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ABSTRACT

Prioritized experience replay is a reinforcement learning technique whereby
agents speed up learning by replaying useful past experiences. This usefulness
is quantified as the expected gain from replaying the experience, a quantity often
approximated as the prediction error (TD-error). However, recent work in neu-
roscience suggests that, in biological organisms, replay is prioritized not only by
gain, but also by “need” — a quantity measuring the expected relevance of each
experience with respect to the current situation. Importantly, this term is not cur-
rently considered in algorithms such as prioritized experience replay. In this paper
we present a new approach for prioritizing experiences for replay that considers
both gain and need. Our proposed algorithms show a significant increase in perfor-
mance in benchmarks including the Dyna-Q maze and a selection of Atari games.

1 INTRODUCTION

Reinforcement learning has achieved impressive results in complex tasks such as Atari games, some-
times outperforming humans (Mnih et al., 2015). An important method often used in these results is
Q-learning, a ubiquitous algorithm in reinforcement learning (RL). In Q-learning, the agent learns
action values (Q-values) on the basis of the reward immediately received and the estimated value
of the state resulting from each action. By repeatedly executing each action in each state multiple
times, in a trial-and-error fashion, the Q-values can gradually improve over time (Sutton & Barto,
2014). However, this Q-value estimation process often suffers from severe sample inefficiency, as it
often takes an excessive amount of time for the values to converge.

Experience replay is a technique often used in conjunction with Q-learning to improve sample effi-
ciency. Each time the agent takes an action in a state, and observes a reward and a next state, it stores
this information (referred to as an experience or an transition) in an array called “replay buffer”. This
allows the agent to sample experiences from the buffer, which, when replayed, lead to Q-values up-
dates. Indeed, Q-learning can be augmented with experience replay, as in the classic tabular Dyna-
Q algorithm (Sutton & Barto, 2014). Similarly, the deep-learning counterpart of Q-learning, DQN,
can be greatly improved by using experience replay (Mnih et al., 2015). In both cases, experience
replay leads to significant improvements in sample efficiency over Q-learning without experience
replay. Note, however, that such improvements were first achieved using a simple uniform sampling
scheme, whereby each experiences have the same probability of being replayed.

While these algorithms demonstrate that experience replay can accelerate the convergence of the
learned values, they also lead to the obvious question: how to prioritize the order of replayed ex-
periences so that the best policy is achieved with the minimum expended computation? While this
question has been studied in both tabular and non-tabular (e.g., deep neural networks) domains,
there has been no consensus over the best way to prioritize the order replay. Nonetheless, various
prioritization heuristics have been proposed. The most common technique replays preferentially
experiences associated with a large TD-error, over those associated with a small TD-error. Sub-
sequently, other variants based on different heuristics have also been proposed (e.g., Brittain et al.
(2020)).

In this paper, we propose a novel prioritization scheme for experience replay based on normative
principles. The prioritization scheme uses TD-error, as in previous work (Schaul et al., 2016), but
augments it with a new metric called the “need term”, an additional bias term derived normatively
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and inspired by patterns of replay in biological organisms (Mattar & Daw, 2018). The need term
is obtained from the Successor Representation (SR) (Dayan, 1993), characterizing the expected
number of future visits to each other state,and thus yielding a natural measure of relevance for
each experience in the buffer. We test this new prioritization scheme in different tasks, in combi-
nation with both tabular and non-tabular methods, and using baselines from both tabular Dyna-Q
(Sutton & Barto, 2014) and DQN (Mnih et al., 2015). Our results suggest that our new prioritization
scheme significantly improves the existing algorithms.

2 RELATED WORK

Our proposed prioritization method is motivated by prior work in both machine learning and neuro-
science. First, from the machine learning side, we rely on the classical prioritization based on pre-
diction error (TD-error), previously used in multiple algorithms including prioritized sweeping (PS)
(Sutton & Barto, 2014) and prioritized experience replay (PER) (Schaul et al., 2016). In TD-error
prioritization, the probability of sampling an experience is higher if the prediction error expected
from that replay — i.e., the magnitude of the Q-update — is high. For example, given the experience
tuple t = (Sj, Qj5,T5,S541, CLjJrl,pj), the TD-error is Tj + ’}/Q(SjJrl, aj+1) - Q(aj, ’I’j), which in-
dicates the extent to which we can learn (change) the Q-value of the pair (a;,r;) by replaying this
experience. Thus, one can expect that prioritizing experiences based on the TD-error can lead to
faster learning and better sample efficiency. Several variants of this prediction error scheme have
been proposed, including prioritized sequence experience replay (PSER) (Brittain et al., 2020).

Second, we draw inspiration from recent work in neuroscience suggesting that, in addition to TD-
error, experiences should also be prioritized in terms of their “need”. The need term estimates the
relevance of each state for future behavior. In particular, it estimates the expected (discounted) num-
ber of visits to each other state (or features, in the case of function approximation). The normative
reasoning is as follows: if the agent does not expect to return to a particular state, any Q-update per-
taining to that state is irrelevant, since the agent would not “make use” of what was learned from the
replay. Similarly, the more frequently an agent expects to visit a certain state, the more useful are Q-
updates pertaining to actions available in that state, since the agent would be able to make use of the
corresponding updates multiple times. Note that a low-need experience should be de-prioritized even
if is has a large TD-error. Similar arguments can be made for the case of function approximation,
substituting states by features where appropriate. In neuroscience, the need term has been shown
to play a critical role in dictating which experiences are retrieved from memory (Gershman et al.,
2012) and which experiences are replayed during hippocampal replay (Mattar & Daw, 2018). This
latter work, in particular, suggests that prioritizing backups on the basis of both prediction error and
the need term can lead to faster learning in biological organisms. (Mattar & Daw, 2018). Thus,
this work motivates our research into whether we can improve Q-learning algorithms by adopting a
similar pattern to experience replay algorithms based on TD-error only.

3 COMPUTING “NEED” VIA THE SUCCESSOR REPRESENTATION

Our proposal is that the efficiency of experience replay can be increased by considering, in addition
to TD-error, the “need” of each experience — namely, experiences with high need should have higher
priority for replay. In this section, we provide a formal definition for the need term, and show that it
can be computed from the Successor Representation.

The need term is formally defined as the expected (discounted) number of future visits to the state
where each experience was encoded. Here, we consider this expectation conditioned on the agent’s
current state. For example, assume the experience t = (s;, a;j,rj, Sj+1,a;+1,p;) is present in the
replay buffer, and the agent’s current state is s;. By definition, the need term of this transition is:

Need(s;,sj) =E lth]l[st = sj]
t=0

50 = 811 (1)

The higher the need of an experience, the more frequently the agent is expected to return to the
experience’s starting state in the future. Thus the more relevant is that experience with regards to
the current state.
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In order to compute this term in reinforcement learning, we use the successor representation (Dayan,
1993) (see also (Kulkarni et al., 2016)). The successor representation estimates the expected dis-
counted future occupancy of every other state, starting from the current state. Denoting the state-to-
state transition function as 7', the SR can be defined as:

M = (I —~T)"" @)
(Dayan, 1993). Importantly, in the tabular setting, the elements of this matrix can be shown to

correspond exactly to need terms as in Equation 1, where the expectation is taken over both the
agent’s policy and the environment transitions.

The SR has also been generalized to the case of linear function approximation (e.g., Barreto et al.
(2018)) as well as non-linear function approximation (e.g., Kulkarni et al. (2016)). For each of these
cases, we describe below how the Successor Representation is defined, how it can be learned from
experience, and how the need term can be derived from it.

3.1 TABULAR & LINEAR FUNCTION APPROXIMATION

While the direct calculation of SR matrix IM using Equation 2 is intractable because the transition
matrix 7" is often unknown, it can be learned via TD-learning as a special case of Successor Feature
(SF) (Barreto et al., 2018). In the work of successor features, the reward function is decoupled
into a linear product of R(s) = ¢(s) - w. The main goal is to learn the SF vector v (s,a) of
any state-action pair in order to directly estimate value function Q(s,a) = 9 (s,a) - w, where

P(s,a) =, M(s,s)p(s).

Note that when the state feature ¢(s) is one-hot with a dimensionality of exactly |S|, learning the
SF reduces to the special case of learning the tabular SR matrix M (Barreto et al., 2018), since
P(s,a) = Y, M(s,s")¢(s') = M, where M is the row in M that corresponds to state s with
entries that equals to the expected future occupancy of any other states s’. Thus, by using a one-hot
state representation ¢(s), we are able to learn the tabular SR matrix M in a vectorized manner using
the exact same TD-learning rules for SF (Barreto et al., 2018). Below we present a definition for the
SR and describe the learning rules.

Definition: The definition of the SR matrix M in tabular case is:

Z Y s = s4]

t=0

Mij:E

50 = Si‘| (3)

Learning rule: We use one-hot features ¢(s) in order to simplify the TD-learning of M. Note that
a TD(\) learning has been used (see Appendex A).

€t11 'y/\et + (b(St) (4)

M1 My +aece [@(s) +76(se41)Ms — o5 M| 5)

Need term: The need term is the entry at the ith row and jth column, which represents the expected
count of future visits from state s; to s;.

Need(si, Sj) = Mij (6)
3.2 NONLINEAR FUNCTION APPROXIMATION

For larger state spaces than simple tabular ones, non-linear function approximation is used, such
that each state s is represented by a feature vector ¢(s) from a deep neural network Kulkarni et al.
(2016). Similar to successor feature (SF) #(s) in section 3.1, we now aim to learn an SR feature
vector mg .

To get the need term, while we cannot directly extract it as the entry in SR matrix IM since the state
space is huge, we can estimate it from m;, , in Equation 7 using vector arithmetic.

Definition: The SR feature here is defined as a sum of other state features ¢(s’), each being weighted
by its expected number of future visits M (s, s’, a), which is exactly the need term.

mg, = Z M(s,s',a)p(s") 7

s’eS
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Learning rule: We use a similar approach as the TD-learning rule for SF (Equation 5), except that
the feature vector my, ., here is from a neural network.

Mg, g, < My, q, T & [(b(st) +- My, ) argmax, Q(sir1,0) — Msy,ae (3)

To learn m , which is in vector form outputted from a neural network, we train the network by
minimizing the the loss £,,. Meanwhile, to learn state feature ¢(s) from a neural network, the loss
{4 is also minimized.

lo = lI(st = gou(¢0))]I” ©
Oy = [[(¢r + 7 - o, (Dr41, argmax Q(se11,a)) — ug, (¢, ar)) 12 (10)
Need term: Using definition in Equation 7, we estimate the need term using vector projection.
. !
Need(s,s')zM(s,s',a)%M (11)

2
o)
4 EXPERIENCE REPLAY WITH SR

So far we have shown how to learn and implement the need term with successor representation in
both tabular and non-tabular cases. In this section, we use the need term to augment two existing
algorithms: Prioritized Sweeping (PS) (Sutton & Barto, 2014) and Prioritized Experience Replay
(PER) (Schaul et al., 2016). Both of these algorithms prioritize experiences solely on the basis of
TD-error. Here, we show that augmenting these prioritization schemes with the need term confers
significant improvements to these algorithms.

4.1 PRIORITIZED SWEEPING WITH SUCCESSOR REPRESENTATION (PS-SR)

We started with Prioritized Sweeping in the Dyna-Q maze game (Sutton & Barto, 2014). As we
have illustrated in section 3.1, the successor representation matrix M will be learned using the
TD(A) method, and the need terms are then extracted from M directly to prioritize the experiences
in the replay buffer.

The effect of using TD(\) eligibility trace is shown in Figure 1. Under the simple environment
of the Dyna-Q maze game, we compare the learned matrices at the same number of episodes with
A =0and A = 1.0. In M we take the row corresponding to the start state and reshape it into a
heatmap, where cells with lighter color indicates larger values, meaning that these cells are going
to be visited more frequently after visiting the start state. Ideally, we want the cells close to the
terminal cell to be lighter in fewer episodes, which means that we have learned the SR values fast.
The result is that with a larger A value, the agent seems to be able to learn the SR matrix faster that
corresponds to the current policy. As in TD-learning, the effect of lambda is to control the amount
of bootstrapping. Lower values of lambda lead to more bootstrapping, and thus slower convergence
and lower variance. Conversely, higher values of lambda lead to less bootstrapping, and thus faster
convergence at the cost of more variance. To strike a balance, we adopt A = 0.5.

Recall that in the original Prioritized Sweeping algorithm, a priority queue (buffer) is used to keep
all the transitions sorted in descending order by their TD-errors (Sutton & Barto, 2014). Each time
the agent takes an action and observes feedback, it pushes them as a transition into the priority queue
with a priority that equals to its TD-error. And when the agent samples a transition, the one in the
front of the queue with largest priority (TD-error) would be popped out.

In our proposed algorithm, we consider the priority of each transition the product of its TD-error
and its need term, instead of TD-error only. When the agent pushes transitions into the buffer, we
still make their priorities equal to their TD-errors as in the original PS. However, when the agent
samples from the priority queue, it chooses the one transition with the largest product of its TD-error
and need term. Equation 12 shows this sampling scheme that combines both TD-error and the need
term:

i+ argmax P, - Mg g,,1 <i < |PQueue (12)

3

The complete algorithm is presented in Algorithm 1. In comparison to the original Prioritized
Sweeping algorithm, our PSSR algorithm have two additional steps: first, learning the eligibility
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Figure 1: a: The Dyna Maze game board, where S is the start state and G is the goal state. The
agent tries to reach the goal state by taking one of four actions in each state. b: Learning the SR
matrix M with the environment shown in a, given A = 0 verses A = 1.Upper row: The expected
number of future visits of every state in the Dyna-Q maze game given the start state as the current
state, after learning the SR matrix M for 1, 10, 30, 100 episodes. The agent is using TD(A = 0).
The value decays along the optimal path that the agent has found. Lower row: The same learning
environment but with TD(A = 1.0). It can be seen that it helps the agent to learn the SR matrix
faster, as the path appears to be more salient given the same number of episodes learned.

trace and the successor representation matrix; second, calculating the product of TD-error and the
need term when sampling. The rest of the algorithm is exactly the same as the original Prioritized
Sweeping.

We experimented our new algorithm in the Dyna Maze game which was also used by
PS(Sutton & Barto, 2014). Figure 2 shows that it improves the performance of Prioritized Sweeping,
given the example of the Dyna-Q maze. We followed the original experiment settings and an iden-
tical structure of the maze board as in Figure 1. The successor representation and need term were
randomly initialized and learned online. Prioritizing by the need term in addition to just the TD-
errors helps the agent find the optimal path faster. While PS (blue curve) takes almost 50 episodes
to converge to the shortest-path policy, our proposed algorithm PS-SR (orange curve) reached the
optimal policy in much fewer steps. More detail of experimental settings is addressed in Appendix
B.1.

4.2 TABULAR PRIORITIZED EXPERIENCE REPLAY WITH SUCCESSOR REPRESENTATION
(VANILLA PER-SR)

As we have shown that the need term helps tabular methods (prioritized sweeping) to learn faster,
we are then motivated to extend this idea to non-tabular methods such as Prioritized Experience
Replay (PER). However, since PER is implemented alongside DQN —i.e., using a neural network —,
this implementation ends up obscuring the inner workings of the sampling algorithm. Thus, before
deploying our approach with neural networks, we implemented a simplified version of PER with no
networks, by using a trivial function approximation whereby each state is encoded as one-hot feature
vectors on an orthonormal basis. The details of the experimental setup are included in Appendix B.2.
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Figure 2: Left: Average number of steps per episode with regard to the number of training episodes.
By additionally prioritizing all transitions with the need term, the prioritized sweeping algorithm
was able to converge to a shorter path through the Dyna-Q maze with fewer steps per episode. The
steps per episode was an average over 50 repetitions. Right: The same figure in log scale.

We used the same experiment settings as use by Schaul et al. (2016), with the Blind Cliffwalk en-
vironment shown in the first plot of Figure 3. We varied the number of states n from 3 to 13. We
compared the performances of multiple algorithms, as explained in Appendix B.2. In order to im-
plement the vanilla PER algorithm and the need term without neural networks, we used tabular SR
(Section 3.1) and one-hot vector state representation. The full algorithm is in Algorithm 2.

To use the need term in sampling, we changed the calculation of the sampling probabilities to Equa-
tion 13. The need terms were successfully learned by the agent, given the example shown in the third
plot in Figure 3, where the agent correctly learned the need terms of all other states when the current
state was the fifth one. While the states before the current state had low need values, the ones after it
had much higher ones and decayed as the distance became farther. Intuitively, high need values on
the right side made the agent more likely to sample them and learn their Q-values, which helped the
agent take better actions when it really reaches those states on the right side afterwards.

(p; - Need(st, s;))
> i (pi - Need(s,s;))>
_ (pj- M(s1,85)"

>2i(pi - M(se,55))*
As we have successfully obtained a similar result that PER was exponentially faster to converge
(green), we additionally tested our PER variant with the need term and showed that PER with the
need term (red) was taking even fewer Q-updates (Figure 3). Meanwhile, the result showed that
surprisingly even the random scheme outperformed vanilla PER (the last plot of Figure 3). The
optimal need terms then improved even more, getting closer to the lower bound of the oracle one.

Thus, it is of our particular interest to design an implementation of the need terms that would lie
between performances of the random and optimal schemes.

P(j) =

13)

4.3 PRIORITIZED EXPERIENCE REPLAY WITH DEEP SUCCESSOR REPRESENTATION
(PER-SR)

Motivated by the success in vanilla PER, we finally integrated the need term into PER using deep
neural networks. We learned the SR and the need term using the rules explained in section 3.2. We
have shown earlier in PS-SR (section 4.1) and vanilla PER (section 4.2) that the need term could
help the agent replay more important experiences by changing the sampling probabilities. However,
this was achieved by calculating the need terms of every single experience in the buffer w.r.t. the
current state every time we need to replay some experiences. This could be very computationally
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Figure 3: Vanilla PER without neural networks in the Cliffwalk game. First: The Cliffwalk example
in Schaul et al. (2016). Second: Reproduce study in Brittain et al. (2020) and show that prioritized
experience replay with the need terms performs better. Third: The need values (expected count of
future visits) of all states at current state 5. Fourth: Comparing different implementations of the
need term, which shows that even need terms of random actions can outperform PER, and more
improvements can be made if we carefully design a learning rule for the need terms.

inefficient since the buffer size and state space might be too large in complex environments (e.g.
Atari games).

To get around this issue, instead of modulating the sampling probability, we used the need term
to modulate the magnitudes of the Q-updates directly. Each minibatch of transitions being sampled
was still based on the probabilities calculated solely from TD-errors as in Schaul et al. (2016). How-
ever, to replay each transition and perform the Q-update, we adjusted this Q-update by multiplying
the need value of this transition. So among all important transitions measured by high TD-errors,
we managed to further choose those that are highly relevant in the near future, indicated by high
need values. Intuitively, this alternative was based on the idea that either increasing the sampling
probability or enlarging the magnitude of a backup could result in larger expected Q-update (see
also 6). Hence, we can derive our new sampling scheme of both TD-error and the need term, from
directly sampling using TD-error only, and resize the magnitude of the Q-backup with the need term
Need(s).

When implementing our approach in deep neural networks, we also found that the the estimated SR
vectors m , were inaccurate early in training and sometimes led to negative values. We therefore
applied a constant offset to all need values so that the smallest need was zero. As shown in equation
14 below, we calculated the need terms of all £ transitions in the minibatch and subtract the lowest.
Other approaches to mitigate this issue were also attempted (see 6).

Need(s') = M(s,s',a) — min (0, min M (s, s;,a)),i € [1, k] (14)

The full PER-SR algorithm is presented in Algorithm 3. Our main modifications to the original
PER would be adding the training step for the deep SR network, and calculating the need terms for
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the experiences being sampled, as shown in the “SR-learning” area in Figure 4. All other parts of
the PER algorithm remains unchanged. We experimented this algorithm in the Atari benchmarks in
section 5.
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Figure 4: The overall structure of PER with deep SR, as implemented by Algorithm 3. The calcula-
tion of the need terms from the SR network is addressed in Section 3.2, and the structure of the SR
network (shown on the right side) is demonstrated in Figure 6.

5 ATARI EXPERIMENTS

With the details of implementation of PER-SR presented above, we experimented it in a selected
set of Atari games. This selected set was considerably small, however, on the contrary to 49 games
which the original work of PER had used. Nevertheless, the result was promising and strongly
suggested a performance improvement after using the need term.

The baseline algorithm we used was the double DQN as used in the PSER paper by (Brittain et al.,
2020). We also used the same Dopamine code base (Castro et al., 2019) as they did. The parameters
we used for experience replay were exactly the same as the ones in the PSER paper (Brittain et al.,
2020), while the other parameters for DQN were the same as in the Nature paper (Mnih et al., 2015).
The learning rate « for the deep SR network was by default the same as the Q-network.

We produced our results by training the algorithms on all games for 200 iterations. Each iteration
consisted of 250K observations, which corresponded to 1 million frames as the games are using
frame skipping with a factor of 4 (Mnih et al., 2015). After each one training iteration finished, we
evaluated the agent for 125K observations, which corresponded to 30 minutes of game play. The
average game score in all episodes of the evaluation pass of one single iteration was taken, so in
the end we had 200 average returns for each agent in a game. The final measurement of the agent’s
performance was the performance of the best policy, which was simply the maximum of the 200
averages returns. With this performance metric, the summarized performance comparison of PER
and PER-SR was shown in Figure 5. The vertical axis measures the percent change of PER-SR’s raw
score with regard to PER’s raw score, where any value that is larger than zero (above the dotted line)
indicates performance improvement in the game. Overall, PER-SR achieved better performance
in most of the games, and there were significant performance increase in 3 game (Berzerk, Qbert,
Robotank).

The learning curves of all games in detail are shown in Figure 10. We observed that while PER-
SR suggested improved scores over the original PER, it learned comparatively slower and achieves
lower scores in the early stage of learning. For example, while PER-SR ultimately reached higher
scores in the game Spacelnvaders, its score improved slowly compared to PER which quickly
achieved a score of 600 just in a few million frames. This slower learning process was probably



Improving Experience Replay with Successor Representation

2,000% A
o
Ll
o
o
-+
21,500%-
5
L
(O]
—_
v [¢)
o 1,000% A
c
©
<
O]
>
o 500% A
-
C
[0}
O
& | |
0% __-___-___-_____.._____,____.__-.__-__.__ —_ —— __ - —_ -
T T T T T T T T T T T T T T T
1] o + X — Q (@)} (e 0 V4 V4 — + Y4 C
'Ebg'cgccmaauwaco
c F & o O ¥ > g g4 & £ & ©& X
I +— c N o) + o i} 194
£ < o 2 @ & > 8 % 0O 2 N
i= — ] E o o
O
n © @
o [a)
wn

Figure 5: The relative performance on a set of selected games of PER-SR with regard to original
PER. The games were selected from the 49 games in the original PER paper. The dotted line means
the same performance as original PER. Any bar that goes above the line indicates a performance
improvement of PER-SR over PER.

due to the fact that PER-SR needed a good SR network to provide an accurate estimation of the
need term which could improve the prioritization of experience replay. It might take a while at
first for the agent to explore the environment and train the deep successor representation. Thus, the
need values were probably not that accurate in the beginning, which did not help prioritize the most
relevant experience as it later might do.

Furthermore, it also showed that while PER seemed to learn a good policy very fast at first, in the
end the performance drops. For example, in the game Boxing (Figure 10), while PER achieved a
score of 50 much faster than PER-SR in just a few million steps, the score dropped drastically to
as low as -40 afterwards. This is probably because PER had overfitted the Q-fucntion very quickly,
since PER chooses frequently chooses those transitions with high TD-errors over and over again.
The authors of PER addressed this problem by incorporating an importance sampling weight to
downsample those transitions with high TD-errors (Schaul et al., 2016). The overfitting problem
might still persist even after applying these weights. However, in our new approach, by scaling the
updates with the need terms, we seemed to mitigate this effect, as in most of the games PER-SR
continued to achieve higher scores after training for 200 million steps without going back to a very
low score. We speculate that by rescaling the Q-updates of the transitions using the need terms, the
agent will become less likely to overfit the data with the highest TD-errors.

6 DISCUSSION

We have shown that our proposed algorithm PER-SR exhibited significant performance increase
across different game environments in the Atari benchmarks. Meanwhile, through implementing
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this new algorithm by experimenting on different variants, we observed some important issues which
could possibly motivate future research, in order to understand how the idea of successor repre-
sentation can lead to even better prioritization of experience replay and result in more promising
experiment performance.

Environments: While our new algorithm PER-SR showed an overall performance increase in our
selection of Atari games, we speculate that the extent to which the game scores were improved
depended on the nature of each game itself. We observed that games with the following traits
tended to score higher with SR: first, the states at different time steps appeared very similar; second,
same (or similar) states tended to frequently recur through many episodes. It can be reasonably
hypothesized that these traits can make the agent learn the deep SR network faster, which then
provides an accurate estimation of the need term that helps prioritize the most relevant experiences.
Thus, we can possibly expect performance improvements by applying PER-SR to other tasks with
state space that reflect these traits in future research.

Magnitude vs. probability: In our implementation of PER-SR, we still sampled each minibatch
with a probability distribution based on the priority (TD-error) of each transition, same as the orig-
inal PER. We then resized the magnitude of the backup of each transition by multiplying it with
its need value, which turned out to help PER learn faster. However, it is yet unknown whether the
same or better improvement can be achieved by directly changing the sample probability based on
the product of TD-error and need term of each transition. Currently, this probability-based approach
has yet not been used, because it was extremely time consuming to calculate the need terms for all
transitions based on the new current state every time we want to sample a batch, especially when
the replay buffer had grown considerably large with millions of transitions after learning for many
episodes. Nevertheless, it is possible that future research may provide solutions to this problem, and
finally show the effects of this alternate probability-based approach.

Forward vs. backward relevance: Our PER-SR algorithm used the need term to prioritize those
transitions that are going to be frequently visited afterwards. Often, those experiences that happen
right after the current state will have high need values. However, it is unknown to us if we can also
prioritize the experiences that are likely to frequently lead to the current state. It has been shown by
Sutton & Barto (2014) that the sweeping across all transitions predicted to lead to the current state is
essential for the faster convergence of the prioritized sweeping algorithm (PS) over Dyna-Q. Hence,
it motivates future research about whether a similar approach of experience replay by the relevance
before the current state would also improve PER. More variants of the successor representation may
also be proposed as a way to not only account for the future occupancy but also for the relevance in
the past.

Negative relevance: As mentioned earlier in section 4.3, due to the inaccuracy of learning the SR
vectors m o and the state features ¢(s) with the deep SR network, the need term calculated from
the SR vectors might be negative. In our paper, this was addressed by subtracting the minimum
need term in a sampled minibatch. However, there can be other approaches. For example, when the
need terms of some experiences in the minibatch are negative, we can simply choose not to rescale
the magnitudes of the Q-updates, which simply reduces to normal prioritized experience replay by
TD-errors.

7 CONCLUSION

This paper introduces a novel prioritization metric that combines both TD-error and the need term,
which measures the relevance of each experience using the successor representation. We studied
both tabular and non-tabular methods, implemented our extension to both Prioritized Sweeping (PS)
and Prioritized Experience Replay (PER) algorithms, and found that our proposed algorithms led to
significantly better performance in the Dyna Maze and Atari game benchmarks. Our work suggests
a promising direction for improving experience replay in future works and motivates further research
in topics including the issues we discussed so far.
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A SUCCESSOR REPRESENTATION (SR)

A.1 TABULAR & LINEAR FUNCTION APPROXIMATION

Definition: As mentioned earlier, the tabular successor representation is defined as M = (I—~7T)~!
by Dayan (1993), and learned using the same rules for the successor features (SF) (Barreto et al.,
2018). M is a matrix where the entry M;; at row ¢ and column j represents the expected number
of visits to state s; from the current state s;. 7" is the state transition matrix where the entry 7;; at
row 7 and column j means the probability that the next state is s; given the current state s;. From
the definitions of the need term and the tabular SR, we can see that the need term Need(s;,t) in
equation 1 can be directly taken from M:
S0 = Si]

Learning rule: The SR matrix M cannot be learned from the transition matrix 7" directly, because T'
cannot be easily obtained as the probability distribution of state transitions remain unknown unless
the agent has run for a significant period time in a new environment. Our solution is to instead use
TD()\), a temporal-difference learning method based on the eligibility trace (Sutton & Barto, 2014).

Need(s;,t) =M,;; =E lZVt]l[St = s4]
=0

Therefore, we aim to learn the successor representation matrix M using TD()\) learning. The matrix
M is a square matrix of rank n, where n is the total number of states in the environment, and each
state is represented as a one-hot vector ¢(s). Each row is a weighted sum of all n feature vectors:

M; = Mi1é(s1) + Miad(s2) + - - + Mind(sn) (15)

The complete TD(\) equations are listed as below. Note that we initialize the eligibility trace vector
e as zeros, and the SR matrix M using (I — vT') %, where T is initialized assuming that the agent
behaves random actions at each state. The feature vector ¢(s) is a row vector, whereas the eligibility
trace vector e is a column vector.

err1  YAer + d(st) (16)
M1+ My + aeiqn [¢(St) + YO(St41)My — d(s¢) My 17

Need term: As shown in Equation 18, the need term can be directly obtained from entries in the
learned SR matrix M. We will incorporate it into Prioritized Sweeping (PS), an existing experience
replay technique by TD-errors based on the tabular Dyna-Q algorithm. We will show the new
algorithm that uses the need term, and also the effect of using the eligibility trace to the learning
speed of successor representation in section 4.1.

Need(si, Sj) = [Mt-i-l]ij (18)

A.2 NONLINEAR FUNCTION APPROXIMATION

For non-tabular (deep learning) methods, the definition of SR, the learning rule for SR, and the
calculation of the need term with SR are all different. The reason is that in the tasks which we solve
using non-tabular methods, the state space is either significantly large, or continuous, such that the
state representation of one-hot vectors cannot be used anymore. We are thus not able to define the
successor representation as a matrix IM which we used in tabular cases.

Definition: We alternatively define the successor representation as a vector, as opposed to a matrix
in tabular cases. The SR vector, denoted as m 4, is a weighted sum of all other state feature vectors
@(s"), each being multiplied by the expected count of future visits represented by M (s, s, a). It is
clear that the need term we want is exactly M (s, s’, a). The equations of this definition for the SR
are as below (Kulkarni et al., 2016):

M(s,s',a) =FE Z'ytll[st =5']|sp = s,a0 = a] (19)
t=0
m,, =Y M(s s a)p(s) (20)

s'eS
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Learning rule: Given the definition of the SR, we now present its learning rules. We aim to learn
the SR vector m_ 4, assuming that we already have a representation vector ¢(s) for each state s. We
still use a temporal-difference method. We mentioned in equation 7 that the SR vector is a weighted
sum of feature vectors by future occupancy. Based on this, when we take action a; at state s, the
SR vector mg, 4, should equal to the SR vector my, ., q,,, plus the feature vector ¢(s;) of state s;
itself, because the only difference between the two SR vectors is that m, ,, should have one more
occurrence of ¢(st). We illustrate this learning rule in the below equation 21.

My, a, — Mg, a; + |:¢(St) + v mst+1,arg maxg Q(s¢+1,a) My ,a, (21)

To implement an SR that can be learned with the rule explained above, we incorporate the Deep Suc-
cessor Representation network (DSR) by Kulkarni et al. (2016). To learn the SR with the above rule
we need to train the neural network in two tasks: first, learning the feature ¢(s) using a autoencoder;
second, learning the SR vector m, ,. We follow the notation in the DSR, which consists of three
main network branches: a feature branch fy which takes in raw images s; and returns features ¢y;
a successor branch ug which computes m, ., given feature ¢; and a; and a decoder branch which
returns the reconstructed image $; from feature ¢, as shown in Figure 6. The loss function thus
consists a autoencoder loss /4, and a SR loss £,,, as presented in equation 22 and equation 23.

2
g = [|(st — go,.(d2))ll (22)
by = |[(d + 7 - ug, (¢r41,arg max Q(si41,a)) — ug, (4, a))|? (23)
> Sy
St > > ¢5t - —— === == N
X — o~ — .
1 1
1 > —b>| —p>| > Mg, a=1 |
1 1
. — .
] > ° ]
! — — — !
1 1
: - > - M5, a=n :
I U, 1
. ) J U .
1 1

Successor branch

Figure 6: Our simplified version of the architecture of the Deep Successor Representation network
in Kulkarni et al. (2016). Note that it is almost exactly the same as the original one but without the
layers to learn the reward function.

Need term: With the learning rule and network implementation of the SR vector presented, we are
ready to derive the need term from them. While we mentioned earlier that the need term comes
directly from M (s, s’,a), it is however not directly learned in the DSR network (Kulkarni et al.,
2016). Instead, we estimate M (s, s, a) backwards from m , using vector projection, since we
know that m , estimates a weighted sum of feature vectors of all other states, as shown in equation
7. By using the magnitude of the vector projection of M (s, s’, a) in the direction of feature vector
@(s"), we estimate M (s, s, a) as the expected number of future visits to s’ given current state-action

pair s, a.
ms,a : ¢(SI)

Need(s, o) = M(s, 80) » = 005

(24)
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With the way to learn the successor representation in the non-tabular case and the derivation of the
need term from the SR, we are now able to experiment it in prioritized experience replay (PER),
an existing prioritization technique based on DQN. We will show in section 4.3 the implementation
details of how to add the need term into the original sampling process by TD-error, and finally in
section 5 we will present the experiment results of our improved version of PER in Atari bench-
marks.

B EXPERIMENTAL DETAILS

B.1 DYNA MAZE

For the Dyna Maze experiment (Section 4.1), we used the exact same experiment setting as used
by Sutton & Barto (2014). The maze consists of nine columns and six rows, with a start state and
a goal state. The goal of the agent is to reach the goal state from the start state in the shortest path
possible, given four actions (up, down, left, right) available at each state (square), shown in Figure
7. Note that while all four actions are available at all states, some actions corresponds to invalid
moves (for example, going out of the board, or hitting against the wall states in black color). These
invalid moves will leave the current state of the agent unchanged. Since the maze is a simple tabular
environment, we represented each state by a distinct integer, calculated by n_cols * row_index +
col_index. For example, the start state S was represented as 9 x 2 + 0 = 18.

The reward function was constructed such that every state-action pair, except for the one that lead to
the goal state G, had a reward r = 0. If the agent arrives at the goal state, then it receives a random
reward generated by r ~ N(1,0.1), anormal distribution with a mean of 1 and a standard deviation
of 0.1. This was meant to keep the agent learning even if it was close to the optimal policy.

G

S >

. actions

Figure 7: The Dyna Maze environment for the prioritized sweeping algorithm used by
Sutton & Barto (2014)

We implemented the prioritized sweeping (PS) algorithm using the exact same implementation by
Sutton & Barto (2014). For our new algorithm PS-SR that additionally used the need term in its
sampling process, we only added code for learning the tabular need term (Section 3.1) and using it
in the sampling process. Apart from them, the new algorithm (shown in Algorithm 1) was exactly
the same as the PS algorithm. The successor representation was defined as a square matrix M of
size |S| x |S|, where |S| was the size of the state space. To initialize and learn M, we use the
initialization by M = (I —~T)~! and the TD()) learning rule, as explained in Appendix A. Note
that the transition matrix 7" was initialized such that it corresponds to a random policy. Each entry
T;; was calculated assuming that the four actions each had 0.25 probability to be taken at state s;.

For PS-SR, the replay memory was structured in the same way as the old PS memory, which was a
priority queue ordered by the prediction error (TD-error) of each experience (state-action pair) in the
replay memory. For example, an experience (S;, A;) was ordered by its TD-error P;. However, in
PS-SR, instead of directly pop out the first one in the priority queue that has the largest priority, for
each experience we calculated the product of its priority and its need term with regard to the current
state, noted by .S. Finally, the experience with the largest product would be sampled and popped out
of the memory. This process is illustrated in Equation 25.

i+ argmax P, - Mg g,,1 <i <|PQueue] (25)
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The evaluation metric we used for PS and PS-SR is the length of the episode, since the goal is to
make the agent reach the goal state in the shortest path. The parameters were exactly the same as
those used in PS by Sutton & Barto (2014). For each step the agent takes, 5 experiences would
be sampled from the memory. In order to reduce the variance of the experiment, the experiment
consisted of 50 independent trials. In each trial, the agent for both PS and PS-SR would run for
50 episodes and the lengths of all these episodes were recorded. In the end, for each algorithm, we
calculated the mean episodic length at each episode number ranging from 1 to 50. The result has
been plotted in Figure B.1.

Linear scale Log scale

200
— PS — PS

175 - —— PS-Need i —— PS-Need

150 1 b
125 A b
100 1 b

75 A b

steps/episode

50 A b
25 A b

0-— T T T T T T T
0 10 20 30 40 50 10° 10!

episodes episodes

Figure 8: Left: Average number of steps per episode with regard to the number of training episodes.
By additionally prioritizing all transitions with the need term, the prioritized sweeping algorithm
was able to converge to a shorter path through the Dyna-Q maze with fewer steps per episode. The
steps per episode was an average over 50 repetitions. Right: The same figure in log scale.

B.2 BLIND CLIFFWALK

We experimented the vanilla PER and multiple other algorithms in the Blind Cliffwalk game as
presented in Schaul et al. (2016) and Brittain et al. (2020), in order to investigate the extent to which
the Need term can help PER under the simple circumstance without any neural networks. The
environment is shown in the first plot of Figure 3, where the goal was to go from the start state at
the leftmost side and reach the goal state at the rightmost side. At each state, the correct action
for the agent was to go to the next state on the right side. If it failed to do so, it “falled” down
the cliff and returned to the start state. To determine how fast an agent learns an optimal policy,
we measured the number of Q-updates needed for the agent to converge to the optimal Q-function.
This convergence was defined as a MSE error between the Q-value estimates and the ground-truth
Q-values below a threshold of 10~2. The ground-truth Q-function was easily calculated in advance
from the observation that the only the goal state had a reward of 1 and the best action should always
be going right for all states.

We reproduced the experiment in Schaul et al. (2016) that compared performance of three algo-
rithms: uniform, oracle, and PER. To investigate the effect of the need term, we additionally tested
our PER variant with the need term, noted as ”"Need” in the plot. In order to determine only the
computational and sampling performance of the algorithms, it is important that the samples were
pushed to the buffer before the agent started running as done in Brittain et al. (2020). The samples
were generated by exhaustively taking all 2" random sequences of actions (Schaul et al., 2016), and
no more samples were pushed to the buffer when the algorithms were running. The four algorithms
were constructed as below, and the results were shown in the second plot of Figure 3:

Uniform: The uniform one represented a uniform memory replay scheme, which was identical to
the one used in original DQN (Mnih et al., 2015). To implement this, we simply used PER and set
the prioritization exponent « to zero.
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Oracle: Each time we choose a state-action pair to perform the Q-update, we iterated through
all possible state-action pairs and calculated their amounts of Q-updates if they were really taken.
The Q-update that would cause the largest amount of Q-update would be chosen and performed.
This algorithm used our knowledge in hindsight to make the algorithm converge to the ground-truth
Q-values in the fastest way, which represented a lower-bound of the number of Q-updates.

PER: Used the same settings as in Schaul et al. (2016). The sampling exponent o = 0.6. Instead
of approximating the Q-function using deep neural networks and find its gradient w.r.t. the param-
eters of the network using back propagation as in DQN by Mnih et al. (2015), we represented the
Q-function in the “vanilla PER” as Q(s, a) = 0-¢(s, a), where ¢(s, a) was the one-hot vector repre-
sentation of discrete state-action pairs and w is a vector consisting of parameters of this Q-function.
Thus, the analytical solution of the Q function w.r.t. its parameters w could be directly found as
VoQ(s,a) = ¢(s,a), which simply reduced to the one-hot vector that represents the pair (s, a). It
can also be easily seen that the entries in the parameters vector 6 are just the Q-value estimates of the
state-action pairs. The other parts of PER, including the setup of the replay buffer, exactly followed
the algorithm in Schaul et al. (2016).

Need: For PER with Need, we used the tabular SR, illustrated in section 3.1. As illustrated in
Section 4.1 the effect of TD()) learning the SR faster, we use a A = 0.95. The SR matrix M is a
|S| x | S| square matrix, where each row and column corresponds to each state. To calculate the need
term, we directly extract the entry in the SR matrix M at the column and row that corresponds to
the states, as mentioned in Appendix A. The need term was directly used to calculate the sampling
probabilities of every single experience in the replay buffer: we calculated the priority of each
experience as the product of its TD-error and need term, and then used this new priority to compute
the sampling probability with the exact same method used in original PER (Schaul et al., 2016). So
each sample from the replay buffer would require a total sweep of all transitions to compute the
need terms in order to get a sampling distribution. This could be significantly time-consuming, but
this sampling scheme still works for our experiment in the Cliffwalk game because the number of
states was at most around 10 and the number of experiences in the buffer was at most 104, which
still did not require too much time to perform an entire sweep over the replay buffer. More on this
computational efficiency problem are discussed in section 6.

(p; - Need(st, s;))
> (i - Need(s,s;))”
_(pj - My)*
22i(pi - Mij)®
To verify that the Need term has been learned correctly, we obtained the need values (the expected
number of future visits) of every other states given an arbitrary choice of current state 5, as shown
in the third graph of Figure 3. We achieved these need values by simply extract the row in the SR

matrix M that corresponds to the fifth state. The graph shows that the need term has been learned
properly with a focus on the incoming states, and it was helping the vanilla PER to converge faster.

P(j) =

Additionally, we also want to investigate the extent to which different implementations could affect
the performance of PER. As shown in the last graph of Figure 3, instead of our TD(\) version of the
need term, we further investigated two versions that lay on the opposite extremes: the random need
and the optimal need. Details of both algorithms are introduced below.

Random Need: The random need terms (green) was obtained from the definition M = (I —~T)~1,
where 7' corresponded to taking random actions (0.25 probability in all four actions) in all states, so
that the need terms were totally naive and not at all learned in the training process.

Optimal Need: The optimal need terms (red), however, uses a 7" that corresponds to the most up-
to-date (greedy) policy. In each row of the transition matrix T3, there is only one entry 77; such that
T;; = 1 and all other entries are all zero because they won’t be visited.
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Algorithm 1 Prioritized sweeping with Successor Representation (PS-SR)

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty
Initialize T, M < (I —~T)" 1, e+ 0
loop
S < current (nonterminal) state
A + policy(S, Q)
Take action A; observe reward R, and state S’
e+ yie + ¢(S)
M < M + ae® (¢(S) + vo(S" )M — (b(S)M)
Model(S, A) < R, S’
P+ |R+ymax, Q(S5",a) — Q(S, A)|
if P > 0 then
insert S, A into PQueue with priority P
end if
1=0
while | PQueue| > 0 and i < n do
i< argmax; P, - Mg s,,1 < i < |PQueue|
S, A < pop(PQueue, )
R, S’ < Model(S, A)
Q(S,A) + Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]
for all S, A predicted to lead to S do
R < predicted reward for S, A,S
P + |R+ ymax, Q(S,a) — Q(S, A)|.
if P > 0 then
insert S, A into PQueue with priority P
end if
end for
14 1+1
end while
end loop

Algorithm 2 Vanilla Prioritized Experience Replay with Deep Successor Representation (vanilla
PER-SR)
Input: minibatch £, step-size 7, replay period K and size N, exponents « and /3, budget T'.
Initialize replay memory H = (), A = 0, p; = 1.
Initialize T, M < (I —~4T)~1, e + 0.
Observe Sy and choose Ay ~ mg(.Sp).
fort=1to 7T do
Observe S, Ry, v¢.
e ¢ yAe + d(Si-1)
M M + ae” (¢(Si—1) +76(Si)M — ¢(S;-1)M)
Store transition (S;—1, A¢—1, Ry, V¢, S¢) in H with maximal priority p; = max;<¢ p;.
ift =0 mod K then
for j = 1to k do
Sample transition j ~ P(j) = (p; - Need(S¢—1,55))%/ > ;(pi - Need(S;—1, S;))*
Compute importance-sampling weight w; = (N - P(j)) ™"/ max; w;
Compute TD-error 5.7 = Rj + Qlarget(sja arginaxg Q(Sjv a)) - Q(Sj—la Aj—l)
Update transition priority p; < |J;|
Accumulate weight-change A <— A +w; - 65 - VoQ(S;-1, 4;_1)
end for
Update weights 6 < 6 +n - A, reset A = 0.
From time to time copy weights into target network Orareer <— 0
end if
Choose action A; ~ my(St)
end for
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Algorithm 3 Prioritized Experience Replay with Deep Successor Representation (PER-SR)

Input: minibatch £, step-size 7, replay period K and size N, exponents « and 3, budget T'.
Initialize replay memory H =0, A =0, p; = 1, Ay = 0.
Observe Sy and choose Ay ~ my(.Sp).
fort=1to 7T do
Observe S, Ry, v¢.
Store transition (S;—1, A¢—1, Ry, V¢, .S¢) in H with maximal priority p; = max;<¢ p;
Calculate SR-vector my—1 = g, (fo,(Si—1), Ar—1).
ift =0 mod K then
for j =1to k do
Sample transition j ~ P(j) = p$/ >, pf
Compute importance-sampling weight w; = (N - P(5))~?/ max; w;
Compute TD-error 5.7 = Rj + Qlarget(sju argimnaxg Q(Sjv a)) - Q(Sj—la Aj—l)
Update transition priority p; < |J;|
Compute SR-feature ¢j_1 = fo,(Sj—1), &; = fo,(S)).
Compute SR-vector mj_1 = ug, (¢j—1,A4;-1).
Compute SR-vector m; = g, (¢;, arg max, Q(S;,a))
Compute Need nj = (my—1-¢;-1)/ [|¢;—1[|* —min(0, ming m; 11/ [[¢i—1]*)

Get SR loss £ = ||(sj—1 — ggs,(¢j_1))|\2 + H (¢j_1 +y-mj — mj_l) H2
Accumulate weight-change A <~ A 4+ w; - 6; - nj - VoQ(S;j—1, Aj—1)
Accumulate weight-change Ay, <— Ay + Vg ¢
end for
Update weights 0 < 0 +n - A, Oy < Oy + 1 Ay, reset A =0, Ay = 0.
From time to time copy weights into target network Oraree; <— 0
end if
Choose action A; ~ my(St)
end for
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Figure 9: The detailed, enlarged figure of Figure 5. The relative performance on a set of selected
games of PER-SR with regard to original PER. The games were selected from the 49 games in the
original PER paper. The dotted line means the same performance as original PER. Any bar that goes
above the line indicates a performance improvement of PER-SR over PER.
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Figure 10: The average game score at each iteration (1 million frames) in a training of 200 million
frames in total. The curves were processed in a moving average of 10 million steps for better
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