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Abstract

It is well known that deep neural networks (DNNs) pro-
duce poorly calibrated estimates of class-posterior prob-
abilities. We hypothesize that this is due to the limited
calibration supervision provided by the cross-entropy loss,
which places all emphasis on the probability of the true
class and mostly ignores the remaining. We consider how
each example can supervise all classes and show that the
calibration of a C-way classification problem is equivalent
to the calibration of C(C−1)/2 pairwise binary classifi-
cation problems that can be derived from it. This suggests
the hypothesis that DNN calibration can be improved by
providing calibration supervision to all such binary prob-
lems. An implementation of this calibration by pairwise
constraints (CPC) is then proposed, based on two types of
binary calibration constraints. This is finally shown to be
implementable with a very minimal increase in the complex-
ity of cross-entropy training. Empirical evaluations of the
proposed CPC method across multiple datasets and DNN
architectures demonstrate state-of-the-art calibration per-
formance.

1. Introduction
Deep neural networks (DNNs), especially deep convo-

lutional neural networks, have enabled significant advances

in computer vision [17,23]. While achieving state-of-the-art

accuracy in various tasks such as image recognition [8, 43]

and segmentation [25, 41], DNNs do not excel at estimat-

ing the confidence of their predictions. Although they out-

put class-posterior probabilities via softmax regression, it

is well known that these predictive probabilities are usually

poorly calibrated. Frequently, DNNs tend be overconfident,
assigning high confidence to incorrect predictions [5,6,34].

For many real-world applications (e.g. weather forecast-

ing [3, 29, 30], medical diagnosis [13]), it is important that

a classifier output not only accurate predictions but also

sound estimates of confidence in these predictions. This

is known as calibration. For a calibrated classifier, a poste-
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Figure 1. Efficiency of CPC supervision for calibration. Left: Un-

der classic cross-entropy training, each training example only pro-

vides significant supervision to the posterior probability of its class

label. Right: Under CPC, each training example provides signifi-

cant supervision to the probabilities of all classes.

rior probability of p for a given class, implies that selecting

the class will result in the correct classification p×100%
of the time. Consider, for example, a medical diagnosis

setting where a diagnostic accuracy above 95% is required

for any system to be considered “human equivalent”. A di-

agnostic classifier with accuracy of 80% fails to meet this

criterion. However, if the classifier can accurately predict

the posterior probabilities associated with its predictions,

it can still be useful: Predictions with posterior probabili-

ties above 95% can be accepted automatically, and only the

examples of predictions with lower confidence need to be

routed to human doctors. Since all the “easy” cases tend

to be in the first class, this can reduce the need for human

inspection to a relatively small batch of “hard” examples,

saving significant time and expense. For these reasons, the

probability calibration of DNNs is attracting increasing at-

tention in the computer vision and machine learning com-

munities [18, 19, 21, 27, 35, 48, 52, 56].

Various methods have been proposed to calibrate DNN
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Figure 2. Histograms of the binary posterior probabilities βij(x)
produced by a ResNet-101 on CIFAR-100. Top: Examples that

belong to the class j and are assigned to the class i. Bottom: Ex-

amples whose labels are neither class i nor j.

probability estimates in the literature, including but not

limited to post-processing [6, 38], Bayesian approxima-

tion [2, 5], regularization [28, 47], and deep ensemble [22].

These methods have different trade-offs between calibra-

tion performance, memory, and computation complexity,

with no clear winner when all factors are considered. Their

performances also tend to degrade drastically under data

shifts [35], i.e. when test examples are corrupted or per-

turbed [9], a common occurrence for practical applications.

Hence, there is a need for robust calibration strategies of

low memory footprint and computational complexity.

In this work, we consider this problem, aiming to derive

methods that regularize the training of a DNN to encour-

age better calibration. We address the multiclass classifica-

tion problem of label set Y = {1, 2, · · · , C} and hypoth-

esize that poor calibration is due to the inefficient super-

vision provided by the cross-entropy loss during network

training. By establishing as the learning target for each ex-

ample the one-hot code of the associated class label, this

loss encourages myopic training algorithms, which place all

emphasis on the posterior probability of the true class and

mostly ignore the posterior probabilities of the remaining

classes. This is illustrated in Figure 1 where, under classic

cross-entropy training, each training example only provides

explicit supervision to the posterior probability of the class

of the example. While very effective in terms of classifi-

cation accuracy, this is very inefficient supervision for the

purposes of calibration.

To increase the amount of calibration supervision pro-

vided per training example, we consider how an exam-

ple can supervise the classes other than that of its true la-

bel. We note that cross-entropy training does this through

the constraint that class-posterior probabilities must sum

to 1. Hence, a high probability for the true class implies

low probabilities for all the alternative classes. This con-

straint is quite strong for binary classification problems

(C = 2), where there is only one alternative class, but de-

grades as C increases, since it is diffused by C−1 alter-

native classes. This suggests the hypothesis that calibration

can be strengthened by providing calibration supervision to

all class pairs, namely the C(C − 1)/2 binary classification

problems that can be derived from Y . We denote this as

calibration by pairwise constraints (CPC). In this way, as

illustrated in Figure 1, each training example can provide

supervision to the posterior probabilities of all classes, sig-

nificantly increasing the degree of supervision over that of

cross-entropy training.

In this paper, we start by showing that the proposed

CPC has strong theoretical grounding, in that the multiclass

posterior probability estimators {πy}y∈Y are calibrated if
and only if all the derived binary posterior probability es-

timators
{
βij =

πi

πi+πj

}
i �=j∈Y

are calibrated. This pro-

vides a simple explanation as to why vanilla DNNs are

poorly-calibrated, which is illustrated in Figure 2. The fig-

ure shows that the binary posterior estimators {βij}ij of

a cross-entropy DNN are poorly calibrated in two aspects.

First, as shown at the top, when binary estimators that in-

volve the true class y make incorrect predictions, these pre-

dictions tend to have high confidence. Second, for binary

problems that do not involve the true class, estimators βij

(y �= i, j) mostly assign examples to either class i or j with

high confidence, instead of producing uncertain predictions.

We then argue that the calibration efficiency of cross-

entropy training of a multiclass DNN can be increased by

calibrating the binary posterior estimations {βij}ij , using

losses of two types. For class pairs that include the true

class y, i.e. {(i, j)|y∈{i, j}}, the binary cross-entropy loss

is used to encourage βij to assign high probability to class

y and low probability to the opposite class. For the remain-

ing pairs {(i, j)|y /∈ {i, j}}, an alternative loss is used to

encourage βij to give uncertain predictions, outputting the

same posterior probability for classes i, j.

We finally show that this approach of CPC can be imple-

mented with high computational simplicity. This follows

from the fact that the bulk of the computations required

by the proposed binary losses are already performed dur-

ing the standard cross-entropy training of a multiclass net-

work. In fact, we show that the additional losses can be

computed by a simple addition of C(C − 1)/2 sigmoid

functions at the top of the network. Hence, CPC allows

improved calibration with no increase of memory or time

complexity during test and a minor increase in training com-

plexity. Empirical evaluations show that, despite this, CPC

calibration achieves state-of-the-art calibration performance

across multiple datasets and DNN architectures. The cali-

bration gains of CPC are also shown to increase with the
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number of classes and example scarcity, i.e. they are larger

for smaller training sets. These observations confirm that

CPC increases the rate of calibration supervision provided

by each example.

Overall, this work makes five contributions. The first

is the hypothesis, illustrated in Figures 1 and 2, that the

limited supervision provided by the cross-entropy loss for

calibration is an important reason for the poor calibration

performance of DNNs. The second is the hypothesis that

the problem can be addressed through the proposed CPC.

The third is theoretical evidence in support of this hypoth-

esis, by showing that the multiclass problem can only be

calibrated if all derived binary classifiers are. The fourth

is showing that, for DNNs, CPC can be implemented with

minimal complexity. Finally, it is shown that training with

CPC indeed enables significant improvements in calibration

performance, is complementary to existing approaches such

as deep ensembles, and enables state-of-the-art calibration

performance for several network architectures and datasets.

2. Related Works

2.1. Probability Calibration of DNNs

Several works have observed that standard training does

not produce calibrated DNNs [5,6,34]. Various approaches

have been proposed to address this problem.

Post-processing approaches: The calibration of binary

classifiers has been long studied. Methods such as his-

togram binning [53], isotonic regression [54], Bayesian bin-

ning into quantiles [31], and Platt scaling [38] have been

proposed prior to the introduction of deep learning. Most

of these methods fix the classifier and learn a calibration

map by hold-out validation, a posteriori. Most can be ex-

tended to the multiclass setting and combined with DNNs.

Among them, temperature scaling, the simplest extension

of Platt scaling, has been shown the most effective in eval-

uations [6].

Regularization: A few DNN regularization techniques

can also improve confidence calibration, although this was

not their original goals. Two examples are label smooth-

ing [28] and mixup [47] which are originally proposed

to improve generalization [37, 46] and adversarial robust-

ness [55], respectively. In addition, several regularization

losses specifically designed for calibration have been pro-

posed [15, 52].

Bayesian DNNs: Bayesian neural networks are known

for their ability to express uncertainty about their predic-

tions [26, 32]. While exact Bayesian learning and infer-

ence are intractable for DNNs, many approximation meth-

ods, e.g. Monte Carlo dropout [5] or Bayes by backprop

[2], have been proposed [14, 45]. [5] has shown that DNN

dropout [44] can be cast as approximate Bayesian infer-

ence. [42] generalized this framework to other stochastic

inference techniques such as skipping layers [11]. [2] pro-

posed to use stochastic variational inference as an approxi-

mate Bayes approach.

Ensemble: Deep ensembles [22] average the probability

predictions of multiple independently trained DNNs. This

was shown to outperform many single-DNN methods dis-

cussed above, in terms of both classification and calibration

performance [35]. Its major shortcoming is that the mem-

ory and time complexity linearly scale with the ensemble

size. Several efficient ensemble methods have been pro-

posed [49, 50]. [24] proposed to train a single DNN knowl-

edge distillation [10] from a deep ensemble.

2.2. Reducing Multiclass to Binary

In machine learning, a classical approach to multi-class

classification is reducing the problem to C(C − 1)/2 bi-

nary problems, since the binary problems are usually much

easier to solve [1, 7]. The binary predictions can be com-

bined by simply voting [4] or other pairwise coupling al-

gorithms [40, 51]. This strategy has been successfully em-

ployed for multiclass classification using support vector ma-

chines [51], AdaBoost [1], and shallow neural networks

[39]. However, this strategy has rarely been employed for

complicated models like DNNs, partly because its complex-

ity quadratic in C can be prohibitive for DNNs.

3. Calibration by Pairwise Constraints
In this section, we first discuss the relationships between

the probability calibration of multiclass and pairwise binary

classification. We then introduce the approach of CPC.

3.1. Multiclass DNNs

A multiclass DNN is a mapping from the feature space

X into a set of labels Y = {1, . . . , C}. The DNN performs

classification in three stages. The first is a feature extractor

or embedding v : X → V ⊂ R
d which is parameterized by

θ and maps an observation x ∈ X into a d-dimensional fea-

ture space V . This is typically achieved through a sequence

of layers combining linear and non-linear transformations.

The second is estimating the class-posterior probability dis-

tribution by a softmax regression

πΘ
y (x) := P (y|x; Θ) =

e〈wy,v(x)〉+by

∑C
k=1 e

〈wk,v(x)〉+bk
, (1)

where wy/by is the classification weight/bias for class y,

Θ = {θ}⋃{wy, by}Cy=1, and 〈·, ·〉 denotes the dot product.

In what follows, we will omit the dependence of πΘ
y (x) on

Θ or x, for the sake of simplicity, whenever convenient. The

third is the Bayes decision rule

y(x) = argmax
i

πΘ
i (x). (2)
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A DNN is said to be calibrated if it produces accu-

rate estimates of the class-posterior probability distributions

π = (π1, . . . , πC). More precisely, the class-posterior for a

given observation x is said to be calibrated if

πi(x) = π∗
i (x) ∀i, (3)

where π∗
i is the optimal estimator such that

�x,y [�y=i|π∗
i (x) = p] = p, ∀p ∈ (0, 1], (4)

where �· is an indicator function that is 1 if its argument is

true, and 0 otherwise. The DNN is perfectly calibrated if

(3) holds for all x ∈ X .

3.2. Multiclass and Pairwise Binary Calibration

The set of classes Y also defines many one-versus-one
(1v1) classification problems. These are binary classifica-

tion problems opposing class i to class j for all i �= j. Let

Bij be the classification problem opposing class i to class j
and B(Y) = {Bij}ij be the set of all such problems derived

from the set Y . The class-posterior probabilities of the 1v1

problem Bij are then given by

βij = P (y = i|y = i or y = j,x)

=
P (y = i|x)

P (y = i or y = j|x)
=

πi

πi + πj
= 1− βji. (5)

The 1v1 problem is calibrated if

βij = β∗
ij =

π∗
i

π∗
i + π∗

j

. (6)

The following result shows that the binary calibration

problems provide alternative constraints for the calibration

of the multiclass problem.

Lemma 1. The calibration of all binary problems
{Bij(Y)}ij derived from the class set Y is a necessary
and sufficient condition for the calibration of the multiclass
problem defined by Y .

Proof. Proof of necessity: Assume that there exists one bi-

nary problem Bij which is not calibrated. Using βji =
1−βij , we have βij �= β∗

ij and βji �= β∗
ji. It follows that

βij �= β∗
ij

πi

πi + πj
�= π∗

i

π∗
i + π∗

j

πiπ
∗
i + πiπ

∗
j �= π∗

i πi + π∗
i πj

πiπ
∗
j �= π∗

i πj

πi

πj
�= π∗

i

π∗
j

from which it cannot be true that both πi = π∗
i and πj = π∗

j

hold. Hence the multiclass posterior distribution π cannot

be calibrated. It follows that π is calibrated only if all binary

problems are calibrated.

Proof of sufficiency: Assume that all binary problems

are calibrated. Then βij = β∗
ij , ∀i, j and it follows that

βij

βji
=

β∗
ij

β∗
ji

∀i, j

from which

πi

πj
=

π∗
i

π∗
j

∀i, j
∑
i �=j

πi

πj
=

∑
i �=j

π∗
i

π∗
j

∀j

1− πj

πj
=

1− π∗
j

π∗
j

∀j

πj = π∗
j ∀j

and the multiclass problem is calibrated.

3.3. Supervision Rate for Calibration

Given a training set Dtrain = {(x1, y1), . . . , (xn, yn)},

the DNN parameters Θ are learned by minimizing the em-

pirical risk

R(L) =
n∑

i=1

L(xi, yi; Θ), (7)

where L is a loss function, usually the cross-entropy loss

Lce(x, y; Θ) = − log πΘ
y (x). (8)

We hypothesize that the poor calibration of DNNs trained

in this manner is partially due to the fact that cross-entropy

training is a very inefficient form of supervision in terms of

calibration constraints. Note that (8) only provides explicit

supervision to the probability πy of the class y to which x
belongs. While some supervision is implicitly provided to

the other classes through the constraint that the posterior

probabilities must sum to one, this is very diffuse, not tar-

geting any probability in particular.

Overall, as illustrated in Figure 1, the supervision rate of

cross-entropy training for calibration is, roughly speaking,

of one class per example, for a total of O(n) for the entire

dataset. Since the dilution of supervision for the posterior

probabilities of the classes other than the label y increases

with the number of classes C, our hypothesis suggests that

calibration will degrade as C increases. Experimentally, we

have confirmed that the calibration performance of DNNs

trained under the cross-entropy loss usually degrades dras-

tically as the number of classes C increases and the number

of training examples n decreases. This is discussed in more

detail in Section 5 and Figure 4.
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4. Calibration with Pairwise Constraints
In this section, we consider how to increase the calibra-

tion supervision rate of DNN training.

4.1. Binary Discrimination Constraints

Since, from Lemma 1, calibration of the multiclass clas-

sifier is equivalent to calibration of all binary classification

problems derived from Y , we propose to use these prob-

lems to increase the supervision rate for calibration of the

training process. We start by considering the problems Bij

involving the true class, i.e. y ∈ {i, j}. To calibrate these

problems, we resort to the binary cross-entropy loss

L1v1
ij (x, y; Θ) = −�y=i log βij(x)−�y=j log βji(x). (9)

Note that, for a given y, this is identical to

L1v1
ij (x, y; Θ) =

⎧⎨
⎩

− log βyj = − log
πy

πy+πj
, if y = i,

− log βyi = − log
πy

πy+πi
, if y = j,

0, otherwise.

The entire pool of binary classifiers can be calibrated by

the addition of the 1v1 loss

L1v1(x, y; Θ) =
1

2(C−1)

∑
ij

L1v1
ij (x, y; Θ)

=
1

2(C−1)

⎛
⎝∑

j �=y

L1v1
yj +

∑
i �=y

L1v1
iy

⎞
⎠

=− 1

(C−1)

∑
j �=y

log
πy

πy + πj

=− 1

(C−1)

∑
j �=y

log
1

1 +
πj

πy

. (10)

This loss provides explicit supervision to the probabilities

of all (C−1) class pairs that involve πy . We denote these

pairs as binary discrimination class pairs, and L1v1 as the

binary discrimination constraints (BDC) loss. The addition

of L1v1 to the cross-entropy loss L increases the rate of su-

pervision for calibration to O(nC).

4.2. Binary Exclusion Constraints

It remains to consider the binary problems {Bij}ij that

do not include the true label y, i.e. y /∈ {i, j}. For such

problems, the observation does not belong to any of these

two classes and the true binary posterior is unknown. In

the absence of other information, it is natural to adopt a

noninformative prior, i.e. a uniform prior

β∗
i (x) = β∗

j (x) = 1/2. (11)

Constraint can be included in the training by adding to the

previous losses the Kullback-Leibler divergence [20] to this

uniform prior distribution

Lbe
ij (x, y; Θ) = −1

2
�y �=i,y �=j(log βij(x) + log βji(x)).

(12)

This is denoted as a binary exclusion constraint (BEC) be-

cause it identifies the two classes as not being responsible

for the example x. The BEC loss is then defined as the av-

erage of all such constraints,

Lbe(x, y; Θ) =
1

(C−1)(C−2)

∑
ij

Lbe
ij (x, y; Θ)

= −
∑

i �=y,j �=y log βij + log βji

2(C−1)(C−2)

= −
∑

i �=y,j �=y log
πi

πi+πj
+ log

πj

πi+πj

2(C−1)(C−2)

= −
∑

i �=y,j �=y log
1

1+
πj
πi

+ log 1
1+

πi
πj

2(C−1)(C−2)
. (13)

This loss provides explicit supervision to the class-posterior

probabilities of all (C−1)(C−2) class pairs that do not in-

clude y and increases the rate of supervision for calibration

to O(nC2).

4.3. Implementation

The binary loss functions above are all composed of

terms of the form 1
1+

πi
πj

. For the softmax classifier of (1),

1

1 + πi

πj

=
1

1 + e〈wi,v(x)〉+bi

e〈wj ,v(x)〉+bj

=
1

1 + e〈wi−wj ,v(x)〉+bi−bj

= σ(〈wj −wi,v(x)〉+ bj − bi)

= σ(〈wj ,v(x)〉+ bj − 〈wi,v(x)〉 − bi)

= σ(lj(x)− li(x)), (14)

where σ(u) = (1 + e−u)−1 is the sigmoid function and

li(x) = 〈wi,v(x)〉 + bi is the logit computed at the input

of the softmax function at the top of the network.

Hence, the loss functions L1v1 and Lbe can be written as

L1v1(x, y; Θ) =− 1

C−1

∑
j �=y

log σ(ly(x)− lj(x)), (15)

Lbe(x, y; Θ) =−
∑

i �=y,j �=y log σ(li(x)− lj(x))

2(C−1)(C−2)

−
∑

i �=y,j �=y log σ(lj(x)− li(x))

2(C−1)(C−2)
. (16)

Finally, the binary calibration constraints can be enforced

by combining the two pairwise binary constraints, BDC of

13713



Figure 3. Training time per iteration of processing 256 224×224

images versus C (averaged over 1000 runs on an NVIDIA A40

GPU).

(15) and BEC of (16), with the cross-entropy loss of (8) into

an overall objective

L = λ1Lce + λ2L1v1 + λ3Lbe, (17)

where λ1, λ2 and λ3 are nonnegative multipliers. Training

with this loss is denoted as Calibration by Pairwise Con-
straints (CPC). Note that, because the logits {li(x)}Ci=1 are

already required for the computation of Lce, the computa-

tion of the terms {log σ(lj(x)− li(x))}ij in (15, 16) has

very minimal additional complexity. This is empirically

demonstrated in Figure 3, which compares the time cost

of training DNNs with and without CPC. For C ≤ 512,

the additional time cost brought by CPC is less than 10%

and almost negligible. In summary, CPC enables a signifi-

cant increase in the rate of supervision for calibration, from

O(n) to O(nC2), at the cost of a very minimal increase in

training complexity.

5. Experiments

5.1. Experimental Setup

5.1.1 Datasets and Networks

CPC was evaluated on two natural image datasets, CIFAR-

10 and CIFAR-100 [16], commonly used in the calibra-

tion literature. For evaluation under dataset shift, we used

CIFAR-10-C and CIFAR-100-C [9] consisting of images

which are first extracted from the test sets of CIFAR-10

and CIFAR-100 and then corrupted by 16 different types of

distortions (with 5 levels of intensity each), such as Gaus-

sian blur and JPEG compression. To study the compatibil-

ity of CPC with different types of DNNs, evaluations were

made with multiple DNN architectures: VGG-13, VGG-

19 [43], ResNet-34, and ResNet-101 [8]. A modern tech-

nique batch normalization [12] was added for VGG-13 and

VGG-19. Since images of CIFAR-10/100 have a low res-

olution (32×32), we set the stride of the first convolutional

layer of ResNet-34 and ResNet-101 to 1.

5.1.2 Evaluation Metrics

For any class i ∈ Y , the corresponding class-posterior prob-

ability estimator πi is perfectly calibrated if

x,y [ y=i|πi(x) = p]− p = 0, ∀p ∈ (0, 1]. (18)

In practice, it is infeasible to verify if (18) holds, since

p is a continuous variable and the expectation in LHS of

(18) cannot be estimated for all values of p using a fi-

nite sample Dtest = {(xi, yi)}i. A popular approximate

estimation of the calibration error is to quantize the in-

terval (0, 1] into M bins
{
Im = (m−1

M , m
M ]

}M

m=1
, define

Bm = {i|maxy πy(xi) ∈ Im} as the index set of the ex-

amples assigned to Im, and obtain the accuracy and average

confidence of each bin as

acc(Bm) =
1

|Bm|
∑
i∈Bm

yi=argmaxy πy(xi), (19)

conf(Bm) =
1

|Bm|
∑
i∈Bm

max
y

πy(xi), (20)

where | · | denotes the cardinality of a set. Expected calibra-

tion error (ECE) [31] and average calibration error (ACE)

[33] are then defined as

ECE =

M∑
m=1

|Bm|
|Dtest| |acc(Bm)− conf(Bm)| (21)

ACE =

M∑
m=1

1

M
|acc(Bm)− conf(Bm)| (22)

and employed to evaluate calibration quality in this work.

5.1.3 Implementation Details

We implemented CPC using PyTorch [36]. All models were

trained by stochastic gradient descent (SGD), with momen-

tum of 0.9 and weight decay of 0.0005, for 200 epochs.

SGD batch size was set to be 256. Learning rate was ini-

tialized as 0.1 and decayed by 0.2 at epochs 80, 140, 180.

For each combination of dataset and network, λ1, λ2, and

λ3 in (17) were chosen by a holdout validation on the train-

ing set. For the evaluation metrics ECE and ACE, M was

set to be 20. See the supplementary material for more im-

plementation details.

5.2. Empirical Results

5.2.1 Effects of C and n on Calibration

In the discussion above, we hypothesized that CPC in-

creases the rate of supervision for calibration. Roughly

speaking, this states that CPC increases the number of

calibration constraints per training example. This implies
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Figure 4. Expected calibration error (ECE) versus the number of classes C and the number of training examples n. Evaluations are

averaged over 5 runs with a VGG-19 network.

Figure 5. Histograms of the binary posterior probabilities βij(x)
produced on CIFAR-100, by a ResNet-101 trained with CPC. Top:

Examples that belong to the class j and are assigned to the class i.
Bottom: Examples whose labels are neither class i nor j.

that introducing CPC should be equivalent to using vanilla

cross-entropy training with a training set of a larger size n.

In general, it is expected that ECE will be a decreasing func-

tion of n. The addition of CPC should thus push the curve

of ECE vs n to the left. We have also hypothesized that

the weak calibration performance of vanilla cross-entropy is

due to the fact that each example mostly contributes super-

vision for the calibration of the true class probability. The

remaining probabilities only receive supervision through

the constraint that all posterior probabilities must sum to

one. Since this constraint is increasingly more diffuse as

the number of classes C grows, ECE should increase with

C for a given n. Because CPC provides supervision to all

class-posterior probabilities, its impact should be larger as

C increases.

To validate these hypotheses, we evaluated the calibra-

tion error of DNNs as a function of C and n. This was done

by randomly sampling C training classes and n training ex-

amples from the original training set. The resulting ECE

curves are shown in Figure 4 and confirm both hypotheses.

airplane cat deer automobile

Vanilla bird (0.95) dog (0.64) horse (0.96) truck (0.95)

CPC bird (0.71) dog (0.42) horse (0.58) truck (0.81)

Figure 6. Sample images and their class predictions by different

classifiers. Posterior estimations are shown in parenthesis.

First, the calibration performance of vanilla cross-entropy

training degrades drastically with the increase of C and the

decrease of n. Second, for a fixed number of classes C,

CPC shifts the curve of ECE vs n to the left. The gains

of CPC can be drastic. For example, on CIFAR-100, CPC

training with a dataset of 10,000 images achieves better cal-

ibration than vanilla training with 50,000 images. Third, for

a given dataset of size n, CPC shifts the curve of ECE vs C
to the right.

5.2.2 Qualitative Results

Figure 5 plots the histograms of the binary probabilities

βij(x) of Figure 2, when the ResNet-101 is trained with

CPC. The problematic behavior of the vanilla DNN in Fig-

ure 2 has been largely alleviated. The network assigns much

much lower confidences to its mistakes and more uniform

probabilities to the classes other than the true label. This is

a typical plot for CPC trained networks across all architec-

tures and datasets considered in this work. A few misclassi-

fied images sampled from CIFAR-10 are shown in Figure 6.

With CPC, varying degrees of decrease in estimated class-

posterior probabilities associated with the incorrect predic-

tions are observed.

5.2.3 Comparison to the State-of-the-art

CPC was compared to several popular single-model calibra-

tion baselines: vanilla DNN, temperature scaling [6], MC

dropout [44], label smoothing [28, 46], and mixup [47, 55].

For evaluation of MC dropout on ResNet-34 and ResNet-

101 which do not use dropout, we inserted a dropout layer
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Figure 7. Calibration and classification performance of different methods on VGG-13 and CIFAR-10 under different levels of data shift.
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Figure 8. Comparison of the performance of deep ensembles with and without CPC on VGG-19 and CIFAR-10.

between the feature extractor and the classifier.

Figure 7 summarizes the calibration and classification

performance of the different methods for VGG-19 on the

CIFAR-10 dataset. In this figure, the comparison is lim-

ited to single-model approaches, which require a single net-

work during inference. Due to space limitations, the results

of other combinations of network architecture and dataset

are provided in the supplementary material. Some conclu-

sions can be drawn from the figures. First, CPC always

achieves accuracy comparable with the other methods. Sec-

ond, CPC has the best calibration performance among all

single-model methods on both datasets, for almost all net-

work architectures. For many architectures and metrics, the

gains can be sizeable.

5.2.4 Deep Ensemble with CPC

It is well known that calibration performance can be boosted

by using a deep ensemble, i.e. an ensemble of independently

trained DNNs. This tends to improve both classification

accuracy and calibration performance at the cost of more

expensive inference in terms of both memory and computa-

tion. CPC is complementary to deep ensembles, since it can

be used to calibrate each of the networks in the ensemble.

To investigate the benefits of CPC for deep ensembles, we

considered ensembles of size 3 and compared an ensemble

of vanilla DNNs to an ensemble of DNNs trained with CPC.

The results of these experiments are summarized in Figure

8. It is shown that deep ensembles with CPC achieve com-

parable accuracy and better calibration than vanilla deep en-

sembles.

6. Conclusion
We considered the problem of probability calibration of

DNNs. We first showed that the calibration of a C-way clas-

sifier is equivalent to the calibration of C(C−1)/2 pairwise

binary classifiers. In light of this, we proposed two pairwise

calibration constraints that increase the calibration supervi-

sion rate. This was shown to enable state-of-the-art proba-

bility calibration performance. In the future, we will investi-

gate the possible limitations of our method, such as whether

the complexity of proposed constrains O(nC2) will become

an issue for super large C.
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