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VIII. APPENDIX

A. Equivariance under Proposition 2:

We summarize some important properties related to our

place network which follow from Proposition 2 or its proof

and provide a intuitive explanation for each one. Recall that

Proposition 2 states:

Ψ(T 0
g1
(c)) ? φ(T 0

g2
(ot))

= ρreg(g2 − g1)(T
0
g2
[Ψ(c) ? φ(ot)]).

Then he have the following properties.

a) Equivariance property: Setting g1 = 0 or g2 = 0 we

get respectively

Ψ(T 0
g (c)) ? φ(ot) = ρreg(−g)(Ψ(c) ? φ(ot)) (17)

Ψ(c) ? φ(T 0
g (ot)) = T reg

g (Ψ(c) ? φ(ot)) (18)

These show the equivariance of our network fplace under either

a rotation g ∈ Cn of the object or the placement.

b) Invariance property: Setting g1 = g2, we get

Ψ(T 0
g (c)) ? φ(T

0
g (ot)) = T 0

g (Ψ(c) ? φ(ot)).

This equation demonstrates that a rotation g on the whole

observation ot does not change the placing angle but rotates

the placing location by g. Although data augmentation could

help non-equivariant models learn this property, our networks

observe it by construction.

c) Relativity property: Related to Equation 17, we also

have

Ψ(T 0
g (c)) ? φ(ot) = ρreg(−g)(T

0
g [(Ψ(c) ? φ((T 0

−g(ot))]).

This equation defines the relationship between a rotation on c

by g and a inverse rotation −g on ot. Intuitively, c could be

considered as the L-shaped block and ot can be regarded as

the L-shaped slot.

B. Proofs of propositions

We now prove Proposition 1 and Proposition 2. We start

with some common lemmas. In order to understand continuous

rotations of image data, it is helpful to consider a k-channel

image as a mapping f : R2 7→ R
k where the input R2 defines

the pixel space. We consider images centered at (0, 0) and

for non-integer values (x, y) we consider f(x, y) to be the

interpolated pixel value. Similarly, let K : R
2 7→ R

l×k

be convolutional kernel where k is the number of the input

channels and l is the number of the output channels. Although

the input space is R
2, we assume the kernel is r×r pixels and

K(x, y) is zero outside this set. The convolution can then be

expressed by (K ? f)(~v) =
∑

~w∈Z2 f(~v + ~w)K(~w), where

~v = (i, j) ∈ R
2.

Lemma 8.1:

(T 0
g (K ? f))(~v) = ((T 0

gK) ? (T 0
g f))(~v) (19)

Proof: We evaluate the left hand side of Equation 19.

T 0
g (K ? f)(~v) =

∑

~w∈Z2

f(g−1~v + ~w)K(~w).

Re-indexing the sum with ~y = g ~w,

=
∑

~y∈Z2

f(g−1~v + g−1~y)K(g−1~y)

is by definition

=
∑

~y∈Z2

(T 0
g f)(~v + ~y)(T 0

gK)(~y)

= ((T 0
gK) ? (T 0

g f))(~v)

as desired.

Assume input f : R2 → R. Consider a diagonal kernel

K̃ : R2 7→ R
n×n where K̃(~v) is a diagonal n × n matrix

Diag(K1, . . . ,Kn). Define f̃ : R2 → R
n to be the n-fold

duplication of f such that f̃(~v) = (f(~v), . . . , f(~v)). For

such inputs and kernels, we have the following permutation

equivariance.

Lemma 8.2:

(ρreg(g)K̃) ? f̃ = ρreg(g)(K̃ ? f̃)

Proof: By definition hi = (K̃ ? f̃)i = Ki ? f . Clearly

permuting the 1x1 kernels Ki also permutes hi, so ρreg(g)h =
(ρreg(g)K̃) ? f̃ as desired.

We require one more lemma on the equivariance of Rn.

Lemma 8.3:

Rn(T
0
g f) = ρreg(−g)Rn(f)

Proof: First we compute

Rn(f)(~x) = (f(~x), f(g−1~x), . . . , f(g−(n−1)~x)).

Then both Rn(T
0
g f) and ρreg(−g)Rn(f) equal

(f(g−1~x), . . . , f(g−(n−1)~x), f(~x)).

1) Proof of Proposition 1: We prove the equivariance of

Transporter Net under rotations of the picked object,

ψ(Rn(T
0
g c)) ? φ(ot) = ρreg(−g)(ψ(Rn(c)) ? φ(ot) (20)

Proof: Since ψ is applied independently to each of the

rotated channels in Rn(c), we denote ψn((f1, . . . , fn)) =
(ψ(f1), . . . , (ψ(fn)). By Lemma 8.3, the left-hand side of

Equation 20 is

ψ(Rn(T
0
g c)) ? φ(ot) = ψn(ρreg(−g)Rn(c)) ? φ(ot).

Since ψn applies ψ on each component, it is equivariant to

permutation of components and thus the above becomes

= (ρreg(−g)ψn(Rn(c)) ? φ(ot).

Finally applying Lemma 8.2 gives

= ρreg(−g)(ψn(Rn(c) ? φ(ot))

as desired.



2) Proof of Proposition 2: Recall Ψ(c) = ψ(Rn(c)). We

now prove Proposition 2,

Ψ(T 0
g1
(c))?φ(T 0

g2
(ot\c)) = ρreg(g2−g1)(T

0
g2
[Ψ(c)?φ(ot\c)])

(21)

Proof: We first first prove the equivariance under rotations

of the placement ot. We claim

Ψ(c) ? φ(T 0
g (ot)) = T reg

g (Ψ(c) ? φ(ot)). (22)

Evaluating the left hand side of Equation 22,

Ψ(c) ? φ(T 0
g (ot))

= Ψ(c) ? T 0
g φ(ot) (equivariance of φ)

= (T 0
g T

0
g−1Ψ(c)) ? (T 0

g φ(ot))

= T 0
g (T

0
g−1Ψ(c) ? φ(ot)) (Lemma 8.1)

= T 0
g (T

0
g−1Rn(ψ(c)) ? φ(ot))

= T 0
g (Rn(ψ(T

0
g−1c)) ? φ(ot)) (equiv. of ψ, Rn)

= T 0
g ((ρreg(g)Ψ(c) ? φ(ot)) (Lemma 8.3)

= T 0
g ρreg(g)(Ψ(c) ? φ(ot)) (Lemma 8.2)

= T reg
g (Ψ(c) ? φ(ot)).

In the last step T reg
g = ρreg(g)T

0
g = T 0

g ρreg(g) since T 0
g and

ρreg(g) commute as ρreg(g) acts on channel space and T 0
g acts

on base space. This proves the claim of Equation 22.

Now, using the equivariance of ψ, Proposition 1 may be

reformulated as

Ψ(T 0
g c) ? φ(ot \ c) = ρreg(−g)(Ψ(c)?)φ(ot \ c) (23)

Note we use ot \ c to emphasize the target placement since

the object and the placement are non-overlapping. Combining

Equation (21) with Equation (23) realizes the Proposition 2.

C. Task descriptions of Ravens-10:

Here we provide a short description of Ravens-10 Envi-

ronment, we refer readers to [33] for details. The poses of

objects and placements in each task are randomly sampled in

the workspace without collision. Performance on each task

is evaluated in one of two ways: 1) pose: translation and

rotation error relative to target pose is less than a threshold

τ = 1cm and ω = π
12 respectively. Tasks: block-insertion,

towers-of-hanoi, place-red-in-green, align-box-corner, stack-

block-pyramid, assembling-kits. Partial scores are assigned to

multiple-action tasks. 2) Zone: Ravens-10 discretizes the 3D

bounding box of each object into 2cm3 voxels. The Total

reward is calculated by
# of voxels in target zone

total # of voxels
. Tasks: palletizing-

boxes, packing-boxes, manipulating-cables, sweeping-piles.

Note that pushing objects could also be parameterized with

apick and aplace that correspond to the starting pose and the

ending pose of the end effector.

1) block-insertion: pick up an L-shape block and place it

into an L-shaped fixture.

2) place-red-in-green: picking up red cubes and place them

into green bowls. There could be multiple bowls and

cubes with different colors.

3) towers-of-hanoi: sequentially picking up disks and plac-

ing them into pegs such that all 3 disks initialized on one

peg are moved to another, and that only smaller disks can

be on top of larger ones.

4) align-box-corner: picking up a randomly sized box and

place it to align one of its corners to a green L-shaped

marker labeled on the tabletop.

5) stack-block-pyramid: sequentially picking up 6 blocks

and stacking them into a pyramid of 3-2-1.

6) palletizing-boxes: picking up 18 boxes and stacking

them on top of a pallet.

7) assembling-kits: picking 5 shaped objects (randomly

sampled with replacement from a set of 20) and fitting

them to corresponding silhouettes of the objects on a

board.

8) packing-boxes: picking and placing randomly sized

boxes tightly into a randomly sized container.

9) manipulating-rope: manipulating a deformable rope

such that it connects the two endpoints of an incomplete

3-sided square (colored in green).

10) sweeping-piles: pushing piles of small objects (randomly

initialized) into a desired target goal zone on the tabletop

marked with green boundaries. The task is implemented

with a pad-shaped end effector.
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