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Abstract

Indoor scenes exhibit significant appearance variations
due to myriad interactions between arbitrarily diverse object
shapes, spatially-changing materials, and complex light-
ing. Shadows, highlights, and inter-reflections caused by
visible and invisible light sources require reasoning about
long-range interactions for inverse rendering, which seeks to
recover the components of image formation, namely, shape,
material, and lighting. In this work, our intuition is that
the long-range attention learned by transformer architec-
tures is ideally suited to solve longstanding challenges in
single-image inverse rendering. We demonstrate with a spe-
cific instantiation of a dense vision transformer, IRISformer,
that excels at both single-task and multi-task reasoning re-
quired for inverse rendering. Specifically, we propose a
transformer architecture to simultaneously estimate depths,
normals, spatially-varying albedo, roughness and lighting
from a single image of an indoor scene. Our extensive evalu-
ations on benchmark datasets demonstrate state-of-the-art
results on each of the above tasks, enabling applications
like object insertion and material editing in a single uncon-
strained real image, with greater photorealism than prior
works. Code and data are publicly released."

1. Introduction

Inverse rendering has long been of great interest to the
computer vision community owing to its promise to decom-
pose a scene into the intrinsic factors of shape, complex
spatially-varying lighting, and material, thereby enabling
downstream tasks of virtual object insertion, material edit-
ing, and relighting. The problem is particularly challenging
for indoor scenes, where complex appearances stem from
multiple interactions among the above intrinsic factors, such
as shadows, specularities, and interreflections.

Recent advances in inverse rendering has led to the emer-
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Figure 1. Given a single real world image, IRISformer simulta-
neously infers material (albedo and roughness), geometry (depth
and normals), and spatially-varying lighting of the scene. The
estimation enables virtual object insertion where we demonstrate
high-quality photorealistic renderings in challenging lighting con-
ditions compared to previous work [19]. The learned attention is
also visualized for selected patches, indicating benefits of global
attention to reason about distant interactions (see text for details).

gence of numerous works undertaking either some specific
aspects of this challenge (geometry [8,24], albedo [4,20,33],
lighting [9, 11, 18, 36]), or joint estimation [2, 19, 33, 39].
However, the task of scene decomposition can be extremely
ill-posed due to the inherent ambiguity between complex
lighting, geometry, and material which jointly govern im-
age formation in indoor scenes. For example, high-intensity
pixel values can be explained by either specular or light-
colored material, particular local geometry, bright lighting,
or by a combination of all those factors. The problem is espe-
cially severe with only a single image as input, where prior
knowledge is necessary to disambiguate among all possible
intrinsic decompositions that explain the image. Classical
methods leverage strong heuristic priors in an optimization
objective [2, 3], which may not always hold for real world
scenes with complex geometry or lighting conditions.
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The widespread use of convolutional neural networks
(CNN) and large-scale datasets for scene decomposition [4,
23,33,34] promotes supervised training of end-to-end multi-
task models [19,33] for joint estimation. CNN-based models
have demonstrated impressive progress on inverse rendering
of real world images [19,33,36,39]. Nonetheless, receptive
fields in CNN architectures remain largely local throughout
the consecutive layers, limiting the ability to capture long-
range interactions between scene elements. As shown in
Fig. 1, CNN-based approaches fail to handle scenes where
strong shadows or highlights abound due to complex light
transport. This indicates that long-range dependencies across
the image space must be exploited to provide globally coher-
ent predictions in inverse rendering. Recently, vision trans-
formers [7,43] (ViT) have emerged for multiple computer
vision tasks, benefiting from global reasoning via spatial
attention mechanisms. In particular, dense vision transform-
ers [25,28, 38] are well-suited for dense prediction, which
we posit can benefit inverse rendering.

In this paper, we propose to leverage vision transformers
to better account for complex light transport in inverse ren-
dering. Consider Fig. 1 as an example, where we compare
our proposed transformer-based approach, i.e. IRISformer
(Transformer for Inverse Rendering in Indoor Scenes), with
a CNN-based prior state-of-the-art [19]. Note the improve-
ment in material consistency and geometry of the floor where
complex lighting governs appearance; as a result of which,
the leftmost sphere is properly reflected on the floor. Addi-
tionally, IRISformer better captures global ambient lighting
so that the third sphere from left is better illuminated. We
also visualize the heatmaps of four patch locations shown by
colored squares from selected transformer layers and heads
(warmer colors indicate higher attention). By attending to
large global regions with semantic meaning, the transformer
can better disambiguate geometry material and lighting (yel-
low). Long-range interactions among such regions can help
reason about inter-reflections (green), directional highlights
(red), or shadows (blue). as well as the long-range attention
to/within those homogeneous regions, the model manages
to better resolve the albedo-lighting ambiguity, and making
more consistent estimations.

We demonstrate that by the insightful design of single-
task and multi-task models for inverse rendering with dense
vision transformers, we can achieve state-of-the-art, high-
quality, and globally coherent BRDF, geometry, and light-
ing prediction. In addition, downstream tasks like object
insertion and material editing greatly benefit from our im-
provements, especially in scenarios of complex highlights or
shadows. We achieve state-of-the-art results on all sub-tasks
on real world datasets of IIW [4] and NYUv2 [34], as well
as object insertion tasks compared to prior works.

Our contributions are threefold. (1) We propose the first
dense vision transformer-based framework for inverse ren-

dering in a multi-task setting. (2) We demonstrate that ap-
propriate design choices lead to better handling of global
interactions between scene components, leading to better
disambiguation of shape, material and lighting. (3) We
demonstrate state-of-the-art results on all tasks and enable
high-quality applications in augmented reality.

2. Related Work

Inverse rendering for indoor scenes. Several prior works
study the interaction of shape, material and light to esti-
mate shape-from-shading [15,46], intrinsic image decom-
position [13, 20], material properties [1,6,21,22,32], or
illumination [3, 10, 11,44], while inverse rendering seeks
to estimate all those factors simultaneously [26]. Classical
methods for inverse rendering are typically posed as energy
minimization with heuristic priors, for example, SIRFS [2,3]
where intrinsic properties are jointly optimized with a sta-
tistical cost function. Despite early success, such models
usually do not generalize well to real images with diverse
appearances. With advances in deep learning, CNN-based
methods have been developed to learn a generalizable model
in a data-driven fashion. The recent method of NIR [33] is
pre-trained with weak labels and finetuned on real images
with re-rendering loss. Methods like Lighthouse [36] learn a
volumetric lighting representation using stereo inputs, while
Wang et al. [39] do so with a single image. Li ef al. [19,23]
design physically-based representations and rendering layers
to estimate shape, SVBRDF, and spatially-varying per-pixel
lighting from a single image. However, the aforementioned
methods utilize convolutional neural networks, which feature
a limited receptive field and lack an explicit attention mech-
anism to reason about long-range dependencies in image
space, which can be crucial for estimating global properties
of light transport and its interaction with material and shape.

Datasets for inverse rendering. Synthetic datasets [23, 30,
35] are commonly used to provide ground truth for most
modalities, including scene geometry, material, and lighting,
and suitable for training inverse rendering models in super-
vised fashion [19], while achieving good generalizability to
real world datasets. Models trained on synthetic datasets are
shown to further improve on real world images via finetuning
with either weak supervision [4], full supervision on a subset
of modalities [34], or with re-rendering losses [33]. In this
work, we train our transformer models on the OpenRooms
dataset [23] and obtain state-of-the-art results by finetuning
on IIW [4] and NYUv2 [34] real world datasets.

Vision transformer. Convolutional neural networks (CNN)
have long been the architecture of choice as building blocks
for dense prediction with deep learning, as both backbone for
feature extraction [5,14] or as decoders [19,27]. However,
several drawbacks inherent to CNNs make them sub-optimal
for tasks that require reasoning over long-range dependen-
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Figure 2. Overview of IRISformer. For BRDFGeoNet, we illustrate the multi-task setting in the upper gray block, while the single-task case
(lower gray block) has 4 independent copies of DPT with different design of output heads.

cies over the image space, despite multiple measures that
have been proposed to mitigate those issues, including di-
lated convolutions [5,42], skip connections [14,31] and self-
attention [45]. The recently proposed Vision Transformer
(ViT) [7] has enabled feature extraction with global attention
over image space with elegant design and better interpretabil-
ity while achieving superior performance compared to CNNs
on multiple vision tasks. Several works [38,41,43] have ex-
tended ViT to dense prediction tasks, including DPT [28],
Swin Transformer [25], etc. Additional efforts have been
made to utilize transformers in a multi-task or multi-object
setting, such as UniT [16] that follows an encoder-decoder
design scheme and utilizes a task-specific query embedding
to learn a unified decoding feature space for all tasks. In con-
trast to those works, we propose single-task and multi-task
transformers for dense prediction tasks in inverse rendering,
where material and lighting estimation using transformers
have previously not been studied.

3. Method

Notation. Vectors are represented with a lower-case bold
font (e.g. x). Matrices are in upper-case bold (e.g. X) while
scalars are in regular font (e.g. x or X). Variables with hat,
e.g. X, are the estimation of the corresponding entity X. For
denoting the I*" sample in a set (e.g. images, shapes), we use
subscripts (e.g. X;). Uppercase calligraphic symbols (e.g.
X) denote functions.

3.1. Scene Representation and Loss Functions

Geometry and spatially-varying material. In IRISformer,
we account for only the scene elements within the camera
frustum. For an h x w image, we represent per-pixel geome-
try with a depth map D € R"** and normals N € R"*w>3,
We represent material as a microfacet spatially-varying
BRDF model (SVBRDF) [17], with albedo A and roughness
R maps of sizes h x w x 3 and h x w respectively. Specif-
ically, given a single RGB input image I, we seek to learn
a function BRDFGeoNet denoted as B to jointly estimate
the above properties: {D, N, A, R} = B(I). Given ground
truths, we use scale-invariant L2 loss [19, 29] for albedo and
depth (log space) and an L2 loss for roughness and normals.

Spatially-varying lighting. For lighting, we follow Li ef
al. [19,23] to adopt per-pixel image-space environment maps
G of 16 x 32 pixels to represent the incident irradiance,
parameterized by K = 12 Spherical Gaussian (SG) lobes
{&, Ak, fk}kK:1~ Here &, € S? is the center orientation on
the unit sphere, f;, € R? is the intensity and \; € R is the
bandwidth. Given each set of lighting parameters and an
orientation outward from one spatial location 7 in 3D, we
have

K
n) = kae)‘(lfnf) :S? 5 R3. (1)
For a collection of all h x w pixel locations and all 16 x 32
outgoing directions from each surface point in 3D, we ar-
rive at a lighting map L € RMXwX16X32X3 - Then, ys-
ing either a single image as the sole input or combin-
ing it with predictions of geometry and material, a Light-
Net denoted as £ can be learned: L = L£(I) or L =
L(T, D,N.A, f{) Given estimates of geometry, material
and lighting, a per-pixel physically-based differentiable ren-
derer RenderNet [19] denoted as R can re-render the input
image: I = R(ﬁ, N, A R, E)

To supervise the training of lighting, assuming dense
ground truth can be acquired from synthetic datasets, we im-
pose a scale-invariant L2 reconstruction loss on the lighting
map L (in log space) and a scale-invariant L.2 re-rendering
loss on the re-rendered image 1. The final loss L, is a
weighted combination of losses on all estimations:

Loy = M LA+ ARLrR+ApLp + ANLN+ALLL + MLy (2)

3.2. Dense Vision Transformer

Dense Vision Transformer (DPT) [28] is a generic archi-
tecture for dense prediction utilizing vision transformers [7]
in place of CNNs as a backbone. An image I is first di-
vided into an h/p x w/p grid of non-overlapping patches
of size p X p, and subsequently DPT tokenizes each patch
into a vector of dimension D with a shadow CNN (DPT-
large or DPT-base) or ResNet (DPT-hybrid). The result is
a set of tokens t” = {t{,...,t}, } where N, = hw/p”,
t9 € RP,n=11,...N,]. A cascade of M transformer lay-
ers then transforms the set of vectors with self-attention [37]
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Figure 3. BRDF, geometry and lighting estimation on OpenRooms. Small insets (best viewed when enlarged in PDF version) are estimations
processed with bilateral solvers (BS). More results can be found in the supplementary material.

into t", and a re-assembling operation followed by a con-
volutional decoder transforms the tokens back to 2D space,
resulting in a 2D dense feature map. A customized convolu-
tional head is attached to yield the final prediction from the
feature map, based on the specific prediction task.

3.3. Single-task Network Design

Due to the modular design of DPT and the variation of
size and capacity among different DPT variants [28], we
consider a few design choices for using DPT modules to
build BRDFGeoNet and LightNet in both single-task and
multi-task settings.

The full design of our pipeline can be found in Fig. 2. In
single-task setting, we seek to maximize the performance of
each task by using an independent DPT for each of depth,
normal, albedo, roughness, and lighting. This effectively
results in BRDFGeoNet of 4 DPTs {Ba, Br, Bp, By} to
independent infer each of the modality: D = Bp(I),
N = By(I), A = B4(I), R = Bg(I). For each DPT,
we follow the design of DPT-hybrid [28] by using M = 6
transformer layers for encoding and M = 6 for decoding. In
our case, we use an input resolution of 256320 and patch
size p = 16. A ResNet-50 [14] acts as the patch embedding
backbone. For output head design, we take output features
from stage 1 and 2 of ResNet, as well as output from layer
3 and 6 from decoder, fuse the representations and use 4
convolutions layers with 2 bilinear interpolation layers to
produce the final output. Readout token [28] is set to ignore
and batch normalization (BN) is enabled in output heads.
The only difference among the DPTs is the output layer in
the head, depending on the sub-task. We use tanh activation
for all heads to output albedo, roughness, normals and in-
verse depth. Details on the tensor sizes and head design are
in the supplementary material.

For LightNet we have a similar encoder-decoder design.
Three independent heads are required for estimating axis
center, intensity, and bandwidth of K Spherical Gaussians

for each pixel. However we found that sharing decoders
for the three tasks is not optimal as the output spaces of
these tasks are very disparate, thus forcing a unified decoder
feature space destabilizes training. As a result, we use a
shared encoder but independent decoders and output heads
for LightNet. We use 4 transformer layers in both encoders
and decoders in the multi-task setting so that the entire model
can fit into one GPU for joint training. We use a similar
output layer design as aforementioned except for not using
tanh for &, but use normalization to unit norm instead.

3.4. Multi-task Network Design

The single-network design requires 4 DPTs for material
and geometry and one for lighting. As a result, the collective
memory footprint is too large to fit the entire model into a
regular GPU for training. An alternative option is to allow
DPTs to have a unified feature space so that memory usage
can be reduced. Also in some cases, a jointly learned fea-
ture can benefit from related tasks. Inspired by UniT [16]
where input-domain-specific encoders and shared decoders
are designed for a multi-modal input setting, we use a unified
encoder and decoder for all tasks in BRDFGeoNet besides
independent task-specific convolutional heads. We share
decoders due to memory considerations while noting that
further gains from independent decoders might be possible.
The result is B,,,¢; with 4 heads as shown in Fig. 2. The
design for LightNet is the same as in a single-task setting.

3.5. Additional Components

Refinement using bilateral solver. We may optionally
refine the geometry and material outputs with a bilateral
solver (BS). Additional refinement leads to smoother out-
puts, which is preferable for some metrics like WHDR [4]
for albedo. In comparison to previous CNN-based works,
we observe that our transformer-based outputs are already
quite accurate without the bilateral solver on all the tasks.

Cascade design. In prior works [19], a cascade design is
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used to refine the predictions based on the rendering error.
However, it leads to a two-fold increase in memory with
small improvements, while we already achieve significantly
improved results on all benchmarks with a single-stage net-
work. As a result, we choose not to use cascaded refinement.

4. Evaluation

We demonstrate the capability of our DPT-based IRIS-
former to produce globally coherent estimations that outper-
form traditional CNN-based models on all modalities, due
to its global attention that can better handle the inherent am-
biguities of inverse rendering. This is especially notable for
material and lighting prediction, in the presence of highlights,
shadows, and interreflections. We include results on joint
BRDF, geometry, and lighting prediction on OpenRooms, as
well as sub-tasks on real world benchmarks. We additionally
provide analysis on design choices and ablation study.

4.1. Datasets and Training

Given the success of synthetic inverse rendering datasets
in providing photorealistic images and complete ground truth
for all inverse rendering tasks, we use OpenRooms (OR) [23]
dataset for supervised training. We use 6,684 scenes for train-
ing, 1,008 for testing, each rendered with multiple material
and lighting configurations, for a total of 102,452 images for
training, and 15,738 frames for testing.

We train BRDFGeoNet (in multi-task and single-task
settings) on OR with Adam optimizer for 80 epochs at a
learning rate of le-5 and batch size of 8 on 4 GPUs, start-
ing with pretrained ResNet on ImageNet. Then we freeze
BRDFGeoNet and train LightNet in the same setting. Ad-
ditional training details and weights for losses are in the
supplementary material.

After training on OpenRooms, we may finetune on real
datasets where labels of all or a subset of the tasks are avail-
able. Specifically, we finetune on (a) IIW dataset [4] with
relative labels of albedo; (b) NYUV2 [34] with ground truth
depth and normals. We also demonstrate lighting estimation
results with virtual object insertion on real world images
from Garon et al. [12] where ground truth lighting is col-
lected at selected locations with light probes.

4.2. BRDF and Geometry Estimation

Table | includes the performance of IRISformer as well
as Li et al. [23] (which we trained and finetuned in the same
setting as ours for all evaluations) for BRDF and geometry
estimation, evaluated on our OpenRooms test split, both
with a variant where the bilateral solver is applied to albedo,
roughness, and depth. We observe better performance from
both our multi-task and single-task models consistently on
all tasks, and we visually demonstrate the comparison with a
few samples in Fig. 3. As can be observed, our model excels
with much cleaner and accurate material and geometry esti-
mations, and better lighting estimations (especially in areas

of highlights and shadows where we better disentangle light-
ing from albedo and correspondingly yields brighter/darker

lighting).
Method Al Rl D/ N| L| I L+I}
IRISformer (multi)  0.51 5.52 1.72 2.05 12.50 1.15 12.54
IRISformer (multi+BS) 0.51 5.50 1.71 2.05 12.47 1.15 12.58
IRISformer (single) 0.43 5.50 1.42 1.89 12.04 0.99 12.14
IRISformer (single+BS) 0.43 5.48 1.44 1.89 12.08 0.97 12.17
Ours (direct) - - - - 1229 1.29 1242
Li’21 [23] 0.52 6.31 2.20 2.61 18.63 0.88 18.72
Li’21+BS [23] 0.48 6.30 1.91 2.61 18.61 0.88 18.70

Table 1. Errors of BRDF, geometry and lighting with a base of
102 on OpenRooms [23]. Lower is better. For lighting estimation,
L is the lighting reconstruction error, I is the rendering error and
L+1 is the combined lighting loss for which LightNet is trained.

4.3. Lighting Estimation

In Table 1, we report lighting estimation errors of different
versions of IRISformer, including both multi-task and single-
task models, and variants of these two models with BS. We
also include another version of our lighting estimation model
(denoted as Ours (direct)), where the first stage of BRDF
and geometry estimation is removed, and only the image is
directly used as input for lighting prediction. We observe the
best lighting prediction from the single models due to their
larger capacity. For the direct model, it is able to estimate
reasonable lighting directly from image input, highlighting
the power of the transformer architecture, but is not suitable
for downstream tasks (e.g. object insertion, material editing)
where a complete scene decomposition is required.

4.4. Comparison on Sub-tasks

Intrinsic decomposition. To evaluate IRISformer on the
task of intrinsic decomposition (albedo-only) on real world
images, we finetune our model on ITW [4] using relative
labels of albedo between labeled pairs of pixels. Results
are summarized in Table 2 and Fig. 5. We observe that
our single-task model performs better than the multi-task
version due to its larger capacity and independent feature
space. More importantly, both the multi-task and single-task
models achieve new state-of-the-art on IIW, outperforming
all prior methods. Note that the shift in tones is due to the
weak supervision from relative loss.

Geometry estimation. For depth and normal prediction, we
follow the training and evaluation settings of Li et al. [23],
and report results in Table 3 and Fig. 5. We choose to com-
pare with similar methods in a multi-task inverse rendering
setting, instead of dedicated and more complex methods that
maximize geometry prediction performance in the wild like
DPT [28] or MiDaS [29]. As can be observed, we achieve
improved results compared to all previous works listed.
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Our material and geometry results are cleaner even without BS. Also less artifacts can be observed in our re-rendered images (see bright area
on the table in sample 2) compared to Li ef al. [23] due to better estimation on all modalities.

Input Image CGlntrinsics 18

Lietal. 2

Intermediate results on real world images. In Fig. 4 we
test IRISformer on real world images from Garon et al. [12],
and we demonstrate that IRISformer generalize well to real
world images and outperform previous art in every task. In
general, our results are more spatially consistent and have
fewer artifacts (most noticeable from the re-rendered images
which are the result of all estimations). In Fig. 6, we compare

Ours (single)

Figure 5. (Top) Intrinsic decomposi-
tion results on IIW [4] (before BS). The
insets are results after BS. Our results
are better in regions with complex ge-
ometry and lighting (see the bedding
in sample 1 and clothing in sample 2).
(Bottom) Geometry estimation results
on NYUv2 [34] (all without BS). Ours
are less prone to artifacts (see printer
surface in sample 1 and geometry of
the trash bins in sample 2). Please refer
to the supplementary material for more
results.

with the recent method of Wang ef al. [39] on their reported
samples, where we arrive at much improved results.

Lighting estimation on real images. With intermediate
estimations including material, geometry, and the final per-
pixel lighting, we demonstrate applications of IRISformer in
downstream applications including virtual object insertion
and material editing. For object insertion, we compare with
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Method Finetuning Datasets WHDR|,
IRISformer (multi) OR+IIW 13.1
IRISformer (single) OR+IIW 12.0

Li’21 [23] OR+IIW 16.4
Li’20 [19] CGM+IIW 15.9
NIR’19 [33] CGP+IIW 16.8
CGlntrinsics’ 18 [20] CGI+IIW 17.5

Table 2. Intrinsic decomposition on IIW [4]. Lower is better.

Method Mean(°)] Med.(°)] Depth]
IRISformer (multi) 23.5 16.3 0.162
IRISformer (single)  20.2 134 0.132

Li'21 [23] 25.3 180  0.171

Li’20 [19] 24.1 17.3 0.184

NIR’19 [33] 21.1 16.9 -
Zhang’17 [47] 21.7 14.8 .

Table 3. Normal (mean and median) and depth (mean on inverse
depth) prediction results on NYUv2 [34]. Lower is better.

Wang et.al 21 Ours (mult)) Wanget.al 21 Ours (multi)

Figure 6. Comparison between our results and Wang et al. [39]
on albedo, normals and re-rendering. On challenging inputs, we
achieve smoother albedo with less artifacts and richer details with
more consistent normals. Upper-left insets are input images, and
lower-right insets are before BS).

Gardner’17 [11] Garon’19 [12] Li’21 [23] Ground Truth
0.24 0.30 0.47 0.58

Table 4. A user study on object insertion, where we compare IRIS-
former with each of the previous work or ground truth and report
the percentage of feedbacks where other method is considered to
be more photorealistic than ours.

prior works in Fig. 9. We produce more realistic lighting
for inserted objects which better match the surroundings
on lighting intensity, direction and relative brightness of
inserted objects in highlights and shadowed areas.

To quantitatively evaluate insertion results, we conduct a

single-6 single-4 multi Li’20 [23]
Model Size (MB) 7,305 6,256 1,539 795
Inference (ms) 141.9 1259 91.9 45.2
A+R+D+N 6.00 6.08 6.44 7.65
L+I 12.14 1285 1254 18.72

Table 5. Analysis on multiple design choices: IRISformer (single-
task with 6 or 4 layers in BRDFGeoNet, multi-task with 4 layers),
and CNN-based architecture from Li et al. [23] on OR [23].

Lietal 21 Ours

Input Image

Figure 7. Material editing example where we replace the material
of part of the wall with wood. Note that the shadow from outside
lighting is recreated on the replaced material, demonstrating our
accurate spatially-varying lighting estimation.

Input Image Attention Maps

‘_.,‘* ) %

Figure 8. Attention maps
learned by the single-task
model for albedo. Each
heatmap is the attention
weights (affinity) of the
patch (denoted by pink
square) w.r.t. all other
patches, of one head from
subsequent transformer
layers.

user study against other methods in Tab. 4. We outperform
all previous methods, only being inferior to ground truth.
We also perform material editing in Fig. 7 where we replace
the material of a planar surface and re-render the region, to
showcase that IRISformer captures the directional lighting
effect of the area so that the replaced material will be prop-
erly shadowed. A complete list of results and comparisons
is in the supplementary material.

4.5. Ablation study

Comparison of design choices. In Table 5 we compare
various metrics of all models, including model size, inference
time for one sample on a Titan RTX 2080Ti GPU, test losses
on OR for material and geometry combined, and lighting
losses combined. Study on other minor choices can be found
in the supplementary material.

Attention from Transformers. To provide additional in-
sight into the attention that is learned, we include in Fig. 8
two samples where attention maps corresponding to one
patch location from different layers are visualized. In the
first sample we show a patch on the lit-up chair seat, subse-
quently attending to (1) chairs and window, (2) highlighted
regions over the image, (3) entire floor, (4) the chair itself.
For the second sample, the chosen patch is in the shadow on
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Figure 9. Virtual object insertion results. Lighting estimation from Barron et al. [2] lacks high frequency, while Gardner et al. [1 1] predicts a
global environment map instead of spatially-varying lighting at each location. Compared to the most recent Li ef al. [23], we better decouple
lighting and appearance to better recover highlighted or shadowed areas (see center object in sample 1 and 2, right object in sample 4 and 5).
Also our lighting is more spatially consistent w.r.t. the light source (see shadow directions in objects of sample 1 and 3).

the wall, and it attends to (1) neighbouring shadowed areas
of the wall, (2) the entire wall, (3) potential light sources
and occluders, (4) ambient environment. Throughout the
cascaded transformer layers, IRISformer learns to attend to
large regions and distant interactions to improve its predic-
tion in the presence of complex light transport effects.

5. Discussion

Limitation and potential negative impact. IRISformer
only infers per-pixel lighting on the scene surface, so ap-
plications like inserting objects in the air are not feasible.
Future work may also explore choices beyond the current
multi-task design, possibly by leveraging the complementary
nature of various tasks. Potential negative impacts include
Deepfake [40], where our method can be used to recreate an
indoor scene with a photorealistically modified appearance.

Conclusion. We have proposed an inverse rendering frame-
work that estimates material, geometry, and per-pixel light-
ing given an unconstrained indoor image using a transformer-
based model. Our results demonstrate that the model can
produce significantly better results especially on material and
lighting, which require long-range reasoning for diambigua-
tion. Additionally, our approach enables different design
choices with single or multi-task settings. Downstream ap-
plications including object insertion and material editing on
real world images demonstrate the strength of our model to
better handle challenging lighting conditions and produce
highly photorealistic results. We also provide analysis into
design choices and the attention maps learned by our model.
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