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Abstract

Indoor scenes exhibit significant appearance variations
due to myriad interactions between arbitrarily diverse object
shapes, spatially-changing materials, and complex light-
ing. Shadows, highlights, and inter-reflections caused by
visible and invisible light sources require reasoning about
long-range interactions for inverse rendering, which seeks to
recover the components of image formation, namely, shape,
material, and lighting. In this work, our intuition is that
the long-range attention learned by transformer architec-
tures is ideally suited to solve longstanding challenges in
single-image inverse rendering. We demonstrate with a spe-
cific instantiation of a dense vision transformer, IRISformer,
that excels at both single-task and multi-task reasoning re-
quired for inverse rendering. Specifically, we propose a
transformer architecture to simultaneously estimate depths,
normals, spatially-varying albedo, roughness and lighting
from a single image of an indoor scene. Our extensive evalu-
ations on benchmark datasets demonstrate state-of-the-art
results on each of the above tasks, enabling applications
like object insertion and material editing in a single uncon-
strained real image, with greater photorealism than prior
works. Code and data are publicly released.1

1. Introduction

Inverse rendering has long been of great interest to the

computer vision community owing to its promise to decom-

pose a scene into the intrinsic factors of shape, complex

spatially-varying lighting, and material, thereby enabling

downstream tasks of virtual object insertion, material edit-

ing, and relighting. The problem is particularly challenging

for indoor scenes, where complex appearances stem from

multiple interactions among the above intrinsic factors, such

as shadows, specularities, and interreflections.

Recent advances in inverse rendering has led to the emer-

1https://github.com/ViLab-UCSD/IRISformer
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Figure 1. Given a single real world image, IRISformer simulta-

neously infers material (albedo and roughness), geometry (depth

and normals), and spatially-varying lighting of the scene. The

estimation enables virtual object insertion where we demonstrate

high-quality photorealistic renderings in challenging lighting con-

ditions compared to previous work [19]. The learned attention is

also visualized for selected patches, indicating benefits of global

attention to reason about distant interactions (see text for details).

gence of numerous works undertaking either some specific

aspects of this challenge (geometry [8,24], albedo [4,20,33],

lighting [9, 11, 18, 36]), or joint estimation [2, 19, 33, 39].

However, the task of scene decomposition can be extremely

ill-posed due to the inherent ambiguity between complex

lighting, geometry, and material which jointly govern im-

age formation in indoor scenes. For example, high-intensity

pixel values can be explained by either specular or light-

colored material, particular local geometry, bright lighting,

or by a combination of all those factors. The problem is espe-

cially severe with only a single image as input, where prior

knowledge is necessary to disambiguate among all possible

intrinsic decompositions that explain the image. Classical

methods leverage strong heuristic priors in an optimization

objective [2, 3], which may not always hold for real world

scenes with complex geometry or lighting conditions.
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The widespread use of convolutional neural networks

(CNN) and large-scale datasets for scene decomposition [4,

23, 33, 34] promotes supervised training of end-to-end multi-

task models [19,33] for joint estimation. CNN-based models

have demonstrated impressive progress on inverse rendering

of real world images [19, 33, 36, 39]. Nonetheless, receptive

fields in CNN architectures remain largely local throughout

the consecutive layers, limiting the ability to capture long-

range interactions between scene elements. As shown in

Fig. 1, CNN-based approaches fail to handle scenes where

strong shadows or highlights abound due to complex light

transport. This indicates that long-range dependencies across

the image space must be exploited to provide globally coher-

ent predictions in inverse rendering. Recently, vision trans-

formers [7, 43] (ViT) have emerged for multiple computer

vision tasks, benefiting from global reasoning via spatial

attention mechanisms. In particular, dense vision transform-

ers [25, 28, 38] are well-suited for dense prediction, which

we posit can benefit inverse rendering.

In this paper, we propose to leverage vision transformers

to better account for complex light transport in inverse ren-

dering. Consider Fig. 1 as an example, where we compare

our proposed transformer-based approach, i.e. IRISformer
(Transformer for Inverse Rendering in Indoor Scenes), with

a CNN-based prior state-of-the-art [19]. Note the improve-

ment in material consistency and geometry of the floor where

complex lighting governs appearance; as a result of which,

the leftmost sphere is properly reflected on the floor. Addi-

tionally, IRISformer better captures global ambient lighting

so that the third sphere from left is better illuminated. We

also visualize the heatmaps of four patch locations shown by

colored squares from selected transformer layers and heads

(warmer colors indicate higher attention). By attending to

large global regions with semantic meaning, the transformer

can better disambiguate geometry material and lighting (yel-

low). Long-range interactions among such regions can help

reason about inter-reflections (green), directional highlights

(red), or shadows (blue). as well as the long-range attention

to/within those homogeneous regions, the model manages

to better resolve the albedo-lighting ambiguity, and making

more consistent estimations.

We demonstrate that by the insightful design of single-

task and multi-task models for inverse rendering with dense

vision transformers, we can achieve state-of-the-art, high-

quality, and globally coherent BRDF, geometry, and light-

ing prediction. In addition, downstream tasks like object

insertion and material editing greatly benefit from our im-

provements, especially in scenarios of complex highlights or

shadows. We achieve state-of-the-art results on all sub-tasks

on real world datasets of IIW [4] and NYUv2 [34], as well

as object insertion tasks compared to prior works.

Our contributions are threefold. (1) We propose the first

dense vision transformer-based framework for inverse ren-

dering in a multi-task setting. (2) We demonstrate that ap-

propriate design choices lead to better handling of global

interactions between scene components, leading to better

disambiguation of shape, material and lighting. (3) We

demonstrate state-of-the-art results on all tasks and enable

high-quality applications in augmented reality.

2. Related Work
Inverse rendering for indoor scenes. Several prior works

study the interaction of shape, material and light to esti-

mate shape-from-shading [15, 46], intrinsic image decom-

position [13, 20], material properties [1, 6, 21, 22, 32], or

illumination [3, 10, 11, 44], while inverse rendering seeks

to estimate all those factors simultaneously [26]. Classical

methods for inverse rendering are typically posed as energy

minimization with heuristic priors, for example, SIRFS [2,3]

where intrinsic properties are jointly optimized with a sta-

tistical cost function. Despite early success, such models

usually do not generalize well to real images with diverse

appearances. With advances in deep learning, CNN-based

methods have been developed to learn a generalizable model

in a data-driven fashion. The recent method of NIR [33] is

pre-trained with weak labels and finetuned on real images

with re-rendering loss. Methods like Lighthouse [36] learn a

volumetric lighting representation using stereo inputs, while

Wang et al. [39] do so with a single image. Li et al. [19, 23]

design physically-based representations and rendering layers

to estimate shape, SVBRDF, and spatially-varying per-pixel

lighting from a single image. However, the aforementioned

methods utilize convolutional neural networks, which feature

a limited receptive field and lack an explicit attention mech-

anism to reason about long-range dependencies in image

space, which can be crucial for estimating global properties

of light transport and its interaction with material and shape.

Datasets for inverse rendering. Synthetic datasets [23, 30,

35] are commonly used to provide ground truth for most

modalities, including scene geometry, material, and lighting,

and suitable for training inverse rendering models in super-

vised fashion [19], while achieving good generalizability to

real world datasets. Models trained on synthetic datasets are

shown to further improve on real world images via finetuning

with either weak supervision [4], full supervision on a subset

of modalities [34], or with re-rendering losses [33]. In this

work, we train our transformer models on the OpenRooms

dataset [23] and obtain state-of-the-art results by finetuning

on IIW [4] and NYUv2 [34] real world datasets.

Vision transformer. Convolutional neural networks (CNN)

have long been the architecture of choice as building blocks

for dense prediction with deep learning, as both backbone for

feature extraction [5, 14] or as decoders [19, 27]. However,

several drawbacks inherent to CNNs make them sub-optimal

for tasks that require reasoning over long-range dependen-

2823



BRDFGeoNet (multi) B

LightNet L

Input image  I

Re
sN

et

HeadA

HeadR

HeadN

HeadD

Albedo

Depth Normals

Roughness
T0

T1

T3

Encoder

T0

T1

T3

Decoderf

T0

T1

T3

Decoderf

T0

T1

T3

Decoderf

Head

Head

Head

T0

T1

T3

Encoder

T0

T1

T3

Decoder
Lighting L

Re
nd

er
er

 R

Input image  IRe
sN

et
{A

,R
,D

,N
} Head{A,R,D,N}T[0…5]

Encoder{A,R,D,N}

T[0…5]
BRDFGeoNet (single)

Decoder{A,R,D,N} x4

Figure 2. Overview of IRISformer. For BRDFGeoNet, we illustrate the multi-task setting in the upper gray block, while the single-task case

(lower gray block) has 4 independent copies of DPT with different design of output heads.

cies over the image space, despite multiple measures that

have been proposed to mitigate those issues, including di-

lated convolutions [5,42], skip connections [14,31] and self-

attention [45]. The recently proposed Vision Transformer

(ViT) [7] has enabled feature extraction with global attention

over image space with elegant design and better interpretabil-

ity while achieving superior performance compared to CNNs

on multiple vision tasks. Several works [38, 41, 43] have ex-

tended ViT to dense prediction tasks, including DPT [28],

Swin Transformer [25], etc. Additional efforts have been

made to utilize transformers in a multi-task or multi-object

setting, such as UniT [16] that follows an encoder-decoder

design scheme and utilizes a task-specific query embedding

to learn a unified decoding feature space for all tasks. In con-

trast to those works, we propose single-task and multi-task

transformers for dense prediction tasks in inverse rendering,

where material and lighting estimation using transformers

have previously not been studied.

3. Method
Notation. Vectors are represented with a lower-case bold

font (e.g. x). Matrices are in upper-case bold (e.g. X) while

scalars are in regular font (e.g. x or X). Variables with hat,

e.g. X̂, are the estimation of the corresponding entity X. For

denoting the lth sample in a set (e.g. images, shapes), we use

subscripts (e.g. Xl). Uppercase calligraphic symbols (e.g.

X ) denote functions.

3.1. Scene Representation and Loss Functions

Geometry and spatially-varying material. In IRISformer,

we account for only the scene elements within the camera

frustum. For an h×w image, we represent per-pixel geome-

try with a depth map D ∈ R
h×w and normals N ∈ R

h×w×3.

We represent material as a microfacet spatially-varying

BRDF model (SVBRDF) [17], with albedo A and roughness

R maps of sizes h× w × 3 and h× w respectively. Specif-

ically, given a single RGB input image I, we seek to learn

a function BRDFGeoNet denoted as B to jointly estimate

the above properties: {D̂, N̂, Â, R̂} = B(I). Given ground

truths, we use scale-invariant L2 loss [19, 29] for albedo and

depth (log space) and an L2 loss for roughness and normals.

Spatially-varying lighting. For lighting, we follow Li et
al. [19,23] to adopt per-pixel image-space environment maps

G of 16 × 32 pixels to represent the incident irradiance,

parameterized by K = 12 Spherical Gaussian (SG) lobes

{ξk, λk, fk}Kk=1. Here ξk ∈ S
2 is the center orientation on

the unit sphere, fk ∈ R
3 is the intensity and λk ∈ R is the

bandwidth. Given each set of lighting parameters and an

orientation outward from one spatial location η in 3D, we

have

G(η) =
K∑

k=1

fkeλ(1−ηξ) : S2 → R
3. (1)

For a collection of all h× w pixel locations and all 16× 32
outgoing directions from each surface point in 3D, we ar-

rive at a lighting map L ∈ R
h×w×16×32×3. Then, us-

ing either a single image as the sole input or combin-

ing it with predictions of geometry and material, a Light-
Net denoted as L can be learned: L̂ = L(I) or L̂ =
L(I, D̂, N̂, Â, R̂). Given estimates of geometry, material

and lighting, a per-pixel physically-based differentiable ren-

derer RenderNet [19] denoted as R can re-render the input

image: Î = R(D̂, N̂, Â, R̂, L̂).
To supervise the training of lighting, assuming dense

ground truth can be acquired from synthetic datasets, we im-

pose a scale-invariant L2 reconstruction loss on the lighting

map L̂ (in log space) and a scale-invariant L2 re-rendering

loss on the re-rendered image Î. The final loss Lall is a

weighted combination of losses on all estimations:

Lall = λALA+λRLR+λDLD+λNLN+λLLL+λILI. (2)

3.2. Dense Vision Transformer

Dense Vision Transformer (DPT) [28] is a generic archi-

tecture for dense prediction utilizing vision transformers [7]

in place of CNNs as a backbone. An image I is first di-

vided into an h/p × w/p grid of non-overlapping patches

of size p × p, and subsequently DPT tokenizes each patch

into a vector of dimension D with a shadow CNN (DPT-

large or DPT-base) or ResNet (DPT-hybrid). The result is

a set of tokens t0 = {t01, . . . , t0Np
} where Np = hw/p2,

t0n ∈ R
D, n = [1, . . . Np]. A cascade of M transformer lay-

ers then transforms the set of vectors with self-attention [37]
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Figure 3. BRDF, geometry and lighting estimation on OpenRooms. Small insets (best viewed when enlarged in PDF version) are estimations

processed with bilateral solvers (BS). More results can be found in the supplementary material.

into tM , and a re-assembling operation followed by a con-

volutional decoder transforms the tokens back to 2D space,

resulting in a 2D dense feature map. A customized convolu-

tional head is attached to yield the final prediction from the

feature map, based on the specific prediction task.

3.3. Single-task Network Design

Due to the modular design of DPT and the variation of

size and capacity among different DPT variants [28], we

consider a few design choices for using DPT modules to

build BRDFGeoNet and LightNet in both single-task and

multi-task settings.

The full design of our pipeline can be found in Fig. 2. In

single-task setting, we seek to maximize the performance of

each task by using an independent DPT for each of depth,

normal, albedo, roughness, and lighting. This effectively

results in BRDFGeoNet of 4 DPTs {BA,BR,BD,BN} to

independent infer each of the modality: D = BD(I),
N = BN (I), A = BA(I), R = BR(I). For each DPT,

we follow the design of DPT-hybrid [28] by using M = 6
transformer layers for encoding and M = 6 for decoding. In

our case, we use an input resolution of 256×320 and patch

size p = 16. A ResNet-50 [14] acts as the patch embedding

backbone. For output head design, we take output features

from stage 1 and 2 of ResNet, as well as output from layer

3 and 6 from decoder, fuse the representations and use 4

convolutions layers with 2 bilinear interpolation layers to

produce the final output. Readout token [28] is set to ignore
and batch normalization (BN) is enabled in output heads.

The only difference among the DPTs is the output layer in

the head, depending on the sub-task. We use tanh activation

for all heads to output albedo, roughness, normals and in-

verse depth. Details on the tensor sizes and head design are

in the supplementary material.

For LightNet we have a similar encoder-decoder design.

Three independent heads are required for estimating axis

center, intensity, and bandwidth of K Spherical Gaussians

for each pixel. However we found that sharing decoders

for the three tasks is not optimal as the output spaces of

these tasks are very disparate, thus forcing a unified decoder

feature space destabilizes training. As a result, we use a

shared encoder but independent decoders and output heads

for LightNet. We use 4 transformer layers in both encoders

and decoders in the multi-task setting so that the entire model

can fit into one GPU for joint training. We use a similar

output layer design as aforementioned except for not using

tanh for ξk but use normalization to unit norm instead.

3.4. Multi-task Network Design

The single-network design requires 4 DPTs for material

and geometry and one for lighting. As a result, the collective

memory footprint is too large to fit the entire model into a

regular GPU for training. An alternative option is to allow

DPTs to have a unified feature space so that memory usage

can be reduced. Also in some cases, a jointly learned fea-

ture can benefit from related tasks. Inspired by UniT [16]

where input-domain-specific encoders and shared decoders

are designed for a multi-modal input setting, we use a unified

encoder and decoder for all tasks in BRDFGeoNet besides

independent task-specific convolutional heads. We share

decoders due to memory considerations while noting that

further gains from independent decoders might be possible.

The result is Bmulti with 4 heads as shown in Fig. 2. The

design for LightNet is the same as in a single-task setting.

3.5. Additional Components

Refinement using bilateral solver. We may optionally

refine the geometry and material outputs with a bilateral

solver (BS). Additional refinement leads to smoother out-

puts, which is preferable for some metrics like WHDR [4]

for albedo. In comparison to previous CNN-based works,

we observe that our transformer-based outputs are already

quite accurate without the bilateral solver on all the tasks.

Cascade design. In prior works [19], a cascade design is
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used to refine the predictions based on the rendering error.

However, it leads to a two-fold increase in memory with

small improvements, while we already achieve significantly

improved results on all benchmarks with a single-stage net-

work. As a result, we choose not to use cascaded refinement.

4. Evaluation
We demonstrate the capability of our DPT-based IRIS-

former to produce globally coherent estimations that outper-

form traditional CNN-based models on all modalities, due

to its global attention that can better handle the inherent am-

biguities of inverse rendering. This is especially notable for

material and lighting prediction, in the presence of highlights,

shadows, and interreflections. We include results on joint

BRDF, geometry, and lighting prediction on OpenRooms, as

well as sub-tasks on real world benchmarks. We additionally

provide analysis on design choices and ablation study.

4.1. Datasets and Training
Given the success of synthetic inverse rendering datasets

in providing photorealistic images and complete ground truth

for all inverse rendering tasks, we use OpenRooms (OR) [23]

dataset for supervised training. We use 6,684 scenes for train-

ing, 1,008 for testing, each rendered with multiple material

and lighting configurations, for a total of 102,452 images for

training, and 15,738 frames for testing.

We train BRDFGeoNet (in multi-task and single-task

settings) on OR with Adam optimizer for 80 epochs at a

learning rate of 1e-5 and batch size of 8 on 4 GPUs, start-

ing with pretrained ResNet on ImageNet. Then we freeze

BRDFGeoNet and train LightNet in the same setting. Ad-

ditional training details and weights for losses are in the

supplementary material.

After training on OpenRooms, we may finetune on real

datasets where labels of all or a subset of the tasks are avail-

able. Specifically, we finetune on (a) IIW dataset [4] with

relative labels of albedo; (b) NYUv2 [34] with ground truth

depth and normals. We also demonstrate lighting estimation

results with virtual object insertion on real world images

from Garon et al. [12] where ground truth lighting is col-

lected at selected locations with light probes.

4.2. BRDF and Geometry Estimation

Table 1 includes the performance of IRISformer as well

as Li et al. [23] (which we trained and finetuned in the same

setting as ours for all evaluations) for BRDF and geometry

estimation, evaluated on our OpenRooms test split, both

with a variant where the bilateral solver is applied to albedo,

roughness, and depth. We observe better performance from

both our multi-task and single-task models consistently on

all tasks, and we visually demonstrate the comparison with a

few samples in Fig. 3. As can be observed, our model excels

with much cleaner and accurate material and geometry esti-

mations, and better lighting estimations (especially in areas

of highlights and shadows where we better disentangle light-

ing from albedo and correspondingly yields brighter/darker

lighting).

Method A↓ R↓ D↓ N↓ L↓ I↓ L+I↓
IRISformer (multi) 0.51 5.52 1.72 2.05 12.50 1.15 12.54

IRISformer (multi+BS) 0.51 5.50 1.71 2.05 12.47 1.15 12.58

IRISformer (single) 0.43 5.50 1.42 1.89 12.04 0.99 12.14
IRISformer (single+BS) 0.43 5.48 1.44 1.89 12.08 0.97 12.17

Ours (direct) - - - - 12.29 1.29 12.42

Li’21 [23] 0.52 6.31 2.20 2.61 18.63 0.88 18.72

Li’21+BS [23] 0.48 6.30 1.91 2.61 18.61 0.88 18.70

Table 1. Errors of BRDF, geometry and lighting with a base of

10−2 on OpenRooms [23]. Lower is better. For lighting estimation,

L is the lighting reconstruction error, I is the rendering error and

L+I is the combined lighting loss for which LightNet is trained.

4.3. Lighting Estimation

In Table 1, we report lighting estimation errors of different

versions of IRISformer, including both multi-task and single-

task models, and variants of these two models with BS. We

also include another version of our lighting estimation model

(denoted as Ours (direct)), where the first stage of BRDF

and geometry estimation is removed, and only the image is

directly used as input for lighting prediction. We observe the

best lighting prediction from the single models due to their

larger capacity. For the direct model, it is able to estimate

reasonable lighting directly from image input, highlighting

the power of the transformer architecture, but is not suitable

for downstream tasks (e.g. object insertion, material editing)

where a complete scene decomposition is required.

4.4. Comparison on Sub-tasks

Intrinsic decomposition. To evaluate IRISformer on the

task of intrinsic decomposition (albedo-only) on real world

images, we finetune our model on IIW [4] using relative

labels of albedo between labeled pairs of pixels. Results

are summarized in Table 2 and Fig. 5. We observe that

our single-task model performs better than the multi-task

version due to its larger capacity and independent feature

space. More importantly, both the multi-task and single-task

models achieve new state-of-the-art on IIW, outperforming

all prior methods. Note that the shift in tones is due to the

weak supervision from relative loss.

Geometry estimation. For depth and normal prediction, we

follow the training and evaluation settings of Li et al. [23],

and report results in Table 3 and Fig. 5. We choose to com-

pare with similar methods in a multi-task inverse rendering

setting, instead of dedicated and more complex methods that

maximize geometry prediction performance in the wild like

DPT [28] or MiDaS [29]. As can be observed, we achieve

improved results compared to all previous works listed.
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Figure 4. BRDF, geometry estimation, per-pixel lighting and re-rendering results on Garon et al. [12] (after BS). Insets are results before BS.

Our material and geometry results are cleaner even without BS. Also less artifacts can be observed in our re-rendered images (see bright area

on the table in sample 2) compared to Li et al. [23] due to better estimation on all modalities.
Input Image Ours (multi) Ours (single)Li et al. 21CGIntrinsics 18

Input Image Ours (multi) Ours (single)Li et al. 21Ground Truth

Figure 5. (Top) Intrinsic decomposi-

tion results on IIW [4] (before BS). The

insets are results after BS. Our results

are better in regions with complex ge-

ometry and lighting (see the bedding

in sample 1 and clothing in sample 2).

(Bottom) Geometry estimation results

on NYUv2 [34] (all without BS). Ours

are less prone to artifacts (see printer

surface in sample 1 and geometry of

the trash bins in sample 2). Please refer

to the supplementary material for more

results.

Intermediate results on real world images. In Fig. 4 we

test IRISformer on real world images from Garon et al. [12],

and we demonstrate that IRISformer generalize well to real

world images and outperform previous art in every task. In

general, our results are more spatially consistent and have

fewer artifacts (most noticeable from the re-rendered images

which are the result of all estimations). In Fig. 6, we compare

with the recent method of Wang et al. [39] on their reported

samples, where we arrive at much improved results.

Lighting estimation on real images. With intermediate

estimations including material, geometry, and the final per-

pixel lighting, we demonstrate applications of IRISformer in

downstream applications including virtual object insertion

and material editing. For object insertion, we compare with
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Method Finetuning Datasets WHDR↓
IRISformer (multi) OR+IIW 13.1

IRISformer (single) OR+IIW 12.0
Li’21 [23] OR+IIW 16.4

Li’20 [19] CGM+IIW 15.9

NIR’19 [33] CGP+IIW 16.8

CGIntrinsics’18 [20] CGI+IIW 17.5

Table 2. Intrinsic decomposition on IIW [4]. Lower is better.

Method Mean(◦)↓ Med.(◦)↓ Depth↓
IRISformer (multi) 23.5 16.3 0.162

IRISformer (single) 20.2 13.4 0.132
Li’21 [23] 25.3 18.0 0.171

Li’20 [19] 24.1 17.3 0.184

NIR’19 [33] 21.1 16.9 -

Zhang’17 [47] 21.7 14.8 -

Table 3. Normal (mean and median) and depth (mean on inverse

depth) prediction results on NYUv2 [34]. Lower is better.
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Figure 6. Comparison between our results and Wang et al. [39]

on albedo, normals and re-rendering. On challenging inputs, we

achieve smoother albedo with less artifacts and richer details with

more consistent normals. Upper-left insets are input images, and

lower-right insets are before BS).

Gardner’17 [11] Garon’19 [12] Li’21 [23] Ground Truth

0.24 0.30 0.47 0.58

Table 4. A user study on object insertion, where we compare IRIS-

former with each of the previous work or ground truth and report

the percentage of feedbacks where other method is considered to

be more photorealistic than ours.

prior works in Fig. 9. We produce more realistic lighting

for inserted objects which better match the surroundings

on lighting intensity, direction and relative brightness of

inserted objects in highlights and shadowed areas.

To quantitatively evaluate insertion results, we conduct a

single-6 single-4 multi Li’20 [23]

Model Size (MB) 7,305 6,256 1,539 795

Inference (ms) 141.9 125.9 91.9 45.2

A+R+D+N 6.00 6.08 6.44 7.65

L+I 12.14 12.85 12.54 18.72

Table 5. Analysis on multiple design choices: IRISformer (single-

task with 6 or 4 layers in BRDFGeoNet, multi-task with 4 layers),

and CNN-based architecture from Li et al. [23] on OR [23].

OursLi et al. 21Input Image

Figure 7. Material editing example where we replace the material

of part of the wall with wood. Note that the shadow from outside

lighting is recreated on the replaced material, demonstrating our

accurate spatially-varying lighting estimation.

Attention MapsInput Image

1   2
3   4

1   2
3   4

Figure 8. Attention maps

learned by the single-task

model for albedo. Each

heatmap is the attention

weights (affinity) of the

patch (denoted by pink

square) w.r.t. all other

patches, of one head from

subsequent transformer

layers.

user study against other methods in Tab. 4. We outperform

all previous methods, only being inferior to ground truth.

We also perform material editing in Fig. 7 where we replace

the material of a planar surface and re-render the region, to

showcase that IRISformer captures the directional lighting

effect of the area so that the replaced material will be prop-

erly shadowed. A complete list of results and comparisons

is in the supplementary material.

4.5. Ablation study
Comparison of design choices. In Table 5 we compare

various metrics of all models, including model size, inference

time for one sample on a Titan RTX 2080Ti GPU, test losses

on OR for material and geometry combined, and lighting

losses combined. Study on other minor choices can be found

in the supplementary material.

Attention from Transformers. To provide additional in-

sight into the attention that is learned, we include in Fig. 8

two samples where attention maps corresponding to one

patch location from different layers are visualized. In the

first sample we show a patch on the lit-up chair seat, subse-

quently attending to (1) chairs and window, (2) highlighted

regions over the image, (3) entire floor, (4) the chair itself.

For the second sample, the chosen patch is in the shadow on
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OursBarron et al. 13 Gardner et al. 17 Li et al. 21

Figure 9. Virtual object insertion results. Lighting estimation from Barron et al. [2] lacks high frequency, while Gardner et al. [11] predicts a

global environment map instead of spatially-varying lighting at each location. Compared to the most recent Li et al. [23], we better decouple

lighting and appearance to better recover highlighted or shadowed areas (see center object in sample 1 and 2, right object in sample 4 and 5).

Also our lighting is more spatially consistent w.r.t. the light source (see shadow directions in objects of sample 1 and 3).

the wall, and it attends to (1) neighbouring shadowed areas

of the wall, (2) the entire wall, (3) potential light sources

and occluders, (4) ambient environment. Throughout the

cascaded transformer layers, IRISformer learns to attend to

large regions and distant interactions to improve its predic-

tion in the presence of complex light transport effects.

5. Discussion
Limitation and potential negative impact. IRISformer

only infers per-pixel lighting on the scene surface, so ap-

plications like inserting objects in the air are not feasible.

Future work may also explore choices beyond the current

multi-task design, possibly by leveraging the complementary

nature of various tasks. Potential negative impacts include

Deepfake [40], where our method can be used to recreate an

indoor scene with a photorealistically modified appearance.

Conclusion. We have proposed an inverse rendering frame-

work that estimates material, geometry, and per-pixel light-

ing given an unconstrained indoor image using a transformer-

based model. Our results demonstrate that the model can

produce significantly better results especially on material and

lighting, which require long-range reasoning for diambigua-

tion. Additionally, our approach enables different design

choices with single or multi-task settings. Downstream ap-

plications including object insertion and material editing on

real world images demonstrate the strength of our model to

better handle challenging lighting conditions and produce

highly photorealistic results. We also provide analysis into

design choices and the attention maps learned by our model.
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