
Temporal Difference Learning for Model Predictive Control

Nicklas Hansen 1 Xiaolong Wang * 1 Hao Su * 1

Abstract
Data-driven model predictive control has two key

advantages over model-free methods: a potential

for improved sample efficiency through model

learning, and better performance as computational

budget for planning increases. However, it is both

costly to plan over long horizons and challeng-

ing to obtain an accurate model of the environ-

ment. In this work, we combine the strengths of

model-free and model-based methods. We use a

learned task-oriented latent dynamics model for

local trajectory optimization over a short hori-

zon, and use a learned terminal value function

to estimate long-term return, both of which are

learned jointly by temporal difference learning.

Our method, TD-MPC, achieves superior sam-

ple efficiency and asymptotic performance over

prior work on both state and image-based con-

tinuous control tasks from DMControl and Meta-

World. Code and videos are available at https:
//nicklashansen.github.io/td-mpc.

1. Introduction
To achieve desired behavior in an environment, a Reinforce-

ment Learning (RL) agent needs to iteratively interact and

consolidate knowledge about the environment. Planning is a

powerful approach to such sequential decision making prob-

lems, and has achieved tremendous success in application

areas such as game-playing (Kaiser et al., 2020; Schrit-

twieser et al., 2020) and continuous control (Tassa et al.,

2012; Chua et al., 2018; Janner et al., 2019). By utilizing

an internal model of the environment, an agent can plan a

trajectory of actions ahead of time that leads to the desired

behavior; this is in contrast to model-free algorithms that

learn a policy purely through trial-and-error.

Concretely, prior work on model-based methods can largely

be subdivided into two directions, each exploiting key ad-

*Equal contribution 1UC San Diego. Correspondence to: Nick-
las Hansen <nihansen@ucsd.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

250

500

750

1000

Ep
is

od
e

re
tu

rn

Humanoid Stand

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

250

500

750

1000
Humanoid Walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

100

200

300

400
Humanoid Run

0 1 2 3 4 5
Environment steps (×106)

0

250

500

750

1000

Ep
is

od
e

re
tu

rn

Dog Walk

0 1 2 3 4 5
Environment steps (×106)

0

250

500

750

1000
Dog Trot

0 1 2 3 4 5
Environment steps (×106)

0

150

300

450

600
Dog Run

SAC MPC:sim TD−MPC (ours)

Figure 1. Overview. (Top) We present a framework for MPC using

a task-oriented latent dynamics model and value function learned

jointly by temporal difference learning. We perform trajectory

optimization over model rollouts and use the value function for

long-term return estimates. (Bottom) Episode return of our method,

SAC, and MPC with a ground-truth simulator on challenging, high-

dimensional Humanoid and Dog tasks (Tassa et al., 2018). Mean

of 5 runs; shaded areas are 95% confidence intervals.

vantages of model-based learning: (i) planning, which is ad-

vantageous over a learned policy, but it can be prohibitively

expensive to plan over long horizons (Janner et al., 2019;

Lowrey et al., 2019; Hafner et al., 2019; Argenson & Dulac-

Arnold, 2021); and (ii) using a learned model to improve

sample-efficiency of model-free methods by e.g. learning

from generated rollouts, but this makes model biases likely

to propagate to the policy as well (Ha & Schmidhuber, 2018;

Hafner et al., 2020b; Clavera et al., 2020). As a result,

model-based methods have historically struggled to outper-

form simpler, model-free methods (Srinivas et al., 2020;

Kostrikov et al., 2020) in continuous control tasks.

Can we instead augment model-based planning with the

strengths of model-free learning? Because of the immense

cost of long-horizon planning, Model Predictive Control

ar
X

iv
:2

20
3.

04
95

5v
2

 [c
s.L

G
]

19
 Ju

l 2
02

2

TD-Learning for MPC

(MPC) optimizes a trajectory over a shorter, finite horizon,

which yields only temporally local optimal solutions. MPC

can be extended to approximate globally optimal solutions

by using a terminal value function that estimates discounted

return beyond the planning horizon. However, obtaining an

accurate model and value function can be challenging.

In this work, we propose Temporal Difference Learning

for Model Predictive Control (TD-MPC), a framework

for data-driven MPC using a task-oriented latent dynamics

model and terminal value function learned jointly by tem-

poral difference (TD) learning. At each decision step, we

perform trajectory optimization using short-term reward es-

timates generated by the learned model, and use the learned

value function for long-term return estimates. For exam-

ple, in the Humanoid locomotion task shown in Figure 1,

planning with a model may be beneficial for accurate joint

movement, whereas the higher-level objective, e.g. direction

of running, can be guided by long-term value estimates.

A key technical contribution is how the model is learned.

While prior work learns a model through state or video pre-

diction, we argue that it is remarkably inefficient to model

everything in the environment, including irrelevant quanti-

ties and visuals such as shading, as this approach suffers

from model inaccuracies and compounding errors. To over-

come these challenges, we make three key changes to model

learning. Firstly, we learn the latent representation of the

dynamics model purely from rewards, ignoring nuances

unnecessary for the task at hand. This makes the learning

more sample efficient than state/image prediction. Sec-

ondly, we back-propagate gradients from the reward and

TD-objective through multiple rollout steps of the model,

improving reward and value predictions over long horizons.

This alleviates error compounding when conducting rollouts.

Lastly, we propose a modality-agnostic prediction loss in la-
tent space that enforces temporal consistency in the learned

representation without explicit state or image prediction.

We evaluate our method on a variety of continuous control

tasks from DMControl (Tassa et al., 2018) and Meta-World

(Yu et al., 2019), where we find that our method achieves

superior sample efficiency and asymptotic performance over

prior model-based and model-free methods. In particular,

our method solves Humanoid and Dog locomotion tasks

with up to 38-dimensional continuous action spaces in as

little as 1M environment steps (see Figure 1), and is trivially

extended to match the state-of-the-art in image-based RL.

2. Preliminaries
Problem formulation. We consider infinite-horizon

Markov Decision Processes (MDP) characterized by a tuple

(S,A, T ,R, γ, p0), where S ∈ R
n and A ∈ R

m are contin-

uous state and action spaces, T : S × A× S �→ R+ is the

transition (dynamics) function, R : S ×A �→ R is a reward

function, γ ∈ [0, 1) is a discount factor, and p0 is the initial

state distribution. We aim to learn a parameterized map-

ping Πθ : S �→ A with parameters θ such that discounted

return EΓ∼Πθ
[
∑∞

t=1 γ
trt], rt ∼ R(·|st,at) is maximized

along a trajectory Γ = (s0,a0, s1,a1, . . .) following Πθ

by sampling an action at ∼ Πθ(·|st) and reaching state

st+1 ∼ T (·|st,at) at each decision step t.

Fitted Q-iteration. Model-free TD-learning algorithms

aim to estimate an optimal state-action value func-

tion Q∗ : S × A �→ R using a parametric value

function Qθ(s,a) ≈ Q∗(s,a) = maxa′ E[R(s,a) +
γQ∗(s′,a′)] ∀s ∈ S where s′,a′ is the state and action

at the following step, and θ parameterizes the function (Sut-

ton, 2005). For γ ≈ 1, Q∗ estimates discounted return for

the optimal policy over an infinite horizon. While Q∗ is

generally unknown, it can be approximated by repeatedly

fitting Qθ using the update rule

θk+1 ← argmin
θ

E(s,a,s′)∼B ‖Qθ(s,a)− y‖22 (1)

where the Q-target y = R(s,a) + γmaxa′ Qθ−(s′,a′), B
is a replay buffer that is iteratively grown as new data is

collected, and θ− is a slow-moving average of the online

parameters θ updated with the rule θ−k+1 ←− (1− ζ)θ−k +
ζθk at each iteration using a constant coefficient ζ ∈ [0, 1).

Model Predictive Control. In actor-critic RL algo-

rithms, Π is typically a policy parameterized by a

neural network that learns to approximate Πθ(·|s) ≈
argmaxa E[Qθ(s,a)] ∀s ∈ S , i.e, the globally optimal pol-

icy. In control, Π is traditionally implemented as a trajectory

optimization procedure. To make the problem tractable, one

typically obtains a local solution to the trajectory optimiza-

tion problem at each step t by estimating optimal actions

at:t+H over a finite horizon H and executing the first action

at, known as Model Predictive Control (MPC):

ΠMPC
θ (st) = arg max

at:t+H

E

[
H∑
i=t

γiR(si,ai)

]
, (2)

where γ, unlike in fitted Q-iteration, is typically set to 1,

i.e., no discounting. Intuitively, Equation 2 can be viewed

as a special case of the standard additive-cost optimal con-

trol objective. A solution can be found by iteratively fitting

parameters of a family of distributions, e.g., μ, σ for a mul-

tivariate Gaussian with diagonal covariance, to the space

of actions over a finite horizon using the derivative-free

Cross-Entropy Method (CEM; Rubinstein (1997)), and sam-

ple trajectories generated by a model. As opposed to fitted

Q-iteration, Equation 2 is not predictive of long-term re-

wards, hence a myopic solution. When a value function is

known (e.g. a heuristic or in the context of our method: esti-

mated using Equation 1), it can be used in conjunction with

TD-Learning for MPC

Equation 2 to estimate discounted return at state st+H and

beyond; such methods are known as MPC with a terminal
value function. In the following, we consider parameterized

mappings Π from both the perspective of actor-critic RL

algorithms and model predictive control (planning). To dis-

ambiguate these concepts, we refer to planning with MPC

as Πθ and a policy network as πθ. We generically denote

parameterization using neural networks as θ (online) and

θ− (target; slow-moving average of θ) as combined feature

vectors.

3. TD-Learning for Model Predictive Control
We propose TD-MPC, a framework that combines MPC

with a task-oriented latent dynamics model and terminal

value function jointly learned using TD-learning in an on-

line RL setting. Specifically, TD-MPC leverages Model

Predictive Path Integral (MPPI; Williams et al. (2015)) con-

trol for planning (denoted Πθ), learned models dθ, Rθ of the

(latent) dynamics and reward signal, respectively, a terminal

state-action value function Qθ, and a parameterized policy

πθ that helps guide planning. We summarize our frame-

work in Figure 1 and Algorithm 1. In this section, we detail

the inference-time behavior of our method, while we defer

discussion of training to Section 4.

MPPI is an MPC algorithm that iteratively updates pa-

rameters for a family of distributions using an importance

weighted average of the estimated top-k sampled trajectories

(in terms of expected return); in practice, we fit parameters

of a time-dependent multivariate Gaussian with diagonal

covariance. We adapt MPPI as follows. Starting from ini-

tial parameters (μ0, σ0)t:t+H , μ0, σ0 ∈ R
m, A ∈ R

m, i.e.

independent parameters for each action over a horizon of

length H , we independently sample N trajectories using

rollouts generated by the learned model dθ, and estimate the

total return φΓ of a sampled trajectory Γ as

φΓ � EΓ

[
γHQθ(zH ,aH) +

H−1∑
t=0

γtRθ(zt,at)

]
, (3)

where zt+1 = dθ(zt,at) and at ∼ N (μj−1
t , (σj−1

t)2I) at

iteration j − 1, as highlighted in red in Algorithm 1. We

select the top-k returns φ�
Γ and obtain new parameters μj , σj

at iteration j from a φ�
Γ-normalized empirical estimate:

μj =

∑k
i=1 ΩiΓ

�
i∑k

i=1 Ωi

, σj =

√√√√∑k
i=1 Ωi(Γ�

i − μj)2∑k
i=1 Ωi

, (4)

where Ωi = eτ(φ
�
Γ,i), τ is a temperature parameter control-

ling the “sharpness” of the weighting, and Γ�
i denotes the ith

top-k trajectory corresponding to return estimate φ�
Γ. After

a fixed number of iterations J , the planning procedure is

terminated and a trajectory is sampled from the final return-

normalized distribution over action sequences. We plan at

Algorithm 1 TD-MPC (inference)

Require: θ : learned network parameters

μ0, σ0: initial parameters for N
N,Nπ: num sample/policy trajectories

st, H: current state, rollout horizon

1: Encode state zt ← hθ(st) � Assuming TOLD model
2: for each iteration j = 1..J do
3: Sample N traj. of len. H from N (μj−1, (σj−1)2I)
4: Sample Nπ traj. of length H using πθ, dθ

// Estimate trajectory returns φΓ using dθ, Rθ, Qθ,
starting from zt and initially letting φΓ = 0:

5: for all N +Nπ trajectories (at,at+1, . . . ,at+H) do
6: for step t = 0..H − 1 do
7: φΓ = φΓ + γtRθ(zt,at) � Reward
8: zt+1 ← dθ(zt,at) � Latent transition
9: φΓ = φΓ+γHQθ(zH ,aH) � Terminal value

// Update parameters μ, σ for next iteration:
10: μj , σj = Equation 4 (and Equation 5)

11: return a ∼ N (μJ , (σJ)2I)

each decision step t and execute only the first action, i.e., we

employ receding-horizon MPC to produce a feedback policy.

To reduce the number of iterations required for convergence,

we “warm start” trajectory optimization at each step t by

reusing the 1-step shifted mean μ obtained at the previous

step (Argenson & Dulac-Arnold, 2021), but always use a

large initial variance to avoid local minima.

Exploration by planning. Model-free RL algorithms such

as DDPG (Lillicrap et al., 2016) encourage exploration by

injecting action noise (e.g. Gaussian or Ornstein-Uhlenbeck

noise) into the learned policy πθ during training, optionally

following a linear annealing schedule. While our trajectory

optimization procedure is inherently stochastic due to tra-

jectory sampling, we find that the rate at which σ decays

varies wildly between tasks, leading to (potentially poor)

local optima for small σ. To promote consistent exploration

across tasks, we constrain the std. deviation of the sampling

distribution such that, for a μj obtained from Equation 4 at

iteration j, we instead update σj to

σj = max

⎛
⎝
√√√√∑N

i=1 Ωi(Γ�
i − μj)2∑N

i=1 Ωi

, ε

⎞
⎠ , (5)

where ε ∈ R+ is a linearly decayed constant. Likewise, we

linearly increase the planning horizon from 1 to H in the

early stages of training, as the model is initially inaccurate

and planning would therefore be dominated by model bias.

Policy-guided trajectory optimization. Analogous to

Schrittwieser et al. (2020); Sikchi et al. (2022), TD-MPC

learns a policy πθ in addition to planning procedure Πθ, and

augments the sampling procedure with additional samples

from πθ (highlighted in blue in Algorithm 1). This leads to

TD-Learning for MPC

one of two cases: the policy trajectory is estimated to be (i)
poor, and may be excluded from the top-k trajectories; or (ii)
good, and may be included with influence proportional to its

estimated return φΓ. While LOOP relies on the maximum

entropy objective of SAC (Haarnoja et al., 2018) for ex-

ploration, TD-MPC learns a deterministic policy. To make

sampling stochastic, we apply linearly annealed (Gaussian)

noise to πθ actions as in DDPG (Lillicrap et al., 2016). Our

full procedure is summarized in Algorithm 1.

4. Task-Oriented Latent Dynamics Model
To be used in conjunction with TD-MPC, we propose a

Task-Oriented Latent Dynamics (TOLD) model that is

jointly learned together with a terminal value function using

TD-learning. Rather than attempting to model the environ-

ment itself, our TOLD model learns to only model elements

of the environment that are predictive of reward, which

is a far easier problem. During inference, our TD-MPC

framework leverages the learned TOLD model for trajectory

optimization, estimating short-term rewards using model

rollouts and long-term returns using the terminal value func-

tion. TD-MPC and TOLD support continuous action spaces,

arbitrary input modalities, and sparse reward signals. Figure

2 provides an overview of the TOLD training procedure.

Components. Throughout training, our agent iteratively

performs the following two operations: (i) improving the

learned TOLD model using data collected from previous

environment interaction; and (ii) collecting new data from

the environment by online planning of action sequences with

TD-MPC, using TOLD for generating imagined rollouts.

Our proposed TOLD consists of five learned components

hθ, dθ, Rθ, Qθ, πθ that predict the following quantities:

Representation: zt = hθ(st)
Latent dynamics: zt+1 = dθ(zt,at)
Reward: r̂t = Rθ(zt,at)
Value: q̂t = Qθ(zt,at)
Policy: ât ∼ πθ(zt)

(6)

Given an observation st observed at time t, a representation

network hθ encodes st into a latent representation zt. From

zt and an action at taken at time t, TOLD then predicts (i)
the latent dynamics (latent representation zt+1 of the fol-

lowing timestep); (ii) the single-step reward received; (iii)
its state-action (Q) value; and (iv) an action that (approx-

imately) maximizes the Q-function. To make TOLD less

susceptible to compounding errors, we recurrently predict

the aforementioned quantities multiple steps into the future

from predicted future latent states, and back-propagate gra-

dients through time. Unlike prior work (Ha & Schmidhuber,

2018; Janner et al., 2019; Hafner et al., 2019; 2020b; Sikchi

et al., 2022), we find it sufficient to implement all compo-

nents of TOLD as purely deterministic MLPs, i.e., without
RNN gating mechanisms nor probabilistic models.

Figure 2. Training our TOLD model. A trajectory Γ0:H of length

H is sampled from a replay buffer, and the first observation s0
is encoded by hθ into a latent representation z0. Then, TOLD

recurrently predicts the following latent states z1, z2, . . . , zH , as

well as a value q̂, reward r̂, and action â for each latent state, and

we optimize TOLD using Equation 7. Subsequent observations

are encoded using target net hθ− (θ−: slow-moving average of θ)

and used as latent targets only during training (illustrated in gray).

Objective. We first state the full objective, and then mo-

tivate each module and associated objective term. During

training, we minimize a temporally weighted objective

J (θ; Γ) =

t+H∑
i=t

λi−tL(θ; Γi) , (7)

where Γ ∼ B is a trajectory (st,at, rt, st+1)t:t+H sampled

from a replay buffer B, λ ∈ R+ is a constant that weights

near-term predictions higher, and the single-step loss

L(θ; Γi) = c1‖Rθ(zi,ai)− ri‖22︸ ︷︷ ︸
reward

(8)

+ c2‖Qθ(zi,ai)− (ri + γQθ−(zi+1, πθ(zi+1))) ‖22︸ ︷︷ ︸
value

(9)

+ c3‖dθ(zi,ai)− hθ−(si+1)‖22︸ ︷︷ ︸
latent state consistency

(10)

is employed to jointly optimize for reward prediction, value

prediction, and a latent state consistency loss that regu-

larizes the learned representation. Here, c1:3 are constant

coefficients balancing the three losses. From each tran-

sition (zi,ai), the reward term (Equation 8) predicts the

single-step reward, the value term (Equation 9) is our adop-

tion of fitted Q-iteration from Equation 1 following previ-

ous work on actor-critic algorithms (Lillicrap et al., 2016;

Haarnoja et al., 2018), and the consistency term (Equa-

tion 10) predicts the latent representation of future states.

TD-Learning for MPC

Crucially, recurrent predictions are made entirely in latent

space from states zi = hθ(si), zi+1 = dθ(zi,ai), . . . ,

zi+H = dθ(zi+H−1,ai+H−1) such that only the first obser-

vation si is encoded using hθ and gradients from all three
terms are back-propagated through time. This is in contrast

to prior work on model-based learning that learn a model

by state or video prediction, entirely decoupled from policy

and/or value learning (Ha & Schmidhuber, 2018; Hafner

et al., 2020b; Sikchi et al., 2022). We use an exponential

moving average θ− of the online network parameters θ
for computing the value target (Lillicrap et al., 2016), and

similarly also use θ− for the latent state consistency target

hθ−(si+1). The policy πθ is described next, while we defer

discussion of the consistency loss to the following section.

Computing TD-targets. The TD-objective in Equation 9

requires estimating the quantity maxat
Qθ−(zt,at), which

is extremely costly to compute using planning (Lowrey

et al., 2019). Therefore, we instead learn a policy πθ that

maximizes Qθ by minimizing the objective

Jπ(θ; Γ) = −
t+H∑
i=t

λi−tQθ(zi, πθ(sg(zi))) , (11)

which is a temporally weighted adaptation of the policy

objective commonly used in model-free actor-critic methods

such as DDPG (Lillicrap et al., 2016) and SAC (Haarnoja

et al., 2018). Here, sg denotes the stop-grad operator, and

Equation 11 is optimized only wrt. policy parameters. While

we empirically observe that for complex tasks the learned

πθ is inferior to planning (discussed in Section 5), we find

it sufficiently expressive for efficient value learning.

Latent state consistency. To provide a rich learning signal

for model learning, prior work on model-based RL com-

monly learn to directly predict future states or pixels (Ha

& Schmidhuber, 2018; Janner et al., 2019; Lowrey et al.,

2019; Kaiser et al., 2020; Sikchi et al., 2022). However,

learning to predict future observations is an extremely hard

problem as it forces the network to model everything in the

environment, including task-irrelevant quantities and details

such as shading. Instead, we propose to regularize TOLD

with a latent state consistency loss (shown in Equation 10)

that forces a future latent state prediction zt+1 = dθ(zt,at)
at time t+ 1 to be similar to the latent representation of the

corresponding ground-truth observation hθ−(st+1), circum-

venting prediction of observations altogether. Additionally,

this design choice effectively makes model learning agnos-

tic to the observation modality. The training procedure is

shown in Algorithm 2; see Appendix F for pseudo-code.

5. Experiments
We evaluate TD-MPC with a TOLD model on a total of 92
diverse and challenging continuous control tasks from Deep-

Mind Control Suite (DMControl; Tassa et al. (2018)) and

Algorithm 2 TOLD (training)

Require: θ, θ−: randomly initialized network parameters

η, τ, λ,B: learning rate, coefficients, buffer

1: while not tired do
2: // Collect episode with TD-MPC from s0 ∼ p0:
3: for step t = 0...T do
4: at ∼ Πθ(·|hθ(st)) � Sample with TD-MPC
5: (st+1, rt) ∼ T (·|st,at), R(·|st,at) � Step env.
6: B ← B ∪ (st,at, rt, st+1) � Add to buffer
7: // Update TOLD using collected data in B:
8: for num updates per episode do
9: {st,at, rt, st+1}t:t+H ∼ B � Sample traj.

10: zt = hθ(st) � Encode first observation
11: J = 0 � Initialize J for loss accumulation
12: for i = t...t+H do
13: r̂i = Rθ(zi,ai) � Equation 8
14: q̂i = Qθ(zi,ai) � Equation 9
15: zi+1 = dθ(zi,ai) � Equation 10
16: âi = πθ(zi) � Equation 11
17: J ← J + λi−tL(zi+1, r̂i, q̂i, âi) � Equation 7
18: θ ← θ− 1

H η∇θJ � Update online network
19: θ− ← (1− τ)θ−+ τθ � Update target network

Meta-World v2 (Yu et al., 2019), including tasks with sparse

rewards, high-dimensional state and action spaces, image

observations, multi-modal inputs, goal-conditioning, and

multi-task learning settings; see Appendix L for task visual-

izations. We choose these two benchmarks for their great

task diversity and availability of baseline implementations

and results. We seek to answer the following questions:

− How does planning with TD-MPC compare to state-of-

the-art model-based and model-free approaches?

− Are TOLD models capable of multi-task and transfer

behaviors despite using a reward-centric objective?

− How does performance relate to the computational budget

of the planning procedure?

An implementation of TD-MPC is available at https://
nicklashansen.github.io/td-mpc, which will

solve most tasks in an hour on a single GPU.

Implementation details. All components are deterministic

and implemented using MLPs. We linearly anneal the ex-

ploration parameter ε of Πθ and πθ from 0.5 to 0.05 over

the first 25k decision steps1. We use a planning horizon of

H = 5, and sample trajectories using prioritized experience

replay (Schaul et al., 2016) with priority scaled by the value

loss. During planning, we plan for 6 iterations (8 for Dog;

12 for Humanoid), sampling N = 512 trajectories (+5%
sampled from πθ), and we compute μ, σ parameters over

1To avoid ambiguity, we refer to simulation steps as environ-
ment steps (independent of action repeat), and use decision steps
when referring to policy queries (dependent on action repeat).

TD-Learning for MPC

0

250

500

750

1000

Ep
is

od
e

re
tu

rn

Average

0

100

200

300

400
Acrobot Swingup

0

250

500

750

1000
Cartpole Swingup

0

250

500

750

1000
Cartpole Swingup Sparse

0

250

500

750

1000

Ep
is

od
e

re
tu

rn

Cheetah Run

0

250

500

750

1000
Cup Catch

0

250

500

750

1000
Finger Spin

0

250

500

750

1000
Finger Turn Hard

0

250

500

750

1000

Ep
is

od
e

re
tu

rn

Fish Swim

0

150

300

450

600
Hopper Hop

0

250

500

750

1000
Quadruped Run

0

250

500

750

1000
Quadruped Walk

0 100 200 300 400 500
Environment steps (×103)

0

250

500

750

1000

Ep
is

od
e

re
tu

rn

Reacher Easy

0 100 200 300 400 500
Environment steps (×103)

0

250

500

750

1000
Reacher Hard

0 100 200 300 400 500
Environment steps (×103)

0

250

500

750

1000
Walker Run

0 100 200 300 400 500
Environment steps (×103)

0

250

500

750

1000
Walker Walk

SAC LOOP MPC:sim TD-MPC (no latent) TD-MPC (no reg.) TD−MPC (ours)

Figure 3. DMControl tasks. Return of our method (TD-MPC) and baselines on 15 state-based continuous control tasks from DMControl

(Tassa et al., 2018). Mean of 5 runs; shaded areas are 95% confidence intervals. In the top left, we visualize results averaged across all 15

tasks. We observe especially large performance gains on tasks with complex dynamics, e.g., the Quadruped and Acrobot tasks.

the top-64 trajectories each iteration. For image-based tasks,

observations are 3 stacked 84×84-dimensional RGB frames

and we use ±4 pixel shift augmentation (Kostrikov et al.,

2020). Refer to Appendix F for additional details.

Baselines. We evaluate our method against the following:

− Soft Actor-Critic (SAC; (Haarnoja et al., 2018)), a state-

of-the-art model-free algorithm derived from maximum en-

tropy RL (Ziebart et al., 2008). We choose SAC as our main

point of comparison due to its popularity and strong perfor-

mance on both DMControl and Meta-World. In particular,

we adopt the implementation of Yarats & Kostrikov (2020).

− LOOP (Sikchi et al., 2022), a hybrid algorithm that ex-

tends SAC with planning and a learned model. LOOP has

been shown to outperform a number of model-based meth-

ods, e.g., MBPO (Janner et al., 2019) and POLO (Lowrey

et al., 2019)) on select MuJoCo tasks. It is a particularly

relevant baseline due to its similarities to TD-MPC.

− MPC with a ground-truth simulator (denoted MPC:sim).

As planning with a simulator is computationally intensive,

we limit the planning horizon to 10 (2× ours), sampled tra-

jectories to 200, and optimize for 4 iterations (ours: 6).

− CURL (Srinivas et al., 2020), DrQ (Kostrikov et al.,

2020), and DrQ-v2 (Yarats et al., 2021), three state-of-the-

art model-free algorithms.

− PlaNet (Hafner et al., 2019), Dreamer (Hafner et al.,

2020b), and Dreamer-v2 (Hafner et al., 2020a). All three

methods learn a model using a reconstruction loss, and se-

lect actions using either MPC or a learned policy.

− MuZero (Schrittwieser et al., 2020) and EfficientZero
(Ye et al., 2021), which learn a latent dynamics model from

rewards and uses MCTS for discrete action selection.

− Ablations. We consider: (i) our method implemented

using a state predictor (hθ being the identity function), (ii)
our method implemented without the latent consistency loss

from Equation 10, and lastly: the consistency loss replaced

by either (iii) the reconstruction objective of PlaNet and

Dreamer, or (iv) the contrastive objective of EfficientZero.

See Appendix G for further discussion on baselines.

TD-Learning for MPC

Table 1. Learning from pixels. Return of our method (TD-MPC) and state-of-the-art algorithms on the image-based DMControl 100k

benchmark used in Srinivas et al. (2020); Kostrikov et al. (2020); Ye et al. (2021). Baselines are tuned specifically for image-based RL,

whereas our method is not. Results for SAC, CURL, DrQ, and PlaNet are partially obtained from Srinivas et al. (2020); Kostrikov et al.

(2020), and results for Dreamer, MuZero, and EfficientZero are obtained from Hafner et al. (2020b); Ye et al. (2021). Mean and std.

deviation over 10 runs. *: MuZero and EfficientZero use a discretized action space, and EfficientZero performs an additional 20k gradient

steps before evaluation, whereas other methods do not. Due to dimensionality explosion under discretization, MuZero and EfficientZero

cannot feasibly solve tasks with higher-dimensional action spaces, e.g., Walker Walk and Cheetah Run (A ∈ R
6), while our method can.

Model-free Model-based Ours

100k env. steps SAC State SAC Pixels CURL DrQ PlaNet Dreamer MuZero* Eff.Zero* TD-MPC

Cartpole Swingup 812±45 419±40 597±170 759±92 563±73 326±27 219±122 813±19 770±70

Reacher Easy 919±123 145±30 517±113 601±213 82±174 314±155 493±145 952±34 628±105

Cup Catch 957±26 312±63 772±241 913±53 710±217 246±174 542±270 942±17 933±24

Finger Spin 672±76 166±128 779±108 901±104 560±77 341±70 − − 943±59

Walker Walk 604±317 42±12 344±132 612±164 221±43 277±12 − − 577±208

Cheetah Run 228±95 103±38 307±48 344±67 165±123 235±137 − − 222±88

0

250

500

750

1000

Ep
is

od
e

re
tu

rn

Cup Catch

0

250

500

750

1000
Finger Spin

0

250

500

750

1000
Finger Turn Easy

0

250

500

750

1000
Finger Turn Hard

0

250

500

750

1000

Ep
is

od
e

re
tu

rn

Walker Stand

0

250

500

750

1000
Walker Walk

0

250

500

750

1000
Quadruped Run

0

250

500

750

1000
Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0

250

500

750

1000

Ep
is

od
e

re
tu

rn

Pendulum Swingup

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0

250

500

750

1000
Cheetah Run

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment steps (×106)

0

250

500

750

1000
Reacher Easy

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment steps (×106)

0

250

500

750

1000
Walker Run

CURL DrQ DrQ-v2 Dreamer-v2 TD−MPC (ours)

Figure 4. Learning from pixels. Return of our method (TD-MPC) and state-of-the-art algorithms on 12 challenging image-based

DMControl tasks. We follow prior work (Hafner et al., 2020b;a; Yarats et al., 2021) and use an action repeat of 2 for all tasks. Compared

to the DMControl 100k benchmark shown in Table 1, we here consider more difficult tasks with up to 30× more data. Results for DrQ-v2

and Dreamer-v2 are obtained from Yarats et al. (2021); Hafner et al. (2020a), results for DrQ are partially obtained from Kostrikov et al.

(2020), and results for CURL are reproduced using their publicly available implementation (Srinivas et al., 2020). While baselines use

task-dependent hyperparameters, TD-MPC uses the same hyperparameters for all tasks. Mean of 5 runs; shaded areas are 95% confidence

intervals. TD-MPC consistently outperforms CURL and DrQ, and is competitive with DrQ-v2 and Dreamer-v2.

Tasks. We consider the following 92 tasks:

− 6 challenging Humanoid (A ∈ R
21) and Dog (A ∈ R

38)

locomotion tasks with high-dimensional state and action

spaces. Results are shown in Figure 1.

− 15 diverse continuous control tasks from DMControl, 6

of which have sparse rewards. Results shown in Figure 3.

− 6 image-based tasks from the data-efficient DMControl

100k benchmark. Results are shown in Table 1.

− 12 image-based tasks from the DMControl Dreamer

benchmark (3M environment steps). Results in Figure 4.

− 2 multi-modal (proprioceptive data + egocentric camera)

3D locomotion tasks in which a quadruped agent navigates

around obstacles. Results are shown in Figure 5 (middle).

− 50 goal-conditioned manipulation tasks from Meta-

World, as well as a multi-task setting where 10 tasks are

learned simultaneously. Results are shown in Figure 5 (top).

Throughout, we benchmark performance on relatively few

environment steps, e.g., 3M steps for Humanoid tasks

whereas prior work typically runs for 30M steps (10×).

TD-Learning for MPC

Comparison to other methods. We find our method to

outperform or match baselines in most tasks considered,

generally with larger gains on complex tasks such as Hu-
manoid, Dog (DMControl), and Bin Picking (Meta-World),

and we note that TD-MPC is in fact the first documented
result solving the complex Dog tasks of DMControl. Per-

formance of LOOP is similar to SAC, and MPC with a

simulator (MPC:sim) performs well on locomotion tasks

but fails in tasks with sparse rewards. Although we did

not tune our method specifically for image-based RL, we

obtain results competitive with state-of-the-art model-based

and model-free algorithms that are both carefully tuned

for image-based RL and contain up to 15× more learnable

parameters. Notably, while EfficientZero produces strong

results on tasks with low-dimensional action spaces, its

Monte-Carlo Tree Search (MCTS) requires discretization

of action spaces, which is unfeasible in high dimensions.

In contrast, TD-MPC scales remarkably well to the 38-

dimensional continuous action space of Dog tasks. Lastly,

we observe inferior sample efficiency compared to SAC and

LOOP on the hard exploration task Finger Turn Hard in

Figure 3, which suggests that incorporating more sophisti-

cated exploration strategies might be promising for future

research. We defer experiments that ablate the choice of reg-

ularization loss to Appendix D, but find our proposed latent

state consistency loss to yield the most consistent results.

Multi-task RL, multi-modal RL, and generalization. A

common argument in favor of general-purpose models is

that they can benefit from data-sharing across tasks. There-

fore, we seek to answer the following question: does TOLD

similarly benefit from synergies between tasks, despite its

reward-centric objective? We test this hypothesis through

two experiments: training a single policy to perform 10

different tasks simultaneously (Meta-World MT10), and

evaluating model generalization when trained on one task

(Walk) and transferring to a different task from the same do-

main (Run). Multi-task results are shown in Figure 5 (top),

and transfer results are deferred to Appendix A. We find our

method to benefit from data sharing in both experiments,

and our transfer results indicate that hθ generalizes well to

new tasks, while dθ encodes more task-specific behavior.

We conjecture that, while TOLD only learns features that are

predictive of reward, similar tasks often have similar reward

structures, which enables sharing of information between

tasks. However, we still expect general-purpose models to

benefit more from unrelated tasks in the same environment

than TOLD. Lastly, an added benefit of our task-centric

objective is that it is agnostic to the input modality. To

demonstrate this, we solve two multi-modal (proprioceptive

data + egocentric camera) locomotion tasks using TD-MPC;

results in Figure 5 (bottom). We find that TD-MPC suc-

cessfully fuses information from the two input modalities,

and solves the tasks. In contrast, a blind agent that does not

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

ra
te

Meta-World (Goal-Conditioned)

0 1 2 3
0.00

0.25

0.50

0.75

1.00
MT10 (Multi-Task)

0.0 0.1 0.2 0.3 0.4 0.5
Environment steps (×106)

0

150

300

450

600

Ep
is

od
e

re
tu

rn

Quadruped Corridor

0.0 0.1 0.2 0.3 0.4 0.5
Environment steps (×106)

0

150

300

450

600
Quadruped Obstacles

SAC MPC:sim TD-MPC (blind) TD−MPC (ours)

Figure 5. (top) Meta-World. Success rate on 50 goal-conditioned

Meta-World tasks using individual policies, and a multi-task policy

trained on 10 tasks simultaneously (Meta-World MT10). Individ-

ual task results shown in Appendix I. (bottom) Multi-modal RL.
Episode return of TD-MPC on two multi-modal locomotion tasks

using proprioceptive data + an egocentric camera. Blind uses only

proprioceptive data. See Appendix L for visualizations. All results

are means of 5 runs; shaded areas are 95% confidence intervals.

1 3 5 7 9
Horizon

600

700

800

900

1000

Ep
is

od
e

re
tu

rn

Quadruped Walk

1 3 5 7 9
CEM iterations

600

700

800

900

1000
Quadruped Walk

Horizon CEM iterations Default Policy

Figure 6. Variable computational budget. Return of TD-MPC

on Quadruped Walk under a variable budget. We evaluate perfor-

mance of fully trained agents when varying (left) planning horizon;

(right) number of iterations during planning. When varying one

hyperparameter, the other is fixed to the default value. We include

evaluation of the learned policy πθ , and the default setting of 6
iterations and a horizon of 5 used in training. Mean of 5 runs.

have access to the egocentric camera fails. See Appendix

J for further details on the multi-modal experiments, and

Appendix I for details on the multi-task experiments.

Performance vs. computational budget. We investigate

the relationship between computational budget (i.e., plan-

ning horizon and number of iterations) and performance in

DMControl tasks; see Figure 6. We find that, for complex

tasks such as Quadruped Walk (A ∈ R
12), more planning

generally leads to better performance. However, we also ob-

serve that we can reduce the planning cost during inference

by 50% (compared to during training) without a drop in

performance by reducing the number of iterations. For par-

ticularly fast inference, one can discard planning altogether

and simply use the jointly learned policy πθ; however, πθ

generally performs worse than planning. See Appendix C

for additional results.

TD-Learning for MPC

Table 2. Wall-time. (top) time to solve, and (bottom) time per

500k environment steps (in hours) for the Walker Walk and Hu-
manoid Stand tasks from DMControl. We consider the tasks solved

when a method achieves an average return of 940 and 800, respec-

tively. TD-MPC solves Walker Walk 16× faster than LOOP while

using 3.3× less compute per 500k steps. Mean of 5 runs.

Walker Walk Humanoid Stand

Wall-time (h) SAC LOOP MPC:sim TD-MPC SAC TD-MPC

time to solve ↓ 0.41 7.72 0.91 0.47 9.31 9.39
h/500k steps ↓ 1.41 18.5 − 5.60 1.82 12.94

Training wall-time. To better ground our results, we report

the training wall-time of TD-MPC compared to SAC, LOOP

that is most similar to our method, and MPC with a ground-

truth simulator (non-parametric). Methods are benchmarked

on a single RTX3090 GPU. Results are shown in Table 2.

TD-MPC solves Walker Walk 16× faster than LOOP and

matches the time-to-solve of SAC on both Walker Walk
and Humanoid Stand while being significantly more sample

efficient. Thus, our method effectively closes the time-to-

solve gap between model-free and model-based methods.

This is a nontrivial reduction, as LOOP is already known

to be, e.g., 12× faster than the purely model-based method,

POLO (Lowrey et al., 2019; Sikchi et al., 2022). We provide

additional experiments on inference times in Appendix H.

6. Related Work
Temporal Difference Learning. Popular model-free off-

policy algorithms such as DDPG (Lillicrap et al., 2016) and

SAC (Haarnoja et al., 2018) represent advances in deep TD-

learning based on a large body of literature (Sutton, 1988;

Mnih et al., 2013; Hasselt et al., 2016; Mnih et al., 2016; Fu-

jimoto et al., 2018; Kalashnikov et al., 2018; Espeholt et al.,

2018; Pourchot & Sigaud, 2019; Kalashnikov et al., 2021).

Both DDPG and SAC learn a policy πθ and value function

Qθ, but do not learn a model. Kalashnikov et al. (2018);

Shao et al. (2020); Kalashnikov et al. (2021) also learn Qθ,

but replace or augment πθ with model-free CEM. Instead,

we jointly learn a model, value function, and policy using

TD-learning, and interact using sampling-based planning.

Model-based RL. A common paradigm is to learn a model

of the environment that can be used for planning (Ebert

et al., 2018; Zhang et al., 2018; Janner et al., 2019; Hafner

et al., 2019; Lowrey et al., 2019; Kaiser et al., 2020; Bhard-

waj et al., 2020; Yu et al., 2020; Schrittwieser et al., 2020;

Nguyen et al., 2021) or for training a model-free algorithm

with generated data (Pong et al., 2018; Ha & Schmidhu-

ber, 2018; Hafner et al., 2020b; Sekar et al., 2020). For

example, Zhang et al. (2018); Ha & Schmidhuber (2018);

Hafner et al. (2019; 2020b) learn a dynamics model using

a video prediction loss, Yu et al. (2020); Kidambi et al.

(2020) consider model-based RL in the offline setting, and

MuZero/EfficientZero (Schrittwieser et al., 2020; Ye et al.,

2021) learn a latent dynamics model using reward predic-

tion. EfficientZero is most similar to ours in terms of model

learning, but its MCTS-based action selection is inherently

incompatible with continuous action spaces. Finally, while

learning a terminal value function for MPC has previously

been proposed (Negenborn et al., 2005; Lowrey et al., 2019;

Bhardwaj et al., 2020; Hatch & Boots, 2021), we are (to the

best of our knowledge) the first to jointly learn model and

value function through TD-learning in continuous control.

Hybrid algorithms. Several prior works aim to develop

algorithms that combine model-free and model-based ele-

ments (Nagabandi et al., 2018; Buckman et al., 2018; Pong

et al., 2018; Hafez et al., 2019; Sikchi et al., 2022; Wang &

Ba, 2020; Clavera et al., 2020; Hansen et al., 2021; Morgan

et al., 2021; Bhardwaj et al., 2021; Margolis et al., 2021),

many of which are orthogonal to our contributions. For

example, Clavera et al. (2020) and Buckman et al. (2018);

Lowrey et al. (2019) use a learned model to improve policy

and value learning, respectively, through generated trajecto-

ries. LOOP (Sikchi et al., 2022) extends SAC with a learned

state prediction model and constrains planned trajectories

to be close to those of SAC, whereas we replace the pa-

rameterized policy by planning with TD-MPC and learn a

task-oriented latent dynamics model.

We provide a qualitative comparison of key components in

TD-MPC and prior work in Appendix B.

7. Conclusions and Future Directions
We are excited that our TD-MPC framework, despite being

markedly distinct from previous work in the way that the

model is learned and used, is already able to outperform

model-based and model-free methods on diverse continuous

control tasks, and (with trivial modifications) simultane-

ously match state-of-the-art on image-based RL tasks. Yet,

we believe that there is ample opportunity for performance

improvements by extending the TD-MPC framework. For

example, by using the learned model in creative ways (Clav-

era et al., 2020; Buckman et al., 2018; Lowrey et al., 2019),

incorporating better exploration strategies, or improving the

model through architectural innovations.

Acknowledgements

This project is supported, in part, by grants from NSF CCF-

2112665 (TILOS), and gifts from Meta, Qualcomm.

The authors would like to thank Yueh-Hua Wu, Ruihan

Yang, Sander Tonkens, Tongzhou Mu, and Yuzhe Qin for

helpful discussions.

TD-Learning for MPC

References
Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A.,

and Bellemare, M. G. Deep reinforcement learning at

the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 2021.

Argenson, A. and Dulac-Arnold, G. Model-based offline

planning. ArXiv, abs/2008.05556, 2021.

Bhardwaj, M., Handa, A., Fox, D., and Boots, B. Infor-

mation theoretic model predictive q-learning. ArXiv,

abs/2001.02153, 2020.

Bhardwaj, M., Choudhury, S., and Boots, B. Blending mpc

& value function approximation for efficient reinforce-

ment learning. ArXiv, abs/2012.05909, 2021.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee, H.

Sample-efficient reinforcement learning with stochastic

ensemble value expansion. In NeurIPS, 2018.

Chen, X. and He, K. Exploring simple siamese represen-

tation learning. 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 15745–

15753, 2021.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep

reinforcement learning in a handful of trials using proba-

bilistic dynamics models. In NeurIPS, 2018.

Clavera, I., Fu, Y., and Abbeel, P. Model-augmented

actor-critic: Backpropagating through paths. ArXiv,

abs/2005.08068, 2020.

Ebert, F., Finn, C., Dasari, S., Xie, A., Lee, A. X., and

Levine, S. Visual foresight: Model-based deep reinforce-

ment learning for vision-based robotic control. ArXiv,

abs/1812.00568, 2018.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,

V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,

I., Legg, S., and Kavukcuoglu, K. Impala: Scalable dis-

tributed deep-rl with importance weighted actor-learner

architectures. ArXiv, abs/1802.01561, 2018.

Fujimoto, S., Hoof, H. V., and Meger, D. Addressing func-

tion approximation error in actor-critic methods. ArXiv,

abs/1802.09477, 2018.

Ha, D. and Schmidhuber, J. Recurrent world models fa-

cilitate policy evolution. In Advances in Neural Infor-
mation Processing Systems 31, pp. 2451–2463. Curran

Associates, Inc., 2018.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S.,

Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and

Levine, S. Soft actor-critic algorithms and applications.

ArXiv, abs/1812.05905, 2018.

Hafez, M. B., Weber, C., Kerzel, M., and Wermter, S. Curi-

ous meta-controller: Adaptive alternation between model-

based and model-free control in deep reinforcement learn-

ing. 2019 International Joint Conference on Neural Net-
works (IJCNN), pp. 1–8, 2019.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,

Lee, H., and Davidson, J. Learning latent dynamics for

planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565, 2019.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mas-

tering atari with discrete world models. arXiv preprint
arXiv:2010.02193, 2020a.

Hafner, D., Lillicrap, T. P., Ba, J., and Norouzi, M. Dream to

control: Learning behaviors by latent imagination. ArXiv,

abs/1912.01603, 2020b.

Hansen, N. and Wang, X. Generalization in reinforcement

learning by soft data augmentation. In International Con-
ference on Robotics and Automation (ICRA), 2021.

Hansen, N., Jangir, R., Sun, Y., Alenyà, G., Abbeel, P.,

Efros, A. A., Pinto, L., and Wang, X. Self-supervised

policy adaptation during deployment. In International
Conference on Learning Representations (ICLR), 2021.

Hasselt, H. V., Guez, A., and Silver, D. Deep reinforcement

learning with double q-learning. In Aaai, 2016.

Hatch, N. and Boots, B. The value of planning for infinite-

horizon model predictive control. 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp. 7372–7378, 2021.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust

your model: Model-based policy optimization. ArXiv,

abs/1906.08253, 2019.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-

bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-

kowski, P., Levine, S., Sepassi, R., Tucker, G., and

Michalewski, H. Model-based reinforcement learning

for atari. ArXiv, abs/1903.00374, 2020.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,

A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,

Vanhoucke, V., and Levine, S. Qt-opt: Scalable deep rein-

forcement learning for vision-based robotic manipulation.

ArXiv, abs/1806.10293, 2018.

Kalashnikov, D., Varley, J., Chebotar, Y., Swanson, B.,

Jonschkowski, R., Finn, C., Levine, S., and Hausman,

K. Mt-opt: Continuous multi-task robotic reinforcement

learning at scale. ArXiv, abs/2104.08212, 2021.

TD-Learning for MPC

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,

T. Morel : Model-based offline reinforcement learning.

ArXiv, abs/2005.05951, 2020.

Kostrikov, I., Yarats, D., and Fergus, R. Image augmentation

is all you need: Regularizing deep reinforcement learn-

ing from pixels. International Conference on Learning
Representations, 2020.

Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa,

Y., Silver, D., and Wierstra, D. Continuous control with

deep reinforcement learning. CoRR, abs/1509.02971,

2016.

Lowrey, K., Rajeswaran, A., Kakade, S. M., Todorov, E.,

and Mordatch, I. Plan online, learn offline: Efficient

learning and exploration via model-based control. ArXiv,

abs/1811.01848, 2019.

Margolis, G., Chen, T., Paigwar, K., Fu, X., Kim, D., Kim,

S., and Agrawal, P. Learning to jump from pixels. In

CoRL, 2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,

Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing

atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,

T. P., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-

chronous methods for deep reinforcement learning. In

ICML, 2016.

Morgan, A. S., Nandha, D., Chalvatzaki, G., D’Eramo, C.,

Dollar, A. M., and Peters, J. Model predictive actor-critic:

Accelerating robot skill acquisition with deep reinforce-

ment learning. 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 6672–6678, 2021.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S.

Neural network dynamics for model-based deep reinforce-

ment learning with model-free fine-tuning. 2018 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 7559–7566, 2018.

Negenborn, R. R., De Schutter, B., Wiering, M. A., and Hel-

lendoorn, H. Learning-based model predictive control for

markov decision processes. IFAC Proceedings Volumes,

38(1):354–359, 2005. 16th IFAC World Congress.

Nguyen, T. D., Shu, R., Pham, T., Bui, H. H., and Ermon, S.

Temporal predictive coding for model-based planning in

latent space. In ICML, 2021.

Pong, V. H., Gu, S. S., Dalal, M., and Levine, S. Temporal

difference models: Model-free deep rl for model-based

control. ArXiv, abs/1802.09081, 2018.

Pourchot, A. and Sigaud, O. Cem-rl: Combining evolution-

ary and gradient-based methods for policy search. ArXiv,

abs/1810.01222, 2019.

Rubinstein, R. Y. Optimization of computer simulation mod-

els with rare events. European Journal of Operational
Research, 99:89–112, 1997.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-

tized experience replay. CoRR, abs/1511.05952, 2016.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,

Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,

D., Graepel, T., Lillicrap, T. P., and Silver, D. Mastering

atari, go, chess and shogi by planning with a learned

model. Nature, 588 7839:604–609, 2020.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D.,

and Pathak, D. Planning to explore via self-supervised

world models. ArXiv, abs/2005.05960, 2020.

Shao, L., You, Y., Yan, M., Sun, Q., and Bohg, J. Grac: Self-

guided and self-regularized actor-critic. arXiv preprint
arXiv:2009.08973, 2020.

Sikchi, H., Zhou, W., and Held, D. Learning off-policy with

online planning. In Conference on Robot Learning, pp.

1622–1633. PMLR, 2022.

Srinivas, A., Laskin, M., and Abbeel, P. Curl: Contrastive

unsupervised representations for reinforcement learning.

arXiv preprint arXiv:2004.04136, 2020.

Sutton, R. Learning to predict by the method of temporal

differences. Machine Learning, 3:9–44, 08 1988. doi:

10.1007/BF00115009.

Sutton, R. Learning to predict by the methods of temporal

differences. Machine Learning, 3:9–44, 2005.

Tassa, Y., Erez, T., and Todorov, E. Synthesis and stabi-

lization of complex behaviors through online trajectory

optimization. 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 4906–4913, 2012.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y.,

de Las Casas, D., Budden, D., Abdolmaleki, A., et al.

Deepmind control suite. Technical report, DeepMind,

2018.

Wang, T. and Ba, J. Exploring model-based planning with

policy networks. ArXiv, abs/1906.08649, 2020.

Williams, G., Aldrich, A., and Theodorou, E. A. Model

predictive path integral control using covariance variable

importance sampling. ArXiv, abs/1509.01149, 2015.

Yarats, D. and Kostrikov, I. Soft actor-critic (sac) im-

plementation in pytorch. https://github.com/
denisyarats/pytorch_sac, 2020.

TD-Learning for MPC

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Mastering

visual continuous control: Improved data-augmented re-

inforcement learning. arXiv preprint arXiv:2107.09645,

2021.

Ye, W., Liu, S., Kurutach, T., Abbeel, P., and Gao, Y. Master-

ing atari games with limited data. ArXiv, abs/2111.00210,

2021.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,

C., and Levine, S. Meta-world: A benchmark and evalua-

tion for multi-task and meta reinforcement learning. In

Conference on Robot Learning (CoRL), 2019.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S.,

Finn, C., and Ma, T. Mopo: Model-based offline policy

optimization. ArXiv, abs/2005.13239, 2020.

Zhang, M., Vikram, S., Smith, L., Abbeel, P., Johnson, M. J.,

and Levine, S. Solar: Deep structured latent represen-

tations for model-based reinforcement learning. ArXiv,

abs/1808.09105, 2018.

Ziebart, B. D., Maas, A., Bagnell, J. A., and Dey, A. K.

Maximum entropy inverse reinforcement learning. In

Proceedings of the 23rd National Conference on Artificial
Intelligence, volume 3, 2008.

0 100 200 300 400 500
Environment steps (×103)

0

250

500

750

1000

Ep
is

od
e

re
tu

rn

Quadruped Run

0 100 200 300 400 500
Environment steps (×103)

0

250

500

750

1000
Walker Run

Rand. init
Finetune

Finetune (❄ hθ)
Finetune (❄ hθ, dθ)

Figure 7. Model generalization. Return of our method under

three different settings: (Rand. init) TD-MPC trained from scratch

on the two Run tasks; (Finetune) TD-MPC initially trained on Walk
tasks and then finetuned online on Run tasks without any weights

frozen; (Finetune, freeze hθ) same setting as before, but with the

encoder hθ frozen; and (Finetune, freeze hθ, dθ) both encoder hθ

and latent dynamics predictor dθ frozen. Mean of 5 runs; shaded

areas are 95% confidence intervals.

A. Model Generalization
We investigate the transferability of a TOLD model between

related tasks. Specifically, we consider model transfer in

two locomotion domains, Walker and Quadruped, where

we first train policies on Walk tasks and then finetune the

learned model on Run tasks. We finetune in an online set-

ting, i.e., the only difference between training from scratch

and finetuning is the weight initialization, and we keep all

hyperparameters identical. Results from the experiment are

shown in Figure 7. When finetuning the full TOLD model,

we find our method to converge considerably faster, sug-

gesting that TOLD does indeed learn features that transfer

between related tasks. We perform two additional finetuning

experiments: freezing parameters of the representation hθ,

and freezing parameters of both hθ and the latent dynam-

ics predictor dθ during finetuning. We find that freezing

hθ nearly matches our results for finetuning without frozen

weights, indicating that hθ learns to encode information

that transfers between tasks. However, when finetuning

with both hθ, dθ frozen, rate of convergence degrades sub-

stantially, which suggests that dθ tends to encode more

task-specific behavior.

B. Comparison to Prior Work
We here extend our discussion of related work in Section

6. Table 3 provides a qualitative comparison of key compo-

nents of TD-MPC and prior model-based and model-free

approaches, e.g., comparing model objectives, use of a (ter-

minal) value function, and inference-time behavior. While

different aspects of TD-MPC have been explored in prior

work, we are the first to propose a complete framework for

MPC with a model learned by TD-learning.

C. Variable Computational Budget
This section supplements our experiments in Figure 6 on

a variable computational budget for planning during infer-

ence; additional results are shown in Figure 8. We observe

that the gap between planning performance and policy per-

formance tends to be larger for tasks with high-dimensional

action spaces such as the two Quadruped tasks. We simi-

larly find that performance varies relatively little when the

computational budget is changed for tasks with simple dy-

namics (e.g., Cartpole tasks) compared to tasks with more

complex dynamics. We find that our default hyperparame-

ters (H = 5 and 6 iterations; shown as a star in Figure 8)

strikes a good balance between compute and performance.

D. Latent Dynamics Objective
We ablate the choice of latent dynamics objective by replac-

ing our proposed latent state consistency loss in Equation 10

with (i) a contrastive loss similar to that of Ye et al. (2021);

Hansen & Wang (2021), and (ii) a reconstruction objective

similar to that of Ha & Schmidhuber (2018); Hafner et al.

(2019; 2020b). Specifically, for (i) we adopt the recently pro-

posed SimSiam (Chen & He, 2021) self-supervised frame-

work and implement the projection layer as an MLP with 2

hidden layers and output size 32, and the predictor head is

an MLP with 1 hidden layer. All layers use ELU activations

and a hidden size of 256. Consistent with the public im-

plementations of Ye et al. (2021); Hansen & Wang (2021),

TD-Learning for MPC

Table 3. Comparison to prior work. We compare key components of TD-MPC to prior model-based and model-free approaches. Model
objective describes which objective is used to learn a (latent) dynamics model, value denotes whether a value function is learned, inference
provides a simplified view of action selection at inference time, continuous denotes whether an algorithm supports continuous action

spaces, and compute is a holistic estimate of the relative computational cost of methods during training and inference. We use policy w/
CEM to indicate inference based primarily on a learned policy, and vice-versa.

Method Model objective Value Inference Continuous Compute

SAC � � Policy � Low

QT-Opt � � CEM � Low

MPC:sim Ground-truth model � CEM � High

POLO Ground-truth model � CEM � High

LOOP State prediction � Policy w/ CEM � Moderate

PlaNet Image prediction � CEM � High

Dreamer Image prediction � Policy � Moderate

MuZero Reward/value pred. � MCTS w/ policy � Moderate

EfficientZero Reward/value pred. + contrast. � MCTS w/ policy � Moderate

TD-MPC (ours) Reward/value pred. + latent pred. � CEM w/ policy � Low

1 3 5 7 9
Horizon

500

600

700

800

900

Ep
is

od
e

re
tu

rn

Quadruped Run

1 3 5 7 9
CEM iterations

500

600

700

800

900
Quadruped Run

Horizon CEM iterations Default Policy

1 3 5 7 9
Horizon

400

600

800

1000

Ep
is

od
e

re
tu

rn

Fish Swim

1 3 5 7 9
CEM iterations

400

600

800

1000
Fish Swim

Horizon CEM iterations Default Policy

1 3 5 7 9
Horizon

800

900

1000

Ep
is

od
e

re
tu

rn

Reacher Hard

1 3 5 7 9
CEM iterations

800

900

1000
Reacher Hard

Horizon CEM iterations Default Policy

1 3 5 7 9
Horizon

700

800

900

1000

Ep
is

od
e

re
tu

rn

Cartpole Swingup Sparse

1 3 5 7 9
CEM iterations

700

800

900

1000
Cartpole Swingup Sparse

Horizon CEM iterations Default Policy

Figure 8. Variable computational budget. Return of our method (TD-MPC) under a variable computational budget. In addition to the

task in Figure 6, we provide results on four other tasks from DMControl: Quadruped Run (A ∈ R
12), Fish Swim (A ∈ R

5), Reacher
Hard (A ∈ R

2), and Cartpole Swingup Sparse (A ∈ R). We evaluate performance of fully trained agents when varying (blue) planning

horizon; (green) number of iterations during planning. For completeness, we also include evaluation of the jointly learned policy πθ , as

well as the default setting of 6 iterations and a horizon of 5 used during training. Higher values require more compute. Mean of 5 runs.

we find it beneficial to apply BatchNorm in the projection

and predictor modules. We also find that using a higher

loss coefficient of c3 = 100 (up from 2) produces slightly

better results. For (ii) we implement the decoder for state

reconstruction by mirroring the encoder; an MLP with 1

hidden layer and ELU activations. We also include a no
regularization baseline for completeness. Results are shown

in Figure 10.

E. Exploration by planning
We investigate the role that planning by TD-MPC has in

exploration. Figure 9 shows the average std. deviation of

our planning procedure after the final iteration of planning

for the three Humanoid tasks: Stand, Walk, and Run, listed

in order of increasing difficulty. We observe that the std.

deviation (and thus degree of exploration) is decreasing

as training progresses, and converges as the task becomes

solved. Generally, we find that exploration decreases slower

for hard tasks, which we conjecture is due to larger vari-

ance in reward and value estimates. As such, the TD-MPC

framework inherently balances exploration and exploitation.

F. Implementation Details
We provide an overview of the implementation details of our

method in Section 5. For completeness, we list all relevant

hyperparameters in Table 4. As discussed in Appendix G,

we adopt most hyperparameters from the SAC implementa-

tion (Yarats & Kostrikov, 2020). Following previous work

(Hafner et al., 2019), we use a task-specific action repeat

hyperparameter for DMControl that is constant across all

TD-Learning for MPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment steps (×106)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

CE
M

st
d.

de
vi

at
io

n
(σ

)

Humanoid

Stand Walk Run

Figure 9. Exploration by planning. Average std. deviation (σ) of

our planning procedure after the final iteration of planning over the

course of training. Results are shown for the three Humanoid tasks:

Stand, Walk, and Run, listed in order of increasing difficulty.

methods; see Table 7 for a list of values. For state-based

experiments, we implement the representation function hθ

using an MLP with a single hidden layer of dimension 256.

For image-based experiments, hθ is a 4-layer CNN with

kernel sizes (7, 5, 3, 3), stride (2, 2, 2, 2), and 32 filters per

layer. All other components are implemented using 2-layer

MLPs with dimension 512. Following prior work (Yarats

& Kostrikov, 2020; Srinivas et al., 2020; Kostrikov et al.,

2020), we apply layer normalization to the value function.

Weights and biases in the last layer of the reward predic-

tor Rθ and value function Qθ are zero-initialized to reduce

model and value biases in the early stages of training, and

all other fully-connected layers use orthogonal initialization;

the SAC and LOOP baselines are implemented similarly.

We do not find it consistently better to use larger networks

neither for state-based nor image-based experiments. In

multi-task experiments, we augment the state input with a

one-hot task vector. In multi-modal experiments, we en-

code state and image separately and sum the features. We

provide a PyTorch-like summary of our task-oriented latent

dynamics model in the following. For clarity, we use S, Z,

and A to denote the dimensionality of states, latent states,

and actions, respectively, and report the total number of

learnable parameters for our TOLD model initialized for the

Walker Run task (S ∈ R
24, A ∈ A

6).

Total parameters: approx. 1,507,000
(h): Sequential(

(0): Linear(in_features=S, out_features=256)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=Z))

(d): Sequential(
(0): Linear(in_features=Z+A, out_features=512)
(1): ELU(alpha=1.0)
(2): Linear(in_features=512, out_features=512)
(3): ELU(alpha=1.0)
(4): Linear(in_features=512, out_features=Z))

(R): Sequential(
(0): Linear(in_features=Z+A, out_features=512)
(1): ELU(alpha=1.0)
(2): Linear(in_features=512, out_features=512)
(3): ELU(alpha=1.0)
(4): Linear(in_features=512, out_features=1))

(pi): Sequential(
(0): Linear(in_features=Z, out_features=512)
(1): ELU(alpha=1.0)

(2): Linear(in_features=512, out_features=512)
(3): ELU(alpha=1.0)
(4): Linear(in_features=512, out_features=A))

(Q1): Sequential(
(0): Linear(in_features=Z+A, out_features=512)
(1): LayerNorm((512,), elementwise_affine=True)
(2): Tanh()
(3): Linear(in_features=512, out_features=512)
(4): ELU(alpha=1.0)
(5): Linear(in_features=512, out_features=1))

(Q2): Sequential(
(0): Linear(in_features=Z+A, out_features=512)
(1): LayerNorm((512,), elementwise_affine=True)
(2): Tanh()
(3): Linear(in_features=512, out_features=512)
(4): ELU(alpha=1.0)

(5): Linear(in_features=512, out_features=1))

Additionally, PyTorch-like pseudo-code for training our

TOLD model (codified version of Algorithm 2) is shown

below:

def update(replay_buffer):
"""
A single gradient update of our TOLD model.
h, R, Q, d: TOLD components.
c1, c2, c3: loss coefficients.
rho: temporal loss coefficient.
"""
states, actions, rewards = replay_buffer.sample()

Encode first observation
z = h(states[0])

Recurrently make predictions
reward_loss = 0
value_loss = 0
consistency_loss = 0
for t in range(H):

r = R(z, actions[t])
q1, q2 = Q(z, actions[t])
z = d(z, actions[t])

Compute targets and losses
z_target = h_target(states[t+1])
td_target = compute_td(rewards[t], states[t+1])
reward_loss += rho**t * mse(r, rewards[t])
value_loss += rho**t * \
(mse(q1, td_target) + mse(q2, td_target))

consistency_loss += rho**t * mse(z, z_target)

Update
total_loss = c1 * reward_loss + \

c2 * value_loss + \
c3 * consistency_loss

total_loss.backward()
optim.step()

Update slow-moving average

update_target_network()

G. Extended Description of Baselines
We tune the performance of both our method and baselines

to perform well on DMControl and then subsequently bench-

mark algorithms on Meta-World using the same choice of

hyperparameters. Below, we provide additional details on

our efforts to tune the baseline implementations.

SAC. We adopt the implementation of Yarats & Kostrikov

(2020) which has been used extensively in the literature as a

TD-Learning for MPC

0

250

500

750

1000

Ep
is

od
e

re
tu

rn

Average

0

100

200

300

400
Acrobot Swingup

0

250

500

750

1000
Cartpole Swingup

0

250

500

750

1000
Cartpole Swingup Sparse

0

250

500

750

1000

Ep
is

od
e

re
tu

rn

Cheetah Run

0

250

500

750

1000
Cup Catch

0

250

500

750

1000
Finger Spin

0

250

500

750

1000
Finger Turn Hard

0

250

500

750

1000

Ep
is

od
e

re
tu

rn

Fish Swim

0

150

300

450

600
Hopper Hop

0

250

500

750

1000
Quadruped Run

0

250

500

750

1000
Quadruped Walk

0 100 200 300 400 500
Environment steps (×103)

0

250

500

750

1000

Ep
is

od
e

re
tu

rn

Reacher Easy

0 100 200 300 400 500
Environment steps (×103)

0

250

500

750

1000
Reacher Hard

0 100 200 300 400 500
Environment steps (×103)

0

250

500

750

1000
Walker Run

0 100 200 300 400 500
Environment steps (×103)

0

250

500

750

1000
Walker Walk

No reg. Reconstruction Contrastive loss Latent state consistency (ours)

Figure 10. Latent dynamics objective. Return of our method (TD-MPC) using different latent dynamics objectives in addition to reward

and value prediction. 15 state-based continuous control tasks from DMControl (Tassa et al., 2018). No reg. uses no regularization term,

reconstruction uses a state prediction loss, contrastive loss adopts the contrastive objective of Ye et al. (2021); Hansen & Wang (2021),

and latent state consistency corresponds to Equation 10. Mean of 5 runs; shaded areas are 95% confidence intervals. In the top left, we

visualize results averaged across all 15 tasks. Both reconstruction and contrastive losses improve over the baseline without regularization,

but our proposed latent state consistency loss yields more consistent results.

benchmark implementation for state-based DMControl. We

use original hyperparameters except for the target network

momentum coefficient ζ , where we find it beneficial for both

SAC, LOOP, and our method to use a faster update of ζ =
0.99 as opposed to 0.995 in the original implementation.

Additionally, we decrease the batch size from 1024 to 512
for fair comparison to our method. For completeness, we list

important hyperparameters for the SAC baseline in Table 5.

LOOP. We benchmark against the official implementation

from Sikchi et al. (2022), but note that LOOP has – to the

best of our knowledge – not previously been benchmarked

on DMControl nor Meta-World. Therefore, we do our best

to adapt its hyperparameters. As in the SAC implementa-

tion, we find LOOP to perform better using ζ = 0.99 than

its original value of 0.995, and we increase the batch size

from 256 to 512. Lastly, we set the number of seed steps to

1, 000 (down from 10, 000) to match the SAC implementa-

tion. As LOOP uses SAC as backbone learning algorithm,

we found these changes to be beneficial. LOOP-specific

hyperparameters are listed in Table 6.

MPC:sim. We compare TD-MPC to a vanilla MPC al-

gorithm using a ground-truth model of the environment

(simulator), but no terminal value function. As such, this

baseline is non-parametric. We use the same MPC imple-

mentation as in our method (MPPI; Williams et al. (2015)).

As planning with a simulator is computationally intensive,

we limit the planning horizon to 10 (which is still 2× as

much as TD-MPC), and we reduce the number of iterations

to 4 (our method uses 6), as we find MPC to converge faster

when using the ground-truth model. At each iteration, we

sample N = 200 trajectories and update distribution param-

eters using the top-20 (10%) sampled action sequences. We

keep all other hyperparameters consistent with our method.

Because of the limited planning horizon, this MPC baseline

generally performs well for locomotion tasks where local

solutions are sufficient, but tends to fail at tasks with, for

example, sparse rewards.

TD-Learning for MPC
Table 4. TD-MPC hyperparameters. We here list hyperparame-

ters for TD-MPC with TOLD and emphasize that we use the same

parameters for SAC whenever possible.

Hyperparameter Value

Discount factor (γ) 0.99

Seed steps 5, 000
Replay buffer size Unlimited

Sampling technique PER (α = 0.6, β = 0.4)

Planning horizon (H) 5
Initial parameters (μ0, σ0) (0, 2)
Population size 512
Elite fraction 64
Iterations 12 (Humanoid)

8 (Dog, pixels)

6 (otherwise)

Policy fraction 5%
Number of particles 1
Momentum coefficient 0.1
Temperature (τ) 0.5
MLP hidden size 512
MLP activation ELU

Latent dimension 100 (Humanoid, Dog)

50 (otherwise)

Learning rate 3e-4 (Dog, pixels)

1e-3 (otherwise)

Optimizer (θ) Adam (β1 = 0.9, β2 = 0.999)

Temporal coefficient (λ) 0.5
Reward loss coefficient (c1) 0.5
Value loss coefficient (c2) 0.1
Consistency loss coefficient (c3) 2
Exploration schedule (ε) 0.5 → 0.05 (25k steps)

Planning horizon schedule 1 → 5 (25k steps)

Batch size 2048 (Dog)

256 (pixels)

512 (otherwise)

Momentum coefficient (ζ) 0.99
Steps per gradient update 1
θ− update frequency 2

Table 5. SAC hyperparameters. We list the most important hy-

perparameters for the SAC baseline. Note that we mostly follow

the implementation of Yarats & Kostrikov (2020) but improve

upon certain hyperparameter choices, e.g., the momentum coeffi-

cient ζ and values specific to the Dog tasks.

Hyperparameter Value

Discount factor (γ) 0.99

Seed steps 1, 000
Replay buffer size Unlimited

Sampling technique Uniform

MLP hidden size 1024
MLP activation RELU

Latent dimension 100 (Humanoid, Dog)

50 (otherwise)

Optimizer (θ) Adam (β1 = 0.9, β2 = 0.999)

Optimizer (α of SAC) Adam (β1 = 0.5, β2 = 0.999)

Learning rate (θ) 3e-4 (Dog)

1e-3 (otherwise)

Learning rate (α of SAC) 1e-4

Batch size 2048 (Dog)

512 (otherwise)

Momentum coefficient (ζ) 0.99

Steps per gradient update 1

θ− update frequency 2

Table 6. LOOP hyperparameters. We list general SAC hyperpa-

rameters shared by LOOP in Table 5, and list only hyperparameters

specific to LOOP here. We use the official implementation from

Sikchi et al. (2022) but list its hyperparameters for completeness.

Note that we – as in the SAC implementation – use a different

batch size and momentum coefficient than in Sikchi et al. (2022),

as we find this to marginally improve performance on DMControl.

Hyperparameter Value

Planning horizon (H) 3

Population size 100
Elite fraction 20%
Iterations 5
Policy fraction 5%
Number of particles 4
Momentum coefficient 0.1
MLP hidden size 256
MLP activation ELU/RELU

Ensemble size 5

No latent ablation. We make the following change to

our method: replacing hθ with the identity function, i.e.,

x = hθ(x). As such, environment dynamics are modelled

by forward prediction directly in the state space, with the

consistency loss effectively degraded to a state prediction

loss. This ablation makes our method more similar to prior

work on model-based RL from states (Janner et al., 2019;

Lowrey et al., 2019; Sikchi et al., 2022; Argenson & Dulac-

Arnold, 2021). However, unlike previous work that decou-

ples model learning from policy and value learning, we

still back-propagate gradients from the reward and value

objectives through the model, which is a stronger baseline.

No consistency regularization. We set the coefficient c3
corresponding to the latent state consistency loss in Equation

10 to 0, such that the TOLD model is trained only with the

reward and value prediction losses. This ablation makes our

method more similar to MuZero (Schrittwieser et al., 2020).

Other baselines. Results for other baselines are obtained

from related work. Specifically, results for SAC, CURL,

DrQ, and PlaNet are obtained from Srinivas et al. (2020) and

Kostrikov et al. (2020), and results for Dreamer, MuZero,

and EfficientZero are obtained from Hafner et al. (2020b)

and Ye et al. (2021).

H. Inference Time
In the experiments of Section 5, we investigate the relation-

ship between performance and the computational budget of

planning with TD-MPC. For completeness, we also eval-

uate the relationship between computational budget and

inference time. Figure 11 shows the inference time of TD-

MPC as the planning horizon and number of iterations is

varied. As in previous experiments, we benchmark infer-

ence times on a single RTX3090 GPU. Unsurprisingly, we

TD-Learning for MPC

Table 7. Action repeat. We adopt action repeat hyperparameters

for DMControl from previous work (Hafner et al., 2019; Kostrikov

et al., 2020) for state-based experiments as well as the DMControl

100k benchmark; we list all values below. For the DMControl

Dreamer benchmark, all methods use an action repeat of 2 regard-

less of the task. We do not use action repeat for Meta-World.

Task Action repeat

Humanoid 2

Dog 2

Walker 2

Finger 2

Cartpole 8

Other (DMControl) 4

Meta-World 1

1 3 5 7 9
Horizon

0

5

10

15

20

25

30

m
s

/ s
te

p

Quadruped Run

1 3 5 7 9
CEM iterations

0

5

10

15

20

25

30
Quadruped Run

Horizon CEM iterations Default Policy

Figure 11. Inference time under a variable budget. Millisec-

onds per decision step for TD-MPC on the Quadruped Run task

under a variable computational budget. We evaluate performance

of fully trained agents when varying (left) planning horizon; (right)
number of iterations during planning. When varying one hyperpa-

rameter, the other is fixed to the default value. For completeness,

we also include the inference time of the learned policy πθ , and

the default setting of 6 iterations and a horizon of 5 used during

training.

Table 8. Meta-World MT10. As our performance metric reported

in Figure 5 differs from that of the Meta-World v2 benchmark

proposal (Yu et al., 2019), we here report results for our SAC

baseline using the same maximum per-task success rate metric

used for the MT10 multi-task experiment from the original paper.

Task Max. success rate

Window Close 1.00
Window Open 1.00
Door Open 1.00
Peg Insert Side 0.00
Drawer Open 0.85
Pick Place 0.00
Reach 1.00
Button Press Down 1.00
Push 0.00
Drawer Close 1.00

find that there is an approximately linear relationship be-

tween computational budget and inference time. However,

it is worth noting that our default settings used during train-

ing only require approximately 20ms per step, i.e., 50Hz,

which is fast enough for many real-time robotics applica-

tions such as manipulation, navigation, and to some extent

locomotion (assuming an on-board GPU). For applications

where inference time is critical, the computational budget

can be adjusted to meet requirements. For example, we

found in Figure 8 that we can reduce the planning horizon

of TD-MPC on the Quadruped Run task from 5 to 1 with

no significant reduction in performance, which reduces in-

ference time to approximately 12ms per step. While the

performance of the model-free policy learned jointly with

TD-MPC indeed is lower than that of planning, it is however

still nearly 6× faster than planning at inference time.

I. Meta-World
We provide learning curves and success rates for individual

Meta-World (Yu et al., 2019) tasks in Figure 14. Due to

the sheer number of tasks, we choose to only visualize

the first 24 tasks (sorted alphabetically) out of the total of

50 tasks from Meta-World. Note that we use Meta-World

v2 and that we consider the goal-conditioned versions of

the tasks, which are considered harder than the single-goal

variant often used in related work. We generally find that

SAC is competitive to TD-MPC in most tasks, but that

TD-MPC is far more sample efficient in tasks that involve

complex manipulation, e.g., Bin Picking, Box Close, and

Hammer. Successful trajectories for each of these three

tasks are visualized in Figure 15. Generally, we choose to

focus on sample-efficiency for which we empirically find

1M environment steps (3M for multi-task experiments) to

be sufficient for achieving non-trivial success rates in Meta-

World. As the original paper reports maximum per-task
success rate for multi-task experiments rather than average

success rate, we also report this metric for our SAC baseline

in Table 8. We find that our SAC baseline is strikingly

competitive with the original paper results considering that

we evaluate over just 3M steps.

J. Multi-Modal RL
We demonstrate the ability of TD-MPC to successfully fuse

information from multiple input modalities (proprioceptive

data + an egocentric camera) in two 3D locomotion tasks:

− Quadruped Corridor, where the agent needs to move

along a corridor with constant target velocity. To succeed,

the agent must perceive the corridor walls and adjust its

walking direction accordingly.

− Quadruped Obstacles, where the agent needs to move

along a corridor filled with obstacles that obstruct vision and

TD-Learning for MPC

600 700 800

SAC

LOOP

TD-MPC

Median

640 720 800 880

IQM

560 640 720 800

Mean

Aggregate return

Figure 12. Rliable metrics. Median, interquantile median (IQM), and mean performance of TD-MPC and baselines on the 15 state-based

DMControl tasks. Confidence intervals are estimated using the percentile bootstrap with stratified sampling, per recommendation of

Agarwal et al. (2021). Higher values are better. 5 seeds.

C
o

rr
id

o
r

O
b

st
ac

le
s

Figure 13. Multi-modal RL. Visualization of the two multi-modal

3D locomotion tasks that we construct.

forces the agent to move in a zig-zag pattern with constant

target velocity. To succeed, the agent must perceive both

the corridor walls and obstacles, and continuously adjust its

walking direction.

Trajectories from the two tasks are visualized in Figure 13.

K. Additional Metrics
We report additional (aggregate) performance metrics of

SAC, LOOP, and TD-MPC on the set of 15 state-based DM-

Control tasks using the rliable toolkit provided by Agarwal

et al. (2021). Concretely, we report the aggregate median,

interquantile mean (IQM), and mean returns with 95% con-

fidence intervals based on the episode returns of trained

(after 500k environment steps) agents. As recommended

by Agarwal et al. (2021), confidence intervals are estimated

using the percentile bootstrap with stratified sampling.

L. Task Visualizations
Figure 15 provides visualizations of successful trajectories

generated by TD-MPC on seven tasks from DMControl

and Meta-World, all of which TD-MPC solves in less than

1M environment steps. In all seven trajectories, we display

only key frames in the trajectory, as actual episode lengths

are 1000 (DMControl) and 500 (Meta-World). For full

video trajectories, refer to https://nicklashansen.
github.io/td-mpc.

Additional material on the following pages ↓

TD-Learning for MPC

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

ra
te

Assembly

0.00

0.25

0.50

0.75

1.00
Basketball

0.00

0.25

0.50

0.75

1.00
Bin Picking

0.00

0.25

0.50

0.75

1.00
Box Close

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

ra
te

Button Press

0.00

0.25

0.50

0.75

1.00
Button Press Topdown

0.00

0.25

0.50

0.75

1.00
Button Press Topdown Wall

0.00

0.25

0.50

0.75

1.00
Button Press Wall

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

ra
te

Coffee Button

0.00

0.25

0.50

0.75

1.00
Coffee Pull

0.00

0.25

0.50

0.75

1.00
Coffee Push

0.00

0.25

0.50

0.75

1.00
Dial Turn

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

ra
te

Door Close

0.00

0.25

0.50

0.75

1.00
Door Lock

0.00

0.25

0.50

0.75

1.00
Door Open

0.00

0.25

0.50

0.75

1.00
Door Unlock

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

ra
te

Drawer Close

0.00

0.25

0.50

0.75

1.00
Drawer Open

0.00

0.25

0.50

0.75

1.00
Faucet Close

0.00

0.25

0.50

0.75

1.00
Faucet Open

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

ra
te

Hammer

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0.00

0.25

0.50

0.75

1.00
Hand Insert

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0.00

0.25

0.50

0.75

1.00
Handle Press

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (×106)

0.00

0.25

0.50

0.75

1.00
Handle Press Side

SAC TD−MPC (ours)

Figure 14. Individual Meta-World tasks. Success rate of our method (TD-MPC) and SAC on diverse manipulation tasks from Meta-

World (Yu et al., 2019). We use the goal-conditioned version of Meta-World, which is considered harder than the fixed-goal version. Due

to the large number of tasks (50), we choose to visualize only the first 24 tasks (sorted alphabetically). Mean of 5 runs; shaded areas

are 95% confidence intervals. Our method is capable of solving complex tasks (e.g., Basketball) where SAC achieves a relatively small

success rate. Note that we use Meta-World v2 and performances are therefore not comparable to previous work using v1.

TD-Learning for MPC

time −→
D

o
g

W
al

k
H

u
m

an
o

id
W

al
k

Q
u

ad
ru

p
ed

R
u

n
F

in
g

er
T

u
rn

H
ar

d
B

in
P

ic
k

in
g

B
o

x
C

lo
se

H
am

m
er

Figure 15. Visualizations. We visualize trajectories generated by our method on seven selected tasks from the two benchmarks, listed

(from top to bottom) as follows: (1) Dog Walk, a challenging locomotion task that has a high-dimensional action space (A ∈ R
38); (2)

Humanoid Walk, a challenging locomotion task (A ∈ R
21); (3) Quadruped Run, a four-legged locomotion task (A ∈ R

12); (4) Finger

Turn Hard, a hard exploration task with sparse rewards; (5) Bin Picking, a 3-d pick-and-place task; (6) Box Close, a 3-d manipulation

task; and lastly (7) Hammer, another 3d-manipulation task. In all seven trajectories, we display only key frames in the trajectory. Actual

episode lengths are 1000 (DMControl) and 500 (Meta-World). Our method (TD-MPC) is capable of solving each of these tasks in less

than 1M environment steps. Video results are available at https://nicklashansen.github.io/td-mpc.

