations and the location

of the binding site.

• Human peroxisomal acetyl-CoA acyl transferase 1
(ACAA1): This enzyme has no known binders but

does have a crystal structure (PDB 2IIK) with a poten-

tial drug-binding pocket, which we target to show the

ability of LIMO for de novo drug design. We found

this protein with the help of the Structural Genomics

Consortium, which highlighted this protein as a po-

tentially disease-relevant target with a known crystal

structure, but no known binders.

4.2. QED and Penalized logP Maximization

Table 1 shows results of LIMO and baselines on the gen-

eration of molecules with high penalized logP and QED

scores. For both properties, we report the top 3 scores of

100k generated molecules, as well as the total time (gen-

eration + testing) taken by each method. As an ablative

study, we apply LIMO with property prediction directly

on the latent space (“LIMO on z”) as opposed to regular

LIMO, which performs property prediction on the decoded

molecule x̂ (see Section 3.2). Both methods underwent the

same hyperparameter tuning as described in Appendix A.5.

We see that the extra novel step of decoding the latent space

and then performing property prediction offers a significant

advantage for the optimization of molecules. To elucidate

this improvement, an unseen test set of 1,000 molecules

was generated using the VAE and used to test the predic-

tion performance of the property predictor. We observe an

r2 = 0.04 between real and predicted properties for “LIMO

on z”, and r2 = 0.38 for LIMO. This large predictive per-

formance boost explains the observed improvements in the

optimization of molecules, as the model is better able to gen-

eralize what makes a molecule bind well. We also replaced

LIMO’s fully-connected VAE encoder and decoder each

with an 8-layer, 512 hidden dimension LSTM and found

significantly worse performance, e.g. a maximum QED

score of 0.3. The addition of a self-attention layer after the

LSTM encoder did not significantly improve performance.

We observe that LIMO achieves competitive results among

deep generative and RL-based models (i.e. all methods ex-

cept MARS) while taking significantly less time. Note that

p-logP is a “broken” metric that is almost entirely dependent

on molecule length (Zhou et al., 2019). Without a length

limit, MARS can easily generate long carbon chains with

high p-logP. Among models with a molecule length limit

(GCPN, MolDQN, and LIMO), LIMO generates molecules

with p-logP similar to MolDQN, the strongest baseline. Sim-

ilarly, QED suffers from boundary effects around its maxi-

mum score of 0.948 (Zhou et al., 2019), which LIMO gets

very close to. Drugs with a QED score above 0.9 are very

rare (Bickerton et al., 2012), so achieving close to this max-

imum score is sufficient for drug discovery purposes.
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Table 1. Comparison of QED and p-logP maximization methods. “LL” (length limit) denotes whether a model has a limited output length

(about the maximum molecule size of ZINC250k), as p-logP score can increase linearly with molecule length. Baseline results taken from

(You et al., 2018; Luo et al., 2021b; Xie et al., 2021).

METHOD LL PENALIZED LOGP QED TIME

1ST 2ND 3RD 1ST 2ND 3RD (HRS)

JT-VAE � 5.30 4.93 4.49 0.925 0.911 0.910 24
GCPN � 7.98 7.85 7.80 0.948 0.947 0.946 8
MOLDQN � 11.8 11.8 11.8 0.948 0.943 0.943 24
MARS � 45.0 44.3 43.8 0.948 0.948 0.948 12
GRAPHDF � 13.7 13.2 13.2 0.948 0.948 0.948 8

LIMO ON z � 6.52 6.38 5.59 0.910 0.909 0.892 1
LIMO � 10.5 9.69 9.60 0.947 0.946 0.945 1

4.3. logP Targeting

Table 2 reports on the ability of LIMO to generate molecules

with logP targeted to the range −2.5 < logP < −2.0.

LIMO achieves the highest diversity among generated

molecules within the targeted logP range, and, although

it has a lower success rate than other methods, it generates

33 molecules per second within the target range. This is

similar to the overall generation speed of other models, but

due to a lack of available code for this task, we were not

able to compare exact speeds.

Table 2. Property targeting to −2.5 < logP < −2.0. Success (%):

percent of generated molecules within the target range. Diversity:

One minus the average pairwise Tanimoto similarity between Mor-

gan fingerprints. Results for JT-VAE and GCPN taken from (You

et al., 2018).

METHOD SUCCESS (%) DIVERSITY

JT-VAE 11.3 0.846
GCPN 85.5 0.392
MOLDQN 9.66 0.854
GRAPHDF 0 -

LIMO 10.4 0.914

4.4. Similarity-constrained Penalized logP
Maximization

Following the procedures described for JT-VAE (Jin et al.,

2018), we select the 800 molecules with the lowest p-logP

scores in the ZINC250k dataset and aim to generate new

molecules with a higher p-logP yet similarity to the original

molecule. Similarity is measured by Tanimoto similarity

between Morgan fingerprints with a cutoff value δ. Each of

the 800 starting molecules are encoded into the latent space

using the VAE encoder, 1,000 gradient ascent steps (Section

3.3) are completed for each, then the generated molecules

out of all gradient ascent steps with the highest p-logP that

satisfy the similarity constraint are chosen.

Results for the similarity-constrained p-logP maximization

task are summarized in Table 3. For the two lowest simi-

larity constraints (δ = 0.0, 0.2), LIMO achieves the highest

penalized logP improvement, while its improvement is sta-

tistically indistinguishable from other methods at higher

values of δ. This shows the power of LIMO for uncon-

strained optimization, and the ability to reach competitive

performance in more constrained settings.

4.5. Substructure-constrained logP Extremization

log P = 1.81

log P = − 1.48 log P = 5.29

log P = 5.05

log P = 6.89log P = 1.57
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Figure 2. Examples of LIMO’s extremization of logP while keep-

ing a substructure (denoted in red) constant.

Results for the substructure-constrained logP extremiza-

tion task are shown in Figure 2. We chose two molecules

from ZINC250k to act as starting molecules and defined the

substructures of these starting molecules to be fixed, then

performed both maximization and minimization of logP us-

ing LIMO, as described in Equation 4. As illustrated, we

can successfully increase or decrease logP as desired while

keeping the substructure constant in both cases.

This task is common during the lead optimization stage

of drug development, where a synthetic pathway to reach

an exact substructure with proven activity is established,

but molecular groups around this substructure are more

malleable and have not yet been determined. This is not cap-

tured in the similarity-constrained optimization task above,

which uses more general whole-molecule similarity metrics.

While previous works address the challenge of property op-

timization around a fixed substructure (Hataya et al., 2021;

Lim et al., 2020; Maziarz et al., 2021), LIMO is one of the

few VAE-based methods that can easily perform such opti-

mization. Thanks to its unique decoding step of generating
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Table 3. Similarity-constrained p-logP maximization. For each method and minimum similarity constraint δ, the mean ± standard

deviation of improvement (among molecules that satisfy the similarity constraint) from the starting molecule is shown, as well as the

percent of optimized molecules that satisfy the similarity constraint (% succ.). Baseline results taken from (Luo et al., 2021b; Zhou et al.,

2019).

δ
JT-VAE GCPN GRAPHDF MOLDQN LIMO

IMPROV. % SUCC. IMPROV. % SUCC. IMPROV. % SUCC. IMPROV. % SUCC. IMPROV. % SUCC.

0.0 1.9± 2.0 97.5 4.2± 1.3 100 5.9± 2.0 100 7.0± 1.4 100 10.1 ± 2.3 100
0.2 1.7± 1.9 97.1 4.1± 1.2 100 5.6± 1.7 100 5.1± 1.8 100 5.8 ± 2.6 99.0
0.4 0.8± 1.5 83.6 2.5± 1.3 100 4.1 ± 1.4 100 3.4± 1.6 100 3.6± 2.3 93.7
0.6 0.2± 0.7 46.4 0.8± 0.6 100 1.7± 1.2 93.0 1.9 ± 1.2 100 1.8± 2.0 85.5

an intermediate molecular string prior to property predic-

tion, LIMO brings the speed benefits of VAE techniques to

the substructure optimization task.

4.6. Single-objective Binding Affinity Maximization

Table 4. Generation of molecules with high computed binding

affinities (shown as dissociation constants, KD , in nanomoles/liter)

for two protein targets, ESR1 and ACAA1.

METHOD
ESR1 ACAA1 TIME

(HRS)1ST 2ND 3RD 1ST 2ND 3RD

GCPN 6.4 6.6 8.5 75 83 84 6
MOLDQN 373 588 1062 240 337 608 6
GRAPHDF 25 47 51 370 520 590 12
MARS 17 64 69 163 203 236 6

LIMO 0.72 0.89 1.4 37 37 41 1
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Figure 3. Generated molecules from the multi-objective (top row)

and single-objective (bottom row) binding affinity maximization.

The estimated dissociation constants, KD , were obtained by dock-

ing each compound to the targeted protein using AutoDock-GPU.

The dissociation constant is a measure of binding affinity, where

lower is better. In the bottom row, we highlight two major prob-

lematic patterns that appeared when only considering computed

binding affinity, motivating multi-objective optimization.

Producing molecules with high binding affinity to the target

protein is the primary goal of early drug discovery (Hughes

et al., 2011), and its optimization using a docking-based

binding affinity estimator, which is especially powerful in

the de novo setting, is relatively novel to the ML-based

molecule generation literature. Many previous approaches

have attempted to optimize affinity by leveraging knowledge

of existing binders (e.g. Zhavoronkov et al. (2019); Jeon

& Kim (2020); Luo et al. (2021a)), but they often lack

generalizability to targets without such binders. Therefore,

we focus on molecule optimization in the de novo setting

through the use of a docking-based affinity estimator.

We target the binding sites of two human proteins: estro-

gen receptor (PDB ESR1, UniProt P03372) and peroxiso-

mal acetyl-CoA acyl transferase 1 (PDB ACAA1, UniProt

P09110) (see Section 4.1 for details). For both of our protein

targets we report the top 3 highest affinities (i.e., lowest dis-

sociation constants, KD, as estimated with AutoDockGPU)

of 10k total generated molecules from each method. As

shown in Table 4, LIMO generates compounds with higher

computed binding affinities in far less time than prior state-

of-the-art methods. We chose GCPN, MolDQN, GraphDF,

and MARS as baseline comparisons because of their strong

performance on other single-objective optimization tasks.

The chemical structures of two molecules generated by

LIMO when only optimizing for binding affinity are shown

in the bottom row of Figure 3 for both protein targets. While

these molecules have relatively high affinities, they would

have little utility in drug discovery because they are phar-

macologically and synthetically problematic. For example,

we highlight two major moieties, polyenes and large (≥8

atoms) cycles, that are regarded by domain experts as highly

problematic due to reactivity/toxicity and synthesizability

concerns, respectively (see Birch & Sibley (2017); Hussain

et al. (2014); Abdelraheem et al. (2016)). Molecules gen-

erated from GCPN, MolDQN, GraphDF, and MARS had

similar issues. These moieties are large structural issues that

cannot be fixed with small tweaks following optimization,

so we added measures of ligand quality into our optimiza-

tion process as detailed in the following subsection.

4.7. Multi-objective Binding Affinity Maximization

To generate molecules with high computed binding affinity

and pharmacologic and synthetic desirability, we simulta-

neously optimize molecules for computed binding affinity,

drug-likeness (QED), and synthesizability (SA) scores. Dis-

tributions of properties before and after multi-objective op-
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Table 5. Comparison of generated ligands for ESR1 and ACAA1 following multi-objective optimization and refinement. Arrows indicate

whether a high score (↑) or low score (↓) is desired. High QED, Fsp3, and satisfying Lipinski’s Rule of 5 suggest drug-likeness. A low

number of PAINS alerts indicates a low likelihood of false positive results in binding assays. MCE-18 is a measure of molecular novelty

based on complexity, and SA is a measure of synthesizability. KD values in nM are computed binding affinities from AutoDock-GPU

(AD) and from more rigorous absolute binding free energy calculations (ABFE). See Appendix A.2 for a full description of each metric. *

indicates an experimentally determined value obtained from BindingDB (Liu et al., 2007).

LIGAND
OPTIMIZED PROP. NON-OPTIMIZED PROP.

KD (AD) (↓) QED (↑) SA (↓) KD (ABFE) (↓) LIPINSKI PAINS (↓) FSP
3 (↑) MCE-18 (↑)

ESR1

LIMO MOL. #1 4.6 0.43 4.8 6 · 10−5 � 0 0.16 90
LIMO MOL. #2 2.8 0.64 4.9 1000 � 0 0.52 76

GCPN MOL. #1 810 0.43 4.2 - � 0 0.29 22

GCPN MOL. #2 2.7 · 104 0.80 3.7 - � 0 0.56 47

TAMOXIFEN 87 0.45 2.0 1.5* � 0 0.23 16

RALOXIFENE 7.9 · 106 0.32 2.4 0.030* � 0 0.25 59

ACAA1

LIMO MOL. #1 28 0.57 5.5 4 · 104 � 0 0.52 52
LIMO MOL. #2 31 0.44 4.9 NO BINDING � 0 0.81 45

GCPN MOL. #1 8500 0.69 4.2 - � 0 0.52 61
GCPN MOL. #2 8500 0.54 4.3 - � 0 0.52 30

timization are shown in Appendix B.2. For each protein

target, we generate 100k molecules, then apply the two re-

finement steps described in Section 3.4. We selected the

two compounds with the highest affinity from this process

for each protein target, which are shown in the top row of

Figure 3. These compounds are more drug-like and synthet-

ically accessible than those generated by single-objective

optimization (Figure 3, bottom row), but still have high pre-

dicted binding affinities (i.e., low KD values), making them

promising drug candidates. We analyze and compare these

compounds in the subsequent section.

Compound analysis. Table 5 shows the binding and drug-

likeness metrics of two generated compounds for both ESR1

and ACAA1 (the same as those shown in the top row of

Figure 3). For ESR1, we compare our compounds to tamox-

ifen and raloxifene, two modern breast cancer drugs on the

market that target this protein. We also compare with com-

pounds generated by GCPN, the second strongest method

behind LIMO for single-objective binding affinity maxi-

mization, with identical multi-objective weights and the

same filtering step as LIMO. For each compound, we report

the metrics described in the Appendix A.2. The first three

metrics given are “Optimized properties” that are explicitly

optimized for, while the others are not used in optimization

but are still useful for compound evaluation.

LIMO significantly outperforms GCPN, which generates

molecules with such low computed affinity (high KD) as to

be of relatively low utility in drug discovery, regardless of

drug-likeness or synthesizability metrics, because they are

unlikely to bind their targets at all.

Visualization and corroboration of binding affinities.
To confirm that the ligands generated by LIMO are likely to

bind their target proteins with high affinity and do not score

well due to inaccuracies or shortcuts used in the AutoDock-

GPU scoring function, we visualized their docked poses in

3D to look for physically reasonable bound conformations

and energetically favorable ligand-protein interactions. The

3D binding poses produced by the docking software for

one of the two generated ligands for each protein (Figure 4)

show that they fit well into the protein binding pocket and

promote favorable ligand-protein interactions.

We furthermore ran detailed, molecular dynamics-based,

absolute binding free energy calculations (ABFE, Appendix

A.7) (Gilson et al., 1997; Cournia et al., 2020) to obtain

more reliable estimates of the affinities of LIMO-generated

compounds for their targeted proteins than the predictions

from docking. As shown in Table 5, LIMO generated an

ESR1 ligand with an ABFE-predicted dissociation constant

(KD) of 6 ·10−5nM, much better than typical KD values of

e.g. 1000 nM obtained from experimental compound screen-

ing and better even than the KD values of tamoxifen and

raloxifene, two drugs that bind ESR1 with high affinity. The

LIMO compounds even exceed these drugs on many drug-

likeness metrics. Without experimental confirmation, we

cannot be sure these molecules bind so well, but the results

from these state-of-the-art calculations are encouraging.

5. Discussion and Conclusions
We present LIMO, a generative modeling framework for de
novo molecule design. LIMO utilizes a VAE latent space
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Human estrogen receptor Human peroxisomal acetyl-CoA acyl 
transferase 1

Figure 4. 3D visualization of ligands docked against ESR1 and ACAA1. LIMO-generated ligands (one for each protein) are shown in

yellow, and raloxifene, a cancer drug that targets ESR1, is shown in pink. The protein pocket is displayed as semi-opaque, and nearby

structures of the protein are shown in blue. Docked poses were generated by GLIDE (Friesner et al., 2004) for ESR1 and AutoDock-GPU

(Santos-Martins et al., 2021) for ACAA1. Favorable atom-atom interactions between ligand and protein are shown with a dashed yellow

line.

and two neural networks in sequence to reverse-optimize

molecular properties, allowing the use of efficient gradient-

based optimizers to achieve competitive results on bench-

mark tasks in significantly less time. The ability to generate

six times as many molecules per unit of time relative to com-

peting methods (Table 4) increases the odds of producing

high-quality drug candidates that survive successive rounds

of refinement, thereby accelerating drug development as

a whole, especially given LIMO’s high diversity of com-

pounds (Table 2, 6). On the task of generating molecules

with high binding affinity, LIMO outperforms all state-of-

the-art baselines.

LIMO promises multiple applications in drug discovery.

The ability to quickly generate high-affinity compounds can

accelerate target validation with biological probes that can

be used to confirm the proposed biological effect of a target.

LIMO also has the potential to accelerate lead generation

and optimization by jumping directly to drug-like, synthesiz-

able, high affinity compounds, thus bypassing the traditional

hit identification, hit-to-lead, and lead optimization steps.

While “unconstrained” LIMO can quickly generate high-

affinity compounds, it has the additional ability to perform

substructure-constrained property optimization, which is

especially useful during the lead optimization stage where

one has an established substructure with a synthetic pathway

and wishes to “decorate” around it for improved activity or

pharmacologic properties.

While LIMO can generate very high affinity compounds as

computed by docking software, as is its goal, the utility of

compounds only vetted by docking software may be ques-

tioned. As shown in Table 5, AutoDock-GPU computed

binding affinities do not correlate very well with more ac-

curate ABFE results. This is a well-known result (Cournia

et al., 2020), but we believe having docking-predicted high

affinity compounds is still of relatively high utility in drug

discovery, even if some (or most) generated compounds are

“false positives.” As LIMO can generate hundreds of diverse

docking-computed nanomolar range compounds against a

target in hours, it is likely that some of those compounds

will actually bind a target well. This is a unique advantage of

LIMO, as it is able to generate many candidate compounds

very quickly, allowing for aggressive filtering downstream.

Indeed, we have generated a highly favorable compound

(KD = 6 · 10−14 M) as calculated by ABFE, even more

favorable than AutoDock-GPU predictions, out of only two

generated candidates. The addition of further automated

binding affinity confirmation into the LIMO pipeline, e.g.

with additional docking software or automated ABFE calcu-

lation, is a promising direction for future work. Other future

directions include exploring the use of different molecular

representation and model architectures in LIMO, the use of

better optimizers beyond simple gradient-based methods,

and the application of LIMO to more or multiple simultane-

ous protein targets.
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A. Experiment description and baselines
A.1. Tasks

Random generation of molecules: Generate random molecules by sampling from the latent space of the generative model.

As later optimization relies on these generated molecules as starting points, it is important that they be novel, diverse, and

unique.

QED and penalized logP maximization: Generate molecules with high penalized logP (p-logP, estimated octanol-water

partition coefficient penalized by synthetic accessibility (SA) score and number of cycles with more than six atoms (Jin et al.,

2018)) and quantitative estimate of drug-likeness (QED, (Bickerton et al., 2012)) scores. These properties are important

considerations in drug discovery, and this task shows the ability of a model to optimize salient aspects of a molecule, even if

maximization of these properties by themselves is of low utility (Zhou et al., 2019).

logP targeting: Generate molecules with logP within a specified range. In drug discovery, a logP within a given range is

often taken as an approximate indicator that a molecule will have favorable pharmacokinetic properties.

Similarity-constrained penalized logP maximization: For each molecule in a set of starting molecules, generate a novel

molecule with a high penalized logP (p-logP) score while retaining similarity (as defined by Tanimoto similarity between

Morgan fingerprints, Rogers & Hahn (2010)) to the original molecule. This mimics the drug discovery task of adjustment of

an active starting molecule’s logP while keeping similarity to the starting molecule to retain biological activity.

Substructure-constrained logP extremization: Generate molecules with either high or low logP scores while keeping

a subgraph of a starting molecule fixed. This task mimics the drug discovery goal of optimizing around (“decorating”)

an existing substructure to fine-tune activity or adjust pharmacologic properties. This is common in the lead optimization

stage of drug development, where a synthetic pathway to reach an exact substructure with proven activity is established,

but molecular groups around this substructure are more malleable and not yet established. This task is not captured in the

similarity-constrained optimization task above, which uses more general whole-molecule similarity metrics.

Single-objective binding affinity maximization: Generate molecules with high computed binding affinity for two protein

targets as determined by docking software. Reaching high binding affinities is the primary goal of early drug discovery,

and its optimization using a physics-based affinity estimator is a relatively novel task in the ML-based molecule generation

literature. Previous attempts to optimize affinity have relied on knowledge of existing binders (Zhavoronkov et al., 2019;

Jeon & Kim, 2020; Luo et al., 2021a), which lacks the generalizability of physics-based estimators to targets without known

binders.

Multi-objective binding affinity maximization: Generate molecules with favorable computed binding affinity, QED, and

SA scores. This task has high utility in drug discovery, as it addresses targeting, pharmacokinetic properties, and ease of

synthesis. Development of molecules satisfying all these considerations is challenging, and to the best of our knowledge, is

a novel task in the ML-based molecule generation literature.

A.2. Molecule metrics

We report the following metrics for our multi-objective optimized molecules, all of which are given by ADMETLab 2.0

(Xiong et al., 2021) except binding affinities:

• KD (AutoDock-GPU): Dissociation constant KD in nanomolar, as calculated by AutoDock-GPU. Lower KD is

associated with better binding (i.e. higher affinity) (Santos-Martins et al., 2021)

• KD (ABFE): Dissociation constant KD in nanomolar, as calculated by absolute binding free energy (ABFE) calcula-

tions, which are generally more accurate than AutoDock-GPU scores (Cournia et al., 2020)

• QED: Quantitative estimate of drug-likeness score, higher is better (Bickerton et al., 2012)

• SA: Synthetic accessibility score, lower is better (Ertl & Schuffenhauer, 2009)

• Lipinksi: Lipinski’s rule of 5 is a commonly used rule of thumb for drug-likeness (Lipinski et al., 2001). Compounds

that pass all or all but one of four components are considered more likely to be suitable as drugs.

• PAINS: Number of PAINS alerts. These alerts detect compounds likely to have non-specific activity against a wide

array of biological targets, making them undesirable as drugs. Lower is better (Baell & Holloway, 2010)
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• Fsp3: The fraction of sp3 hybridized carbons, which is thought to correlate with favorable drug properties. Higher is

better (Wei et al., 2020)

• MCE-18: A measure of molecular novelty based on complexity measures. Higher is better (Ivanenkov et al., 2019)

A.3. Fine-tuning algorithm

Algorithm 1 Molecule fine-tuning algorithm.

Require: The starting molecule M to be optimized and a function π(m) that calculates a property for molecule m
R ← {N,O,Cl, F}
bestProperty ← π(M)
while bestProperty is improving do

bestMolecule = M
for all carbon atoms in M not adjacent to any atoms ∈ R do

for all potential replacement atoms ∈ R do
m ← M with the carbon atom replaced

if m is valid and π(m) is better than π(bestMolecule) then
bestMolecule ← m

end if
end for

end for
M ← bestMolecule

end while

A.4. Baselines

We compare with the following baselines:

• JT-VAE (Jin et al., 2018): a VAE-based generative model that first generates a scaffold junction tree and then assembles

nodes in the tree into a molecular graph.

• GCPN (You et al., 2018): an RL agent that successively constructs a molecule by optimizing a reward composed of

molecular property objectives and adversarial loss. For running baselines, we use code from https://github.
com/bowenliu16/rl_graph_generation.

• MolDQN (Zhou et al., 2019): an RL framework that uses chemical domain knowledge and double Q-learning. For

running baselines, we use code from https://github.com/aksub99/MolDQN-pytorch.

• MARS (Xie et al., 2021): a sampling method based on Markov chain Monte Carlo that uses an adaptive fragment-editing

proposal distribution based on GNN.

• GraphDF (Luo et al., 2021b): a normalizing flow model for graph generation that uses a discrete latent variable model,

fine-tuned with RL. For running baselines, we use code from https://github.com/divelab/DIG.

To generate results from baselines, we ran each method until little improvement was observed. For methods without an

explicit generation process (i.e. GCPN, MolDQN, and MARS), we took the highest property scores from all molecules

generated. For methods with an explicit generation process (GraphDF), we trained until little improvement was observed

and then sampled the same number of molecules as was sampled from LIMO. All times reported include the total time from

each method, including training, property calculation times, and generation times if applicable.

To run MolDQN for the property targeting task, which requires obtaining an optimized set of molecules, we used the last

molecule of the most recent 1,000 training episodes to build a set on which success and diversity were calculated.
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A.5. Experimental details

For the VAE, we use a 64-dimensional embedding layer that feeds into four batch-normalized 1,000-dimensional (2,000

for first layer) linear layers with ReLU activation. This generates a Gaussian output for the 1024-dimensional latent space

that can be sampled from. For the decoder, we also use four batch-normalized linear layers with ReLU activation, with the

same dimensions. Softmax is used over all possible symbols at each symbol location in the output layer, and the VAE is

trained with evidence lower bound (ELBO), with the negative log-likelihood reconstruction term multiplied by 0.9 and the

KL-divergence term multiplied by 0.1. The VAE is trained over 18 epochs with a learning rate of 0.0001 using the Adam

optimizer.

For the property predictor, we use three 1,000-dimensional linear layers with ReLU activation. Layer width, number of

layers, and activation function were determined after hyperparameter optimization for predicting penalized logP, and these

hyperparameters were then used for all other property prediction tasks. Similarly, we did not tune baseline methods for

specific tasks, and used only the default hyperparameters tuned on a single task. For each property to predict, we use

PyTorch Lightning to choose the optimal learning rate with the Adam optimizer to train the predictor over 5 epochs, then

perform backward optimization with a learning rate of 0.1 for 10 epochs.

All experiments, including baselines, were run on two GTX 1080 Ti GPUs, one for running PyTorch code and the other for

running AutoDock-GPU, and 4 CPU cores with 32 GB memory.

A.6. Autodock-GPU

We use AutoDock-GPU, a GPU accelerated version of AutoDock4 with an additional AdaDelta local search method, to

calculate binding affinities for LIMO. It is fast enough for our purposes while still generating reasonably accurate results

(Santos-Martins et al., 2021).

To generate docking scores from a SMILES string produced by LIMO, we perform the following steps:

1. Generate grid files for docking using AutoGrid4. For human estrogen receptor, we set the bounding box for docking to

include the well-known ligand binding site. For human peroxisomal acetyl-CoA acyl transferase 1, a novel target, we

use fpocket (Guilloux et al., 2009) to predict the binding pocket and set the docking bounding box around it.

2. For each SMILES to evaluate, we convert it to a 3D .pdbqt file using obabel 2.4.0 (O'Boyle et al., 2011). We set pH=7.4

to assign hydrogens and set Gasteiger partial charges.

3. We run AutoDock-GPU (Santos-Martins et al., 2021) with default parameters on the .pdbqt files, in batch mode if

applicable.

4. With the generated .dig files from AutoDock-GPU, we extract the top binding energy number in the results table.

A.7. Absolute binding free energy

To corroborate our AutoDock-GPU predicted binding affinities, we conducted absolute binding free energy (ABFE)

calculations on our most promising ligands. ABFE calculations estimate the binding free energy ΔGbind, i.e., the

difference between the free energy of a molecule’s bound and unbound states, by computing the reversible work of

moving a molecule from water into the binding site of the targeted protein. The dissociation constant is then obtained as

KD(ABFE) = e−ΔGbind/RT , where R is the gas constant and T is absolute temperature (Gilson & Zhou, 2007). The

free energy calculation is done with detailed molecular dynamics simulations of the protein and the molecule dissolved in

thousands of water molecules. This method is more detailed and computationally expensive, and typically more accurate,

than docking (Cournia et al., 2020). Here, the 5 best-scoring poses from AutoDock-GPU were sent to the software BAT.py

(Heinzelmann & Gilson, 2021) to compute the binding free energy, ΔGi, for each pose i. The overall binding free energy

accounting for all 5 poses was then obtained as ΔGbind = −RT ln
∑

i e
−ΔGi/RT (Gilson & Zhou, 2007). Note that the

pose with the most favorable (negative) ΔGi contributes the most to the overall binding free energy, and this is also the

most stable and hence most probable binding pose of the ligand. We thus analyzed the protein-ligand interactions for this

most stable pose. For each ligand, we use the mean free energy of two independent ABFE runs from calculations initiated

with different random seeds.
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B. Additional experiments
B.1. Random generation of molecules

Table 6. Random generation of molecules trained on the MOSES dataset and calculated with the MOSES platform (Polykovskiy et al.,

2020). % valid: percent of molecules that are chemically valid. U@1K: percent of 1,000 generated molecules that are unique. U@10K:

percent of 10,000 generated molecules that are unique. Diversity: one minus average pairwise similarity between molecules. % novel:

percent of valid generated molecules not present in training set. JT-VAE results taken from (Polykovskiy et al., 2020).

METHOD % VALID % U@1K % U@10K DIV. % NOV.

JT-VAE 100 100 99.96 0.855 91.43
GRAPHDF 100 100 99.72 0.887 100

LIMO 100 99.8 97.56 0.907 100

Results from the random generation of 30,000 molecules are summarized in Table 6. LIMO achieves the highest diversity

score among compared methods, an important metric when using the latent space as a basis for the optimization of molecules

on a wide range of properties. This diversity provides the foundation for LIMO’s ability to generate a diverse set of molecules

with desirable properties.

B.2. Justification of multi-objective optimization

SA cutoff QED cutoff

Random

Opt with

Opt without

log(KD) ( ↓ ) Synthetic accessibility (SA) ( ↓ ) Quantiative estimation of drug-likeness (QED) ( ↑ )

Figure 5. Distribution of molecular properties of randomly generated molecules (Random), after performing optimization on all three

properties (Opt with), and after performing optimization on the two other properties, leaving out the one on the x-axis (Opt without).

For QED and SA, cutoff values are shown for the minimum and maximum (respectively) scores that we consider sufficient for further

optimization. For the KD distributions, arrows mark the minimum value of each. On the x-axis, (↓) indicates that a low value is desired,

and (↑) indicates that a high value is desired.

Figure 5 shows distributions of properties from randomly sampled molecules, molecules optimized on all three objectives

(computed binding affinity against ESR1, QED, and SA), and optimized molecules leaving out one objective. We also show

our QED and SA cutoff values used in the filtering step defined in Section 3.4. As shown, inclusion in the objective function

pushes each property in the direction of improvement, or, in the case of SA, prevents it from decreasing more than it would

have if it had not been included. Therefore, multi-objective optimization is successful in generating more molecules with

potentially high binding affinity within the defined cutoff ranges, so is advantageous over single-objective optimization.


