
 

 

Analyzing Students’ Written Arguments by Combining Qualitative 
and Computational Approaches 

 
Abstract: Education researchers have proposed that qualitative and emerging computational 
machine learning (ML) approaches can be productively combined to advance analyses of 
student-generated artifacts for evidence of engagement in scientific practices. We applied such 
a combined approach to written arguments excerpted from university students’ biology 
laboratory reports. These texts are lengthy and contain multiple different features that could be 
attended to in analysis. We present two outcomes of this combined analysis that illustrate 
possible affordances of combined workflows: 1) Comparing ML and human-generated scores 
allowed us to identify and reanalyze mismatches, increasing our overall confidence in the 
coding; and 2) ML-identified word clusters allowed us to interpret the overlap in meaning 
between the original coding scheme and the ML predicted scores, providing insight into which 
features of students’ writing can be used to differentiate rote from more meaningful engagement 
in scientific argumentation. 

Introduction  
An emerging line of education research positions computational approaches as “partners” of, rather than 
replacements for, qualitative analyses by human coders (Rosenberg & Krist, 2021; Sherin, 2013; Sherin et al., 
2018). This line of inquiry aims broadly towards a “bootstrapping” program through which each approach can be 
improved through interaction with the other (Sherin, 2013). Each form of coding, human and machine, has its 
strengths and limitations. Qualitative analyses identify patterns that are meaningful for researchers but can be 
time-consuming and biased by what the coders are primed to or able to notice. Computational approaches can 
find empirical patterns and statistical relationships in the data that human analysts might miss, but these patterns 
may not necessarily reflect meaningful constructs. When the two approaches are combined, the power to find 
patterns and the ability to interpret them can potentially be enhanced. 
 We add to this line of work by combining qualitative analyses with statistical machine learning (ML) 
modeling of university students’ lab reports. In a prior study, our purpose in analyzing these reports was to 
distinguish between different types of engagement with argumentation in students’ writing. Some reports 
suggested rote engagement in argumentation, while others contained evidence that students were more 
authentically engaged in the practice of scientific argumentation. In the prior work, qualitative analysts modified 
and applied a multi-dimensional coding scheme to categorize these differences in argumentation (Authors, under 
review).  

In this work, we describe insights gained from a collaborative workflow in which ML approaches were 
applied to the dataset from this original study followed by additional qualitative analyses. After establishing an 
initial baseline of agreement between the two approaches, we highlight two main outcomes of this interaction. 
First, we compared human scores to computational predictions to identify and reanalyze mismatches between the 
two approaches. In this process, the ML approach functioned as a check on the consistency in human coders, 
flagging potentially mis-coded or borderline cases for additional review. Second, we developed a computational 
approach for identifying “discriminatory” words that capture differences between higher- and lower-scoring 
arguments. Qualitative analysts then checked these words against themes from the original coding scheme. This 
approach lends interpretability to the ML, a common limitation of such approaches (Lee et al., 2019).  
  
Scientific Argumentation in Lab Reports 
The original study, and context for this collaboration, is a university-level introductory biology laboratory course 
in which students write lab reports. Research on students’ argumentation was motivated by observations of 
patterns in these reports that suggested rote engagement in argumentation. For example, many students organized 
their arguments around claims provided in the lab manual, even when the evidence suggested more complicated 
interpretations. In addition, some features of lab reports (e.g., lists of sources of “error”) seemed included to meet 
expectations rather than functioning to alter or support claims. We interpreted these features as evidence of 
“pseudoargumentation” that can occur when students see their role as complying with the expectations of 
scientific writing rather than using writing as an activity in which to explore and express their own reasoning 
(Berland & Hammer, 2012).  

To shift how students engaged with argumentation, we undertook a redesign of the laboratory course. 
Our approach was to design a context motivating a “need” to engage in argumentation rather than to provide 
explicit scaffolding (Berland & Reiser, 2011; Manz, 2015). We did so in two ways. We introduced uncertainty 



 

 

around the biological phenomenon by designing experiments and computer simulations that allowed students to 
encounter more complex and potentially conflicting patterns in the results they observed. We also introduced class 
discussions and re-framed the purpose of lab and lab reports to emphasize the value of students’ reasoning over 
canonical conclusions and adherence to formatting guidelines. Our analyses of lab reports detected a shift in the 
quality of arguments that we believe reflected a shift in how students understood and participated in the activity 
of writing a lab report (Authors, under review). 

In the next section, we present an overview of our original method of characterizing argumentation in 
the lab reports as well as a description of the computational approaches we developed to explore patterns in this 
dataset. We then describe how these approaches, when combined with additional qualitative analyses, led to 
additional understandings of the data and confidence in our analysis. 
 
Methods 
 
Qualitative Analysis of Students’ Argumentation in Lab Reports 
To identify features of students’ writing that suggested authentic engagement in argumentation, we used a 
modified version of the Structure of Observed Learning Outcomes (SOLO) Taxonomy (Biggs & Collis, 1982), 
the dimensions of which align with other descriptions of high-quality scientific argumentation in the literature 
(e.g., Lee et al., 2014; Osborne et al., 2016; Schwarz et al., 2003) (see Table 1). 

The first dimension, argument structure, captures the number of claims and the degree of integration 
among them. Arguments that make a single claim are scored at a lower level than those that identify and interrelate 
multiple claims. The second dimension, scope of evidence, accounts for the sources of evidence used to support 
claims. Arguments that align only a subset of evidence with a single claim score lower than those integrating 
multiple sources of evidence, including, at the highest level, ideas from outside the context of the lab (e.g., 
analogies, thought experiments, prior knowledge). Finally, the consistency and closure dimension, considers the 
certainty of conclusions. Lower-level arguments tend to “close” prematurely, claiming to have “proved” claims 
with certainty even when inconsistencies remain. Higher-level arguments include expressions of uncertainty and 
appropriately qualify or specify conditions of applicability for claims. Taken together, these dimensions capture 
a range of approaches to argumentation in lab reports with higher levels defined by increasing claim complexity, 
integration of evidence, and appropriate attention to uncertainty (see Authors, under review for details). 
 
Table 1 
 Description of scoring categories for three dimensions 

Dimension Level 1 Level 2 Level 3 Level 4 
Argument 
Structure 

Tautological / 
Simple One-sided, Additive Two sided, 

Relational 
Compound / 
Conditional 

Scope of 
Evidence 

Relies on given 
information 

Aligns subset of data 
with claim 

Relates data  
patterns 

Relates data and 
includes additional 

information 

Consistency 
and Closure 

Closed without 
rationale 

Closed with some 
rationale 

Closed with 
inconsistencies 
acknowledged 

Appropriately 
qualified or open-

ended 
 

We analyzed 146 Discussion sections of reports from three implementations of the laboratory course: 
the original lab and two iterations of course redesign. Text length averaged about 500 words (ranging from 100 
to almost 1500 words). Analysts assigned scores for each of the three dimensions independently and then 
determined a best fit score. Because the categories are ordinal, we calculated inter-rater reliability of initial pre-
consensus coding of the full data set using Cronbach’s Kappa with linear weighting (Cohen, 1968). The weighted 
Kappa was 0.74 (S.E. = 0.03), corresponding to a “good” level of agreement.  

Comparing consensus scores across the three years revealed a steady increase in argumentation scores 
( 2=79.7; df=2; p<.0001). In the original labs (Y1), the median and mode score was 1.5; in the first design iteration 
(Y2), the median and mode shifted to 2.5, and finally, in the second design iteration (Y3), the median shifted to 
3.5, while the mode increased to 4. Thus, the original analysis by human coders was able to identify a shift in 
students’ engagement with argumentation corresponding with an increase in the uncertainty in the lab data as well 
as an emphasis on reasoning over compliance and correctness (Authors, under review). 
 
 



 

 

Overview of computational approaches 
Other researchers have been successful in using computational machine learning approaches to characterize 
students’ arguments. Notably, Lee et al., (2019) successfully used the c-rater method to automate scoring of 
students’ explanations for claims as well as their explanations of their degree of certainty. The c-rater approach 
detects key words and key sentences and represents them as vectors. This method can successfully score short 
answers (50 words) that correspond to a single construct. We were unable to generate successful predictions with 
c-rater (Authors, 2020). Moreover, we wanted to develop an approach that would provide interpretability, a feature 
that is not provided in c-rater (Leacock & Chodorow, 2003).  

We developed two computational approaches, both of which use supervised contrastive learning to train 
an encoder to convert lab report text into a cluster of points in a multi-dimensional representation space. The 
workflow for these methods is shown schematically in Figure 1. First, text from lab reports was processed by 
removing punctuation and stop words, converting to lowercase, and applying stemming, and lemmatization using 
standard tools from the NLTK package (Bird et al., 2009). Then we used word embeddings (Pennington et al., 
2014), pre-trained on a generic corpus, to map the lab reports to point clouds in a Euclidean space.  

 
Figure 1  
Schematic of the two supervised contrastive learning methods 

 
We then used supervised, contrastive learning (Saunshi et al., 2019) to train an encoder. Contrastive 

learning trains an encoder that learns to push the documents (point-clouds) with different scores apart in a second, 
again Euclidean, representation space while pulling the documents with similar scores together.  In our context, 
the contrast is measured as the Word Mover’s Distance (WMD) (Kusner et al., 2015) between the representations 
of the documents. Thinking of a document as point cloud generated from its words, WMD measures the distance 
between documents as the Wasserstein or Optimal Transport (OT) distance (Peyré & Cuturi, 2019) between the 
two corresponding clouds. Intuitively, WMD is the total cost of minimal matching between the words in the two 
documents, measured as the sum of the squared lengths of the vectors that match the words (see Figure 2). 

 
Figure 2  
Example of the WMD as a minimal matching between two 
documents. Arrows represent minimal matching between words.  

 

 
 

We next applied two different methods that use two different contrastive loss functions for training the 
encoder and predicting the score. A graphical illustration of the difference between the two is depicted in Figure 
3. For the first method (Figure 3a), we use the standard contrastive loss (Saunshi et al., 2019) with a bi-
LSTM (Schuster & Paliwal, 1997) as an encoder. Prediction is performed using k-Nearest Neighbor (kNN) with 
WMD as the measure of nearness. Further details of this method can be found in (Authors, 2020). 
 



 

 

Figure 3  
Two contrastive loss functions. In each, color denotes the categorical score given by human coders. (a) The 
encoder minimizes the WMD between documents with difference scores and maximizes the WMD distance 
between documents with different scores. (b) The encoder learns “anchors" (triangles) such that the WMD 
distance between reports from the same category and the anchor is minimized. 

 

 
For the second method, we modify the contrastive loss to incorporate a clustering mechanism in the 

representation space that we use to identify the most informative words for discriminating between documents 
with different scores (see also Authors, 2020). This is done by learning an “anchor,” a cluster of points that 
minimizes the distance (in WMD) to all reports in the same category as shown in Figure 3b. Because the dataset 
is limited in size, we combined levels to create two categories: high-scoring (assigned scores of 3 or 4 by coders) 
and low-scoring (score of 1 or 2) reports. This clustering also reflected a meaningful distinction in the original 
coding scheme between reports that presented single claims and those that considered and to some extent 
integrated two claims 

Given the learned anchors for the two categories corresponding to the low ( ) and high ( ) scores, we 
then compute the distance of each word ( ) to each cluster and denote these distances as  and  
respectively. Then the importance of each word is computed as . A low value 
for  means the word  is important or discriminatory for predicting a low score and vice versa for a high 
score. Prediction is again performed using kNN. We repeated the training four times identifying the top 30 words 
in each run. Figure 4 visually represents the output of a single run as t-Stochastic Neighborhood Embedding (t-
SNE) visualization plots (Van der Maaten & Hilton, 2008). 

 
Figure 4 
Visualization plots of anchors and important words for a single training run. Left plot is a visualization of the 
complete vocabulary of the lab report text (blue) and the learned anchors for high- (red) and low- (green) 
scoring reports. Right plot depicts the top 30 words identified as important for each category. 

 
 
Findings 
 
Baseline score agreement and recapitulating trends 
Our first step was to evaluate the ability of the statistical machine learning approach to predict scores for 
arguments that approached agreement with human coders. Given the relatively small size of the dataset (146 



 

 

scored reports), ML predictions were calculated using a 10-fold cross-validation process in which 70% of the data 
was used as the training set and the other 30% as the test set. Each predicted score was calculated as an average 
across the runs in which the text was in the test set. We then calculated the quadratic weighted kappa (QWK), as 
a measure of the degree of agreement between the average ML predicted scores and the consensus score assigned 
by human coders.1 QWK between the ML prediction and human consensus scores was estimated at 0.645, which 
is considered to be a “substantial” agreement and approaches the cut-off recommended for high-stakes assessment 
(QWK = 0.70) (Williamson et al., 2012). Because our aim was to examine average shifts in scores rather than 
predict individual scores for assessment, we considered the estimated QWK to be an acceptable level of agreement 
for our purposes. 

In addition, we examined whether the ML-predicted scores would recapitulate the differences in scores 
across implementation years of the laboratory curriculum redesign. Mirroring the qualitative analysis, we found 
that the mean ML-predicted scores increased with implementation year (Y1 = 2.18; Y2 = 3.12; Y3 = 3.95) and 
that these differences were statistically significant (F = 474; df = 2, p < .0001; post hoc Tukey test p < .0001 for 
all comparisons). These results suggest that the contrastive leaning method can assign scores at an acceptable 
level of reliability with human analysts, which is notable given the complex nature of the original coding scheme. 
 
Identifying mismatches to improve scoring accuracy  
We identified nine reports for which the ML prediction consistently differed from the consensus score across 
multiple validation runs. For five of these, the ML prediction was consistently higher than the consensus score 
and for four the ML prediction was consistently lower. We presented these nine reports along with a random 
sample of 21 additional reports to three of the four original qualitative analysts for re-scoring. This re-scoring 
took place over a year after the original scoring, and coders were blind to both the original score and the ML 
prediction. Each report was re-scored by at least two coders independently and was then discussed by all three 
coders to reach a consensus.  

Of the nine reports for which the ML prediction consistently differed from the original human-coded 
consensus score, four were revised in re-coding in the direction of the ML prediction (see Table 2). In three 
examples the re-coding increased the score and in one example the sore was lowered. The remaining five examples 
were not changed from their original scores.  
 

Table 2  
Original and re-coded scores of reports for which ML prediction consistently differed 
from original score (*indicates change in score in the direction of the ML prediction).  

ML prediction higher than original score ML prediction lower 
Original score 1 2 2 2 2.5 3.5 3.5 3.5 4 
ML prediction 3.0 2.9 3.0 3.0 4.0 4.0 2.0 2.5 3.2 
New score 2.5* 2 2 3* 4* 3.5 2.5* 3.5 3.5* 

 
That the ML prediction matched revised scores from the re-coding process suggests the possibility that 

ML may be useful for identifying examples that human coders may want to revisit, either because they were coded 
inconsistently or because they represent difficult to code "borderline" examples. For example, an excerpt from a 
report that was originally scored as level 1, begins with a tautological claim about how a higher-mutation strain 
appeared to mutate more often. However, at the end of the report the student included the following sentences: 

 
Yet, looking at lab group six (my group) in particular, given that it is the only group with 
accessible photo documentation, not all dishes adhered to the expected trend of increased growth 
in the mutagenic [fast mutating] strain. [The fast-mutating strain] fared worse in the plain 
nutrient agar medium than [the slow-mutating strain], which may have been a result of a harmful 
mutation limiting growth in otherwise ideal conditions. 
 

Here, the student includes an unexpected data pattern and provided a potential explanation that raises the 
possibility of detriment of a higher rate of mutation. Attention to this part of the text prompted coders to revise 
the score to 2.5 to reflect the inclusion of this data (though not a complete reconciliation of claims) which matches 
the direction of the ML score of 3.   
 
Identifying discriminatory words 



 

 

The anchor-based WMD method generated a set of 72 unique important words for high-scoring reports and 64 
unique words for low-scoring reports. To make meaning of these words, we first located all instances of each 
word in context to review its use in students’ writing. For example, we found that all instances of the word 
“positive” referred to positive or adaptive effects of mutation. We then clustered synonymous words together. For 
example, the words “negative”, “detrimental”, and “harmful” were each used in high-scoring reports to refer to 
the negative effects of mutation. Finally, we counted frequency with which the discriminatory words appeared in 
high and low scoring reports. Table 3 shows the top 5 most frequent sets of discriminatory words for both high- 
and low-scoring reports. 

For both high- and low-scoring reports, the word clusters reflect features of writing that align with 
categories from the original coding scheme. A key feature of higher scoring arguments was the integration of two 
possible claims about mutation rate. One type of claim focused on the positive effects of mutation such as allowing 
organisms to generate novel mutations and adapt to new environments. Another type of claim attended to how 
mutations can disrupt function and lead to a decrease in fitness. The word clusters for “positive” and “negative” 
respectively, align with these two sides of the argument represented in the “Argument Structure” dimension of 
the coding scheme. Moreover, a hallmark of high-scoring arguments was an attempt to relate these two claims 
together to discuss their relative effects. Words such as “comparative” and “relative” reflect the relational structure 
of these for high-scoring arguments. Similarly, words such as “importance” and “significance,” while not 
inherently comparative, also appear to reflect students’ attempts to emphasize certain claims or evidence over 
others. Finally, the word “environment” is associated with conditions on claims. Students referred to specific 
types of environments (e.g., antibiotic) in specifying conditions in which a higher or lower rate of mutation would 
have an advantage. The following excerpt from a high-scoring report, illustrates how words that differentiate high 
and low scoring reports appear in the context of a Level 4 report (discriminatory words underlined). 

 
Moreover, using computer simulation of bacterial growth, which was another part of the lab, 
supported the idea that mutation rate is advantageous on an environmental level, and the fitness 
of an organism is comparative to the environmental conditions as there are situations where the 
lower mutator strain has higher fitness or the higher mutator strain has higher fitness, and where 
both strains will co-exist. Overall, the high mutator strain seemed to outcompete the low mutator 
strain in situations where the mutations gave the organism an advantageous mutation, such as 
metabolic benefit.  
 
In this excerpt, the student is presenting an argument for context-dependent advantage, specifically 

arguing that, while there are many possible outcomes, a high mutator would be expected to have an advantage in 
environments in which there is an opportunity to benefit from a novel mutation (in this case the ability to 
metabolize a new nutrient). Note also that this excerpt contains other markers of a high scoring reports including 
the integration of evidence beyond the experimental data (computer simulation) and hedging language that keeps 
the overall conclusion open (e.g., “seemed”), but that these words were not identified as discriminatory. 
 

Table 3  
Most common clusters and counts of discriminatory words in each set of reports 

High-scoring reports Low scoring reports 
“environment” 444 “plate”, “dish”, or “tube” 583 
“positive” and synonyms 239 “procedure” “method” and synonyms 550 
“negative” and synonyms 114 “repair” “fix” and synonyms 274 
“comparative” “relative” and related words 91 [repair] “mechanism” or “system” 139 
“importance” “significance” and related words 32 “quick” or “quicker” [adapting] 46 

 
Low scoring reports were characterized by arguments that restated claims given by the lab manual. Most 

often this meant stating that the experiment showed that bacteria with dysfunctional DNA repair systems would 
mutate more often (a fact given in the lab manual). Words such as “repair” or “fix” and “system” or “mechanism,” 
indicate that this phrase was important for identifying low-scoring reports in the anchor-based ML model. Level 
2 reports additionally included claims that mutations can be adaptive (without considering harmful consequences 
of mutation). Use of the words “quick” or “quicker” (which were always associated with the word “adapt” in 
student text) reflect claims that bacteria with higher rates of mutation are also able to more quickly adapt to new 
situations. The following examples illustrate discriminatory words in the context of lower-scoring reports. The 
first illustrates the pattern of aligning the experiment with the given fact about DNA repair: 



 

 

 
The results above conform to the hypothesis that as the efficiency of DNA repair mechanisms 
increases the mutation rate decreases. Part one of the experiment showed that under the 
environment of antibiotics, [the fast mutating] strain with suboptimal DNA repair mechanisms 
survived more than [the slow mutating] strain with functional DNA repair mechanisms. 

 
Note also the use of words such as “conform” and “showed” that signal a high level of certainty in this 
conclusion. 

A second excerpt illustrates how words related to experimental materials (plate, dish, tube) and words 
like “procedure” and “method” were used.  
 

Were there to be improper plating or diluting procedures, this would also affect the data because 
there may be fewer or more bacteria in the plate than the experiment calls for, which would lead 
to underestimating or overestimating growth rates and thereby mutation rates. 

 
In this excerpt, the student references procedures to discuss possible sources of error involving experimental 
materials (diluting and then pipetting bacteria onto the plate). This is an example of listing possible errors that do 
not alter the conclusions of the report. The error in this case could have resulted in under or over-estimation of 
bacteria. While this is a reasonable attribution of error, it amounts to a general statement about improving data 
quality that does not impact the main claims of the argument. 

Discussion 
In this work, we examined students’ writing as a means of gaining insight into their engagement with scientific 
argumentation. These texts were lengthy (500 words on average) and contained many different features. Our aim 
was to examine the utility of combining computational and qualitative analyses of these texts (see Figure 5). The 
purpose of the qualitative analysis was to learn about how students in different design-iterations of a laboratory 
course were engaging in argumentation through an examination of three inter-related features of arguments; claim 
structure, scope of evidence used, and consistency and closure of conclusions. These dimensions were collapsed 
into a “best fit” score to compare reports across different years. 
 

Figure 5  
Summary of our collaborative workflow 

 
 The comparative ML approach was relatively successful in predicting scores that agreed with human 
coders, where other established ML methods, such as c-rater, were not. We believe that the reason for this success 
is that our approach used point cloud representations of documents rather than collapsing them into a single vector. 
While this method did a reasonable job of predicting scores, we are not suggesting that ML methods replace 
human analysts. Rather, in our workflow, the ML algorithm functioned as an additional coder whose conjectures 
about how to categorize the data could inform discussions that increased our overall confidence in our ability to 
reliably categorize texts. This pathway suggests a possible role for ML methods complementing the skills of 
human analysts by identifying empirical outliers that may require additional discussion. 

Second, the anchor-based WMD approach provided us with a way to interpret ML predictions by 
associating them with clusters of words that we could compare to our original coding scheme. This analysis 
reflected important themes from the qualitative coding scheme. For example, high-scoring words reflected the 
relational quality of high-scoring arguments, while low scoring words reflected the tendency to repeat given 
claims. Interestingly, words that conveyed certainty (i.e., “showed”, “proved) or uncertainty (“seemed”, “may 
have”) did not emerge as important for discriminating high and low scoring reports, as we might have expected 
given their importance in the original coding scheme. This may be due to the small size of the original dataset or 
it may be that these words are used in both high- and low-scoring reports, but potentially in different ways. 
Investigating how uncertainty is expressed by students and detected by ML approaches is an area for future work. 



 

 

 As others have argued, combining qualitative and computational analyses does not necessarily make the 
process of data analysis faster or more efficient (Sherin, 2013; Sherin et al., 2018). Indeed, a limitation of this 
work is that supervised ML requires large, coded datasets in order to learn patterns. Thus, there is a relatively 
significant activation energy to starting this work. Additional work is then required to check the meaning of 
patterns, as we did in this case by re-coding mismatches and by examining how the discriminatory words function 
in student text. Despite this effort, this work contributes to a growing understanding of how to combine approaches 
to manage the challenges of extracting meaningful patterns from complex student-generated texts. 

Endnotes  
(1)  The QWK among human coders was estimated as 0.839 (compared with LWK = 0.74). Note that quadratic-weighted 
kappa scores are often higher than linear-weighted scores. 
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