




IV. MODELING THE OBSTACLES AND THE QUADROTOR

A. Modeling the Obstacles

Each obstacle has the hybrid dynamics of a bouncing ball

moving in R
3, with the state of the i-th obstacle given by

xoi := (poi , voi) ∈ R
6 =: Xoi (3)

where poi = (pxoi
, pyoi

, pzoi ) ∈ R
3 is position and voi =

(vxoi
, vyoi

, vzoi ) ∈ R
3 is velocity. When moving in free air,

the motion of a bouncing ball is modeled using the equations

of projectile motion without air resistance, namely

(ṗoi , v̇oi) = (voi , (0, 0,−γ)) =: Foi(xoi) (4)

where γ > 0 is the gravity acceleration.

The impact between the obstacle and the ground is mod-

eled as an instantaneous velocity change, leading to the

definition of the jump map Goi . The restitution coefficient

λ ∈ (0, 1) models the energy loss at impacts. Accelerations

in the x and y directions are generated by the spin of the

ball. Since the angular velocities are not known, the exact

trajectory cannot be predicted. Instead of a single velocity

value after a jump, we define the set of possible velocities to

capture the effect of all values within the expected angular

velocity range. The set Σ ⊂ R contains all possible changes

in linear velocity from the expected angular velocities of the

ball. The impact is then modeled as

x+
oi
∈ Goi(xoi) := {pxoi

} × {pyoi
} × {0} × {vxoi

+Σ} × {vyoi
+Σ} × {−λvzoi }

(5)

where + is the Minkowski sum. Each obstacle is assumed

to be a point mass which impacts the ground at pzoi = 0.

The combination of the continuous and discrete dynamics

of the bouncing ball leads to the following hybrid model for

each obstacle Oi:

Hoi = (Coi , Foi , Doi , Goi), (6)

where Coi := {xoi ∈ R
6 : pzoi ≥ 0}, Foi is given in (4),

Doi := {xoi ∈ R
6 : pzoi = 0, vzoi ≤ 0}, and Goi is given

in (5).

B. Modeling the Quadrotor and Tracking Controller

The quadrotor V under the effect of a reference tracking

feedback controller is modeled as in [12]. The quadrotor state

is given as

xb := (pa, va, Ra, ωa) ∈ R
3×R

3×SO(3)×R
3 =: Xb (7)

where pa ∈ R
3 is position, va ∈ R

3 is linear velocity,

Ra ∈ SO(3) := {R ∈ R
3×3 : R⊤R = I3, det(R) = 1}

is orientation, and ωa ∈ R
3 is angular velocity, all of them

with respect to the world inertial frame. The dynamics of the

quadrotor are

ṗa = va, v̇a =−Rae3
f

m
+ ge3 (8)

Ṙa = RaS(ωa), ω̇a =− J−1S(ωa)Jωa + J−1M (9)

with quadrotor mass m, thrust input f ∈ R, torque input

M∈ R
3 , and inertia tensor J ∈ R

3×3.
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Fig. 3. Diagram of the feedback loop.

The hybrid tracking controller is comprised of two parts.

The first part is a saturation controller which reduces the

translational error between the state and the reference. The

second part uses the output of the saturation controller

with the current state and a memory variable to drive the

quadrotor rotation to the reference. The controller is modeled

by the hybrid system Hc = (Cc, Fc, Dc, Gc) with state

xc ∈ R
3×{−1, 1}×S

3 =: Xc and input reference trajectory

r. Definitions of Cc, Fc, Dc, and Gc can be found in [12].

The combined quadrotor and tracking controller is mod-

eled by the hybrid system Ha = (Ca, Fa, Da, Ga) with state

xa := (xb, xc) ∈ Xb ×Xc =: Xa (10)

for a reference trajectory r : R≥0 → R
12×SO(3)×R

3 with

r(t) := (pr(t), p
(1)
r (t), p(2)r (t), p(3)r (t), Rr(t), ωr(t)), (11)

satisfying the following assumption.

Assumption 1: Given the vehicle’s maximum snapMp >
0 and angular acceleration Mω > 0, a reference trajectory

is a solution t 7→ r(t) to

ṙ ∈ Fd(r) := (p(1)r , p(2)r , p(3)r ,MpB, RrS(ωr),MωB), (12)

such that rge r ∈ Ωr for some compact set Ωr ⊂ R
12 ×

SO(3)× R
3, satisfying e⊤3 Rr(t)e3 ≥ 0 for each t ≥ 0.

The hybrid system Ha = (Ca, Fa, Da, Ga) modeling the

closed-loop controller and quadrotor dynamics with state xa

and input reference trajectory t 7→ r(t) is given by

Ca := Cc, Da := Dc (13)

Fa(xa, r(t)) :=
(

va,−Rae3
f

m
+ ge3, RaS(ωa),

− J−1S(ωa)Jωa + J−1M, Fc(xa, r(t))
)

(14)

Ga(xa, r(t)) :=
(

xb, Gc(xa, r(t))
)

. (15)

with the vehicle inputs thrust magnitude and torque M
assigned by the hybrid controller Hc. For more details on

Assumption 1 and Ha, the reader is referred to [12].

V. MATHEMATICAL PROBLEM STATEMENT

With the constructions in Section IV, the problem outlined

in Problem in Section III is formulated mathematically as

follows.

Problem 1: Given a quadrotor V with reference track-

ing controller whose dynamics are captured by Ha, initial



quadrotor state ξa, obstacles O1,O2, . . . ,ON whose dynam-

ics are captured by Hoi , i ∈ {1, 2, . . . ,N}, initial obstacle

states ξoi , i ∈ {1, 2, . . . , N}, minimum safe quadrotor

obstacle distance ku > 0, target closed set T ⊂ R
3, and

duration τ > 0, compute a reference trajectory t 7→ r(t)
given by the sequence of signals {rk}k∈N≥1

with elements

t 7→ rk(t) for each k, such that

1) r1(0) = ξa
2) For each k ∈ N≥1, with xa and xoi being the current

quadrotor and obstacle states at time tc = (k − 1)τ

a) rk−1 has been executed by the quadrotor for τ time.

b) rk(tc) = rk−1(tc).
c) rk : [tc, tc + τ ]→ Ωr satisfies Assumption 1.

d) The maximal solution ϕk to Ha from xa for input

rk evolves for at least τ seconds of flow and satisfies

dist
(

ϕk(t, j),RHoi
(τ,∞, xoi)

)

≥ ku for all (t, j) ∈
domϕk ∩ ([tc, tc + τ ] × N) so the distance between

any possible obstacle trajectory and the quadrotor is

never below the minimum safe distance.

3) The maximal solution ϕ to Ha from ξa for input r, with

r being the concatenation of all reference trajectories in

{rk}k∈N, satisfies

a) ϕ is complete.

b) There exists a finite time tf such that the po-

sition component of the trajectory pϕ(t, j) ∈
T for all (t, j) ∈ dom ϕ such that t ≥ tf .

Condition 2b ensures that the reference does not jump

between rk−1 and rk. Requirement 2d on each trajectory rk
ensures obstacle avoidance by enforcing a minimum distance

obstacle quadrotor distance. Convergence to the target set

within some finite time is included by requirement 3b.

VI. THE MOTION-PLANNING ALGORITHM

To solve the Problem 1, we propose a set-based feedback

motion planning algorithm. The algorithm operates over

multiple iterations, with each iteration extending the executed

reference trajectory by τe ∈ R>0 seconds. To prevent the

planner from selecting a trajectory from which there is no

safe extension due to an obstacle outside of the τe horizon,

each iteration plans for τp ∈ R>0 seconds, where τp > τe.

The proposed algorithm is as follows:

Step 1: Compute quadrotor mobility set M for the closed-

loop quadrotor model in (14)-(15).

Step 2: Compute the unsafe set Ui for each obstacle using

Hoi in (6).

Step 3: Build the safe mobility set MS by removing tra-

jectories from the mobility set that violate safety

constraints.

Step 4: Solve an optimization problem selecting the lowest

cost reference trajectory from the safe mobility set.

Step 5: Execute τe seconds of the reference trajectory.

Step 6: Go to Step 1 to replan from the current state.

A. Supporting Sets and Constraints

The quadrotor mobility set is the set of all possible refer-

ence trajectory, quadrotor trajectory pairs (r, ϕ). To generate

this set, all possible reference trajectories must be generated.

Since this is difficult to implement for most systems in

practice, we approximate the set using a motion primitive

library Ωp. The library is generated using the quadrotor

dynamics in (8)-(9) by using inputs f and M satisfying

−ω̇e3
f

m
−2

(

RS(ω)e3
ḟ

m

)

−Re3
f̈

m
∈MpB, M∈MωB

The restrictions on f and M are to ensure all trajectories

within Ωr satisfy the conditions of Assumption 1. These

reference trajectories are used as inputs to simulations of the

closed-loop quadrotor model (10) from the current quadrotor

state, with the resulting trajectories building the solution set

ŜHa
(ξa, r). The quadrotor mobility set M(τ, ξa, ξr) contain-

ing all reference trajectory quadrotor trajectory pairs (r, ϕ)
for the given initial vehicle state ξa, motion primitive library

Ωp, and initial reference state ξr over the time interval [0, τ ],
is defined as

M(τ, ξa, ξr) :=
{

(r, ϕ) : ϕ(t, j) = ϕa(t, j) ∀(t, j) ∈ domϕ

∩ ([0, τ ]× N), ϕa ∈ ŜHa
(ξa, r), ∀r ∈ Ωp, r(0) = ξr

}

(16)

where the set ŜHa
(ξa, r) contains all solutions to the hybrid

system Ha from initial state ξa for reference trajectory r.

The set of all possible obstacles states is the unsafe set.

For each obstacle, the unsafe set is denoted as Ui(τ, ξoi)
for the given initial state ξoi over the hybrid time horizon

[0, τ ]× N and is defined as

Ui(τ, ξoi) := RHoi
(τ,∞, ξoi). (17)

Then, given initial states for all obstacles ξo :=
{ξo1 , ξo2 , . . . , ξon}, the unsafe set U(τ, ξo) is defined as

U(τ, ξo) :=

N
⋃

i=1

Ui(τ, ξoi). (18)

The safe mobility set, MS(τ, ξa, ξr, ξo) is constructed by

removing any trajectories in M(τ, ξa, ξr) that violate the

minimum safe distance to the unsafe set U(τ, ξo). It is

defined as follows:

MS(τ, ξa, ξr, ξo) =
{

(r, ϕa) ∈M(τ, ξa, ξr) :

dist
(

pϕa
(ta, ja), pϕo

(to, jo)
)

≥ ku for all ϕo ∈ U(τ, ξo),

for all (ta, ja) ∈ dom ϕa, (to, jo) ∈ dom ϕo

}

(19)

where pϕa
(t, j) is the positional component of ϕa(t, j) and

pϕo
(t, j) is the positional component of ϕo(t, j). The con-

stant ku is the constraint on the minimum allowed distance

between the quadrotor position and the unsafe set for a

trajectory to be considered safe.

B. Problem Reformulation and Algorithm

Using the constructions above, Problem 1 can be reformu-

lated with each rk in the reference trajectory r solving the

following.

Problem 2: Given T ⊂ R
3, planning window τp > 0,

execution window τe ∈ (0, τp], previous reference trajectory



rprev : [0, τp] → Ωr, previous reference cost κprev , vehicle

state xa ∈ Xa, and obstacle state xo ∈ Xo, generate a

reference trajectory r̂ ∈ Ωp with domain [0, τp] that solves

minimize
r̂

κ(r̂, ϕ, rprev, κprev)

subject to

C1) r̂(0) = rprev(τe)
C2) (r̂, ϕ) ∈MS(τp, xa, rprev, xo)

where ϕ is the solution to Ha with state xa and reference

trajectory r̂ over [0, τp]× N.

The cost functional κ is defined as

κ(r̂, ϕ, rprev, κprev) := dist(pϕ(τp, jτ ),T)

+κp(r̂, rprev, κprev)
(20)

κp(r̂, rprev, κprev) :=











0 if r̂(t) = rprev(t+ τe)

for all t ∈ [0, τp − τe]

khκprev otherwise

with jτ denoting the number of jumps at time τe and pϕ(t, j)
denoting the position of the trajectory ϕ at (t, j). The hys-

teresis term κp is added to prevent chattering by penalizing

references which do not extend the previous reference. The

strength of the penalty is adjusted by the hysteresis tuning

constant kh ≥ 0.

Solving Problem 2 for each reference while the previous

reference is followed by the quadrotor, results in Algo-

rithm 1.

VII. SIMULATION RESULTS

Simulations1 have been performed using both a double

integrator point mass model and the combined quadrotor con-

troller model. The simulation in Figure 4 uses the combined

hybrid controller and quadrotor dynamical model. The set

of possible reference trajectories is approximated using 1728
different reference trajectories, generated from 12 increments

of each pitch torque, roll torque, and thrust as inputs to

(8)-(9). All reference trajectories have no yaw torque. The

planning time is τp = 0.3 seconds and execution time of

τe = 0.05 seconds. The mass, inertial tensor, and single

motor maximum thrust are from the system identification of

the Crazyflie quadrotor in [13]. The controller constants are

the same as in the simulations of [12], except α = 0.5, δ =
0.5, and β = kv/4.

VIII. EXPERIMENTAL RESULTS

A. Experimental Setup

The experiments2 use a Windows 10 computer with a dual

core 3.20GHz processor with 8GB of memory. Quadrotor

and obstacle position data is captured using eight motion

capture cameras running at 120Hz. Velocities are calculated

using the difference in position and capture time between

two frames. The experimental quadrotor was a Crazyflie 2.0

controlled over 2.4GHz radio though the Crazyflie client.

1Code available at https://github.com/HybridSystemsLab/
CrazyFlieAvoidanceSimulation

2Code available at https://github.com/HybridSystemsLab/
CrazyFlieAvoidanceExperiment

Algorithm 1: Motion planning algorithm with input

(T, τp, τe, ξa, ξo,Ha,Hoi)

1: κ0 ← 0, r0 ← 0, xa ← ξa, xo ← ξo
2: for k = 1, 2, . . . do

3: M ← ∅, U ← ∅, MS ← ∅
4: for all r̂ ∈ Ωp, r̂(0) = rk−1(τe) do

5: The solution ϕa of Ha is simulated from xa

for reference r̂ for [0, τp] seconds of flow

6: M ←M ∪ {(r̂, ϕa)}
7: end for

8: for i ∈ {1, 2, . . . , N} do

9: The solution ϕoi of Hoi is simulated from xoi

for [0, τp] seconds of flow

10: U ← U ∪ {ϕoi(t, j) : ∀(t, j) ∈
dom ϕoi ∪ ([0, τp]× N)}

11: end for

12: for all (r̂, ϕa) ∈M do

13: for all ϕo ∈ U do

14: if dist(pϕa
(t, ja), pϕo

(t, jo) ≥ ku,
for all (t, ja) ∈ dom ϕa

and all (t, jo) ∈ dom ϕo then

15: MS ←MS ∪ {(r̂, ϕa)}
16: end if

17: end for

18: end for

19: (rk, ϕ) is the solution to Problem 2 given

(T, τp, τe, rk−1, κk−1, xa, xo)
20: κk ← κ(rk, ϕ, rk−1, κk−1)
21: Execute rk for τe seconds.

22: Update xa and xo

23: end for

The obstacles are 0.08m diameter wiffle balls wrapped in

retro-reflective tape to allow tracking by the motion capture

system. To recover the restitution constant and Σ factor, one

obstacle was tossed 15 times with different spins from a

height of approximately 1.5m. The restitution constant is

calculated as the average change in vertical velocity from

before to after the impact. The set Σ is constructed using the

largest change in horizontal velocity from before to after the

impact. The ball has a restitution constant of λ = 0.65 and

possible velocity change from spin of Σ = [−0.02, 0.02]m/s.

The obstacles are thrown toward the quadrotor from a

horizontal distance of 0.15m to 0.7m and a height between

0.7m and 0.85m with initial horizontal velocities between

0m/s and 0.01m/s and vertical velocities between −0.2m/s

and 0.6m/s. The motion planner and controller are imple-

mented in Matlab. The experimental quadrotor controller are

comprised of four PIDs which drove the quadrotor to the

reference. The PIDs output desired thrust, yaw, pitch, and

roll values were sent to the Crazyflie client over ZeroMQ

at a rate of 50Hz. The motion planner is using a planning

window of τp = 0.3s, execution window of τe = 0.28s, and

a minimum safe distance of ku = 0.2m.



Fig. 4. Simulation avoiding two obstacles using a dynamical quadrotor
model. The target set is the sphere with radius 0.3m centered at (0, 0, 2).
Initial quadrotor state is (0, 1, 2, 0,−0.5, 0, I3×3, 0, 0, 0) with initial obsta-
cle states (−0.16,−0.2, 2, 0, 1,−8) and (0.03, 1, 2, 0,−0.5, 0). Planning
period was 0.3 seconds, execute period 0.05s, and obstacle radius of 0.05m.

B. Experimental Results

The quadrotor is able to reliably avoid the two obstacles

and converge to the target set in each test. The motion plan-

ner has low computational delay with planner updates having

a mean computation time of 83ms, median of 84ms, and a

maximum time of 138ms. In Figure 6, the distance between

the quadrotor and the obstacle of multiple experiments are

shown, with the minimum being 0.16m. The violations of the

minimum unsafe distance were due to the communication

delay between the Crazyflie and the controller, which were

not accounted for by the controller.

IX. CONCLUSION

In this paper, we presented a set-based feedback motion

planner for a quadrotor avoiding bouncing ball-like dynamic

obstacles with limited obstacle state information. Simulations

using the hybrid controller and quadrotor model shows the

ability of the algorithm to avoid multiple obstacles while con-

verging to the target. Experimental results show feasibility

of the proposed solution in real-world scenarios with limited

computing power and real-time constraints.
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