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Abstract

Object manipulation from 3D visual inputs poses many challenges on building
generalizable perception and policy models. However, 3D assets in existing bench-
marks mostly lack the diversity of 3D shapes that align with real-world intra-class
complexity in topology and geometry. Here we propose SAPIEN Manipulation
Skill Benchmark (ManiSkill) to benchmark manipulation skills over diverse ob-
jects in a full-physics simulator. 3D assets in ManiSkill include large intra-class
topological and geometric variations. Tasks are carefully chosen to cover distinct
types of manipulation challenges. Latest progress in 3D vision also makes us
believe that we should customize the benchmark so that the challenge is inviting
to researchers working on 3D deep learning. To this end, we simulate a moving
panoramic camera that returns ego-centric point clouds or RGB-D images. In
addition, we would like ManiSkill to serve a broad set of researchers interested in
manipulation research. Besides supporting the learning of policies from interac-
tions, we also support learning-from-demonstrations (LfD) methods, by providing
a large number of high-quality demonstrations (~36,000 successful trajectories,
~1.5M point cloud/RGB-D frames in total). We provide baselines using 3D deep
learning and LfD algorithms. All code of our benchmark (simulator, environment,
SDK, and baselines) is open-sourced, and a challenge facing interdisciplinary
researchers will be held based on the benchmark.

Figure 1: A subset of environments in ManiSkill. We currently support 4 different manipulation
tasks: OpenCabinetDoor, OpenCabinetDrawer, PushChair, and MoveBucket; each features a large
variety of 3D articulated objects to encourage generalizable physical manipulation skill learning.
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1 Introduction and Related Works

To automate repetitive works and daily chores, robots need to possess human-like manipulation skills.
A remarkable feature of human manipulation skill is that, once we have learned to manipulate a
category of objects, we will be able to manipulate even unseen objects of the same category, despite
the large topological and geometric variations. Taking swivel chairs as an example, regardless of the
existence of armrest or headrest, the number of wheels, or the shape of backrest, we are confident
of using them immediately. We refer to such ability to interact with unseen objects within a certain
category as generalizable manipulation skills.

Generalizable manipulation skill learning is at the nexus of vision, learning, and robotics, and poses
many interesting research problems. Recently, this field has started to attract much attention across
disciplines. For example, reinforcement learning and imitation learning are applied to object grasping
and manipulation [1, 2, 3, 4, 5, 6, 7, 8, 9]. On the other hand, [10, 11, 12, 13, 14, 15, 16, 17] can
propose novel grasp poses on novel objects based on visual inputs. To further foster synergistic
efforts, it is crucial to build a benchmark that backs reproducible research and allows researchers to
compare and thoroughly examine different algorithms.

However, building such a benchmark is extremely challenging. To motivate our benchmark proposal,
we first analyze key factors that complicate the design of generalizable manipulation skill benchmarks
and explain why existing benchmarks are still insufficient. With the motivations in mind, we then
introduce design features of our SAPIEN Manipulation Skills Benchmark (abbreviated as ManiSkill).

Key factors that affect our benchmark design. To guide users and create concentration on
algorithm design, four key factors must be considered: 1) manipulation policy structure, 2) diversity
of objects and tasks, 3) targeted perception algorithms, and 4) targeted policy algorithms.

1) Manipulation policy structure: Manipulation policies have complex structures that require different
levels of simulation support, and we focus on full-physics simulation. Since simulating low-level
physics is difficult, many robot simulators only support abstract action space (i.e., manipulation skills
already assumed) [18, 19, 20, 21, 22, 23, 24, 25, 19, 24]. It is convenient to study high-level planning
in these benchmarks; however, it becomes impossible to study more challenging scenarios with
high-dimensional and complex low-level physics. Some recent benchmarks [26, 27, 28, 29, 30, 31]
start to leverage the latest full-physics simulators [32, 33, 34, 35] to support physical manipulation.
Despite the quantity of existing environments, most of them lack the ability to benchmark object-level
generalizability within categories, and lack inclusion for different methodologies in the community,
while we excel in these dimensions, which is explained next.

2) Diversity of objects and tasks: To test object-level generalizability, the benchmark must possess
enough intra-class variation of object topology, geometry, and appearance, and we provide such
variation. Several benchmarks or environments, including robosuite [28], RLBench [31], and Meta-
World [30], feature a wide range of tasks; however, they possess a common problem: lacking
object-level variations. Among past works, DoorGym [29] is equipped with the best object-level
variations: it is a door opening benchmark with doors procedurally generated from different knob
shapes, board sizes, and physical parameters, but it still does not capture some simple real-world
variations, such as multiple doors with multiple sizes on cabinets with different shapes. This is
in part due to the limitations of procedural modeling. Even though procedural modeling has been
used in 3D deep learning [36, 37], it often fails to cover objects with real-world complexity, where
crowd-sourced data from Internet users and real-world scans are often preferred (which is our case).
Finally, a single type of task like opening doors cannot cover various motion types. For example,
pushing swivel chairs requires very different skills from opening doors since it involves controlling
under-actuated systems through dual-arm collaboration. Therefore, it is essential to build benchmarks
with both great asset variations and wide skill coverage.

3) Targeted perception algorithms: Benchmarks need to decide the type and format of sensor data,
and we focus on 3D sensor data mounted on robots. Many existing benchmarks, such as DoorGym,
rely on fixed cameras to capture 2D images; however, this setting greatly limits the tasks a robot
can solve. Instead, robot-mounted cameras are common in the real world to allow much higher
flexibility, such as Kinova MOVO [38], and autonomous driving in general; those cameras are usually
designed to capture 3D inputs, especially point clouds. Moreover, tremendous progress has been
achieved to build neural networks with 3D input [39, 40, 41, 42, 43, 44, 45], and these 3D networks
have demonstrated strong performance (e.g., they give better performance than 2D image networks

2



Figure 2: ManiSkill features diverse articulated objects with complex topological and geometric
variations, such as different numbers and shapes of doors and/or drawers on different shapes of
cabinets. We invested significant effort to process objects from the PartNet-Mobility Dataset and
integrate into our tasks, such as adjusting the size and physical parameters (e.g. friction) so that
environments are solvable, along with manual convex decomposition.

Figure 3: Rendered point clouds from our tasks. ManiSkill supports 3D visual inputs which are
widely accessible in real environments, allowing various computer vision models to be applied. (For
better view, we show point clouds obtained from cameras mounted in the world frame. In actual
tasks, cameras are mounted on the robot head, offering an egocentric view.)

on autonomous driving datasets [46]). [47, 48, 49, 50, 51, 52] have also adopted 3D deep learning
models for perceiving and identifying kinematic structures and object poses for articulated object
manipulation. Our benchmark provides users with an ego-centric panoramic camera to capture
point cloud / RGB-D inputs. Additionally, we present and evaluate 3D neural network-based policy
learning baselines.

4) Targeted policy algorithms: Different policy learning algorithms require different training data
and settings, and we provide multiple tracks to advocate for fair comparison. For example, imitation
learning [53, 54, 4] and offline RL [55, 56, 57] can learn a policy purely from demonstrations
datasets [58, 59], but online RL algorithms [60, 61] require interactions with environments. Therefore,
a clear and meaningful split of tracks can encourage researchers with different backgrounds to explore
generalizable manipulation skills and let them focus on different aspects of the challenge, e.g, network
design, perception, interaction, planning, and control. While oftentimes other benchmarks are limited
to a single domain of research and a single modality, our benchmark supports three different tracks
for researchers from computer vision, reinforcement learning, and robotics fields.

Our benchmark. Above we discussed factors of manipulation benchmark design and mentioned
the principles behind ManiSkill. Here we introduce the key features of the benchmark. ManiSkill
is a large-scale open-source benchmark for physical manipulation skill learning over a diverse set
of articulated objects from 3D visual inputs. ManiSkill has four main features: First, to support
generalizable policy learning, ManiSkill provides objects of high topology and geometry variations,
as shown in Fig 2. It currently includes a total of 162 objects from 3 object categories (more objects
are being added) selected and manually processed from a widely used 3D vision dataset. Second,
ManiSkill focuses on 4 object-centric manipulation tasks that exemplify household manipulation
skills with different types of object motions, thereby posing challenges to distinct aspects of policy
design/learning (illustrated in Fig 1 and Fig 3). As an ongoing effort, we are designing more. Third,
to facilitate learning-from-demonstration methods, we have collected a large number of successful
trajectories (~36,000 trajectories, ~1.5M 3D point cloud / RGB-D frames in total). Fourth, the
environments feature high-quality data for physical manipulation. We take significant efforts to
select, fix, and re-model the original PartNet-Mobility data [62, 63, 64], as well as design the reward
generation rules, so that the manipulation task of each object can be solved by an RL algorithm.
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A major challenge to build our benchmark is to collect demonstrations. Some tasks are tricky (e.g.,
swivel chair pushing requires dual-arm coordination), and it is difficult and unscalable to manually
control the robots to collect large-scale demos. It is also unclear whether traditional motion planning
pipelines can solve all tasks. Thankfully, reinforcement learning does work for individual objects,
allowing for a divide-and-conquer approach to create high-quality demonstrations. With a meticulous
effort on designing a shared reward template to automatically generate reward functions for all
object instances of each task and executing an RL agent for each object instance, we are able to
collect a large number of successful trajectories. This RL plus divide-and-conquer approach is very
scalable with respect to the number of object instances within a task, and we leave cross-task RL
reward design for future work. It is worth noting that, we do NOT target at providing a GENERIC
learning-from-demonstrations benchmark that compares methods from all dimensions. Instead, we
compare the ability of different algorithms to utilize our demonstrations to solve manipulation tasks.

Another important feature of ManiSkill is that it is completely free and built on an entirely open-source
stack. Other common physical manipulation environments, including robosuite[28], DoorGym[29],
MetaWorld[30], and RLBench[31], depend on commercial software.

To summarize, here are the key contributions of ManiSkill Benchmark.

• The topology and geometry variation of our data allow our benchmark to compare object-
level generalizability of different physical manipulation algorithms. Our data is high-quality,
that every object is verified to support RL.

• The manipulation tasks we design target at distinct challenges of manipulation skills (by
motion types, e.g. revolute and prismatic joint constraints, or by skill properties, e.g.
requirement of dual-arm collaboration).

• ManiSkill provides a large-scale demonstrations dataset with ~36,000 trajectories and
~1.5M point cloud/RGB-D frames to facilitate learning-from-demonstrations approaches.
The demonstrations are collected by a scalable RL approach with dense rewards generated
by a shared reward template within each task.

• We provide several 3D deep learning-based policy baselines.

2 ManiSkill Benchmark

The goal of building ManiSkill benchmark can be best described as facilitating learning generalizable
manipulation skills from 3D visual inputs with demonstrations. “Manipulation” involves low-level
physical interactions and dynamics simulation between robot agents and objects; “skills” refer to
short-horizon physics-rich manipulation tasks, which can be viewed as basic building blocks of more
complicated policies; “3D visual inputs” are egocentric point cloud and / or RGB-D observations
captured by a panoramic camera mounted on a robot; “demonstrations” are trajectories that solve
tasks successfully to facilitate learning-from-demonstrations approaches.

In this section, we will describe the components of ManiSkill benchmark in detail, including basic
terminologies and setup, task design, demonstration trajectory collection, training-evaluation protocol,
and asset postprocessing with verification.

Task
# objects Dual-arm

Collaboration?
Solvable by

Motion Planning?
DoF∗

All Train Test

OpenCabinetDoor 52(82) 42(66) 10(16) No Easy 1
OpenCabinetDrawer 35(70) 25(49) 10(21) No Easy 1

PushChair 36 26 10 Yes Hard ∼15-25
MoveBucket 39 29 10 Yes Medium 7

Table 1: Dataset statistics for ManiSkill. For OpenCabinetDoor and OpenCabinetDrawer, numbers
outside of the parenthesis indicate the number of unique cabinets, where each cabinet may have
more than one door/drawer. Numbers in the parenthesis indicate the total number of doors/drawers.
* The DoF in the table indicates the DoF involved in solving a task. For OpenCabinetDoor and
OpenCabinetDrawer, an agent only needs to open one designated door/drawer. For PushChair and
MoveBucket, 6 extra DoF are included since chairs and buckets can move freely in 3D space.
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2.1 Basic Terminologies and Setup

In ManiSkill, a task or a skill T = {To,l : o ∈ O, l ∈ Lo} consists of finite-horizon POMDPs
(Partially Observable Markov Decision Processes) defined over a set of objects O of the same
category (e.g., chairs) and a set of environment parameters Lo associated with an object o ∈ O (e.g.
friction coefficients of joints on a chair). An environment is a set of POMDPs Eo = {To,l : l ∈ Lo}
defined over a single object o and its corresponding parameters. Each To,l is a specific instance of
an environment, represented by a tuple of sets (S,A, P,R,O). Here, s ∈ S is an environment state
that consists of robot states (e.g. joint angles of the robot) and object states (e.g. object pose and
the joint angles); a ∈ A is an action that can be applied to a robot (e.g. target joint velocity of a
velocity controller); P (s′|s, a) is the physical dynamics; R is a binary variable that indicates if the
task is successfully solved; O(o|s) is a function which generates observations from an environment
state, and it supports three modes in ManiSkill: state, pointcloud, and rgbd. In state mode, the
observation is identical to s. In pointcloud and rgbd modes, the object states in s are replaced
by the corresponding point cloud / RGB-D visual observations captured from a panoramic camera
mounted on a robot. state mode is not suitable for studying generalizability, as object states are not
available in realistic setups, where information such as object pose has to be estimated based on some
forms of visual inputs that are universally obtainable (e.g. point clouds and RGB-D images).

For each task, objects are partitioned into training objects Otrain and test objects Otest, and
environments are divided into training environments {To,l|o ∈ Otrain} and test environments
{To,l|o ∈ Otest}. For each training environment, successful demonstration trajectories are provided
to facilitate learning-from-demonstrations approaches.

We define object-level generalizable manipulation skill as a manipulation skill that can generalize
to unseen test objects after learning on training objects where the training and test objects are from
the same category. Some notable challenges of our tasks come from partial observations (i.e. point
clouds / RGB-D images only covering a portion of an object), robot arms occluding parts of an object,
and complex shape understanding over objects with diverse topological and geometric properties.

2.2 Tasks with Diverse Motions and Skills

Object manipulation skills are usually associated with certain types of desired motions of target
objects, e.g, rotation around an axis. Thus, the tasks in ManiSkill are designed to cover different types
of object motions. We choose four common types of motion constraints: revolute joint constraint,
prismatic joint constraint, planar motion constraint, and no constraints, and build four tasks to
exemplify each of these motion types. In addition, different tasks also feature different properties of
manipulation, such as dual-arm collaboration and solvability by motion planning. Statistics for our
tasks are summarized in Table 1. Descriptions for our tasks are stated below (more details in Sec B of
supplementary).

OpenCabinetDoor exemplifies motions constrained by a revolute joint. In this task, a single-arm
robot is required to open a designated door on a cabinet. The door motion is constrained by a revolute
joint attached to the cabinet body. This task is relatively easy to solve by traditional motion planning
and control pipelines, so it is suitable for comparison between learning-based methods and motion
planning-based methods.

OpenCabinetDrawer exemplifies motions constrained by a prismatic joint. This task is similar to
OpenCabinetDoor, but the robot needs to open a target drawer on a cabinet. The drawer motion is
constrained by a prismatic joint attached to the cabinet body.

PushChair exemplifies motions constrained on a plane through wheel-ground contact. A dual-arm
robot needs to push a swivel chair to a target location on the ground and prevent it from falling
over. PushChair exemplifies the ability to manipulate complex underactuated systems, as swivel
chairs generally have many joints, resulting in complex dynamics. Therefore, it is difficult to solve
PushChair by motion planning and favors learning-based methods.

MoveBucket exemplifies motions without constraints. In this task, a dual-arm robot needs to move
a bucket with a ball inside and lift it onto a platform. There are no constraints on the motions of
the bucket. However, this task is still very challenging because: 1) it heavily relies on two-arm
coordination as the robot needs to lift the bucket; 2) the center of mass of the bucket-ball system is
consistently changing, making balancing difficult.
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Note that all environments in ManiSkill are verified to be solvable, i.e., for each object, we guarantee
that there is a way to manipulate it to solve the corresponding task. This is done by generating
successful trajectories in each environment (details in Sec 2.4). Instead of creating lots of tasks but
leaving the solvability problems to users, our tasks are constructed with appropriate difficulty and
verified solvability.

Figure 4: RGB-D (RGB/Depth) and point cloud observations in ManiSkill. Left two images: RGB-D
image from one of the three cameras mounted on the robot. The three cameras together provide an
ego-centric panoramic view. Right image: visualization of fused point cloud from all three cameras.
The center of robot body cannot be seen since the captured point cloud comes from an ego-centric
view. Parts of the chair are occluded by itself (as cameras are mounted on the robot).

2.3 Robots, Actions, Visual Observations, and Rewards

All the tasks in ManiSkill use similar robots, which are composed of three parts: moving platform,
Sciurus [65] robot body, and one or two Franka Panda [66] arm(s). The moving platform can
move and rotate on the ground plane, and its height is adjustable. The robot body is fixed on top
of the platform, providing support for the arms. Depending on the task, one or two robot arm(s)
are connected to the robot body. There are 22 joints in a dual-arm robot and 13 for a single-arm
robot. To match realistic robotics setups, we use PID controllers to control the joints of robots. The
action space corresponds to the normalized target values of all controllers. In addition to joint space
control, ManiSkill supports operational space control, i.e., directly controlling the end-effectors in
the Cartesian space.

As mentioned in Sec 2.1, ManiSkill supports three observation modes: state, pointcloud, and
rgbd, where the latter two modes are suitable for studying object-level generalizability. The RGB-D
and point cloud observations are captured from three cameras mounted on the robot to provide an
ego-centric panoramic view, resembling common real-world robotics setups. The three cameras are
120° apart from each other, and the resolution of each camera is 400×160. The observations from all
cameras are combined to form a final panoramic observation. Visualizations of RGB-D / point cloud
observations are shown in Fig 4. In addition, we provide some task-relevant segmentation masks for
both RGB-D and point cloud observations (details in Sec B.3 of supplementary).

ManiSkill supports two kinds of rewards: sparse and dense. A sparse reward is a binary signal
which is equivalent to a task-specific success condition. Learning with sparse rewards is very difficult.
To alleviate such difficulty, we carefully designed well-shaped dense reward functions for each task
(details in Sec C.1 of supplementary). The dense rewards are also used in demonstration collection,
which will be elaborated in Sec 2.4.

2.4 RL-Based Demo Collection and MPC-Assisted Reward Template Design

Our interactive environment naturally supports methods such as reinforcement learning or classical
robotics pipelines. However, to build an algorithm with object-level generalizability either by RL or
by designing rules, it is probably prohibitively complex and resource-demanding for many researchers
interested in manipulation learning research (e.g., vision researchers might be primarily interested
in the perception module). We observe that many learning-from-demonstrations algorithms (e.g.,
behavior cloning) are much easier to start with and require less resources.

To serve more researchers, ManiSkill provides a public demonstration dataset with a total of ~36,000
successful trajectories and ~1.5M frames (300 trajectories for each training object in each task). The
demonstrations are provided in the format of internal environment states to save storage space, and
users can render the corresponding point cloud / RGB-D frames using the provided scripts.

In order to construct this large-scale demonstration dataset, we need a scalable pipeline that can
produce plentiful demonstrations automatically. Compared to other existing approaches (e.g. human
annotation by teleoperation, motion planning), we adopted a reinforcement learning (RL)-based
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pipeline, which requires significantly less human effort and can generate an arbitrary number of
demonstrations at scale. Though it is common to collect demonstrations by RL [67, 68, 69, 53, 70,
71, 72, 73], directly training a single RL agent to collect demonstrations for all environments in
ManiSkill is challenging because of the large number of different objects and the difficulty of our
manipulation tasks. To collect demonstrations at scale, we design an effective pipeline as follows.

Our pipeline contains two stages. In the first stage, we need to design and verify dense rewards for
RL agents. For each task, we design a shared reward template based on the skill definitions of this
task with human prior. Note that this reward template is shared across all the environments (objects)
in a task instead of manually designed for each object. In order to quickly verify the reward template
(as our tasks are complicated and solving by RL takes hours), we use Model-Predictive Control
(MPC) via Cross Entropy Method (CEM), which can be efficiently parallelized to find a trajectory
within 15 minutes (if successful) from one single initial state using 20 CPUs. While MPC is an
efficient tool to verify our reward template, it is not suitable for generating our demonstrations dataset,
which should contain diverse and randomized initial states. This is because MPC has to be retrained
independently each time to find a trajectory from each of the 300 initial states for each training object
of each task, rendering it unscalable. Therefore, in the second stage, we train model-free RL agents
to collect demonstrations. We also found that training one single RL agent on many environments
(objects) of a task is very challenging, but training an agent to solve a single specific environment is
feasible and well-studied. Therefore, we collect demonstrations in a divide-and-conquer way: for
each environment, we train an SAC [60] agent and generate successful demonstrations. More details
can be found in Sec C of supplementary.

2.5 Multi-Track Training-Evaluation Protocol

As described in Sec 2.1, agents are trained on the training environments with their correspond-
ing demonstrations and evaluated on the test environments for object-level generalizability, under
pointcloud or rgbd mode. Moreover, ManiSkill benchmark aims to encourage interdisciplinary
insights from computer vision, reinforcement learning, and robotics to advance generalizable physical
object manipulation. To this end, we have developed our benchmark with 3 different tracks:

No Interactions: this track requires solutions to only use our provided demonstration trajectories
during training. No interactions (i.e. additional trajectory collection, online training, etc.) are
allowed. For this track, solutions may choose to adopt a simple but effective supervised learning
algorithm — matching the predicted action with the demonstration action given visual observation
(i.e. behavior cloning). Therefore, this track encourages researchers to explore 3D computer vision
network architectures for generalizable shape understanding over complex topologies and geometries.

No External Annotations: this track allows online model fine-tuning over training environments
on top of No Interactions track. However, the solution must not contain new annotations (e.g. new
articulated objects from other datasets). This track encourages researchers to explore online training
algorithms, such as reinforcement learning with online data collection.

No Restrictions: this track allows solutions to adopt any approach during training, such as labelling
new data and creating new environments. Researchers are also allowed to use manually designed
control and motion planning rules, along with other approaches from traditional robotics.

The benchmark evaluation metric is the mean success rate on a predetermined set of test environment
instances. For each task, we have defined the success condition (described in Sec B.4 of supplemen-
tary), which is automatically reported in the evaluation script provided by us. Each track should be
benchmarked separately.

2.6 Asset Selection, Re-Modeling, Postprocessing, and Verification

While the PartNet-Mobility dataset (from SAPIEN [62]) provides a repository of articulated object
models, the original dataset can only provide full support for vision tasks such as joint pose estimation.
Therefore, we take significant efforts to select, fix, and verify the models.

First, PartNet-Mobility dataset is not free of annotation errors. For example, some door shafts are
annotated at the same side as the door handles. While it does not affect the simulation, such models
are unnatural and not good candidates to test policy generalizability. Thus, we first render all assets
and manually exclude the ones with annotation errors.
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Moreover, fast simulation requires convex decomposition of 3D assets. However, the automatic
algorithm used in the original SAPIEN paper, VHACD [74], cannot handle all cases well. For
example, VHACD can introduce unexpected artifacts, such as dents on smooth surfaces, which
agents can take advantage of. To fix the errors, we identify problematic models by inspection and use
Blender’s [75] shape editing function to manually decompose the objects.

Even with all the efforts above, some models can still present unexpected behaviors. For example,
certain cabinet drawers may be stuck due to inaccurate overlapping between collision shapes. There-
fore, we also verify each object by putting them in the simulator and learn a policy following Sec 2.4.
We fix issues if we cannot learn a policy to achieve the task. We repeat until all models can yield a
successful policy by MPC.

3 Baseline Architectures, Algorithms, and Experiments

Learning object-level generalizable manipulation skills through 3D visual inputs and learning-from-
demonstrations algorithms has been underexplored. Therefore, we designed several baselines and
open-sourced their implementations here to encourage future explorations in the field.

We adopted pointcloud observation mode and designed point cloud-based vision architectures as
our feature extractor since previous work [46] has achieved significant performance improvements
by using point clouds instead of RGB-D images. Point cloud features include position, RGB, and
segmentation masks (for the details of segmentation masks, see Sec B.3 in the supplementary), and
we concatenate the robot state to the features of each point. Intuitively, this allows the extracted
feature to not only contain geometric information of objects, but also contain the relation between the
robot and each individual object, such as the closest point to the robot, which is very difficult to be
learned without such concatenation. In addition, we downsample the point cloud data to increase
training speed and reduce the memory footprint (see Sec D.1 of supplementary).

The first point cloud-based architecture uses one single PointNet [39], a very popular 3D deep learning
backbone, to extract a global feature for the entire point cloud, which is fed into the final MLP. The
second architecture uses different PointNets to process points belonging to different segmentation
masks. The global features from the PointNets are then fed into a Transformer [76], after which a final
attention pooling layer extracts the final representations and feeds into the final MLP. We designed
and benchmarked this architecture since it allows the model to capture the relation between different
objects and possibly provides better performance. Details of the architectures are presented in Sec
D.2 of the supplementary material, and a detailed architecture diagram of PointNet + Transformer is
presented in Fig 7 of the supplementary material. While there is a great room to improve, we believe
that these architectures could provide good starting points for many researchers.

For learning-from-demonstrations algorithms on top of point cloud architectures, we benchmark two
approaches - Imitation Learning (IL) and Offline/Batch Reinforcement Learning (Offline/Batch RL).
For imitation learning, we choose a simple and widely-adopted algorithm: behavior cloning (BC) -
directly matching predicted and ground truth actions through minimizing L2 distance. For offline RL,
we benchmark Batch-Constrained Q-Learning (BCQ) [55] and Twin-Delayed DDPG[77] with Behav-
ior Cloning (TD3+BC) [78]. We follow their original implementations and tune the hyperparameters.
Details of the algorithm implementations are presented in Sec D of the supplementary material.

3.1 Single Environment Results

#Demo Trajectories 10 30 100 300 1000

#Gradient Steps 2000 4000 10000 20000 40000

PointNet, BC 0.13 0.23 0.37 0.68 0.76
PointNet + Transformer, BC 0.16 0.35 0.51 0.85 0.90

PointNet + Transformer, BCQ 0.02 0.05 0.23 0.45 0.55
PointNet + Transformer, TD3+BC 0.03 0.13 0.22 0.31 0.57

Table 2: The average success rates of different agents on one single environment (fixed object
instance) of OpenCabinetDrawer with different numbers of demonstration trajectories. The average
success rates are calculated over 100 evaluation trajectories. While network architectures and algo-
rithms play an important role in the performance, learning manipulation skills from demonstrations is
challenging without a large number of trajectories, even in one single environment.
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As a glimpse into the difficulty of learning manipulation skills from demonstrations in our benchmark,
we first present results with an increasing number of demonstration trajectories on one single
environment of OpenCabinetDrawer in Table 2. We observe that the success rate gradually increases
as the number of demonstration trajectories increases, which shows the agents can indeed benefit
from more demonstrations. We also observe that inductive bias in network architecture plays an
important role in the performance, as PointNet + Transformer is more sample efficient than PointNet.
Interestingly, we did not find offline RL algorithms to outperform BC. We conjecture that this is
because the provided demonstrations are all successful ones, so an agent is able to learn a good policy
through BC. In addition, our robot’s high degree of freedom and the difficulty of the task itself pose a
challenge to offline RL algorithms. Further discussions on this observation are presented in Sec D.3
of the supplementary material. It is worth noting that our experiment results should not discourage
benchmark users to include failure trajectories and find better usage of offline RL methods, especially
those interested in the No External Annotations track described in Sec 2.5.

3.2 Object-Level Generalization Results

Algorithm BC BCQ TD3+BC

Architecture PointNet
PointNet

+ Transformer
PointNet

+ Transformer
PointNet

+ Transformer

Split Training Test Training Test Training Test Training Test

OpenCabinetDoor 0.18±0.02 0.04±0.03 0.30±0.06 0.11±0.02 0.16±0.02 0.04±0.02 0.13±0.03 0.04±0.02
OpenCabinetDrawer 0.24±0.03 0.11±0.03 0.37±0.06 0.12±0.02 0.22±0.04 0.11±0.03 0.18±0.02 0.10±0.02

PushChair 0.11±0.02 0.09±0.02 0.18±0.02 0.08±0.01 0.11±0.01 0.08±0.01 0.12±0.02 0.08±0.01
MoveBucket 0.03±0.01 0.02±0.01 0.15±0.01 0.08±0.01 0.08±0.01 0.06±0.01 0.05±0.01 0.03±0.01

Table 3: Mean and standard deviation of average success rates on training and test environments
of each task over 5 different runs, under the point cloud observation. Models are trained with our
demonstrations dataset, with 300 demonstration trajectories per training environment. For each
task, the average test success rates are calculated over the 10 test environments and 50 evaluation
trajectories per environment. Obtaining one single agent capable of learning manipulation skills
across multiple objects and generalizing the learned skills to novel objects is challenging.

We now present results on object-level generalization. We train each model for 150k gradient steps.
This takes about 5 hours for BC, 35 hours for BCQ, and 9 hours for TD3+BC using the PointNet +
Transformer architecture on one NVIDIA RTX 2080Ti GPU. As shown in Table 3, even with our best
agent (BC PointNet + Transformer), the overall success rates on both training and test environments
are low. We also observe that the training accuracy over object variations is significantly lower
than the training accuracy on one single environment (in Table 2). The results suggest that existing
works on 3D deep learning and learning-from-demonstrations algorithms might have been insufficient
yet to achieve good performance when trained for physical manipulation skills over diverse object
geometries and tested for object-level generalization. Therefore, we believe there is a large space to
improve, and our benchmark poses interesting and challenging problems for the community.

4 Conclusion and Limitations

In this work, we propose ManiSkill, an articulated benchmark for generalizable physical object
manipulation from 3D visual inputs with diverse object geometries and large-scale demonstrations.
We expect ManiSkill would encourage the community to look into object-level generalizability
of manipulation skills, specifically by combining cutting-edge research of 3D computer vision,
reinforcement learning, and robotics.

Our benchmark is limited in the following aspects: 1) Currently, we provide 162 articulated objects
in total. We plan to process more objects from the PartNet-Mobility dataset [62] and add them to our
ManiSkill assets; 2) While the four tasks currently provided in ManiSkill exemplify distinct manipu-
lation challenges, they do not comprehensively cover manipulation skills in household environments.
We plan to add more tasks among the same skill properties (e.g, pouring water from one bucket to
another bucket through two-arm coordination); 3) We have not conducted sim-to-real experiments
yet, and this will be a future direction of ManiSkill.
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A Overview

Figure 5: Overall illustration of ManiSkill. We manually re-model and postprocess objects from
the PartNet-Mobility dataset, split them into training and test sets, and then build the corresponding
training and test environments in the SAPIEN simulator. We then generate successful demonstration
trajectories on the training environments. Users are expected to build policies based on the demon-
stration trajectories and the training environments, then evaluate the mean success rate on the test
environments with the provided evaluation kit.

This supplementary material includes details on the system and task design of ManiSkill, along
with implementations of baseline experiments. An overall architecture of our ManiSkill Benchmark
presented in the main paper is summarized in Figure 5.

Section B and C provide more details on the system, tasks, and demonstration collection.

Section D.1 provides implementation details of point cloud subsampling in our baselines.

Section D.2 provides implementation details of our point cloud-based baseline network architectures,
along with a diagram of our PointNet + Transformer model.

Section D.3 provides implementation details of learning-from-demonstrations algorithms, specifically
imitation learning (Behavior Cloning) and offline RL.

B Further Details of Tasks and System

B.1 Environment Speed

Observation Mode state pointcloud/rgbd

OpenCabinetDoor 112± 4 48± 3
OpenCabinetDrawer 113± 4 47± 2

PushChair 53± 9 31± 4
MoveBucket 61± 7 34± 3

Table 4: Mean and standard deviation of FPS (frame per second) of the environments in ManiSkill. In
state mode, most computations are used on physical simulation. In pointcloud and rgbd modes,
most computations are used on rendering. All the numbers are tested on a single Intel i9-9960X CPU
and a single NVIDIA RTX TITAN GPU.

We provide the running speeds of our environments in Table 4. We would like to note that the
numbers cannot be directly compared with other environments like the MuJoCo tasks in OpenAI
gym based on the following reasons.

1. In our environments, one environment step corresponds to 5 control steps. This “frame-
skipping” technique can make the horizon of our tasks shorter, which is also a common
practice in reinforcement learning [79]. We can make the environment FPS 5x larger by
simply disabling frame-skipping, but this will make the tasks more difficult as the agent
needs to make more decisions.
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2. Compared to other environments, such as the MuJoCo tasks in OpenAI Gym, our articulated
objects and robots are much more complicated. For example, our chairs contain up to 20
joints and tens of thousands of collision meshes. Therefore, the physical simulation process
is inherently slow.

3. Many other robotics/control environments do not provide visual observations, while Man-
iSkill does. When generating visual observations, rendering is a very time-consuming
process, especially when we are using three cameras simultaneously.

B.2 Environment Parameters

For each environment Eo and its associated object o, the environment parameters Lo provide random-
ization for our robot and for the target object.

For our robot, we randomly initialize the robot’s in-plane position (x, y) and orientation (rotation
around z-axis). Joints on the robot arms are initialized to a canonical pose, which is a common
practice in robotics tasks.

For the target object, several physical parameters, such as joint frictions, are randomized for all tasks.
In MoveBucket and PushChair, we also randomize the initial in-plane position (x, y) and the initial
orientation (rotation around z-axis) of the bucket and the chair. Detailed implementations can be
found in our repository https://github.com/haosulab/ManiSkill.

B.3 Segmentation Masks

As mentioned in Sec 2.3, we provide task-relevant segmentation masks in pointcloud and rgbd
modes. Each mask is a binary array indicating a part or an object. Here are the details about our
segmentation masks for each task:

• OpenCabinetDoor: handle of the target door, target door, robot (3 masks in total)

• OpenCabinetDrawer: handle of the target drawer, target drawer, robot (3 masks in total)

• PushChair: robot (1 mask in total)

• MoveBucket: robot (1 mask in total)

Basically, we provide the robot mask and any mask that is necessary for specifying the target. For
example, in OpenCabinetDoor/Drawer environments, a cabinet might have many doors/drawers, so
we provide the door/drawer mask such that users know which door/drawer to open. We also provide
handle mask such that users know from which direction the door/drawer should be opened.

B.4 Success Conditions

OpenCabinetDoor and OpenCabinetDrawer Success is marked by opening the joint to 90% of its
limit and keeping it static for a period of time afterwards. We do not constrain how the door/drawer
is opened, e.g, the door can be opened by grabbing the side of the door or grasping the handle.

PushChair The task is successful if the chair (1) is close enough (within 15 centimeters) to the
target location; (2) is kept static for a period of time after being close enough to the target; and (3)
does not fall over.

MoveBucket The task is successful if (1) the bucket is placed on or above the platform at the
upright position and kept static for a period of time, and (2) all the balls remain in the bucket.

In all tasks, the time limit for each episode is 200, which is sufficient to solve the task. An episode
will be evaluated as unsuccessful if it goes beyond the time limit.

B.5 Evaluation Kit

ManiSkill provides a straightforward evaluation script. The script takes a task name, an observation
mode (RGB-D or point cloud), and a solution file as input. The solution file is expected to contain a
single policy function that takes observations as input and outputs an action. The evaluation kit takes
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the policy function and evaluates it on the test environments. For each environment, it reports the
average success rate and the average satisfactory rate for each success conditions (e.g. whether the
ball is inside the bucket and whether the bucket is on or above the platform in MoveBucket).

B.6 System Design

We configure our simulation environments by a YAML-based configuration system. This system
is mainly used to configure physical properties, rendering properties, and scene layouts that can be
reused across tasks. It allows benchmark designers to specify simulation frequencies, physical solver
parameters, lighting conditions, camera placement, randomized object/robot layouts, robot controller
parameters, object surface materials, and other common properties shared across all environments.
After preparing the configurations, designers can load the configurations as SAPIEN scenes and
perform further specific customization with Python scripts. In our task design, after we build the
environments, we manually validate them to make sure they behave as expected (see B.8 for details).

B.7 Controller Design

The joints in our robots are controlled by velocity or position controllers. For velocity controllers, we
use the built-in inverse dynamics functions in PhysX to compute the balancing forces for a robot. We
then apply the internal PD controllers of PhysX by setting stiffness to 0 and damping to a positive
constant, where damping is used to drive a robot to a given velocity. We additionally add a first-order
low-pass filter, implemented as an exponential moving average, to the input velocity signal, which
is a common practice in real robotics systems [80]. Position controllers are built on top of velocity
controllers: the input position signal is passed into a PID controller, which outputs a velocity signal
for a velocity controller.

B.8 Environment Validation

Environment construction is not complete without testing. After modeling the environment, we need
to ensure the environment has the following properties: (1) The environment is correctly modeled
with realistic parameters. As the environment contains hundreds of parameters, including the friction
coefficients, controller parameters, object scales, etc, its correctness needs comprehensive checking;
(2) The environment is solvable. We need to check that the task can be completed within the allocated
time steps, and that the physical parameters allow task completion. For example, the weight of a
target object to be grasped must be smaller than the maximum force allowed for lifting the robot
gripper; (3) The physical simulation is free from significant artifacts. Physical simulation faces the
trade-off between stability and speed. When the simulation frequency and the contact solver iterations
are too small, simulation artifacts such as jittering and interpenetration can occur; (4) There does not
exist undesired exploits and shortcuts.

To inspect our environments, after modeling them, we first use the SAPIEN viewer to visually inspect
the appearance of all assets. We also inspect the physical properties of crucial components in several
sampled environments. Next, we design a mouse-and-keyboard based robot controller. It controls
the robot gripper in Cartesian coordinates using inverse kinematics of the robot arm. We try to
manually solve the tasks to identify potential problems in the environments. This manual process can
identify most solvability issues and physical artifacts. However, an agent could still learn unexpected
exploits, entailing us to iteratively improve the environments: we execute the demonstration collection
algorithm on the current environment and record videos of sampled demonstration trajectories. We
then watch the videos to identify causes of success and failure, potentially spotting unreasonable
behaviors. We finally investigate and improve the environment.

B.9 Manually Processed Collision Shapes

As described in Section 4.1.3, we manually decompose the collision shapes into convex shapes. This
manual process is performed on the Bucket objects. We justify this choice in Fig. 6.
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Figure 6: When decomposing a bucket (a), standard VHACD [74] algorithm (b, 2340 faces) misses
details, and tends to produce artifacts, such as bumps and seams, that make visual appearances quite
different from collision shapes, so we manually process the mesh (c, 1445 faces).

C Details of Demonstration Collection

C.1 Dense Reward Design

A ManiSkill task is defined on different objects of the same category. This natural structure implies
an efficient way to automatically construct dense reward functions for all environments of each task.
For each task, we manually design a general template, then automatically translate this template into
a smooth reward for each environment. The reward templates are also open-sourced.

We use a multi-stage reward template for all of our tasks. In each stage, we guarantee that rewards in
the next stage are strictly larger than rewards in the current stage to prevent RL agents from staying in
an intermediate stage forever. We also carefully design our reward template at stage-transition states
to ensure smoothness of our rewards.

C.1.1 OpenCabinetDoor and OpenCabinetDrawer

For environments in OpenCabinetDoor and OpenCabinetDrawer, our reward template contains three
stages. In the first stage, an agent receives rewards from being close to the handle on the target link
(door or drawer). To encourage contact with the target link, we penalize the Euclidean distance
between the handle and the gripper. When the gripper’s distance to the target link is less than a
threshold, the agent enters the second stage. In this stage, the agent gets a reward from the opening
angle of the door or the opening distance of the drawer. When the agent opens the door or drawer
enough, the agent enters the final stage. In the final stage, the agent receives a negative reward based
on the speed of the target link to encourage the scene to be static at the end of the trajectory.

C.1.2 PushChair

The reward template for PushChair contains three stages. In the first stage, an agent receives reward
from moving towards the chair. To encourage contact with the chair, we compute the distance between
the robot end effectors and the chair and take its logarithm as reward. When the robot end effectors
are close enough to the chair, the agent enters the second stage. In the second stage, the agent receives
rewards based on the distance between the chair’s current location and the target location. The agent
receives additional rewards based on the angle between the chair’s velocity vector and the vector
pointing towards the target location. In our experiments, we find that this term is critical. When the
chair is close enough to the target location, the agent enters the final stage. In the final stage, the
agent is penalized based on the linear and angular velocity of the chair, such that the agent learns to
keep the chair static. In all stages, the agent is penalized based on the chair’s degree of tilt in order to
keep the chair upright.

C.1.3 MoveBucket

The reward template for MoveBucket consists of four stages. In the first stage, an agent receives
rewards from moving towards the bucket. To encourage contact with the bucket, we compute the
distance between the robot end effectors (grippers) and the bucket and take its log value as reward.
When the robot end effectors are close enough to the bucket, the agent enters the second stage. In
the second stage, the agent is required to lift the bucket to a specific height. The agent receives a
position-based reward and a velocity-based reward that encourage the agent to lift the bucket. In our
experiments, we find that it is very difficult for the agent to learn how to lift the bucket without any
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domain knowledge. To ease the difficulty, we use the angle between the two vectors pointing from
the two grippers to the bucket’s center of mass as a reward. This term encourages the agent to place
the two grippers on opposite sides of the bucket. We also penalize the agent based on the grippers’
height difference in the bucket frame so that the grasp pose is more stable. Once the bucket is lifted
high enough, the agent enters the third stage. In this stage, the agent receives a position-based reward
and a velocity-based reward that encourages the agent to move the bucket towards the target platform.
When the bucket is on top of the platform, the agent enters the final stage, and it is penalized based
on the linear and angular velocity of the bucket, such that the agent learns to hold the bucket steadily.
In all stages, the agent is also penalized based on the bucket’s degree of tilt to keep the bucket upright.
Since it is harder to keep the bucket upright in MoveBucket than in PushChair, we take the log value
of the bucket’s degree of tilt as an additional penalty term so that the reward is more sensitive at
near-upright poses.

C.2 Agent Training and Demonstration Collection

# Different Cabinets 1 5 10 20
Success Rate 100% 82% 2% 0%

Table 5: The success rates of SAC [60] agents on OpenCabinetDrawer trained from scratch with 106

time-steps on different numbers of cabinets. The SAC agents are trained in the state mode using
our designed dense rewards. Jointly training a single RL agent on a large number of environments
(objects) from scratch to collect demonstrations is infeasible.

Since different environments of a task contain different objects of the same category, a straightforward
idea to collect demonstrations is to train a single agent from scratch directly on all environments
through trial-and-error, which seems feasible at first glance. However, as shown in Table 5, even
with carefully-designed rewards, the performance of such approach drops sharply as the number of
different objects increases.

While directly training one single RL agent on many environments of a task is very challenging,
training an agent to solve a single specific environment is feasible and well-studied. Therefore, we
collect demonstrations in a divide-and-conquer way: We train a population of SAC [60] agents on a
task and ensure that each agent is able to solve a specific environment. These agents are then used to
interact with their corresponding environments to generate successful trajectories. In this way, we
can generate an arbitrary number of demonstration trajectories.

For all environments, we train our agents for 2.0× 106 steps. To ensure the quality of our demonstra-
tions, in a few cases where the success rate of an SAC agent is less than 0.3, we retrain the agent. We
then uniformly sample the initial states and use the trained agents to collect 300 successful trajectories
for each environment of each task.

To speed up the training process, we use 4 processes in parallel to collect samples. For better
demonstration quality, during training, we remove the early-done signal when agents succeed. While
this potentially lowers the success rates of agents, we find that this leads to more robust policy at
near-end states. However, during demonstration collection, we stop at the first success signal. The
entire training and demonstration generation process takes about 2 days in total for all environments
and all tasks on 4 8-GPU and 64-CPU machines. The detailed hyperparameters of SAC can be found
in Table 6.

We would like to note that our benchmark is not a generic learning-from-demonstrations benchmark,
so comparing the diversity of our RL-generated demonstrations with human demonstrations is not
the focus of our work (we focus on solving the tasks themselves). However, we do empirically
observe that our RL-generated demonstrations are diverse, especially given that a large number
of demonstrations have been provided. For example, in OpenCabinetDrawer, the demonstration
trajectories show two different behaviors: opening the drawer by pulling the handle, or by pulling the
side of the drawer out. One reason for such diverse behaviors could come from our reward design:
While the multi-stage reward template we designed encourages an agent to grasp the handle of a
drawer, we do not explicitly restrict how it opens the drawer. As long as the opening method is
feasible and achieves the desired goal state, the trajectory will be considered successful.
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Hyperparameters Value

Optimizer Adam

Learning rate 3× 10−4

Discount (γ) 0.95

Replay buffer size (γ) 106

Number of hidden layers (all networks) 3
Number of hidden units per layer 256

Number of threads for collecting samples 4
Number of samples per minibatch 1024

Nonlinearity ReLU
Target smoothing coefficient(τ ) 0.005

Target update interval 1
Gradient steps 1

Total Simulation Steps 2× 106

Table 6: The hyperparameters of SAC for demonstration generation.

D Implementation Details of Baseline Architectures, Algorithms, and
Experiments

D.1 Point Cloud Subsampling

Since point clouds are captured from the 3 cameras mounted on the robot with resolution 400× 160,
as described in Section 2.3, point clouds without postprocessing (192000 points per frame) would
be very memory efficient and significantly reduces the training speed. Therefore, we downsample
the raw point cloud by first sampling 50 points for each segmentation mask (if there are fewer than
50 points, then we keep all the points). We then randomly sample from the rest of the points where
at least one of the segmentation masks is true, such that the total number of those points is 800 (if
there are fewer than 800, then we keep all of them). Finally, we randomly sample from the points
where none of the segmentation masks are true and where the points are not on the ground (i.e. have
positive z-coordinate value), such that we obtain a total of 1200 points.

For the convenience of researchers and benchmark users, we also made this downsampled point
cloud demonstrations dataset public, so users do not need to render the demonstrations locally if
they wish to use our subsampling function. Instructions for download can be found in our repository
https://github.com/haosulab/ManiSkill-Learn.

D.2 Network Architectures

Figure 7: Architecture diagram for our “PointNet + Transformer” model.
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For all of our PointNet policy network models, we concatenate the features of each point (which
include position, RGB, and segmentation masks) with the robot state (as mentioned in Section 2.1
in our main paper) to form new point input features. For the position feature, we first calculate the
mean coordinates for the point cloud / sub point cloud, then concatenate it with the original position
subtracting the mean. We found such normalized position feature significantly improve performance.

In our vanilla PointNet model, we feed all point features into one single PointNet. The PointNet has
hidden layer dimensions [256, 512], and the global feature is passed through an MLP with layer sizes
[512, 256, action_dim] to output actions.

For our PointNet + Transformer model, we use different PointNets to process points having different
segmentation masks. If the masks have dimension k, then we use k+2 PointNets (one for each of the
segmentation masks, one for the points without any segmentation mask, and one for the entire point
cloud) with hidden dimension 256 to extract k + 2 global features. We also use an additional MLP to
output a 256-d hidden vector for the robot state alone (i.e. the robot state is not only concatenated
with the point features and fed into the PointNets, but also processed alone through this MLP). The
global point features, the processed robot state vector, and an additional trainable embedding vector
(serving as a bias for the task) are fed into a Transformer [76] with dmodel = 256 and dff = 1024. We
did not add position encoding to the Transformer, as we found it significantly hurts performance. The
output vectors are passed through a global attention pooling to extract a representation of dimension
256, which is then fed into a final MLP with layer sizes [256, 128, action_dim] to output actions. A
diagram of this architecture is presented in Figure 7. All of our models use ReLU activation.

D.3 Implementation Details of Learning-from-Demonstration Algorithms

We benchmark imitation learning with Behavior Cloning (BC), along with two offline-RL algo-
rithms: Batch-Constrained Q-Learning (BCQ) [55] and Twin-Delayed DDPG with Behavior Cloning
(TD3+BC) [78]. Different from BC, BCQ does not directly clone the demonstration actions given
input, and instead uses a VAE to fit the distribution of actions in the demonstration. It then learns a Q
function that estimates the reward of actions given input, and selects an action with the best reward
among samples during inference. TD3+BC [78] adds a weighted BC loss to the TD3 loss to constrain
the output action to the demonstration data. The original paper also normalizes the features of every
state in the demonstration dataset, but this trick is not applicable in our case as our inputs are visual.
There are also other offline-RL algorithms like CQL [56], and we leave them for future work.

Hyperparameters Value

Batch size 64
Perturbation limit Φ 0.00

Action samples n during evaluation 100
Action samples n during training 10

Learning rate 5× 10−4

Discount (γ) 0.95
Nonlinearity ReLU

Target smoothing coefficient(τ ) 0.005

Table 7: The hyperparameters of BCQ.

Hyperparameters Value

α 0.02

Learning rate 5× 10−4

Action noise 0.2
Noise clip 0.5

Discount (γ) 0.95
Nonlinearity ReLU

Target smoothing coefficient(τ ) 0.005

Table 8: The hyperparameters of TD3+BC.

For Q-networks in BCQ [55] and TD3+BC [78], when using the PointNet + Transformer model, the
action is concatenated with the point features and the state vector and fed into the model. The final
feature from the model is fed into an MLP with layer sizes [256, 128, 1] to output Q-values. The
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α 0.00 0.02 0.2 2.5
Success Rate 0.85 0.31 0.01 0.00

Table 9: The success rates of TD3+BC trained with different values of α on one environment of
OpenCabinetDrawer and 300 demonstration trajectories. The algorithm becomes equivalent to BC if
α = 0.

VAE encoder and decoder in BCQ uses similar architecture, and the dimension of the latent vector z
equals 2 times the action space dimension. The hyperparameters for BCQ and TD3+BC are shown in
Table 7 and Table 8.

Note that in TD3+BC, π = argmaxπE(s,a)∼D
[
λQ(s, π(s))− (π(s)− a)2

]
, where λ =

α
1
N

∑
(si,ai)

|Q(si,ai)| . In the original paper, α = 2.5, and the algorithm is equivalent to BC if α = 0.

Interestingly, as shown in Table 9, we found that when α is non-zero, the performance of TD3+BC
is always worse than BC, even when α has decreased 100 times from the value in the original
paper. However, in our previously reported results, we used α = 0.02 to illustrate the performance
comparison between TD3+BC and BC, since setting α = 0 is not interesting, and does not distinguish
TD3+BC from BC.
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