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Abstract
Learning the dynamics of spatiotemporal events is a fundamental problem. Neural point processes

enhance the expressivity of point process models with deep neural networks. However, most ex-

isting methods only consider temporal dynamics without spatial modeling. We propose Deep Spa-

tiotemporal Point Process (DeepSTPP), a deep dynamics model that integrates spatiotemporal

point processes. Our method is flexible, efficient, and can accurately forecast irregularly sampled

events over space and time. The key construction of our approach is the nonparametric space-time

intensity function, governed by a latent process. The intensity function enjoys closed form inte-

gration for the density. The latent process captures the uncertainty of the event sequence. We use

amortized variational inference to infer the latent process with deep networks. Using synthetic

datasets, we validate our model can accurately learn the true intensity function. On real-world

benchmark datasets, our model demonstrates superior performance over state-of-the-art baselines.

Our code and data can be found at the link.

Keywords: spatiotemporal dynamics, neural point processes, kernel density estimation

1. Introduction

Accurate modeling of spatiotemporal event dynamics is fundamentally important for disaster re-

sponse (Veen and Schoenberg, 2008), logistic optimization (Safikhani et al., 2018) and social media

analysis (Liang et al., 2019). Compared to other sequence data such as texts or time series, spa-

tiotemporal events occur irregularly with uneven time and space intervals.

Discrete-time deep dynamics models such as recurrent neural networks (RNNs) (Hochreiter

and Schmidhuber, 1997; Chung et al., 2014) assume events to be evenly sampled. Interpolating an

irregular sampled sequence into a regular sequence can introduce significant biases (Rehfeld et al.,

2011). Furthermore, event sequences contain strong spatiotemporal dependencies. The rate of an

event depends on the preceding events, as well as the events geographically correlated to it.

Spatiotemporal point processes (STPP) (Daley and Vere-Jones, 2007; Reinhart et al., 2018)

provides the statistical framework for modeling continuous-time event dynamics. As shown in Fig-
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ure 1, given the history of events sequence, STPP estimates the intensity function that is evolv-

ing in space and time. However, traditional statistical methods for estimating STPPs often re-

quire strong modeling assumptions, feature engineering, and can be computationally expensive.

Historical events Upcoming event ( )

User’s trajectory Representive points

Hi i l U i ( )

Figure 1: Illustration of learning spatiotemporal

point process. We aim to learn the space-time

intensity function given the historical event se-

quence and representative points as background.

Machine learning community is observing

a growing interest in continuous-time deep dy-

namics models that can handle irregular time

intervals. For example, Neural ODE (Chen

et al., 2018) parametrizes the hidden states in an

RNN with an ODE. Shukla and Marlin (2018)

uses a separate network to interpolate between

reference time points. Neural temporal point

process (TPP) (Mei and Eisner, 2017; Zhang

et al., 2020; Zuo et al., 2020) is an exciting

area that combines fundamental concepts from

temporal point processes with deep learning to

model continuous-time event sequences, see a

recent review on neural TPP (Shchur et al.,

2021). However, most of the existing models

only focus on temporal dynamics without con-

sidering spatial modeling.

In the real world, while time is a unidirectional process (arrow of time), space extends in multi-

ple directions. This fundamental difference from TPP makes it nontrivial to design a unified STPP

model. The naive approach to approximate the intensity function by a deep neural network would

lead to intractable integral computation for likelihood. Prior research such as Du et al. (2016) dis-

cretizes the space as “markers” and uses marked TPP to classify the events. This approach cannot

produce the space-time intensity function. Okawa et al. (2019) models the spatiotemporal density

using a mixture of symmetric kernels, which ignores the unidirectional property of time. Chen et al.

(2021) proposes to model temporal intensity and spatial density separately with neural ODE, which

is computationally expensive.

We propose a simple yet computationally efficient approach to learning STPP. Our model, Deep
Spatiotemporal Point Process (DeepSTPP) marries the principles of spatiotemporal point processes

with deep learning. We take a non-parametric approach and model the space-time intensity function

as a mixture of kernels. The parameters of the intensity function are governed by a latent stochastic

process no sampling which captures the uncertainty of the event sequence. The latent process is then

inferred via amortized variational inference. That is, we draw a sample from the variational distri-

bution for every event. We use a Transformer network to parametrize the variational distribution

conditioned on the previous events.

Compared with existing approaches, our model is non-parametric, hence does not make as-

sumptions on the parametric form of the distribution. Our approach learns the space-time intensity

function jointly without requiring separate models for temporal intensity function and spatial density

as in Chen et al. (2021). Our model is probabilistic by nature and can describe various uncertainties

in the data. More importantly, our model enjoys closed form integration, making it feasible for pro-

cessing large-scale event datasets. To summarize, our work makes the following key contributions:
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• Deep Spatiotemporal Point Process. We propose a novel Deep Point Process model for

forecasting unevenly sampled spatiotemporal events. It integrates deep learning with spa-

tiotemporal point processes to learn continuous space-time dynamics.

• Neural Latent Process. We model the space-time intensity function using a non-parametric

approach, governed by a latent stochastic process. We use amortized variational inference to

perform inference on the latent process conditioned on the previous events.

• Effectiveness. We demonstrate our model using many synthetic and real-world spatiotempo-

ral event forecasting tasks, where it achieves superior performance in accuracy and efficiency.

We also derive and implement efficient algorithms for simulating STPPs.

2. Methodology

We first introduce the background of the spatiotemporal point process and then describe our ap-

proach to learning the underlying spatiotemporal event dynamics.

2.1. Background on Spatiotemporal Point Process

Spatiotemporal Point Process. Spatiotemporal point process (STPP) models the number of events

N(S × (a, b)) that occurred in the Cartesian product of the spatial domain S ⊆ R
2 and the time

interval (a, b]. It is characterized by a non-negative space-time intensity function given the history

Ht := {(s1, t1), . . . , (sn, tn)}tn≤t:

λ∗(s, t) := lim
Δs→0,Δt→0

E[N(B(s,Δs)× (t, t+Δt))|Ht]

B(s,Δs)Δt
(1)

which is the probability of finding an event in an infinitesimal time interval (t, t + Δt] and an

infinitesimal spatial ball S = B(s,Δs) centered at location s.

Example 1: Spatiotemporal Hawkes process (STH). Spatiotemporal Hawkes (or self-exciting)

process assumes every past event has an additive, positive, decaying, and spatially local influence

over future events. Such a pattern resembles neuronal firing and earthquakes. It is characterized by

the following intensity function (Reinhart et al., 2018):

λ∗(s, t) := μg0(s) +
∑
i:ti<t

g1(t, ti)g2(s, si) : μ > 0 (2)

where g0(s) is the probability density of a distribution over S , g1 is the triggering kernel and is often

implemented as the exponential decay function, g1(Δt) := α exp(−βΔt) : α, β > 0, and g2(s, si)
is the density of an unimodal distribution over S centered at si.

Example 2: Spatiotemporal Self-Correcting process (STSC). Self-correcting spatiotemporal

point process (Isham and Westcott, 1979) assumes that the background intensity increases with a

varying speed at different locations, and the arrival of each event reduces the intensity nearby. STSC

can model certain regular event sequences, such as an alternating home-to-work travel sequence. It

has the following intensity function:

λ∗(s, t) = μ exp
(
g0(s)βt−

∑
i:ti<t

αg2(s, si)
)
: α, β, μ > 0 (3)

Here g0(s) is the density of a distribution over S , and g2(s, si) is the density of an unimodal distri-

bution over S centered at location si.

3



DEEP SPATIOTEMPORAL POINT PROCESS

Maximum likelihood Estimation. Given a history of n events Ht, the joint log-likelihood func-

tion of the observed events for STPP is as follows:

log p(Ht) =

n∑
i=1

log λ∗(si, ti)−
∫
S

∫ t

0
λ∗(u, τ)dudτ (4)

Here, the space-time intensity function λ∗(s, t) plays a central role. Maximum likelihood estimation

seeks the optimal λ∗(s, t) from data that optimizes Eqn. 4.

Predictive distribution. Denote the probability density function (PDF) for STPP as f(s, t|Ht)
which represents the conditional probability that next event will occur at location s and time t, given

the history. The PDF is closely related to the intensity function:

f(s, t|Ht) =
λ∗(s, t)

1− F ∗(s, t|Ht)
= λ∗(s, t) exp

(
− ∫

S
∫ t
tn
λ∗(u, τ)dτdu

)
(5)

where F is the cumulative distribution function (CDF), see derivations in Appendix ??. This means

the intensity function specifies the expected number of events in a region conditional on the past.

The predicted time of the next event is the expected value of the predictive distribution for time

f�(t) in the entire spatial domain:

E[tn+1|Ht] =

∫ ∞

tn

t

∫
S
f∗(s, t)dsdt =

∫ ∞

tn

t exp

(
−
∫ t

tn

λ∗(τ)dτ
)
λ∗(t)dsdt

Similarly, the predicted location of the next event evaluates to:

E[sn+1|Ht] =

∫
S
s

∫ ∞

tn

f∗(s, t)dtds =
∫ ∞

tn

exp

(
−
∫ t

tn

λ∗(τ)dτ
)∫

S
sλ∗(s, t)dsdt

Unfortunately, Eqn. (4) is generally intractable. It requires either strong modeling assumptions

or expensive Monte Carlo sampling. We propose the Deep STPP model to simplify the learning.

2.2. Deep Spatiotemporal Point Process (DSTPP)

We propose DeepSTPP, a simple and efficient approach for learning the space-time event dynam-

ics. Our model (1) introduces a latent process to capture the uncertainty, (2) parametrizes the latent

process with deep neural networks to increase model expressivity, and (3) approximates the intensity

function with a set of spatial and temporal kernel functions.

Neural latent process. Given a sequence of n event, we wish to model the conditional density

of observing the next event given the history f(s, t|Ht). We introduce a latent process to capture

the uncertainty of the event history and infer the latent process with armotized variational inference.

The latent process dictates the parameters in the space-time intensity function. We sample from the

latent process using the re-parameterization trick (Kingma and Welling, 2013).

As shown in Figure 2, given the sequence with n events Ht = {(s1, t1), . . . , (sn, tn)}tn≤t, we

encode the entire sequence into the high-dimensional embedding. We use positional encoding to

encode the sequence order. To capture the stochasticity in the temporal dynamics, we introduce a
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sam
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transformer
decoder

Figure 2: Design of our DeepSTPP model. For a historical event sequence, we encode it with a

transformer network and map to the latent process (z1, · · · , zn). We use a decoder to generate the

parameters (wi, γi, βi) for each event i given the latent process. The estimate intensity is calculated

using kernel functions ks and kt and the decoded parameters.

latent process z = (z1, · · · , zn) for the entire sequence. We assume the latent process follows a

multivariate Gaussian at each time step:

zi ∼ qφ(zi|Ht) = N (μ,Diag(σ)) (6)

where the mean μ and covariance Diag(σ) are the outputs of the embedding neural network. In our

implementation, we found using a Transformer (Vaswani et al., 2017) with sinusoidal positional en-

coding to be beneficial. The positions to be encoded are the normalized event time instead of the in-

dex number, to account for the unequal time interval. Recently, Zuo et al. (2020) also demonstrated

that Transformer enjoys better performance for learning the intensity in temporal point processes.

Non-parametric model. We take a non-parameteric approach to model the space-time intensity

function λ∗(s, t) as:

λ∗(s, t|z) =
n+J∑
i=1

wiks(s, si; γi)kt(t, ti;βi) (7)

Here wi(z), γi(z), βi(z) are the parameters for each event that is conditioned on the latent process.

Specifically, wi represents the non-negative intensity magnitude, implemented with a soft-plus ac-

tivation function. J is the number of representative points that we will introduce later. ks(·, ·) and

kt(·, ·) are the spatial and temporal kernel functions, respectively. For both kernel functions, we

parametrize them as a normalized RBF kernel:

ks(s, si) = α−1 exp
(− γi‖s− si‖

)
, kt(t, ti) = exp

(− βi‖t− ti‖
)

(8)

where the bandwidth parameter γi controls an event’s influence over the spatial domain. The param-

eter βi is the decay rate that represents the event’s influence over time. α =
∫
S exp

(−γi‖s−si‖
)
ds

is the normalization constant.

We use a decoder network to generate the parameters {wi, γi, βi} given z separately, shown in

Figure 2. Each decoder is a 4-layer feed-forward network. We use a softplus activation function to
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ensure wi and γi are positive. The decay rate βi can be any real number, such that an event can also

have constant or increasing triggering intensity over time.

Representative Points. In addition to n historical events, we also randomly sample J representa-

tive points from the spatial domain to approximate the background intensity. This is to account for

the influence from unobserved events in the background, with varying rates at different locations.

The model design in (7) enjoys a closed form integration, which gives the conditional PDF as:

f(s, t|Ht, z) = λ∗(s, t|z) exp
(
−

n+J∑
i=1

wi

βi
[kt(tn, ti)− kt(t, ti)]

)
(9)

See the derivation details in Appendix ??. DeepSTPP circumvents the integration of the intensity

function and enjoys fast inference in forecasting future events. In contrast, NSTPP Chen et al.

(2021) is relatively inefficient as its ODE solver also requires additional numerical integration.

Parameter learning. Due to the latent process, the posterior becomes intractable. Instead, we

use amortized inference by optimizing the evidence lower bound (ELBO) of the likelihood. In

particular, given event history Ht, the conditional log-likelihood of the next event is:

log p(s, t|Ht) ≥ log pθ(s, t|Ht, z) + KL(qφ(z|Ht)||p(z)) (10)

= log λ∗(s, t|z)−
∫ t

tn

λ∗(τ)dτ + KL(q||p) (11)

where φ represents the parameters of the encoder network, and θ are the parameters of the decoder

network. p(z) is the prior distribution, which we assume to be Gaussian. KL(·||·) is the Kull-

back–Leibler divergence between two distributions. We can optimize the objective function in Eqn.

(11) w.r.t. the parameters φ and θ using back-propagation.

3. Related Work

Spatiotemporal Dynamics Learning. Modeling the spatiotemporal dynamics of a system in or-

der to forecast the future is a fundamental task in many fields. Most work on spatiotemporal dy-

namics has been focused on spatiotemporal data measured at regular space-time intervals, e.g.,

(Xingjian et al., 2015; Li et al., 2018; Yao et al., 2019; Fang et al., 2019; Geng et al., 2019). For dis-

crete spatiotemporal events, statistical methods include space-time point process, see (Moller and

Waagepetersen, 2003; Mohler et al., 2011). Zhao et al. (2015) proposes multi-task feature learning

whereas Yang et al. (2018) proposes RNN-based model to predict spatiotemporal check-in events.

These discrete-time models assume data are sampled evenly, thus are unsuitable for our task.

Continous Time Sequence Models. Continuous time sequence models provide an elegant ap-

proach for describing irregular sampled time series. For example, Chen et al. (2018); Jia and Ben-

son (2019); Dupont et al. (2019); Gholami et al. (2019); Finlay et al. (2020); Kidger et al. (2020);

Norcliffe et al. (2021) assume the latent dynamics are continuous and can be modeled by an ODE.

But for high-dimensional spatiotemporal processes, this approach can be computationally expen-

sive. Che et al. (2018); Shukla and Marlin (2018) modify the hidden states with exponential decay.

GRU-ODE-Bayes proposed by De Brouwer et al. (2019) introduces a continuous-time version of

GRU and a Bayesian update network capable of handling sporadic observations. However, Mozer

et al. (2017) shows that there is no significant benefit of using continuous-time RNN for discrete

event data. Special treatment is still needed for modeling unevenly sampled events.
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Figure 3: Ground-truth and learned intensity on two synthetic data. Top: ground-truth; Middle:

learned intensity by our DeepSTPP model. Bottom: learned conditional intensity by NSTPP. The

crosses on the top represent the event history, larger crosses are more recent events.

Deep Point Process. Point process is well-studied in statistics (Moller and Waagepetersen, 2003;

Daley and Vere-Jones, 2007; Reinhart et al., 2018). Early work such as Linderman and Adams

(2014) applies the graph model and Bayesian approach to infer the latent dynamic in point pro-

cesses. Deep point process couples deep learning with point process and has received considerable

attention. For example, neural Hawkes process applies RNNs to approximate the temporal intensity

function (Du et al., 2016; Mei and Eisner, 2017; Xiao et al., 2017; Zhang et al., 2020), and Zuo et al.

(2020) employs Transformers. Shang and Sun (2019) integrates graph convolution structure. How-

ever, all existing works focus on temporal point processes without spatial modeling. For datasets

with spatial information, they discretize the space and treat them as discrete “markers”. Okawa

et al. (2019) extends Du et al. (2016) for spatiotemporal event prediction but they only predict the

density instead of the next location and time of the event. Zhu et al. (2019) parameterizes the spatial

kernel with a neural network embedding without consider the temporal sequence. Recently, Chen

et al. (2021) proposes neural spatiotemporal point process (NSTPP) which combines continuous-

time neural networks with continuous-time normalizing flows to parameterize spatiotemporal point

processes. However, this approach is quite computationally expensive, which requires evaluating

the ODE solver for multiple time steps.

4. Experiments

We evaluate DeepSTPP for spatiotemporal prediction using both synthetic and real-world data.

Baselines We compare DeepSTPP with the state-of-the-art models, including

• Spatiotemporal Hawkes Process (MLE) (Reinhart et al., 2018): it learns a spatiotemporal para-

metric intensity function using maximum likelihood estimation, see derivation in Appendix ??.

• Recurrent Marked Temporal Point Process (RMTPP) (Du et al., 2016): it uses GRU to model the

temporal intensity function. We modify this model to take spatial location as marks.

• Neural Spatiotemporal Point Process (NSTPP) (Chen et al., 2021): state of the art neural point

process model that parameterizes the spatial PDF and temporal intensity with continuous-time

normalizing flows. Specifically, we use Jump CNF as it is a better fit for Hawkes processes.
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All models are implemented in PyTorch, trained using the Adam optimizer. We set the number of

representative points to be 100. The details of the implementation are deferred to the Appendix ??.

For the baselines, we use the authors’ original repositories whenever possible.

Datasets. We simulated two types of STPPs: spatiotemporal Hawkes process (STH) and spa-

tiotemporal self-correcting process (STSC) . For both STPPs, we generate three synthetic datasets,

each with a different parameter setting, denoted as DS1, DS2, and DS3 in the tables. We also de-

rive and implement efficient algorithms for simulating STPPs based on Ogata’s thinning algorithm

(Ogata, 1981). We view the simulator construction as an independent contribution from this work.

The details of the simulation can be found in Appendix ??. We use two real-world spatiotemporal

event datasets from NSTPP (Chen et al., 2021) to benchmark the performance.

• Earthquakes Japan: catalog earthquakes data including the location and time of all earth-

quakes in Japan from 1990 to 2020 with magnitude of at least 2.5 from the U.S. Geological

Survey. There are in total 1,050 sequences. The number of events per sequences ranges

between 19 to 545 1.

• COVID-19: daily county level COVID-19 cases data in New Jersey state published by The

New York Times. There are 1,650 sequences and the number of events per sequences ranges

between 7 to 305.

For both synthetic data and real-world data, we partition long event sequences into non-overlapping

subsequences according to a fixed time range T . The targets are the last event, and the input is the

rest of the events. The number of input events varies across subsequences. For each dataset, we

split each into train/val/test sets with the ratio of 8:1:1. All results are the average of 3 runs.

Table 1: Test log likelihood (LL) and Hellinger distance of distribution (HD) on synthetic data (LL higher

is better, HD lower is better). Comparison between ours and NSTPP on synthetic datasets from two type of

spatiotemporal point processes.

Spatiotemporal Hawkes process

DS1 DS2 DS3

LL HD LL HD LL HD

DeepSTPP (ours) -3.8420 0.0033 -3.1142 0.4920 -3.6327 0.0908
NSTPP -5.3110 0.5341 -4.8564 0.5849 -3.7366 0.1498

Spatiotemporal Self Correcting process

DS1 DS2 DS3

LL HD LL HD LL HD

-1.2248 0.2348 -1.4915 0.1813 -1.3927 0.2075
-2.0759 0.5426 -2.3612 0.3933 -3.0599 0.3097

4.1. Synthetic Experiment Results
Table 2: Estimated λ∗(t) MAPE on synthetic data

STH STSC

DS1 DS2 DS3 DS1 DS2 DS3

DeepSTPP 3.33 369.44 11.30 7.84 3.22 20.98

NSTPP 53.41 17.69 3.85 99.99 39.33 37.39

RMTPP 263.83 729.78 0.62 45.55 21.26 37.46

MLE 2.98 11.30 4.38 27.38 18.20 20.01

For synthetic data, we know the

ground truth intensity function. We

compare our method with the best

possible estimator: maximum likeli-

hood estimator (MLE), as well as the

NSTPP model. The MLE is learned

by optimizing the log-likelihood us-

ing the BFGS algorithm. RMTPP can

only learn the temporal intensity thus is not included in this comparison.

1. The statistics differ slightly from the original paper due to updates in the data source.
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Predictive log-likelihood. Table 1 shows the comparison of the predictive distribution for space

and time. We report Log Likelihood (LL) of f(s, t|Ht) and the Hellinger Distance (HD) between

the predictive distributions and the ground truth averaged over time.

On both the STH and STSC datasets with different parameter settings, DeepSTPP outperform

the baseline NSTPP in terms of LL and HD. It shows that DeepSTPP can estimate the spatiotem-

poral intensity more accurately for point processes with unknown parameters.

Figure 4: Log train time comparison on all datasets

Temporal intensity estimate. Table 2 shows

the mean absolute percentage error (MAPE) be-

tween the models’ estimated temporal intensity

and the ground truth λ�(t) over a short sampled

range. On the STH datasets, since MLE has

the correct parametric form, it is the theoretical

optimum. Compared to baselines, DeepSTPP
generally obtained the same or lower MAPE. It

shows that joint spatiotemporal modeling also

improve the performance of temporal predic-

tion.

Intensity visualization. Figure 3 visualizes

the learned space-time intensity and the ground truth for STH and STSC, providing strong evi-

dence that DeepSTPP can correctly learn the underlying dynamics of the spatiotemporal events.

Especially, NSTPP has difficulty in modeling the complex dynamics of the multimodal distribution

such as the spatiotemporal Hawkes process. NSTPP sometimes produces overly smooth intensity

surfaces, and lost most of the details at the peak. In contrast, our DeepSTPP can better fit the

multimodal distribution through the form of kernel summation and obtain more accurate intensity

functions.

Computational efficiency. Figure 4 provides the run time comparison for the training between

DeepSTPP and NSTPP for 100 epochs. To ensure a fair comparison, all experiments are conducted

on 1 GTX 1080 Ti with Intel Core i7-4770 and 64 GB RAM. Our method is 100 times faster than

NSTPP in training. It is mainly because our spatiotemporal kernel formulation has a close form of

integration, which bypasses the complex and cumbersome numerical integration.

4.2. Real-World Experiment Results

Table 3: Test log likelihood (LL) comparison for space and

time on real-world data over 3 runs.

LL COVID-19 NY Earthquake JP

Space Time Space Time

DeepSTPP −0.1150±0.0109 2.4583±0.0008 −4.4025±0.0128 0.4173±0.0014

NSTPP −0.0798±0.0433 2.6364±0.0111 −4.8141±0.1165 0.3192±0.0124

RMTPP - 2.4476±0.0039 - 0.3716±0.0077

For real-world data evaluation, we re-

port the conditional spatial and tem-

poral log-likelihoods, i.e., log f∗(s|t)
and log f∗(t), of the final event given

the input events, respectively. The to-

tal log-likelihood, log f∗(s, t), is the

summation of the two values.

Predictive performances. As our

model is probabilistic, we compare

against baselines models on the test predictive LL for space and time separately in Table 3. RMTPP
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can only produce temporal intensity thus we only include the time likelihood. We observe that

DeepSTPP outperforms NSTPP most of the time in terms of accuracy. It takes only half of the time

to train, as shown in Figure 4. Furthermore, we see that STPP models (first three rows) achieve

higher LL compared with only modeling the time (RMTPP). It suggests the additional benefit of

joint spatiotemporal modeling to increases the time prediction ability.

Table 4: Test LL for alternative model designs over 3 runs

(higher the better) COVID-19 NY STH DS2

Space Time Space Time

Shared decoders −0.1152±0.0142 2.4581±0.0030 −2.4397±0.0170 −0.6060±0.0381

Separate processes -0.1057±0.0140 2.4561±0.0048 −2.4291±0.0123 −0.7022±0.0050

LSTM encoder −0.1162±0.0102 2.4554±0.0035 −2.4331±0.0174 −0.6845±0.0252

DeepSTPP −0.1150±0.0109 2.4583±0.0008 −2.4289±0.0102 −0.6853±0.0145

Ablation study We conduct abla-

tion studies on the model design. Our

model assumes a global latent pro-

cess z that governs the parameters

{wi, βi, γi} with separate decoders.

We examine other alternative designs

experimentally. (1) Shared decoders:

We use one shared decoder to gener-

ate model parameters. Shared decoders input the sampled z to one decoder and partition its output

to generate model parameters.(2) Separate process: We assume that each of the {wi, βi, γi} follows

a separate latent process and we sample them separately. Separate processes use three sets of means

and variances to sample {wi, βi, γi} separately. (3) LSTM encoder: We replace the Transformer

encoder with a LSTM module.

As shown in Table 4, we see that (1) Shared decoders decreases the number of parameters

but reduces the performance. (2) Separate process largely increases the number of parameters but

has negligible influences in test log-likelihood. (3) LSTM encoder: changing the encoder from

Transformer to LSTM also results in slightly worse performance. Therefore, we validate the design

of DeepNSTPP: we assume all distribution parameters are governed by one single hidden stochastic

process with separate decoders and a Transformer as encoder.

5. Conclusion

We propose a family of deep dynamics models for irregularly sampled spatiotemporal events. Our

model, Deep Spatiotemporal Point Process (DeepSTPP), integrates a principled spatiotemporal

point process with deep neural networks. We derive a tractable inference procedure by modeling the

space-time intensity function as a composition of kernel functions and a latent stochastic process.

We infer the latent process with neural networks following the variational inference procedure.

Using synthetic data from the spatiotemporal Hawkes process and self-correcting process, we show

that our model can learn the spatiotemporal intensity accurately and efficiently. We demonstrate

superior forecasting performance on many real-world benchmark spatiotemporal event datasets.

Future work include further considering the mutual-exciting structure in the intensity function, as

well as modeling multiple heterogeneous spatiotemporal processes simultaneously.
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