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Abstract

Data-driven model predictive control has two key
advantages over model-free methods: a potential
for improved sample efficiency through model
learning, and better performance as computational
budget for planning increases. However, it is both
costly to plan over long horizons and challeng-
ing to obtain an accurate model of the environ-
ment. In this work, we combine the strengths of
model-free and model-based methods. We use a
learned task-oriented latent dynamics model for
local trajectory optimization over a short hori-
zon, and use a learned terminal value function
to estimate long-term return, both of which are
learned jointly by temporal difference learning.
Our method, TD-MPC, achieves superior sam-
ple efficiency and asymptotic performance over
prior work on both state and image-based con-
tinuous control tasks from DMControl and Meta-
World. Code and videos are available at https:
//nicklashansen.github.io/td-mpc.

1. Introduction

To achieve desired behavior in an environment, a Reinforce-
ment Learning (RL) agent needs to iteratively interact and
consolidate knowledge about the environment. Planning is a
powerful approach to such sequential decision making prob-
lems, and has achieved tremendous success in application
areas such as game-playing (Kaiser et al., 2020; Schrit-
twieser et al., 2020) and continuous control (Tassa et al.,
2012; Chua et al., 2018; Janner et al., 2019). By utilizing
an internal model of the environment, an agent can plan a
trajectory of actions ahead of time that leads to the desired
behavior; this is in contrast to model-free algorithms that
learn a policy purely through trial-and-error.

Concretely, prior work on model-based methods can largely
be subdivided into two directions, each exploiting key ad-
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Figure 1. Overview. (Top) We present a framework for MPC using
a task-oriented latent dynamics model and value function learned
jointly by temporal difference learning. We perform trajectory
optimization over model rollouts and use the value function for
long-term return estimates. (Bottom) Episode return of our method,
SAC, and MPC with a ground-truth simulator on challenging, high-
dimensional Humanoid and Dog tasks (Tassa et al., 2018). Mean
of 5 runs; shaded areas are 95% confidence intervals.

vantages of model-based learning: (i) planning, which is ad-
vantageous over a learned policy, but it can be prohibitively
expensive to plan over long horizons (Janner et al., 2019;
Lowrey et al., 2019; Hafner et al., 2019; Argenson & Dulac-
Arnold, 2021); and (i) using a learned model to improve
sample-efficiency of model-free methods by e.g. learning
from generated rollouts, but this makes model biases likely
to propagate to the policy as well (Ha & Schmidhuber, 2018;
Hafner et al., 2020b; Clavera et al., 2020). As a result,
model-based methods have historically struggled to outper-
form simpler, model-free methods (Srinivas et al., 2020;
Kostrikov et al., 2020) in continuous control tasks.

Can we instead augment model-based planning with the
strengths of model-free learning? Because of the immense
cost of long-horizon planning, Model Predictive Control
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(MPC) optimizes a trajectory over a shorter, finite horizon,
which yields only temporally local optimal solutions. MPC
can be extended to approximate globally optimal solutions
by using a terminal value function that estimates discounted
return beyond the planning horizon. However, obtaining an
accurate model and value function can be challenging.

In this work, we propose Temporal Difference Learning
for Model Predictive Control (TD-MPC), a framework
for data-driven MPC using a task-oriented latent dynamics
model and terminal value function learned jointly by tem-
poral difference (TD) learning. At each decision step, we
perform trajectory optimization using short-term reward es-
timates generated by the learned model, and use the learned
value function for long-term return estimates. For exam-
ple, in the Humanoid locomotion task shown in Figure 1,
planning with a model may be beneficial for accurate joint
movement, whereas the higher-level objective, e.g. direction
of running, can be guided by long-term value estimates.

A key technical contribution is how the model is learned.
While prior work learns a model through state or video pre-
diction, we argue that it is remarkably inefficient to model
everything in the environment, including irrelevant quanti-
ties and visuals such as shading, as this approach suffers
from model inaccuracies and compounding errors. To over-
come these challenges, we make three key changes to model
learning. Firstly, we learn the latent representation of the
dynamics model purely from rewards, ignoring nuances
unnecessary for the task at hand. This makes the learning
more sample efficient than state/image prediction. Sec-
ondly, we back-propagate gradients from the reward and
TD-objective through multiple rollout steps of the model,
improving reward and value predictions over long horizons.
This alleviates error compounding when conducting rollouts.
Lastly, we propose a modality-agnostic prediction loss in la-
tent space that enforces temporal consistency in the learned
representation without explicit state or image prediction.

We evaluate our method on a variety of continuous control
tasks from DMControl (Tassa et al., 2018) and Meta-World
(Yu et al., 2019), where we find that our method achieves
superior sample efficiency and asymptotic performance over
prior model-based and model-free methods. In particular,
our method solves Humanoid and Dog locomotion tasks
with up to 38-dimensional continuous action spaces in as
little as 1M environment steps (see Figure 1), and is trivially
extended to match the state-of-the-art in image-based RL.

2. Preliminaries

Problem formulation. We consider infinite-horizon
Markov Decision Processes (MDP) characterized by a tuple
(S, A, T,R,v,po), where S € R™ and A € R™ are contin-
uous state and action spaces, 7: S X A x S — R is the

transition (dynamics) function, R: S x A — R is a reward
function, v € [0, 1) is a discount factor, and py is the initial
state distribution. We aim to learn a parameterized map-
ping IIp: & — A with parameters 6 such that discounted
return Eporr, Yoo, virel, 7o ~ R(:|s¢, a;) is maximized
along a trajectory I' = (sg,a9,s1,a1,...) following IIy
by sampling an action a; ~ IlIy(:|s;) and reaching state
st+1 ~ T (+|st, a;) at each decision step t.

Fitted Q-iteration. Model-free TD-learning algorithms
aim to estimate an optimal state-action value func-
tion @Q*: § x A +— R using a parametric value
function Qy(s,a) ~ Q*(s,a) = maxy E[R(s,a) +
~Q*(s',a’)] Vs € S where s, a’ is the state and action
at the following step, and 6 parameterizes the function (Sut-
ton, 2005). For v ~ 1, Q* estimates discounted return for
the optimal policy over an infinite horizon. While Q™ is
generally unknown, it can be approximated by repeatedly
fitting (Qy using the update rule

0k+1 < arg meinE(s,a,s/)NB HQG(Sva) - yHg )]

where the Q-target y = R(s,a) + ymaxay Qq-(s',a’), B
is a replay buffer that is iteratively grown as new data is
collected, and 6~ is a slow-moving average of the online
parameters ¢ updated with the rule 0, , +— (1 — ()0, +
(0 at each iteration using a constant coefficient ¢ € [0, 1).

Model Predictive Control. In actor-critic RL algo-
rithms, II is typically a policy parameterized by a
neural network that learns to approximate IIy(-|s) =
arg maxa E[Qo(s,a)] Vs € S, i.e, the globally optimal pol-
icy. In control, II is traditionally implemented as a trajectory
optimization procedure. To make the problem tractable, one
typically obtains a local solution to the trajectory optimiza-
tion problem at each step ¢ by estimating optimal actions
a4+ g over a finite horizon H and executing the first action
ay, known as Model Predictive Control (MPC):

H
I (s;) = arg max E [Z viR(si,ai)] . @

at:t+H X
1=t

where v, unlike in fitted Q)-iteration, is typically set to 1,
i.e., no discounting. Intuitively, Equation 2 can be viewed
as a special case of the standard additive-cost optimal con-
trol objective. A solution can be found by iteratively fitting
parameters of a family of distributions, e.g., i, o for a mul-
tivariate Gaussian with diagonal covariance, to the space
of actions over a finite horizon using the derivative-free
Cross-Entropy Method (CEM; Rubinstein (1997)), and sam-
ple trajectories generated by a model. As opposed to fitted
Q-iteration, Equation 2 is not predictive of long-term re-
wards, hence a myopic solution. When a value function is
known (e.g. a heuristic or in the context of our method: esti-
mated using Equation 1), it can be used in conjunction with
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Equation 2 to estimate discounted return at state s, ;7 and
beyond; such methods are known as MPC with a terminal
value function. In the following, we consider parameterized
mappings II from both the perspective of actor-critic RL
algorithms and model predictive control (planning). To dis-
ambiguate these concepts, we refer to planning with MPC
as IIp and a policy network as my. We generically denote
parameterization using neural networks as 6 (online) and
0~ (target; slow-moving average of ) as combined feature
vectors.

3. TD-Learning for Model Predictive Control

We propose TD-MPC, a framework that combines MPC
with a task-oriented latent dynamics model and terminal
value function jointly learned using TD-learning in an on-
line RL setting. Specifically, TD-MPC leverages Model
Predictive Path Integral (MPPI; Williams et al. (2015)) con-
trol for planning (denoted IIy), learned models dy, Ry of the
(latent) dynamics and reward signal, respectively, a terminal
state-action value function @0y, and a parameterized policy
my that helps guide planning. We summarize our frame-
work in Figure 1 and Algorithm 1. In this section, we detail
the inference-time behavior of our method, while we defer
discussion of training to Section 4.

MPPI is an MPC algorithm that iteratively updates pa-
rameters for a family of distributions using an importance
weighted average of the estimated top-k sampled trajectories
(in terms of expected return); in practice, we fit parameters
of a time-dependent multivariate Gaussian with diagonal
covariance. We adapt MPPI as follows. Starting from ini-
tial parameters (u°,0%) .41, p°, 0% € R™, A € R™, ie.
independent parameters for each action over a horizon of
length H, we independently sample N trajectories using
rollouts generated by the learned model dg, and estimate the
total return ¢r of a sampled trajectory I" as

H-1

¢r £ Br |v7Qo(zr,an) + > V' Ro(zr,ar)| , (3)
=0

where z¢ 1 = dg(zs,a;) and a, ~ N (", (07 71)1) at
iteration j — 1, as highlighted in red in Algorithm 1. We
select the top-k returns ¢ and obtain new parameters 7, o7
at iteration j from a ¢p-normalized empirical estimate:

k k .
, 0N I (T — )2
_ Zz:l 7 ’ ol = szl ( 7 I ) , (4)

w k %
>im1 >im1

where (; = (1) risa temperature parameter control-
ling the “sharpness” of the weighting, and I'} denotes the ith
top-k trajectory corresponding to return estimate ¢. After
a fixed number of iterations .J, the planning procedure is
terminated and a trajectory is sampled from the final return-
normalized distribution over action sequences. We plan at

Algorithm 1 TD-MPC (inference)

Require: 6 : learned network parameters
19, 00: initial parameters for N’
N, N,: num sample/policy trajectories
s;, H: current state, rollout horizon
1: Encode state z; < hg(s;) < Assuming TOLD model
2: for each iteration j = 1..J do
3:  Sample N traj. of len. H from N (171, (07 71)21)
4:  Sample N, traj. of length H using 7y, dy
// Estimate trajectory returns ¢r using dg, Rg, Qo,
starting from z, and initially letting ¢r = O:

for all N + N trajectories (a;, a;4+1,...,a;+4) do
for stept =0..H — 1 do
or = or + v Ro(z¢,a) <1 Reward

Zir1 < do(z¢, ap) < Latent transition
ér = or +77Qo(zm,ar) < Terminal value
// Update parameters i, o for next iteration:
10:  p?, 07 = Equation 4 (and Equation 5)
11: returna ~ N (u”, (o)1)

each decision step ¢ and execute only the first action, i.e., we
employ receding-horizon MPC to produce a feedback policy.
To reduce the number of iterations required for convergence,
we “warm start” trajectory optimization at each step ¢ by
reusing the 1-step shifted mean p obtained at the previous
step (Argenson & Dulac-Arnold, 2021), but always use a
large initial variance to avoid local minima.

Exploration by planning. Model-free RL algorithms such
as DDPG (Lillicrap et al., 2016) encourage exploration by
injecting action noise (e.g. Gaussian or Ornstein-Uhlenbeck
noise) into the learned policy 7y during training, optionally
following a linear annealing schedule. While our trajectory
optimization procedure is inherently stochastic due to tra-
jectory sampling, we find that the rate at which o decays
varies wildly between tasks, leading to (potentially poor)
local optima for small o. To promote consistent exploration
across tasks, we constrain the std. deviation of the sampling
distribution such that, for a y/ obtained from Equation 4 at
iteration j, we instead update o7 to

Sy (L — @)’
N
Zi=1 Qi

0! = max

el O

where € € R is a linearly decayed constant. Likewise, we
linearly increase the planning horizon from 1 to H in the
early stages of training, as the model is initially inaccurate
and planning would therefore be dominated by model bias.

Policy-guided trajectory optimization. Analogous to
Schrittwieser et al. (2020); Sikchi et al. (2022), TD-MPC
learns a policy 7y in addition to planning procedure 11y, and
augments the sampling procedure with additional samples
from 7y (highlighted in blue in Algorithm 1). This leads to
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one of two cases: the policy trajectory is estimated to be (i)
poor, and may be excluded from the top-k trajectories; or (ii)
good, and may be included with influence proportional to its
estimated return ¢r. While LOOP relies on the maximum
entropy objective of SAC (Haarnoja et al., 2018) for ex-
ploration, TD-MPC learns a deterministic policy. To make
sampling stochastic, we apply linearly annealed (Gaussian)
noise to 7y actions as in DDPG (Lillicrap et al., 2016). Our
full procedure is summarized in Algorithm 1.

4. Task-Oriented Latent Dynamics Model

To be used in conjunction with TD-MPC, we propose a
Task-Oriented Latent Dynamics (TOLD) model that is
jointly learned together with a terminal value function using
TD-learning. Rather than attempting to model the environ-
ment itself, our TOLD model learns to only model elements
of the environment that are predictive of reward, which
is a far easier problem. During inference, our TD-MPC
framework leverages the learned TOLD model for trajectory
optimization, estimating short-term rewards using model
rollouts and long-term returns using the terminal value func-
tion. TD-MPC and TOLD support continuous action spaces,
arbitrary input modalities, and sparse reward signals. Figure
2 provides an overview of the TOLD training procedure.

Components. Throughout training, our agent iteratively
performs the following two operations: (i) improving the
learned TOLD model using data collected from previous
environment interaction; and (ii) collecting new data from
the environment by online planning of action sequences with
TD-MPC, using TOLD for generating imagined rollouts.
Our proposed TOLD consists of five learned components
hg,dg, Ry, Qg, Ty that predict the following quantities:

Representation: z; = hy(sy)

Latent dynamics: Zi1 = dg(z4,ap)

Reward: 7+ = Ro(zt, ar) (6)
Value: Gt = Qo(zt, ar)

Policy: a; ~ mp(zy)

Given an observation s; observed at time ¢, a representation
network hg encodes s; into a latent representation z;. From
z; and an action a, taken at time ¢, TOLD then predicts (i)
the latent dynamics (latent representation z;; of the fol-
lowing timestep); (ii) the single-step reward received; (iii)
its state-action (@) value; and (iv) an action that (approx-
imately) maximizes the @)-function. To make TOLD less
susceptible to compounding errors, we recurrently predict
the aforementioned quantities multiple steps into the future
from predicted future latent states, and back-propagate gra-
dients through time. Unlike prior work (Ha & Schmidhuber,
2018; Janner et al., 2019; Hafner et al., 2019; 2020b; Sikchi
et al., 2022), we find it sufficient to implement all compo-
nents of TOLD as purely deterministic MLPs, i.e., without
RNN gating mechanisms nor probabilistic models.

Qg, Ry, g

FYN FYN FTY
792 Te2 Tl
: @

value reward action

online net  target net

Figure 2. Training our TOLD model. A trajectory I'g. 7 of length
H is sampled from a replay buffer, and the first observation sg
is encoded by hy into a latent representation zo. Then, TOLD
recurrently predicts the following latent states z1, z2, ..., Zm, as
well as a value ¢, reward 7, and action a for each latent state, and
we optimize TOLD using Equation 7. Subsequent observations
are encoded using target net hy— (0~ : slow-moving average of )
and used as latent targets only during training (illustrated in gray).

Objective. We first state the full objective, and then mo-
tivate each module and associated objective term. During
training, we minimize a temporally weighted objective

t+H

JO:;T) = > NTILO:T,), (7
i=t

where I' ~ B is a trajectory (S¢, &, ¢, St+1)+.+4+ 1 sampled
from a replay buffer B, A € R is a constant that weights
near-term predictions higher, and the single-step loss

L(6;T;) = c1||Ro(zi,a;) — 713 )
reward
+ 2)|Qo(zi,a;) — (ri + Q- (Ziv1,mo(2i11))) |3 (9)
value
+ cslld(zi, ai) — ho- (sit1)l3 (10)

latent state consistency

is employed to jointly optimize for reward prediction, value
prediction, and a latent state consistency loss that regu-
larizes the learned representation. Here, c;.3 are constant
coefficients balancing the three losses. From each tran-
sition (z;, a;), the reward term (Equation 8) predicts the
single-step reward, the value term (Equation 9) is our adop-
tion of fitted )-iteration from Equation 1 following previ-
ous work on actor-critic algorithms (Lillicrap et al., 2016;
Haarnoja et al., 2018), and the consistency term (Equa-
tion 10) predicts the latent representation of future states.
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Crucially, recurrent predictions are made entirely in latent
space from states z; = hy(s;), ziv1 = do(zi,;), ...,
Zi+n = dg(Z;+ -1, 8;+m—1) such that only the first obser-
vation s; is encoded using hy and gradients from all three
terms are back-propagated through time. This is in contrast
to prior work on model-based learning that learn a model
by state or video prediction, entirely decoupled from policy
and/or value learning (Ha & Schmidhuber, 2018; Hafner
et al., 2020b; Sikchi et al., 2022). We use an exponential
moving average 6~ of the online network parameters 6
for computing the value target (Lillicrap et al., 2016), and
similarly also use #~ for the latent state consistency target
hg-(si+1). The policy 7y is described next, while we defer
discussion of the consistency loss to the following section.

Computing TD-targets. The TD-objective in Equation 9
requires estimating the quantity maxa,, Q- (2, a;), which
is extremely costly to compute using planning (Lowrey
et al., 2019). Therefore, we instead learn a policy 7y that
maximizes (Jp by minimizing the objective

t+H
Tx(0;T) = = > N7'Qq(zi, mo(sg(z:)), (1)

i=t
which is a temporally weighted adaptation of the policy
objective commonly used in model-free actor-critic methods
such as DDPG (Lillicrap et al., 2016) and SAC (Haarnoja
et al., 2018). Here, sg denotes the stop-grad operator, and
Equation 11 is optimized only wrt. policy parameters. While
we empirically observe that for complex tasks the learned
my is inferior to planning (discussed in Section 5), we find
it sufficiently expressive for efficient value learning.

Latent state consistency. To provide a rich learning signal
for model learning, prior work on model-based RL com-
monly learn to directly predict future states or pixels (Ha
& Schmidhuber, 2018; Janner et al., 2019; Lowrey et al.,
2019; Kaiser et al., 2020; Sikchi et al., 2022). However,
learning to predict future observations is an extremely hard
problem as it forces the network to model everything in the
environment, including task-irrelevant quantities and details
such as shading. Instead, we propose to regularize TOLD
with a latent state consistency loss (shown in Equation 10)
that forces a future latent state prediction z; 1 = dg(z¢, a;)
at time ¢ + 1 to be similar to the latent representation of the
corresponding ground-truth observation hy- (s;11), circum-
venting prediction of observations altogether. Additionally,
this design choice effectively makes model learning agnos-
tic to the observation modality. The training procedure is
shown in Algorithm 2; see Appendix F for pseudo-code.

5. Experiments

We evaluate TD-MPC with a TOLD model on a total of 92
diverse and challenging continuous control tasks from Deep-
Mind Control Suite (DMControl; Tassa et al. (2018)) and

Algorithm 2 TOLD (training)

Require: 0,60~ : randomly initialized network parameters

1, T, A, B: learning rate, coefficients, buffer
1: while not tired do

2:  // Collect episode with TD-MPC from sg ~ py:

3: forstept=0..T do

4: a; ~ Iy (-|ho(st)) <1 Sample with TD-MPC

5: (St+1, ’f't) ~ T("St, at), R("St, at) < Sfep em.

6.

7

8

9

B+ BU (St, at, I't, St+1) < Add to bLl]Lf()I
// Update TOLD using collected data in B:
for num updates per episode do

{st;as, 74, 8e41 b ~ B < Sample traj.

10: z; = hp(st) <1 Encode first observation
11: J=0 < Initialize J for loss accumulation
12: for:=1t..1+ H do

13: 7; = Ro(zi,a;) <1 Equation 8
14: Gi = Qo(zi, a;) < Equation 9
15: Ziv1 = do(z;,a;) <1 Equation 10
16: a; = mo(z;) < Equation 11
17: J < J+ XL (241, T4, Gsy A5) <1 Equation 7
18: 0+ 06— %nVaJ <1 Update online network
19: 0=« (1—7)0~+70 < Update target network

Meta-World v2 (Yu et al., 2019), including tasks with sparse
rewards, high-dimensional state and action spaces, image
observations, multi-modal inputs, goal-conditioning, and
multi-task learning settings; see Appendix L for task visual-
izations. We choose these two benchmarks for their great
task diversity and availability of baseline implementations
and results. We seek to answer the following questions:

— How does planning with TD-MPC compare to state-of-
the-art model-based and model-free approaches?

— Are TOLD models capable of multi-task and transfer
behaviors despite using a reward-centric objective?

— How does performance relate to the computational budget
of the planning procedure?

An implementation of TD-MPC is available at https://
nicklashansen.github.io/td-mpc, which will
solve most tasks in an hour on a single GPU.

Implementation details. All components are deterministic
and implemented using MLPs. We linearly anneal the ex-
ploration parameter e of 115 and 7g from 0.5 to 0.05 over
the first 25k decision steps'. We use a planning horizon of
H =5, and sample trajectories using prioritized experience
replay (Schaul et al., 2016) with priority scaled by the value
loss. During planning, we plan for 6 iterations (8 for Dog;
12 for Humanoid), sampling N = 512 trajectories (+5%
sampled from my), and we compute j, o parameters over

!"To avoid ambiguity, we refer to simulation steps as environ-
ment steps (independent of action repeat), and use decision steps
when referring to policy queries (dependent on action repeat).
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Figure 3. DMControl tasks. Return of our method (TD-MPC) and baselines on 15 state-based continuous control tasks from DMControl
(Tassa et al., 2018). Mean of 5 runs; shaded areas are 95% confidence intervals. In the top left, we visualize results averaged across all 15
tasks. We observe especially large performance gains on tasks with complex dynamics, e.g., the Quadruped and Acrobot tasks.

the top-64 trajectories each iteration. For image-based tasks,
observations are 3 stacked 84 x 84-dimensional RGB frames
and we use £4 pixel shift augmentation (Kostrikov et al.,
2020). Refer to Appendix F for additional details.

Baselines. We evaluate our method against the following:

— Soft Actor-Critic (SAC; (Haarnoja et al., 2018)), a state-
of-the-art model-free algorithm derived from maximum en-
tropy RL (Ziebart et al., 2008). We choose SAC as our main
point of comparison due to its popularity and strong perfor-
mance on both DMControl and Meta-World. In particular,
we adopt the implementation of Yarats & Kostrikov (2020).

— LOOP (Sikchi et al., 2022), a hybrid algorithm that ex-
tends SAC with planning and a learned model. LOOP has
been shown to outperform a number of model-based meth-
ods, e.g., MBPO (Janner et al., 2019) and POLO (Lowrey
et al., 2019)) on select MuJoCo tasks. It is a particularly
relevant baseline due to its similarities to TD-MPC.

— MPC with a ground-truth simulator (denoted MPC:sim).
As planning with a simulator is computationally intensive,

we limit the planning horizon to 10 (2x ours), sampled tra-
jectories to 200, and optimize for 4 iterations (ours: 6).

— CURL (Srinivas et al., 2020), DrQ (Kostrikov et al.,
2020), and DrQ-v2 (Yarats et al., 2021), three state-of-the-
art model-free algorithms.

— PlaNet (Hafner et al., 2019), Dreamer (Hafner et al.,
2020b), and Dreamer-v2 (Hafner et al., 2020a). All three
methods learn a model using a reconstruction loss, and se-
lect actions using either MPC or a learned policy.

— MuZero (Schrittwieser et al., 2020) and EfficientZero
(Ye et al., 2021), which learn a latent dynamics model from
rewards and uses MCTS for discrete action selection.

— Ablations. We consider: (i) our method implemented
using a state predictor (hy being the identity function), (i)
our method implemented without the latent consistency loss
from Equation 10, and lastly: the consistency loss replaced
by either (iii) the reconstruction objective of PlaNet and
Dreamer, or (iv) the contrastive objective of EfficientZero.

See Appendix G for further discussion on baselines.
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Table 1. Learning from pixels. Return of our method (TD-MPC) and state-of-the-art algorithms on the image-based DMControl 100k
benchmark used in Srinivas et al. (2020); Kostrikov et al. (2020); Ye et al. (2021). Baselines are tuned specifically for image-based RL,
whereas our method is not. Results for SAC, CURL, DrQ, and PlaNet are partially obtained from Srinivas et al. (2020); Kostrikov et al.
(2020), and results for Dreamer, MuZero, and EfficientZero are obtained from Hafner et al. (2020b); Ye et al. (2021). Mean and std.
deviation over 10 runs. *: MuZero and EfficientZero use a discretized action space, and EfficientZero performs an additional 20k gradient
steps before evaluation, whereas other methods do not. Due to dimensionality explosion under discretization, MuZero and EfficientZero
cannot feasibly solve tasks with higher-dimensional action spaces, e.g., Walker Walk and Cheetah Run (A € R®), while our method can.

Model-free Model-based Ours
100k env. steps SAC State  SAC Pixels CURL DrQ ‘ PlaNet  Dreamer MuZero* Eff.Zero* ‘ TD-MPC
Cartpole Swingup 812+45 419440 5974170 759492 | 563473  326+27  219+122 813+19 770+70
Reacher Easy 919+123 145430 517+113 6014213 | 82+174  314+155  493+145 952434 628+105
Cup Catch 957+26 312463 7724241 913453 | 7104217  246+174  542+270 942+17 933+24
Finger Spin 672+76 166+128 7794108 9014104 | 560477  341+70 - — 943+59
Walker Walk 604317 42+12 344+132  612+164 | 221443  277+12 — — 577+208
Cheetah Run 228+95 103+38 307+48 344+e7 | 165+123 235+137 — — 222488
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Figure 4. Learning from pixels. Return of our method (TD-MPC) and state-of-the-art algorithms on 12 challenging image-based
DMControl tasks. We follow prior work (Hafner et al., 2020b;a; Yarats et al., 2021) and use an action repeat of 2 for all tasks. Compared
to the DMControl 100k benchmark shown in Table 1, we here consider more difficult tasks with up to 30x more data. Results for DrQ-v2
and Dreamer-v2 are obtained from Yarats et al. (2021); Haftner et al. (2020a), results for DrQ are partially obtained from Kostrikov et al.
(2020), and results for CURL are reproduced using their publicly available implementation (Srinivas et al., 2020). While baselines use
task-dependent hyperparameters, TD-MPC uses the same hyperparameters for all tasks. Mean of 5 runs; shaded areas are 95% confidence
intervals. TD-MPC consistently outperforms CURL and DrQ, and is competitive with DrQ-v2 and Dreamer-v2.

Tasks. We consider the following 92 tasks: benchmark (3M environment steps). Results in Figure 4.

— 6 challenging Humanoid (A € R?') and Dog (A € R3®) — 2 multi-modal (proprioceptive data + egocentric camera)

locomotion tasks with high-dimensional state and action
spaces. Results are shown in Figure 1.

— 15 diverse continuous control tasks from DMControl, 6
of which have sparse rewards. Results shown in Figure 3.

— 6 image-based tasks from the data-efficient DMControl
100k benchmark. Results are shown in Table 1.

— 12 image-based tasks from the DMControl Dreamer

3D locomotion tasks in which a quadruped agent navigates
around obstacles. Results are shown in Figure 5 (middle).

— 50 goal-conditioned manipulation tasks from Meta-
World, as well as a multi-task setting where 10 tasks are
learned simultaneously. Results are shown in Figure 5 (top).

Throughout, we benchmark performance on relatively few
environment steps, e.g., 3M steps for Humanoid tasks
whereas prior work typically runs for 30M steps (10x).
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Comparison to other methods. We find our method to
outperform or match baselines in most tasks considered,
generally with larger gains on complex tasks such as Hu-
manoid, Dog (DMControl), and Bin Picking (Meta-World),
and we note that TD-MPC is in fact the first documented
result solving the complex Dog tasks of DMControl. Per-
formance of LOOP is similar to SAC, and MPC with a
simulator (MPC:sim) performs well on locomotion tasks
but fails in tasks with sparse rewards. Although we did
not tune our method specifically for image-based RL, we
obtain results competitive with state-of-the-art model-based
and model-free algorithms that are both carefully tuned
for image-based RL and contain up to 15x more learnable
parameters. Notably, while EfficientZero produces strong
results on tasks with low-dimensional action spaces, its
Monte-Carlo Tree Search (MCTS) requires discretization
of action spaces, which is unfeasible in high dimensions.
In contrast, TD-MPC scales remarkably well to the 38-
dimensional continuous action space of Dog tasks. Lastly,
we observe inferior sample efficiency compared to SAC and
LOOP on the hard exploration task Finger Turn Hard in
Figure 3, which suggests that incorporating more sophisti-
cated exploration strategies might be promising for future
research. We defer experiments that ablate the choice of reg-
ularization loss to Appendix D, but find our proposed latent
state consistency loss to yield the most consistent results.

Multi-task RL, multi-modal RL, and generalization. A
common argument in favor of general-purpose models is
that they can benefit from data-sharing across tasks. There-
fore, we seek to answer the following question: does TOLD
similarly benefit from synergies between tasks, despite its
reward-centric objective? We test this hypothesis through
two experiments: training a single policy to perform 10
different tasks simultaneously (Meta-World MT10), and
evaluating model generalization when trained on one task
(Walk) and transferring to a different task from the same do-
main (Run). Multi-task results are shown in Figure 5 (top),
and transfer results are deferred to Appendix A. We find our
method to benefit from data sharing in both experiments,
and our transfer results indicate that hy generalizes well to
new tasks, while dy encodes more task-specific behavior.
We conjecture that, while TOLD only learns features that are
predictive of reward, similar tasks often have similar reward
structures, which enables sharing of information between
tasks. However, we still expect general-purpose models to
benefit more from unrelated tasks in the same environment
than TOLD. Lastly, an added benefit of our task-centric
objective is that it is agnostic to the input modality. To
demonstrate this, we solve two multi-modal (proprioceptive
data + egocentric camera) locomotion tasks using TD-MPC;
results in Figure 5 (bottom). We find that TD-MPC suc-
cessfully fuses information from the two input modalities,
and solves the tasks. In contrast, a blind agent that does not

Meta-World (Goal-Conditioned)

MT10 (Multi-Task)
1.00 1.00

0.75 0.754

Success rate
o
o
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o
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Episode return

0 T T T T 0 T T T T
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- SAC --- MPC:sim = TD-MPC (blind) === TD-MPC (ours)

Figure 5. (top) Meta-World. Success rate on 50 goal-conditioned
Meta-World tasks using individual policies, and a multi-task policy
trained on 10 tasks simultaneously (Meta-World MT10). Individ-
ual task results shown in Appendix L. (bottom) Multi-modal RL.
Episode return of TD-MPC on two multi-modal locomotion tasks
using proprioceptive data + an egocentric camera. Blind uses only
proprioceptive data. See Appendix L for visualizations. All results
are means of 5 runs; shaded areas are 95% confidence intervals.
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Figure 6. Variable computational budget. Return of TD-MPC
on Quadruped Walk under a variable budget. We evaluate perfor-
mance of fully trained agents when varying (left) planning horizon;
(right) number of iterations during planning. When varying one
hyperparameter, the other is fixed to the default value. We include
evaluation of the learned policy mg, and the default setting of 6

iterations and a horizon of 5 used in training. Mean of 5 runs.

have access to the egocentric camera fails. See Appendix
J for further details on the multi-modal experiments, and
Appendix I for details on the multi-task experiments.

Performance vs. computational budget. We investigate
the relationship between computational budget (i.e., plan-
ning horizon and number of iterations) and performance in
DMControl tasks; see Figure 6. We find that, for complex
tasks such as Quadruped Walk (A € R'?), more planning
generally leads to better performance. However, we also ob-
serve that we can reduce the planning cost during inference
by 50% (compared to during training) without a drop in
performance by reducing the number of iterations. For par-
ticularly fast inference, one can discard planning altogether
and simply use the jointly learned policy 7y; however, my
generally performs worse than planning. See Appendix C
for additional results.
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Table 2. Wall-time. (top) time to solve, and (bottom) time per
500k environment steps (in hours) for the Walker Walk and Hu-
manoid Stand tasks from DMControl. We consider the tasks solved
when a method achieves an average return of 940 and 800, respec-
tively. TD-MPC solves Walker Walk 16 x faster than LOOP while
using 3.3 x less compute per 500k steps. Mean of 5 runs.

Walker Walk Humanoid Stand
Wall-time (h) SAC LOOP MPC:sim TD-MPC ‘ SAC TD-MPC
time to solve | 041  7.72 0.91 0.47 9.31 9.39
h/500k steps |, 1.41  18.5 — 5.60 1.82 12.94

Training wall-time. To better ground our results, we report
the training wall-time of TD-MPC compared to SAC, LOOP
that is most similar to our method, and MPC with a ground-
truth simulator (non-parametric). Methods are benchmarked
on a single RTX3090 GPU. Results are shown in Table 2.
TD-MPC solves Walker Walk 16 x faster than LOOP and
matches the time-to-solve of SAC on both Walker Walk
and Humanoid Stand while being significantly more sample
efficient. Thus, our method effectively closes the time-to-
solve gap between model-free and model-based methods.
This is a nontrivial reduction, as LOOP is already known
to be, e.g., 12x faster than the purely model-based method,
POLO (Lowrey et al., 2019; Sikchi et al., 2022). We provide
additional experiments on inference times in Appendix H.

6. Related Work

Temporal Difference Learning. Popular model-free oft-
policy algorithms such as DDPG (Lillicrap et al., 2016) and
SAC (Haarnoja et al., 2018) represent advances in deep TD-
learning based on a large body of literature (Sutton, 1988;
Mnih et al., 2013; Hasselt et al., 2016; Mnih et al., 2016; Fu-
jimoto et al., 2018; Kalashnikov et al., 2018; Espeholt et al.,
2018; Pourchot & Sigaud, 2019; Kalashnikov et al., 2021).
Both DDPG and SAC learn a policy my and value function
Qy, but do not learn a model. Kalashnikov et al. (2018);
Shao et al. (2020); Kalashnikov et al. (2021) also learn Q,
but replace or augment 7y with model-free CEM. Instead,
we jointly learn a model, value function, and policy using
TD-learning, and interact using sampling-based planning.

Model-based RL. A common paradigm is to learn a model
of the environment that can be used for planning (Ebert
et al., 2018; Zhang et al., 2018; Janner et al., 2019; Hafner
et al., 2019; Lowrey et al., 2019; Kaiser et al., 2020; Bhard-
waj et al., 2020; Yu et al., 2020; Schrittwieser et al., 2020;
Nguyen et al., 2021) or for training a model-free algorithm
with generated data (Pong et al., 2018; Ha & Schmidhu-
ber, 2018; Hafner et al., 2020b; Sekar et al., 2020). For
example, Zhang et al. (2018); Ha & Schmidhuber (2018);
Hafner et al. (2019; 2020b) learn a dynamics model using
a video prediction loss, Yu et al. (2020); Kidambi et al.
(2020) consider model-based RL in the offline setting, and
MuZero/EfficientZero (Schrittwieser et al., 2020; Ye et al.,

2021) learn a latent dynamics model using reward predic-
tion. EfficientZero is most similar to ours in terms of model
learning, but its MCTS-based action selection is inherently
incompatible with continuous action spaces. Finally, while
learning a terminal value function for MPC has previously
been proposed (Negenborn et al., 2005; Lowrey et al., 2019;
Bhardwaj et al., 2020; Hatch & Boots, 2021), we are (to the
best of our knowledge) the first to jointly learn model and
value function through TD-learning in continuous control.

Hybrid algorithms. Several prior works aim to develop
algorithms that combine model-free and model-based ele-
ments (Nagabandi et al., 2018; Buckman et al., 2018; Pong
et al., 2018; Hafez et al., 2019; Sikchi et al., 2022; Wang &
Ba, 2020; Clavera et al., 2020; Hansen et al., 2021; Morgan
et al., 2021; Bhardwaj et al., 2021; Margolis et al., 2021),
many of which are orthogonal to our contributions. For
example, Clavera et al. (2020) and Buckman et al. (2018);
Lowrey et al. (2019) use a learned model to improve policy
and value learning, respectively, through generated trajecto-
ries. LOOP (Sikchi et al., 2022) extends SAC with a learned
state prediction model and constrains planned trajectories
to be close to those of SAC, whereas we replace the pa-
rameterized policy by planning with TD-MPC and learn a
task-oriented latent dynamics model.

We provide a qualitative comparison of key components in
TD-MPC and prior work in Appendix B.

7. Conclusions and Future Directions

We are excited that our TD-MPC framework, despite being
markedly distinct from previous work in the way that the
model is learned and used, is already able to outperform
model-based and model-free methods on diverse continuous
control tasks, and (with trivial modifications) simultane-
ously match state-of-the-art on image-based RL tasks. Yet,
we believe that there is ample opportunity for performance
improvements by extending the TD-MPC framework. For
example, by using the learned model in creative ways (Clav-
era et al., 2020; Buckman et al., 2018; Lowrey et al., 2019),
incorporating better exploration strategies, or improving the
model through architectural innovations.
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Figure 7. Model generalization. Return of our method under
three different settings: (Rand. init) TD-MPC trained from scratch
on the two Run tasks; (Finetune) TD-MPC initially trained on Walk
tasks and then finetuned online on Run tasks without any weights
frozen; (Finetune, freeze hg) same setting as before, but with the
encoder hg frozen; and (Finetune, freeze hg, dg) both encoder hg
and latent dynamics predictor dy frozen. Mean of 5 runs; shaded
areas are 95% confidence intervals.

A. Model Generalization

We investigate the transferability of a TOLD model between
related tasks. Specifically, we consider model transfer in
two locomotion domains, Walker and Quadruped, where
we first train policies on Walk tasks and then finetune the
learned model on Run tasks. We finetune in an online set-
ting, i.e., the only difference between training from scratch
and finetuning is the weight initialization, and we keep all
hyperparameters identical. Results from the experiment are

shown in Figure 7. When finetuning the full TOLD model,
we find our method to converge considerably faster, sug-
gesting that TOLD does indeed learn features that transfer
between related tasks. We perform two additional finetuning
experiments: freezing parameters of the representation hy,
and freezing parameters of both hy and the latent dynam-
ics predictor dy during finetuning. We find that freezing
hg nearly matches our results for finetuning without frozen
weights, indicating that hy learns to encode information
that transfers between tasks. However, when finetuning
with both hy, dy frozen, rate of convergence degrades sub-
stantially, which suggests that dy tends to encode more
task-specific behavior.

B. Comparison to Prior Work

We here extend our discussion of related work in Section
6. Table 3 provides a qualitative comparison of key compo-
nents of TD-MPC and prior model-based and model-free
approaches, e.g., comparing model objectives, use of a (ter-
minal) value function, and inference-time behavior. While
different aspects of TD-MPC have been explored in prior
work, we are the first to propose a complete framework for
MPC with a model learned by TD-learning.

C. Variable Computational Budget

This section supplements our experiments in Figure 6 on
a variable computational budget for planning during infer-
ence; additional results are shown in Figure 8. We observe
that the gap between planning performance and policy per-
formance tends to be larger for tasks with high-dimensional
action spaces such as the two Quadruped tasks. We simi-
larly find that performance varies relatively little when the
computational budget is changed for tasks with simple dy-
namics (e.g., Cartpole tasks) compared to tasks with more
complex dynamics. We find that our default hyperparame-
ters (H = 5 and 6 iterations; shown as a star in Figure 8)
strikes a good balance between compute and performance.

D. Latent Dynamics Objective

We ablate the choice of latent dynamics objective by replac-
ing our proposed latent state consistency loss in Equation 10
with (i) a contrastive loss similar to that of Ye et al. (2021);
Hansen & Wang (2021), and (ii) a reconstruction objective
similar to that of Ha & Schmidhuber (2018); Hafner et al.
(2019; 2020b). Specifically, for (i) we adopt the recently pro-
posed SimSiam (Chen & He, 2021) self-supervised frame-
work and implement the projection layer as an MLP with 2
hidden layers and output size 32, and the predictor head is
an MLP with 1 hidden layer. All layers use ELU activations
and a hidden size of 256. Consistent with the public im-
plementations of Ye et al. (2021); Hansen & Wang (2021),
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Table 3. Comparison to prior work. We compare key components of TD-MPC to prior model-based and model-free approaches. Model
objective describes which objective is used to learn a (latent) dynamics model, value denotes whether a value function is learned, inference
provides a simplified view of action selection at inference time, continuous denotes whether an algorithm supports continuous action
spaces, and compute is a holistic estimate of the relative computational cost of methods during training and inference. We use policy w/
CEM to indicate inference based primarily on a learned policy, and vice-versa.

Method Model objective Value Inference Continuous  Compute
SAC X v Policy v Low
QT-Opt X v CEM v Low
MPC:sim Ground-truth model X CEM v High
POLO Ground-truth model v CEM v High
LOOP v/ Policy w/ CEM v
PlaNet X CEM v High
Dreamer v Policy v
MuZero Reward/value pred. v X
EfficientZero Reward/value pred. + contrast. v X
TD-MPC (ours) Reward/value pred. + latent pred. v CEM w/ policy v Low
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Figure 8. Variable computational budget. Return of our method (TD-MPC) under a variable computational budget. In addition to the
task in Figure 6, we provide results on four other tasks from DMControl: Quadruped Run (A € R*?), Fish Swim (A € R®), Reacher
Hard (A € R?), and Cartpole Swingup Sparse (A € R). We evaluate performance of fully trained agents when varying (blue) planning
horizon; (green) number of iterations during planning. For completeness, we also include evaluation of the jointly learned policy 7y, as
well as the default setting of 6 iterations and a horizon of 5 used during training. Higher values require more compute. Mean of 5 runs.

we find it beneficial to apply BatchNorm in the projection
and predictor modules. We also find that using a higher
loss coefficient of c3 = 100 (up from 2) produces slightly
better results. For (ii) we implement the decoder for state
reconstruction by mirroring the encoder; an MLP with 1
hidden layer and ELU activations. We also include a no
regularization baseline for completeness. Results are shown
in Figure 10.

E. Exploration by planning

We investigate the role that planning by TD-MPC has in
exploration. Figure 9 shows the average std. deviation of
our planning procedure after the final iteration of planning
for the three Humanoid tasks: Stand, Walk, and Run, listed

in order of increasing difficulty. We observe that the std.

deviation (and thus degree of exploration) is decreasing
as training progresses, and converges as the task becomes
solved. Generally, we find that exploration decreases slower
for hard tasks, which we conjecture is due to larger vari-
ance in reward and value estimates. As such, the TD-MPC
framework inherently balances exploration and exploitation.

F. Implementation Details

We provide an overview of the implementation details of our
method in Section 5. For completeness, we list all relevant
hyperparameters in Table 4. As discussed in Appendix G,
we adopt most hyperparameters from the SAC implementa-
tion (Yarats & Kostrikov, 2020). Following previous work
(Hafner et al., 2019), we use a task-specific action repeat
hyperparameter for DMControl that is constant across all
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Figure 9. Exploration by planning. Average std. deviation (o) of
our planning procedure after the final iteration of planning over the
course of training. Results are shown for the three Humanoid tasks:
Stand, Walk, and Run, listed in order of increasing difficulty.

methods; see Table 7 for a list of values. For state-based
experiments, we implement the representation function hy
using an MLP with a single hidden layer of dimension 256.
For image-based experiments, hy is a 4-layer CNN with
kernel sizes (7,5, 3, 3), stride (2, 2,2, 2), and 32 filters per
layer. All other components are implemented using 2-layer
MLPs with dimension 512. Following prior work (Yarats
& Kostrikov, 2020; Srinivas et al., 2020; Kostrikov et al.,
2020), we apply layer normalization to the value function.
Weights and biases in the last layer of the reward predic-
tor Ry and value function (Qy are zero-initialized to reduce
model and value biases in the early stages of training, and
all other fully-connected layers use orthogonal initialization;
the SAC and LOOP baselines are implemented similarly.
We do not find it consistently better to use larger networks
neither for state-based nor image-based experiments. In
multi-task experiments, we augment the state input with a
one-hot task vector. In multi-modal experiments, we en-
code state and image separately and sum the features. We
provide a PyTorch-like summary of our task-oriented latent
dynamics model in the following. For clarity, we use S, Z,
and A to denote the dimensionality of states, latent states,
and actions, respectively, and report the total number of
learnable parameters for our TOLD model initialized for the
Walker Run task (S € R?*, A € AS).

Total parameters: approx. 1,507,000
(h) : Sequential (

(0) : Linear (in_features=S, out_features=256)

(1) : ELU(alpha=1.0)

(2) : Linear (in_features=256, out_features=27))

) Sequential (

(0) : Linear (in_features=Z+A, out_features=512)

(1) : ELU(alpha=1.0)

(2) : Linear (in_features=512, out_features=512)

(3): ELU(alpha=1.0)

(4) : Linear (in_features=512, out_features=2Z))
(R) : Sequential(

(0) : Linear (in_features=Z+A, out_features=512)

(1) : ELU(alpha=1.0)

(2): Linear (in_features=512, out_features=512)

(3): ELU(alpha=1.0)

(4) : Linear (in_features=512, out_features=1)

i) : Sequential (

(0) : Linear (in_features=7Z, out_features=512)

(1) : ELU(alpha=1.0)

(2): Linear (in_features=512, out_features=512)

(3): ELU(alpha=1.0)

(4): Linear (in_features=512, out_features=A))
(Q1l) : Sequential (

(0) : Linear (in_features=Z+A, out_features=512)

(1) : LayerNorm((512,), elementwise_affine=True)

(2): Tanh()

(3): Linear (in_features=512, out_features=512)

(4) : ELU(alpha=1.0)

(5): Linear (in_features=512, out_features=1)
(Q2) : Sequential (

(0) : Linear (in_features=Z+A, out_features=512)

(1) : LayerNorm((512,), elementwise_affine=True)

(2): Tanh()

(3): Linear (in_features=512, out_features=512)

(4) : ELU(alpha=1.0)

(5): Linear (in_features=512, out_features=1))

Additionally, PyTorch-like pseudo-code for training our
TOLD model (codified version of Algorithm 2) is shown
below:

def update (replay_buffer):
wnn
A single gradient update of our TOLD model.
h, R, Q, d: TOLD components.
cl, c2, c3: loss coefficients.
rho: temporal loss coefficient.

nmon

states, actions, rewards = replay_buffer.sample ()

# Encode first observation
z = h(states[0])

# Recurrently make predictions
reward_loss = 0
value_loss = 0
consistency_loss = 0
for t in range (H) :

r R(z, actions|[t]

ql, 92 = Q(z, actions[t])

z d(z, actions[t])

# Compute targets and losses
z_target = h_target (states[t+1]
td_target = compute_td(rewards[t], states[t+1]
reward_loss += rho**t * mse(r, rewards[t])
value_loss += rhoxxt * \

(mse (gql, td_target) + mse(g2, td_target)
consistency_loss += rhoxxt % mse(z, z_target)

# Update

total_loss = cl * reward_loss + \
c2 * value_loss + \
c3 % consistency_loss

total_loss.backward()

optim.step ()

# Update slow-moving average
update_target_network ()

G. Extended Description of Baselines

We tune the performance of both our method and baselines
to perform well on DMControl and then subsequently bench-
mark algorithms on Meta-World using the same choice of
hyperparameters. Below, we provide additional details on
our efforts to tune the baseline implementations.

SAC. We adopt the implementation of Yarats & Kostrikov
(2020) which has been used extensively in the literature as a
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Figure 10. Latent dynamics objective. Return of our method (TD-MPC) using different latent dynamics objectives in addition to reward
and value prediction. 15 state-based continuous control tasks from DMControl (Tassa et al., 2018). No reg. uses no regularization term,
reconstruction uses a state prediction loss, contrastive loss adopts the contrastive objective of Ye et al. (2021); Hansen & Wang (2021),
and latent state consistency corresponds to Equation 10. Mean of 5 runs; shaded areas are 95% confidence intervals. In the top left, we
visualize results averaged across all 15 tasks. Both reconstruction and contrastive losses improve over the baseline without regularization,
but our proposed latent state consistency loss yields more consistent results.

benchmark implementation for state-based DMControl. We
use original hyperparameters except for the target network
momentum coefficient ¢, where we find it beneficial for both
SAC, LOOP, and our method to use a faster update of { =
0.99 as opposed to 0.995 in the original implementation.
Additionally, we decrease the batch size from 1024 to 512
for fair comparison to our method. For completeness, we list
important hyperparameters for the SAC baseline in Table 5.

LOOP. We benchmark against the official implementation
from Sikchi et al. (2022), but note that LOOP has — to the
best of our knowledge — not previously been benchmarked
on DMControl nor Meta-World. Therefore, we do our best
to adapt its hyperparameters. As in the SAC implementa-
tion, we find LOOP to perform better using ( = 0.99 than
its original value of 0.995, and we increase the batch size
from 256 to 512. Lastly, we set the number of seed steps to
1,000 (down from 10, 000) to match the SAC implementa-
tion. As LOOP uses SAC as backbone learning algorithm,
we found these changes to be beneficial. LOOP-specific

hyperparameters are listed in Table 6.

MPC:sim. We compare TD-MPC to a vanilla MPC al-
gorithm using a ground-truth model of the environment
(simulator), but no terminal value function. As such, this
baseline is non-parametric. We use the same MPC imple-
mentation as in our method (MPPI; Williams et al. (2015)).
As planning with a simulator is computationally intensive,
we limit the planning horizon to 10 (which is still 2x as
much as TD-MPC), and we reduce the number of iterations
to 4 (our method uses 6), as we find MPC to converge faster
when using the ground-truth model. At each iteration, we
sample N = 200 trajectories and update distribution param-
eters using the top-20 (10%) sampled action sequences. We
keep all other hyperparameters consistent with our method.
Because of the limited planning horizon, this MPC baseline
generally performs well for locomotion tasks where local
solutions are sufficient, but tends to fail at tasks with, for
example, sparse rewards.
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Table 4. TD-MPC hyperparameters. We here list hyperparame-
ters for TD-MPC with TOLD and emphasize that we use the same

parameters for SAC whenever possible.

Hyperparameter Value

Discount factor () 0.99

Seed steps 5,000

Replay buffer size Unlimited

Sampling technique PER (o = 0.6, 5 = 0.4)
Planning horizon (H) 5

Initial parameters (1, o°) (0,2)

Population size 512

Elite fraction 64

Iterations

Policy fraction
Number of particles
Momentum coefficient
Temperature (7)

MLP hidden size
MLP activation

Latent dimension

Learning rate

Optimizer (6)

Temporal coefficient (\)
Reward loss coefficient (c)
Value loss coefficient (o)
Consistency loss coefficient (c3)
Exploration schedule (¢)
Planning horizon schedule
Batch size

Momentum coefficient (¢)
Steps per gradient update
0~ update frequency

12 (Humanoid)

8 (Dog, pixels)

6 (otherwise)

5%

1

0.1

0.5

512

ELU

100 (Humanoid, Dog)
50 (otherwise)

3e-4 (Dog, pixels)
le-3 (otherwise)
Adam (8 = 0.9, B2 = 0.999)
0.5

0.5

0.1

2

0.5 — 0.05 (25k steps)
1 — 5 (25k steps)
2048 (Dog)

256 (pixels)

512 (otherwise)

0.99

1

2

Table 5. SAC hyperparameters. We list the most important hy-
perparameters for the SAC baseline. Note that we mostly follow
the implementation of Yarats & Kostrikov (2020) but improve
upon certain hyperparameter choices, e.g., the momentum coeffi-
cient ¢ and values specific to the Dog tasks.

Hyperparameter Value
Discount factor (vy) 0.99

Seed steps 1,000
Replay buffer size Unlimited
Sampling technique Uniform
MLP hidden size 1024
MLP activation RELU

Latent dimension 100 (Humanoid, Dog)
50 (otherwise)
Adam (81 = 0.9, B2 = 0.999)
Adam (8, = 0.5, 32 = 0.999)
3e-4 (Dog)
le-3 (otherwise)
Learning rate (o of SAC) le-4
Batch size 2048 (Dog)
512 (otherwise)
Momentum coefficient (() 0.99
Steps per gradient update 1
0~ update frequency 2

Optimizer (6)
Optimizer (o of SAC)
Learning rate (6)

Table 6. LOOP hyperparameters. We list general SAC hyperpa-
rameters shared by LOOP in Table 5, and list only hyperparameters
specific to LOOP here. We use the official implementation from
Sikchi et al. (2022) but list its hyperparameters for completeness.
Note that we — as in the SAC implementation — use a different
batch size and momentum coefficient than in Sikchi et al. (2022),
as we find this to marginally improve performance on DMControl.

Hyperparameter Value
Planning horizon (H) 3
Population size 100
Elite fraction 20%
Iterations 5
Policy fraction 5%
Number of particles 4
Momentum coefficient 0.1
MLP hidden size 256
MLP activation ELU/RELU
Ensemble size 5

No latent ablation. We make the following change to
our method: replacing hy with the identity function, i.e.,
x = hg(x). As such, environment dynamics are modelled
by forward prediction directly in the state space, with the
consistency loss effectively degraded to a state prediction
loss. This ablation makes our method more similar to prior
work on model-based RL from states (Janner et al., 2019;
Lowrey et al., 2019; Sikchi et al., 2022; Argenson & Dulac-
Arnold, 2021). However, unlike previous work that decou-
ples model learning from policy and value learning, we
still back-propagate gradients from the reward and value
objectives through the model, which is a stronger baseline.

No consistency regularization. We set the coefficient c3
corresponding to the latent state consistency loss in Equation
10 to 0, such that the TOLD model is trained only with the
reward and value prediction losses. This ablation makes our
method more similar to MuZero (Schrittwieser et al., 2020).

Other baselines. Results for other baselines are obtained
from related work. Specifically, results for SAC, CURL,
DrQ, and PlaNet are obtained from Srinivas et al. (2020) and
Kostrikov et al. (2020), and results for Dreamer, MuZero,
and EfficientZero are obtained from Hafner et al. (2020b)
and Ye et al. (2021).

H. Inference Time

In the experiments of Section 5, we investigate the relation-
ship between performance and the computational budget of
planning with TD-MPC. For completeness, we also eval-
uate the relationship between computational budget and
inference time. Figure 11 shows the inference time of TD-
MPC as the planning horizon and number of iterations is
varied. As in previous experiments, we benchmark infer-
ence times on a single RTX3090 GPU. Unsurprisingly, we
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Table 7. Action repeat. We adopt action repeat hyperparameters
for DMControl from previous work (Hafner et al., 2019; Kostrikov
et al., 2020) for state-based experiments as well as the DMControl
100k benchmark; we list all values below. For the DMControl
Dreamer benchmark, all methods use an action repeat of 2 regard-
less of the task. We do not use action repeat for Meta-World.

Task Action repeat

Humanoid

Dog

Walker

Finger

Cartpole

Other (DMControl)
Meta-World

— 00NN NN

Quadruped Run Quadruped Run

Az

o
2 - -
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2
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Horizon CEM iterations

-4~ Horizon -#4- CEM iterations % Default *  Policy

Figure 11. Inference time under a variable budget. Millisec-
onds per decision step for TD-MPC on the Quadruped Run task
under a variable computational budget. We evaluate performance
of fully trained agents when varying (left) planning horizon; (right)
number of iterations during planning. When varying one hyperpa-
rameter, the other is fixed to the default value. For completeness,
we also include the inference time of the learned policy 79, and
the default setting of 6 iterations and a horizon of 5 used during
training.

Table 8. Meta-World MT10. As our performance metric reported
in Figure 5 differs from that of the Meta-World v2 benchmark
proposal (Yu et al., 2019), we here report results for our SAC
baseline using the same maximum per-task success rate metric
used for the MT10 multi-task experiment from the original paper.

Task Max. success rate
Window Close 1.00
Window Open 1.00
Door Open 1.00
Peg Insert Side 0.00
Drawer Open 0.85
Pick Place 0.00
Reach 1.00
Button Press Down 1.00
Push 0.00
Drawer Close 1.00

find that there is an approximately linear relationship be-
tween computational budget and inference time. However,
it is worth noting that our default settings used during train-
ing only require approximately 20ms per step, i.e., SOHz,
which is fast enough for many real-time robotics applica-
tions such as manipulation, navigation, and to some extent
locomotion (assuming an on-board GPU). For applications
where inference time is critical, the computational budget
can be adjusted to meet requirements. For example, we
found in Figure 8 that we can reduce the planning horizon
of TD-MPC on the Quadruped Run task from 5 to 1 with
no significant reduction in performance, which reduces in-
ference time to approximately 12ms per step. While the
performance of the model-free policy learned jointly with
TD-MPC indeed is lower than that of planning, it is however
still nearly 6x faster than planning at inference time.

I. Meta-World

We provide learning curves and success rates for individual
Meta-World (Yu et al., 2019) tasks in Figure 14. Due to
the sheer number of tasks, we choose to only visualize
the first 24 tasks (sorted alphabetically) out of the total of
50 tasks from Meta-World. Note that we use Meta-World
v2 and that we consider the goal-conditioned versions of
the tasks, which are considered harder than the single-goal
variant often used in related work. We generally find that
SAC is competitive to TD-MPC in most tasks, but that
TD-MPC is far more sample efficient in tasks that involve
complex manipulation, e.g., Bin Picking, Box Close, and
Hammer. Successful trajectories for each of these three
tasks are visualized in Figure 15. Generally, we choose to
focus on sample-efficiency for which we empirically find
1M environment steps (3M for multi-task experiments) to
be sufficient for achieving non-trivial success rates in Meta-
World. As the original paper reports maximum per-task
success rate for multi-task experiments rather than average
success rate, we also report this metric for our SAC baseline
in Table 8. We find that our SAC baseline is strikingly
competitive with the original paper results considering that
we evaluate over just 3M steps.

J. Multi-Modal RL

We demonstrate the ability of TD-MPC to successfully fuse
information from multiple input modalities (proprioceptive
data + an egocentric camera) in two 3D locomotion tasks:

— Quadruped Corridor, where the agent needs to move
along a corridor with constant target velocity. To succeed,
the agent must perceive the corridor walls and adjust its
walking direction accordingly.

— Quadruped Obstacles, where the agent needs to move
along a corridor filled with obstacles that obstruct vision and
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Figure 12. Rliable metrics. Median, interquantile median (IQM), and mean performance of TD-MPC and baselines on the 15 state-based
DMControl tasks. Confidence intervals are estimated using the percentile bootstrap with stratified sampling, per recommendation of
Agarwal et al. (2021). Higher values are better. 5 seeds.
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Figure 13. Multi-modal RL. Visualization of the two multi-modal
3D locomotion tasks that we construct.

forces the agent to move in a zig-zag pattern with constant
target velocity. To succeed, the agent must perceive both
the corridor walls and obstacles, and continuously adjust its
walking direction.

Trajectories from the two tasks are visualized in Figure 13.

K. Additional Metrics

We report additional (aggregate) performance metrics of
SAC, LOOP, and TD-MPC on the set of 15 state-based DM-
Control tasks using the rliable toolkit provided by Agarwal
et al. (2021). Concretely, we report the aggregate median,
interquantile mean (IQM), and mean returns with 95% con-
fidence intervals based on the episode returns of trained
(after 500k environment steps) agents. As recommended
by Agarwal et al. (2021), confidence intervals are estimated
using the percentile bootstrap with stratified sampling.

L. Task Visualizations

Figure 15 provides visualizations of successful trajectories
generated by TD-MPC on seven tasks from DMControl
and Meta-World, all of which TD-MPC solves in less than
IM environment steps. In all seven trajectories, we display
only key frames in the trajectory, as actual episode lengths
are 1000 (DMControl) and 500 (Meta-World). For full
video trajectories, refer to https://nicklashansen.
github.io/td-mpc.
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Figure 14. Individual Meta-World tasks. Success rate of our method (TD-MPC) and SAC on diverse manipulation tasks from Meta-
World (Yu et al., 2019). We use the goal-conditioned version of Meta-World, which is considered harder than the fixed-goal version. Due
to the large number of tasks (50), we choose to visualize only the first 24 tasks (sorted alphabetically). Mean of 5 runs; shaded areas
are 95% confidence intervals. Our method is capable of solving complex tasks (e.g., Baskerball) where SAC achieves a relatively small
success rate. Note that we use Meta-World v2 and performances are therefore not comparable to previous work using v1.
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Figure 15. Visualizations. We visualize trajectories generated by our method on seven selected tasks from the two benchmarks, listed
(from top to bottom) as follows: (1) Dog Walk, a challenging locomotion task that has a high-dimensional action space (A € R3®); (2)
Humanoid Walk, a challenging locomotion task (A € R?"); (3) Quadruped Run, a four-legged locomotion task (A € R'?); (4) Finger
Turn Hard, a hard exploration task with sparse rewards; (5) Bin Picking, a 3-d pick-and-place task; (6) Box Close, a 3-d manipulation
task; and lastly (7) Hammer, another 3d-manipulation task. In all seven trajectories, we display only key frames in the trajectory. Actual
episode lengths are 1000 (DMControl) and 500 (Meta-World). Our method (TD-MPC) is capable of solving each of these tasks in less
than 1M environment steps. Video results are available at https://nicklashansen.github.io/td-mpc.



